Journal Pre-proof

A Study on the Security Weakness Detection of Solidity Smart Contracts using

Graph Neural Networks on Blockchain Platforms

S8 d
- i

v tfim; 01, Issue 01, Jan
Sunghyun Kim, Seunggi Jung, Yunsik Son and Yangsun Lee /b ;

DOI: 10.53759/7669/jmc202505039
Reference: IMC202505039

Journal: Journal of Machine and Computing.

Received 18 May 2024

Revised form 23 October 2024

Accepted 05 December 2024

Please cite this article as: Sunghyun Kim, Seunggi Jung, Yunsik Son and Yangsun Lee, “A Study on the Security
Weakness Detection of Solidity Smart Contracts using Graph Neural Networks on Blockchain Platforms”, Journal
of Machine and Computing. (2025). Doi: https:// doi.org/10.53759/7669/jmc202505039

This PDF file contains an article that has undergone certain improvements after acceptance. These enhancements
include the addition of a cover page, metadata, and formatting changes aimed at enhancing readability. However,

it is important to note that this version is not considered the final authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting, typesetting,
and comprehensive review. These processes are implemented to ensure the article's final form is of the highest

quality. The purpose of sharing this version is to offer early visibility of the article's content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be identified,

which could impact the content. Additionally, all legal disclaimers applicable to the journal remain in effect.

© 2025 Published by AnaPub Publications.

@ AnaPub

A Study on the Security Weakness Detection of Solidity Smart Contracts using Graph
Neural Networks on Blockchain Platforms

Sunghyun Kim 1, Seunggi Jung ¢, Yunsik Son %, Yangsun Lee **

! Department of Computer Engineering, Seokyeong University,
16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 02713, Korea

2 Dept. of Computer Science and Engineering, Dongguk University,
3-ga, Pil-dong, Jung-gu, Seoul 04620, Korea
2" sonbug@dongguk.edu; "yslee@skuniv.ac.kr

Abstract

Blockchain is a distributed ledger technology that allows users to record information safely and
transparently. A smart contract is a contract decided based on a blockchain and rogram that automatically
executes or executes contract terms. Smart contracts improve the transparency agd N@ability of transactions by
utilizing the tampering prevention function of blockchain technology. Softwarijrity ulnerability refers to the
€s that can be defective in software
Hfbe analyzed before the program is
d framework, can have security
B s created, the chaincode cannot be
execution.
(GNN@to detect security vulnerabilities in solidity
, we defined eight types of security weakness items,
converted the solidity code into graph data. In order tORg@oresent both the structural elements of the program, the
control flow, and the data flow, the solidity code was cormgted into an abstract syntax tree (AST) and the graph
information required for GNN learning w, racted from AST to convert the solidity code into a graph. Next,
after generating several datasets for traini odels by integrating these graph data and their properties with
labels, it is possible to detect whether iti i idi
method performs security weaknes ectio

development. To prevent software security accidents, security weakn@k
distributed. Smart contract codes that operate on ethereum, a
vulnerabilities inside the code. When the contract is cQa

effectively than conventional rule-based methods.

Keywords: Blockchain, Srg
Graph Neural Networks(G

ecurity vulnerability, Solidity, Ethereum, Security Weakness Analyzer,
onvolution Network(GCN)

edger technology that allows users to record and share information safely and
fract is a contract decided based on a blockchain and is a program that automatically
act terms. Smart contracts improve the transparency and reliability of transactions by

utilizi i revention function of blockchain technology [1-5].
vulnerability refers to the fundamental cause of vulnerabilities caused by logical errors, bugs,
. i at can be defective in software development. To prevent software security accidents, security
v ust be analyzed before the program is distributed. Smart contract codes that operate on ethereum, a
) kcham based framework, can have security vulnerabilities inside the code. Due to the nature of the blockchain,
one can arbitrarily modify the contract when the contract is completed and the block is created, so if you sign a
in code with weak security, it cannot be modified, which creates a security threat. Software security weakness

I Corresponding Author, 2* Co-corresponding Author

analysis is a process of inspecting the security weaknesses inherent in the developed source code to remove security
threats by finding and removing the security weaknesses inherent in the software in advance [6-11].

