
Journal Pre-proof

A Study on the Security Weakness Detection of Solidity Smart Contracts using

Graph Neural Networks on Blockchain Platforms

Sunghyun Kim, Seunggi Jung, Yunsik Son and Yangsun Lee

DOI: 10.53759/7669/jmc202505039

Reference: JMC202505039

Journal: Journal of Machine and Computing.

Received 18 May 2024

Revised form 23 October 2024

Accepted 05 December 2024

Please cite this article as: Sunghyun Kim, Seunggi Jung, Yunsik Son and Yangsun Lee, “A Study on the Security

Weakness Detection of Solidity Smart Contracts using Graph Neural Networks on Blockchain Platforms”, Journal

of Machine and Computing. (2025). Doi: https:// doi.org/10.53759/7669/jmc202505039

This PDF file contains an article that has undergone certain improvements after acceptance. These enhancements

include the addition of a cover page, metadata, and formatting changes aimed at enhancing readability. However,

it is important to note that this version is not considered the final authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting, typesetting,

and comprehensive review. These processes are implemented to ensure the article's final form is of the highest

quality. The purpose of sharing this version is to offer early visibility of the article's content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be identified,

which could impact the content. Additionally, all legal disclaimers applicable to the journal remain in effect.

© 2025 Published by AnaPub Publications.

A Study on the Security Weakness Detection of Solidity Smart Contracts using Graph
Neural Networks on Blockchain Platforms

Sunghyun Kim 1, Seunggi Jung 1, Yunsik Son 2*, Yangsun Lee 1*

1 Department of Computer Engineering, Seokyeong University,

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 02713, Korea

2 Dept. of Computer Science and Engineering, Dongguk University,

3-ga, Pil-dong, Jung-gu, Seoul 04620, Korea

2* sonbug@dongguk.edu; 1*yslee@skuniv.ac.kr

Abstract

Blockchain is a distributed ledger technology that allows users to record and share information safely and

transparently. A smart contract is a contract decided based on a blockchain and is a program that automatically

executes or executes contract terms. Smart contracts improve the transparency and reliability of transactions by

utilizing the tampering prevention function of blockchain technology. Software security vulnerability refers to the

fundamental cause of vulnerabilities caused by logical errors, bugs, and mistakes that can be defective in software

development. To prevent software security accidents, security weaknesses must be analyzed before the program is

distributed. Smart contract codes that operate on ethereum, a blockchain-based framework, can have security

vulnerabilities inside the code. When the contract is completed and the block is created, the chaincode cannot be

arbitrarily modified, so the security weakness must be analyzed before execution.

In this paper, we used deep learning's graph neural network (GNN) to detect security vulnerabilities in solidity

codes. To analyze security vulnerabilities in solidity code, we defined eight types of security weakness items,

converted the solidity code into graph data. In order to represent both the structural elements of the program, the

control flow, and the data flow, the solidity code was converted into an abstract syntax tree (AST) and the graph

information required for GNN learning was extracted from AST to convert the solidity code into a graph. Next,

after generating several datasets for training GNN models by integrating these graph data and their properties with

labels, it is possible to detect whether security vulnerabilities exist in the solidity code through GNN learning. This

method performs security weakness detection more effectively than conventional rule-based methods.

Keywords: Blockchain, Smart Contract, Security vulnerability, Solidity, Ethereum, Security Weakness Analyzer,

Graph Neural Networks(GNN), Graph Convolution Network(GCN)

1. Introduction

Blockchain is a distributed ledger technology that allows users to record and share information safely and

transparently. A smart contract is a contract decided based on a blockchain and is a program that automatically

executes or executes contract terms. Smart contracts improve the transparency and reliability of transactions by

utilizing the tampering prevention function of blockchain technology [1-5].