In this paper, we used deep learning's graph neural network (GNN) to detect security vulnerabilities in
solidity codes [12-13]. To analyze security vulnerabilities in solidity code, we defined eight types of securj
weakness items, converted the solidity code into graph data. In order to represent both the structural eleme
of the program, the control flow, and the data flow, the solidity code was converted into an abstract synt
tree (AST) and the graph information required for GNN learning was extracted from AST to conveggiing
solidity code into a graph. Next, after generating several datasets for training GNN models by inte %

these graph data and their properties with labels, it is possible to detect whether security vulnerabiliti
in the solidity code through GNN learning. This method performs security weakness d
effectively than conventional rule-based methods.

2. Related Studies

2.1. Blockchain and Smart Contracts

Blockchain is a distributed ledger technology that allows users to record an
transparently. A smart contract is a contract decided based on a blockchain and 'Is

re information safely and
gram that automatically
executes or executes contract terms. Smart contracts improve the transparenc ility of transactions by

utilizing the tampering prevention function of blockchain technology

re

Smart contracts security vulnerability analysis is an analysiggte e (Wt diagnoses whether the security
vulnerability, which is the basis cause of security vulnerability,e @RISts @ program, and proactively detects
and removes potential vulnerabilities such as prograrg errors M advance to proactively eliminate the
ontract vulnerability analysis method is
nd dynamic analysis through flow graph

divided into static analysis through the existing
[3-5].

Security weakness analysis for smart contracts is an S@lysis technique that diagnoses whether the security
weakness which is the basis cause of seggdy vulnerabMity exists inside the program, and it is a method
that proactively eliminates the possibj@y ofggausing security threats such as hacking by detecting and
removing potential vulnerabilities s and errors in program in advance. Security weakness
analysis method is divided into st dynamic analysis. Static analysis is usually done by code
review and is performed during lementation phase of the security development life cycle. Dynamic
analysis, unlike static anal N have access to source code, and is a method of finding security
weaknesses in a running a program, such as vulnerability scanning and penetration testing [6-11,
15-17].

2.2. Solidit
Solidity

pro d by Gavin Wood in august 2014 and developed by the solidity team led by Christian
um project. Solidity is a smart contract development language provided by ethereum and

‘ d t compile time. Solidity was designed to target the ethereum virtual machine (EVM), a virtual

olidity is designed to develop smart contracts that run on the EVM and are compiled into bytecode that can run
the EVM. Through solidity, developers can implement applications by including self-executing business logic
® smart contract. Matters recorded in the smart contract cannot be denied and are performed forcefully. In addition,
Ethereum is a platform that allows multiple distributed applications to be used as a new blockchain network [18-
21].

Since ethereum supports the complete turing language, it can accommodate various applications implemented
using the language mainly used by developers. However, due to the nature of the blockchain, it cannot be arbitrarily
modified when the contract of the chain code is completed, so there is a problem that if a chain code with a security
weakness is executed on ethereum, it can develop into a security weakness.

2.3. Graph Neural Networks(GNNs)

GNN is a type of artificial neural network for processing data that can be expressed as a graph, and is a poweg

process data in grid-like structures such as images or sequences, GNNs can process complex non-Ef
structures in graphs. This feature makes GNNs particularly suitable for tasks involving relag
interactions between entities, such as smart contract analysis [12-14].

Smart contract codes can be naturally expressed as a graph with CFG(control flow graph

Additionally, GNNs can improve detection of new vulnerabilities by generalizing trg&ng data to new, unseen data.
This approach can detect a wider range of security vulnerabilities more effectively {Qargs
1 shows the GNN model structure.

Link

:{

Partial Observed Graph GNNs Evaluation

&- /‘

Fig. 1 GNN Model Structure

ont Security Weakness Analyzer

art ract security weakness analyzer diagnoses security weaknesses by converting the
glity, one of the languages that write smart contracts, into a syntax tree. Figure 2 is a
of the solidity smart contract security weakness analyzer.