Software security vulnerability refers to the fundamental cause of vulnerabilities caused by logical errors, bugs,

and mistakes that can be defective in software development. To prevent software security accidents, security

weaknesses must be analyzed before the program is distributed. Smart contract codes that operate on ethereum, a

blockchain-based framework, can have security vulnerabilities inside the code. Due to the nature of the blockchain,

no one can arbitrarily modify the contract when the contract is completed and the block is created, so if you sign a

chain code with weak security, it cannot be modified, which creates a security threat. Software security weakness

1* Corresponding Author, 2* Co-corresponding Author

Auth
ors

 Pre-
Proo

f

analysis is a process of inspecting the security weaknesses inherent in the developed source code to remove security

threats by finding and removing the security weaknesses inherent in the software in advance [6-11].

In this paper, we used deep learning's graph neural network (GNN) to detect security vulnerabilities in

solidity codes [12-13]. To analyze security vulnerabilities in solidity code, we defined eight types of security

weakness items, converted the solidity code into graph data. In order to represent both the structural elements

of the program, the control flow, and the data flow, the solidity code was converted into an abstract syntax

tree (AST) and the graph information required for GNN learning was extracted from AST to convert the

solidity code into a graph. Next, after generating several datasets for training GNN models by inte grating

these graph data and their properties with labels, it is possible to detect whether security vulnerabilities exist

in the solidity code through GNN learning. This method performs security weakness detection more

effectively than conventional rule-based methods.

2. Related Studies

2.1. Blockchain and Smart Contracts

Blockchain is a distributed ledger technology that allows users to record and share information safely and

transparently. A smart contract is a contract decided based on a blockchain and is a program that automatically

executes or executes contract terms. Smart contracts improve the transparency and reliability of transactions by

utilizing the tampering prevention function of blockchain technology [1-5].

Smart contracts security vulnerability analysis is an analysis technique that diagnoses whether the security

vulnerability, which is the basis cause of security vulnerability, exists inside the program, and proactively detects

and removes potential vulnerabilities such as program defects and errors in advance to proactively eliminate the

possibility of security threats such as hacking [6-11]. The smart contract vulnerability analysis method is

divided into static analysis through the existing rule-based method and dynamic analysis through flow graph

[3-5].

Security weakness analysis for smart contracts is an analysis technique that diagnoses whether the security

weakness which is the basis cause of security vulnerability exists inside the program, and it is a method

that proactively eliminates the possibility of causing security threats such as hacking by detecting and

removing potential vulnerabilities such as defects and errors in program in advance. Security weakness

analysis method is divided into static analysis and dynamic analysis. Static analysis is usually done by code

review and is performed during the implementation phase of the security development life cycle. Dynamic

analysis, unlike static analysis, does not have access to source code, and is a method of finding security

weaknesses in a running application program, such as vulnerability scanning and penetration testing [6-11,

15-17].

2.2. Solidity

Solidity was first proposed by Gavin Wood in august 2014 and developed by the solidity team led by Christian

Reitwiessner of the ethereum project. Solidity is a smart contract development language provided by ethereum and

is used to write or implements smart contracts for various blockchain platforms. It mainly provides data types and

functions needed to exchange ether (ETH). This language is a statically typed language, so the types of variables

are determined at compile time. Solidity was designed to target the ethereum virtual machine (EVM), a virtual

machine shared by nodes of the ethereum blockchain network and the engine that operates the entire ethereum.

Solidity is designed to develop smart contracts that run on the EVM and are compiled into bytecode that can run

on the EVM. Through solidity, developers can implement applications by including self-executing business logic

in a smart contract. Matters recorded in the smart contract cannot be denied and are performed forcefully. In addition,

Ethereum is a platform that allows multiple distributed applications to be used as a new blockchain network [18-

21].

Auth
ors

 Pre-
Proo

f

Since ethereum supports the complete turing language, it can accommodate various applications implemented

using the language mainly used by developers. However, due to the nature of the blockchain, it cannot be arbitrarily

modified when the contract of the chain code is completed, so there is a problem that if a chain code with a security

weakness is executed on ethereum, it can develop into a security weakness.

2.3. Graph Neural Networks(GNNs)

GNN is a type of artificial neural network for processing data that can be expressed as a graph, and is a powerful

deep learning model designed to operate on graph-structured data. Unlike traditional neural networks, which

process data in grid-like structures such as images or sequences, GNNs can process complex non-Euclidean

structures in graphs. This feature makes GNNs particularly suitable for tasks involving relationships and

interactions between entities, such as smart contract analysis [12-14].

Smart contract codes can be naturally expressed as a graph with CFG(control flow graph) and DFG(data flow

graph) [22] representing execution and data flow. GNN can effectively analyze and detect security vulnerabilities

by converting smart contracts into a graph representation. Through this processing, GNN captures complex

relationships and dependencies within code, which are important for identifying security problems in smart

contracts, and can efficiently process large graphs, making it suitable for analyzing complex smart contracts.

Additionally, GNNs can improve detection of new vulnerabilities by generalizing training data to new, unseen data.

This approach can detect a wider range of security vulnerabilities more effectively than traditional methods. Figure

1 shows the GNN model structure.

Fig. 1 GNN Model Structure

3. Solidity Smart Contract Security Weakness Analyzer

The solidity smart contract security weakness analyzer diagnoses security weaknesses by converting the

source program of solidity, one of the languages that write smart contracts, into a syntax tree. Figure 2 is a

structural diagram of the solidity smart contract security weakness analyzer.

Auth
ors

 Pre-
Proo

f

Fig. 2 Structure of the Solidity Smart Contract Security Weakness Analyzer

The solidity smart contract security weakness analyzer consists of a generation unit and a learning unit.

The generation unit receives the solidity code as input to generate a Deep Graph Library (DGL) graph, and

the learning unit receives the DGL graph as input to perform learning to generate a security weakness

analysis model and detect the security weakness of the smart contract.

The DGL graph generation unit consists of an Abstract Syntax Tree(AST) generator that converts the

solidity code into an AST, a dot generator that generates a dot code by extracting only necessary information

from the generated AST [23], a symbol table generator that generates a symbol information table for token

embedding, and a DGL graph generator that converts the Embedded dot code generated by receiving the

symbol information table and the Dot code as input into a DGL graph. In this process, an intuitive

understanding of the graph generated by visualizing and representing the Embedded Dot code using a

visualization tool can be provided.

The learning unit's model for solidity smart contract security weak point detection consists of two layers

of the Graph Convolution Network (GCN), which performs graph classification learning using the DGL

graph-type dataset generated by the DGL graph generator, and each layer aggregates neighborhood

information to calculate a new node representation.

3.1. Defining the Security Weakness of Solidity Code

In order to analyze the security weaknesses of the solidity code, the security weaknesses of the solidity

code are first defined. Table 1 is a list of the items of the solidity code security weaknesses proposed in this

paper. The causes of security weaknesses were defined into eight items as follows in terms of the reliability

of code execution and data processing.

Table 1. Defined Security Weakness Items

Solidity Security Weakness Item List

- unchecked external call

- dangerous delegate call

- timestamp dependency

- Integer overflow

- reentrancy

- block number dependency

- ether strict equality

- ether frozen

Auth
ors

 Pre-
Proo

f

3.2 AST(Abstract Syntax Tree) Generator

The AST generator receives the solidity code as input and generates the AST using the parse method of the

solidity parser library. Figure 3 shows the example solidity code to be used for the analysis of security weaknesses

and the AST generated by the AST generator receiving the solidity code as input.

TestCoin.sol and AST

pragma solidity ^0.4.15;

contract TestCoin is EIP20Interface {
...
function transferFrom(address _from, address _to,

uint256 _value) public returns (bool success) {
uint256 allowance = allowed[_from][msg.sender];
require(balances[_from] >=_value && allowance >= _value);

balances[_to] += _value;
balances[_from] -= _value;
if (allowance < MAX_UINT256) {

allowed[_from][msg.sender] -= _value;
}
emit Transfer(_from, _to, _value);
return true;

}
...