DGL Graph Generator Graph Neural Network Learning

& s
N AST . Symbol Table - Visualization HeteroClassifier
Generator Generator
| !
Solidity Code ! * e GCN1 GCN2
(*.sol) (t
= R g Optimization
Abstract Syntax Tree Symbol Table Control Flow Graph DGLGraph !
. Relu Backpropagation
Dot Token . DGLGraph
Generator Embedding Generator

Softmax

digraph G {

poel |
Grme
B

g
» »

g

7

>C;
} }

Dot Code Embedded Dot Code DGLGraph

Fig. 2 Structure of the Solidity Smart Contract Security Weakness A er

The solidity smart contract security weakness analyzer consists of a geg
The generation unit receives the solidity code as input to generate a Deep
the learning unit receives the DGL graph as input to perform learning to 0
analysis model and detect the security weakness of the smart contract.

it an earning unit.
prary (DGL) graph, and
Yrate a security weakness

The DGL graph generation unit consists of an Abstract Synta (A generator that converts the
solidity code into an AST, a dot generator that generates a dot co ting only necessary information
from the generated AST [23], a symbol table generator that ggge sy@bol information table for token
embedding, and a DGL graph generator that converts the e ode generated by receiving the

symbol information table and the Dot code as 4
understanding of the graph generated by visuz
visualization tool can be provided.

t DGL “graph. In this process, an intuitive
re nting the Embedded Dot code using a

The learning unit's model for solidity smart conT"gR security weak point detection consists of two layers
of the Graph Convolution Network (GCN), which p™garms graph classification learning using the DGL
graph-type dataset generated by the graph generator, and each layer aggregates neighborhood
information to calculate a new node regifeseiataon.

In order to analyze the sg

3.1. Defining the Security Weak of S y Code
‘ | sses of the solidity code, the security weaknesses of the solidity
code are first defined. Tab of the items of the solidity code security weaknesses proposed in this
paper. The causes of ri ¥sses were defined into eight items as follows in terms of the reliability
of code execu oS Ng.

Table 1. Defined Security Weakness Items
Solidity Security Weakness Item List

\ - unchecked external call
- dangerous delegate call
- timestamp dependency
v - Integer overflow

- reentrancy

- block number dependency
- ether strict equality

- ether frozen

3.2 AST(Abstract Syntax Tree) Generator

The AST generator receives the solidity code as input and generates the AST using the parse method of the
solidity parser library. Figure 3 shows the example solidity code to be used for the analysis of security weaknesses
and the AST generated by the AST generator receiving the solidity code as input.

TestCoin.sol and AST

pragma solidity "0.4.15;

"parameters” :

contract TestCoin is EIP20Interface {

type":"Parameter”,
.. "typeName"
function transferFrom(address _from, address _to, ooeel oy Typename
uint256 _value) public returns (bool success) { hamer - from-.
5 — . "storagelLocation" : one
uint256 allowance = allowed[_from][msg.sender]; e erasoyapize

require(balances[_from] >= value && allowance >= _value); , Asindexed’

balances[_to] += _value; (= e

balances[_from] -= _value; Trpene g S
if (allowance < MAX_UINT256) { “name”

allowed[from][msg.sender] -=_value; “name”:"_to"
“storagelocation ne
} "isStateVar” Slse
. "isIndexedg Ase
emit Transfer(_from, _to, _value);
return true; N v)

3.3. Dot Generator

The dot generator receives the AST generated by ST generator as an input to generate the dot code. The
dot code is a language used to draw graphs in Graphviz, W@sualization tool, and only necessary information was
reflected when generating Deep Graph Ligmyy(DGL) grdphs, and unnecessary information in the AST was
removed. Figure 4 is an example of the dgicod erated through the dot code generator.

TestCoin.dot

~0.4.15;

= Function];

10;

10 [label = Block];

10->11;

11 [label = "Expression

allowance = allowed [_from] [msg . sender]
require (balances [_from] >=_value && allowance >= _value)
balances [to] += value

balances [_from] -=_value"];

11 ->12;

12 [label = "Condition

allowance < MAX UINT256", shape = diamond];
12 -> 14 [label = "true", fontcolor="blue"];

12 -> 13 [label = "false", fontcolor="red"];

14 [label = Block];

14 > 15;

15 [label = "Expression

allowed [_from] [msg.sender] -= value"];
15->13;

13 [label = IfEnd];

13 > 16;

16 [label = "return
True"];

16 > 17,
17 [label = FunctionEnd];

Fig. 4 Dot Code generated by the Dot Code Generator

3.4. Symbol Table Generator

The symbol table generator generates a symbol information table for token embedding of the dot codg
symbol table is generated at the time of execution of the dot code generator, and is used to generate the E
dot code by symbolically changing the user-defined function name, variable name, and state variable hamé
5 shows the symbol table structure.