Fig. 3 Solidity Code and AST

3.3. Dot Generator

The dot generator receives the AST generated by the AST generator as an input to generate the dot code. The

dot code is a language used to draw graphs in Graphviz, a visualization tool, and only necessary information was

reflected when generating Deep Graph Library(DGL) graphs, and unnecessary information in the AST was

removed. Figure 4 is an example of the dot code generated through the dot code generator.

TestCoin.dot

pragma solidity ^0.4.15;

digraph G {
node[shape=box, style=rounded, fontname="Sans"]
...
9 [label = Function];
9 -> 10;
10 [label = Block];
10 -> 11;
11 [label = "Expression
allowance = allowed [_from] [msg . sender]
require (balances [_from] >= _value && allowance >= _value)
balances [_to] += _value
balances [_from] -= _value"];
11 -> 12;
12 [label = "Condition
allowance < MAX_UINT256", shape = diamond];
12 -> 14 [label = "true", fontcolor="blue"];
12 -> 13 [label = "false", fontcolor="red"];
14 [label = Block];
14 -> 15;
15 [label = "Expression
allowed [_from] [msg . sender] -= _value"];
15 -> 13;
13 [label = IfEnd];
13 -> 16;
16 [label = "return
True"];

Auth
ors

 Pre-
Proo

f

16 -> 17;
17 [label = FunctionEnd];
...

Fig. 4 Dot Code generated by the Dot Code Generator

3.4. Symbol Table Generator

The symbol table generator generates a symbol information table for token embedding of the dot code. The

symbol table is generated at the time of execution of the dot code generator, and is used to generate the Embedded

dot code by symbolically changing the user-defined function name, variable name, and state variable name. Figure

5 shows the symbol table structure.

Fig. 5 Symbol Table Structure

3.5. Embedded Dot Code Generation

The embedded dot code is generated based on the dot code and the values stored in the symbol table. The

embedded dot code makes the DGL graph symbolic, so that general rules and patterns can be learned without

relying on specific data during training. Figure 6 is an example of the embedded dot code generated

Embedded Dot Code

pragma solidity ^0.4.15;

digraph G {
node[shape=box, style=rounded, fontname="Sans"]
...
9 [label = Function];
9 -> 10;
10 [label = Block];
10 -> 11;
11 [label = "Expression
variable4 = state_variable2 [variable5] [variable0 . sender]
require (state_variable1 [variable5] >= variable2 && variable4 >= variable2)
state_variable1 [variable3] += variable2
state_variable1 [variable5] -= variable2"];
11 -> 12;
12 [label = "Condition
variable4 < state_variable0", shape = diamond];
12 -> 14 [label = "true", fontcolor="blue"];
12 -> 13 [label = "false", fontcolor="red"];
14 [label = Block];
14 -> 15;
15 [label = "Expression
state_variable2 [variable5] [variable0 . sender] -= variable2"];
15 -> 13;
13 [label = IfEnd];
13 -> 16;
16 [label = "return
True"];
16 -> 17;

Auth
ors

 Pre-
Proo

f

17 [label = FunctionEnd];
...

Fig. 6 Embedded Dot Code

3.6. Visualization of Embedded Dot Code

Visualization is performed through the Graphviz library to visualize the embedded dot code and facilitates

understanding of the structure of the code and data flow. Figure 8 is an example of visualizing the embedded dot

code in Figure 7.

Fig. 7 Visualization of Embedded Dot Code

3.7. DGL(Deep Graph Library) Graph Generator

The DGL graph generator receives a dot code as an input to generate a DGL graph. A DGL graph is a

heterogeneous graph containing various types of nodes and edges. There are 13 node types, including 'Block',

'Return', 'Break', 'Expression', 'Throw', 'Condition', 'IfEnd', 'WhenEnd', 'LoopVariable', 'LoopExpression',

'ForEnd', 'Function', and 'FunctionEnd', and there are three edge types consisting of Normal, True, and False.

Figure 8 shows the DGL graph generated by the DGL graph generator by receiving the embedded dot code in

Figure 8 as an input.

TestCoin.sol's DGL Graph

Graph(num_nodes={'Block': 29, 'Condition': 13, 'Expression': 25, 'ForEnd': 2,
 'Function': 28, 'FunctionEnd': 31, 'IfEnd': 14, 'LoopExpression': 2,
 'LoopVariable': 2, 'WhileEnd': 2, 'break': 2, 'return': 30, 'throw': 2},
 num_edges={('Block', 'normal', 'Block'): 1, ('Block', 'normal', 'Expression'): 5,
 ('Block', 'normal', 'return'): 2, ('Condition', 'false', 'IfEnd'): 1,

('Condition', 'true', 'Block'): 1, ('Expression', 'normal', 'Condition'): 1,
('Expression', 'normal', 'FunctionEnd'): 1, ('Expression', 'normal', 'IfEnd'): 1,

 ('Expression', 'normal', 'return'): 2, ('ForEnd', 'normal', 'ForEnd'): 1,
 ('Function', 'normal', 'Block'): 5, ('IfEnd', 'normal', 'return'): 1,

('LoopExpression', 'normal', 'LoopExpression'): 1,
 ('LoopVariable', 'normal', 'LoopVariable'): 1, ('WhileEnd', 'normal', 'WhileEnd'): 1,
 ('break', 'normal', 'break'): 1, ('return', 'normal', 'FunctionEnd'): 5,

Auth
ors

 Pre-
Proo

f

 ('throw', 'normal', 'throw'): 1},
 metagraph=[('Block', 'Block', 'normal'), ('Block', 'Expression', 'normal'),
 ('Block', 'return', 'normal'), ('Expression', 'Condition', 'normal'),

('Expression', 'FunctionEnd', 'normal'), ('Expression', 'IfEnd', 'normal'),
('Expression', 'return', 'normal'), ('return', 'FunctionEnd', 'normal'),

 ('Condition', 'IfEnd', 'false'), ('Condition', 'Block', 'true'), ('IfEnd', 'return', 'normal'),
 ('ForEnd', 'ForEnd', 'normal'), ('Function', 'Block', 'normal'),
 ('LoopExpression', 'LoopExpression', 'normal'),

('LoopVariable', 'LoopVariable', 'normal'), ('WhileEnd', 'WhileEnd', 'normal'),
('break', 'break', 'normal'), ('throw', 'throw', 'normal')])...

Fig. 8 DGL graph generated by the DGL graph generator

3.8. Graph Neural Network(GNN) Learning

To analyze the security weakness of the solidity code, a heterogeneous graph classification model is learned

through GNN learning of deep learning using the data set of the DGL graph generated through the DGL graph

generator. Figure 9 shows the structure of the learning part of the solidity smart contract security weakness analyzer

Fig. 9 Structure of Learning Part of the Security Weakness Analyzer

The GNN learning model consists of a Graph Convolution Network (GCN) consisting of two layers. graph

classification learning is performed using the DGL graph-type dataset generated by the DGL graph generator, and

each convolutional layer updates node features, applies the ReLu function in the net propagation process, and

predicts class probabilities using the Softmax function after the second convolution layer.

During training, the cross entropy loss between the predicted result obtained through the Softmax function and

the actual label is calculated. The slope is calculated by backpropagating the model through the calculation result.

After that, the slope calculated using the Adam optimization algorithm is applied to the weight of the model and

updated.

The GNN learning model calculates a new node representation by aggregating neighboring information of each

node through the above process, and based on this, the existence of security weaknesses in the input graph is

represented by Prediction and Active Labels. Figure 10 shows the prediction result example of the model for the

input graph.

Fig. 10 Prediction Result Example of Security Weakness of GNN Learning Model

Predictions is a result of predicting the existence of a security weakness in the code after the model who has

completed training receives the solidity code, and the value of index 0 indicates that there will be no security

Auth
ors

 Pre-
Proo

f

weakness, and the value of index 1 indicates that there will be a vulnerability to that security weakness. Since the

model predicts probabilistically, if the value of index 0 is larger, it is predicted to be higher that there is no security

weakness, and if the value of index 1 is larger, it is predicted that there is a high probability that there will be a

security weakness.

Actual Labels indicates whether there is a security weakness in the corresponding code, and if it is 0, it indicates

a code without a security weakness, and if it is 1, it indicates a code with a security weakness. Therefore, there are

security weaknesses in the program used as an example, and a security weakness analyzer through graph-based

deep learning (GAN) detects the security weaknesses present in the smart contract program

There are 8 models for each security weakness, and Figure 11 shows the prediction results example of the model

obtained by inputting a DGL graph into 8 models learned according to each security weakness. If the value of index

0 of Prediction is larger, undetected is output, and if the value of index 1 is larger, detected is output.

Fig. 11 Security Weakness Prediction Results Example for 8 Models

4. Experimental Results and Analysis

In order to detect the security weakness of the smart contract written with the solidity code on the

ethereum platform where the solidity smart contract runs, an experiment was conducted to detect the security

weaknesses by analyzing various vulnerability patterns of the solidity code. Figure 12 shows the results of

detecting security weaknesses for the integer overflow in the solidity code used in the experiment.

IntegerOverflow.dot

pragma solidity ^0.4.15;

contract TestCoin is EIP20Interface {
 uint256 constant private MAX_UINT256 = 2**256 - 1;
 mapping (address => uint256) public balances;
 mapping (address => mapping (address => uint256)) public allowed;
 string public name;
 uint8 public decimals;
 string public symbol;

 function TestCoin() public {
 balances[msg.sender] = 10*10**26;
 totalSupply = 10*10**26;
 name = "LHJT";
 decimals = 18;
 symbol = "LHJT";
 }

 function transfer(address _to, uint256 _value) public returns (bool success) {
 require(balances[msg.sender]>= _value);
 balances[msg.sender] -= _value;
 balances[_to] += _value;
 emit Transfer(msg.sender, _to, _value);
 return true;
 }

 function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) {
 uint256 allowance = allowed[_from][msg.sender];
 require(balances[_from] >= _value && allowance >= _value);
 balances[_to] += _value;
 balances[_from] -= _value;

Auth
ors

 Pre-
Proo

f

 if (allowance < MAX_UINT256) { allowed[_from][msg.sender] -= _value; }
 emit Transfer(_from, _to, _value);
 return true;
 }
}

Fig. 12 Integer Overflow Detection Result of Solidity Code

Security weakness detection for the security weakness detection item, Integer overflow, was performed

with IntegerOverflow.sol, which has a security weakness. In the solidity code of Figure 12, balances[_to]

+=_value; the part of transmitting tokens to the other party's account is written in the transfer, transferFrom

function. In this case, be careful of exposure to security vulnerabilities for integer overflow because no

exception is handled to integer overflow using SafeMath. The detection results of security weaknesses warn

that among the eight security weaknesses, there are security weaknesses for integer overflow.

Figure 13 shows the results of detecting security weaknesses for the timestamp dependency in the solidity

code used in the experiment.

TimestampDependency.sol

pragma solidity ^0.4.15;
contract Freezable_Token is StandardToken {
 function releaseOnce() public {
 bytes32 headKey = toKey(msg.sender, 0);
 uint64 head = chains[headKey];
 require(head != 0);
 require(uint64(block.timestamp) > head);
 bytes32 currentKey = toKey(msg.sender, head);
 uint64 next = chains[currentKey];
 uint amount = freezings[currentKey];
 delete freezings[currentKey];
 balances[msg.sender] = balances[msg.sender].add(amount);
 freezingBalance[msg.sender] = freezingBalance[msg.sender].sub(amount);
 if (next == 0) { delete chains[headKey]; }

else {
 chains[headKey] = next;
 delete chains[currentKey];
 }
 emit Released(msg.sender, amount);
 }

 function releaseAll() public returns (uint tokens) {
 uint release;
 uint balance;
 (release, balance) = getFreezing(msg.sender, 0);
 while (release != 0 && block.timestamp > release) {
 releaseOnce();
 tokens += balance;
 (release, balance) = getFreezing(msg.sender, 0);
 }
 }
}

Auth
ors

 Pre-
Proo

f

Fig. 13 Timestamp Dependency Detection Result of Solidity Code

The security weakness detection for the timestamp dependency, a security weakness detection item, was

performed with TimestampDependency.sol that has a timestamp dependency security weakness. In the

solidity code of Figure 13, the releaseOnce and releaseAll functions use block.timestamp to check specific

conditions. However, block.timestamp can be manipulated by miners within a certain range to intentionally

advance or delay the execution point of a specific event, which can lead to unexpected behavior of t he

system. The detection results of security weaknesses warn that among the eight security weaknesses, there

are security weaknesses for timestamp dependency.

5. Conclusions and Further Researches

Blockchain is a distributed ledger technology that allows users to record and share information safely and

transparently. A smart contract is a contract decided based on a blockchain and is a program that automatically

executes or executes contract terms. Smart contracts improve the transparency and reliability of transactions by

utilizing the tampering prevention function of blockchain technology. Software security vulnerability refers to the

fundamental cause of vulnerabilities caused by logical errors, bugs, and mistakes that can be defective in software

development. To prevent software security accidents, security weaknesses must be analyzed before the program is

distributed. Smart contract codes that operate on ethereum, a blockchain-based framework, can have security

vulnerabilities inside the code. When the contract is completed and the block is created, the chaincode cannot be

arbitrarily modified, so the security weakness must be analyzed before execution. In addition, most security

vulnerability analysis methods for smart contracts are currently specialized in detecting specific vulnerabilities

using rule-based methods, which is prone to many false positives when detecting security vulnerabilities.

In order to solve this problem, this paper studied an analysis method through the deep learning's graph neural

network (GNN) to detect security vulnerabilities in solidity codes. To analyze security vulnerabilities in solidity

code, we defined eight types of security weakness items (unchecked external call, dangerous delegate call,

timestamp dependency, Integer overflow, reentrancy, block number dependency, ether strict equality, and ether

frozen), converted the solidity code into graph data. In order to represent both the structural elements of the program,

the control flow, and the data flow, the solidity code was converted into an abstract syntax tree (AST) and the graph

information required for GNN learning was extracted from AST to convert the solidity code into a graph. Next,

after generating several datasets for training GNN models by integrating these graph data and their properties with

labels, it is possible to detect whether security vulnerabilities exist in the solidity code through GNN learning. This

proposed method performs security weakness detection more effectively than conventional rule-based methods.

In the future, it is believed that more data should be collected and learning about these additional vulnerabilities

should be performed in order to allow the proposed system to detect a wider range of security vulnerabilities. In

addition, it is expected that higher performance can be achieved by training the model using more advanced and

specialized GNN models tailored to the dataset.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT

(No.2022R1F1A1063340))

Auth
ors

 Pre-
Proo

f

References

[1] I.C. Lin, T.C. Liao, “A Survey of Blockchain Security Issues and Challenges”, International Journal of Network Security,

Vol. 19, No. 5, pp. 653–659, 2017.

[2] Zheng, Z.; Xie, S.; Dai, H. N.; Chen, X.; Wang, H. Blockchain Challenges and Opportunities: A Survey., International

Journal of Web and Grid Services, 14(4), pp. 352-375, 2018.

[3] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F. Y. Wang, “An Overview of Smart Contract: Architecture, Applications,

and Future Trends,” IEEE Intell. Veh. Symp. Proc., Vol. 2018-June, pp. 108–113, Oct. 2018.

[4] S. Y. Lin, L. Zhang, J. Li, L. li Ji, and Y. Sun, “A Survey of Application Research based on Blockchain Smart Contract,”

Wirel. Networks, Vol. 28, No. 2, pp. 635–690, 2022.

[5] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-Hani, “Blockchain Smart Contracts: Applications,

Challenges, and Future Trends,” Peer-to-Peer Network Applications, Vol. 14, No. 5, pp. 2901–2925, 2021.

[6] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H. N. Lee, “Systematic Review of Security Vulnerabilities in Ethereum

Blockchain Smart Contract,” IEEE Access, vol. 10, pp. 6605–6621, 2022.

[7] Fagan, Michael E “Design and Code Inspections to Reduce Errors in Program Development”, IBM Systems Journal, Vol.

38, No. 2.3, pp. 258-287, 1999.

[8] Y. Son, Y. Lee, S. Oh, “A Software Weakness Analysis Methods for the Secured Software”, The Asian International

Journal of Life Sciences, Vol. 12, pp. 423-434, 2015.

[9] Y. Son, Y. Lee, "A Smart Contract Weakness and Security Hole Analyzer Using Virtual Machine based Dynamic

Monitor," Journal of Logistics, Informatics and Service Science, Success Culture Press, Vol. 9, No. 1, pp. 36-52, Mar

2022.

[10] Y. Lee, "A Study on Intermediate Code Generation for Security Weakness Analysis of Smart Contract Chaincode,"

Journal of Logistics, Informatics and Service Science, Success Culture Press, Vol. 9, No. 1, pp. 53-67, Jan 2022.

[11] S. Kim, Y. Son, Y. Lee, "A Study on Chaincode Security Weakness Detector in Hyperledger Fabric Blockchain

Framework for IT Development," Journal of Green Engineering, Alpha Publishers, Vol. 10, No. 10, pp. 7820-7844, Oct

2020.

[12] Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model, IEEE

Transactions on Neural Network, 20(1), pp. 61-80, 2008.

[13] L. Wu, P. Cui, J. Pei, L. Zhao, Graph Neural Networks : Foundations, Frontiers, and Applications, Springer, 2022.

[14] D. Zheng, M. Wang, Q. Gan, Z. Zhang, and G. KarypisAuthors, Learning Graph Neural Networks with Deep Graph

Library, WWW '20: Companion Proceedings of the Web Conference 2020, ACM, pp. 305 - 306, 2020.

[15] S. Kim, R. Y. C. Kim, and Y. B. Park, “Software Vulnerability Detection Methodology Combined with Static and

Dynamic Analysis,” Wirel. Pers. Commun. 2015 893, Vol. 89, No. 3, pp. 777–793, Dec. 2015.

[16] B. Chess, G. McGraw, "Static Analysis for Security," IEEE Security & Privacy, 2(6), (2004), pp.76-79.

[17] A. Petukhov, et al., "Detecting Security Vulnerabilities in Web Applications Using Dynamic Analysis with Penetration

Testing." online Proceedings of the Application Security Conference, (2008).

[18] Solidity Documentation, Ethereum, 2022.

[19] Solidity Documentation. https://solidity.readthedocs.io/en/v0.4.21/contracts.html

[20] S. Peyrott, An Introduction to Ethereum and Smart Contracts, Auth0, 2017.

[21] https://www.ethereum.org/

[22] Deep Graph Library (DGL), https://www.dgl.ai/

[23] Y. Son, J. Jung, Y. Lee, "Design and Implementation of the Secure Compiler and Virtual Machine for Developing Secure

IoT Services," Future Generation Computer Systems, Vol. 76, pp. 350-357, 2014.

Auth
ors

 Pre-
Proo

f

https://www.ethereum.org/
https://www.dgl.ai/