a Symbol Table

Solidity Code (*.sol) Function Table

Variable Table

Y4

State Varia
Table

Fig. 5 Sy le cture

3.5. Embedded Dot Code Generation

The embedded dot code is generated based on the code and the values stored in the symbol table. The
embedded dot code makes the DGL graph bolic, so M8t general rules and patterns can be learned without
i is an example of the embedded dot code generated

edded Dot Code

variable4 = state variable2 [variableS] [variable0 . sender]
require (state_variablel [variable5] >= variable2 && variable4 >= variable2)
state_variablel [variable3] += variable2

state_variablel [variable5] -= variable2"];

11 >12;

12 [label = "Condition

variable4 < state variable0", shape = diamond];

12 -> 14 [label = "true", fontcolor="blue"];

12 -> 13 [label = "false", fontcolor="red"];

14 [label = Block];

14 > 15;

15 [label = "Expression

state _variable2 [variable5] [variable0 . sender] -= variable2"];
15 >13;

13 [label = IfEnd];

13 > 16;

16 [label = "return

True"];

16 >17;

17 [label = FunctionEnd];

Fig. 6 Embedded Dot Code

3.6. Visualization of Embedded Dot Code

Visualization is performed through the Graphviz library to visualize the embedded dot code and facilitat
understanding of the structure of the code and data flow. Figure 8 is an example of visualizing the embedded dot
code in Figure 7.

(\Functio n]

T
Expression
variabled = state_variabla2 [\tarlal:laﬁgl [variable0 . sendar |
raquire (state_variablel [variable5 | >= variable2 && variabled >= uallab
state_variablel [variable3 | += variable2
state_variablel [variable5] -= variable2

-

.

.
_— Condition T
—__ variablet < state_variabled _,_FF—("J

Expression
state variable2 [variable5] '[J'mriahleﬂ .

The DGL graph generat a dot code as an input to generate a DGL graph. A DGL graph is a
heterogeneous graph ¢ tal i
'Return’, 'Bre '
'ForEnd’, 'Fynct
Figure 8 sho
Figure 8 as

ow', '‘Condition’, 'IfEnd', 'WhenEnd', 'LoopVariable', 'LoopExpression’,
tionEnd', and there are three edge types consisting of Normal, True, and False.
graph generated by the DGL graph generator by receiving the embedded dot code in

TestCoin.sol's DGL Graph

Graph(num_nodes={'Block'": 29, 'Condition": 13, 'Expression": 25, 'ForEnd": 2,
'Function": 28, 'FunctionEnd": 31, 'IfEnd": 14, 'LoopExpression": 2,
'LoopVariable": 2, 'WhileEnd": 2, 'break”: 2, 'return": 30, 'throw": 2},

num_edges={('Block’, 'normal’, 'Block'): 1, ('Block’, 'normal', 'Expression'): 5,
('Block', 'normal', 'return'): 2, ('Condition’, 'false', 'IfEnd'): 1,
('Condition', 'true', 'Block'): 1, (‘'Expression', 'normal’, 'Condition"): 1,
("Expression', 'normal', 'FunctionEnd'"): 1, (‘'Expression', 'normal’, 'IfEnd'): 1,
('Expression’, 'normal’, 'return'): 2, (‘'ForEnd', normal', 'ForEnd"): 1,
("Function', 'normal', '‘Block"): 5, ('IfEnd', 'normal', 'return'): 1,
('"LoopExpression', 'normal’, 'LoopExpression'): 1,
('LoopVariable', 'normal’, 'LoopVariable'): 1, ("WhileEnd', 'normal', 'WhileEnd'): 1,
('break’, 'normal’, 'break"): 1, ('return', 'normal’, 'FunctionEnd"): 5,

('throw", 'normal', 'throw"): 1},

metagraph=[('Block’, 'Block’, 'normal'), ('Block', 'Expression', 'normal'),
('‘Block’, 'return’, 'normal'), ("Expression', 'Condition', 'normal'),
("Expression', 'FunctionEnd', 'normal’), ('Expression', 'IfEnd', 'normal'),
("Expression', 'return’, 'normal'), (‘return’, 'FunctionEnd', 'normal'),
('Condition', 'IfEnd', 'false"), ('Condition', 'Block’, 'true'), ('IfEnd’, 'return’, 'normal’),
('ForEnd', 'ForEnd', 'normal'), ('Function', 'Block’, 'normal’),
('LoopExpression', 'LoopExpression', 'normal'),
("LoopVariable', 'Loop Variable', normal'), (‘"WhileEnd', 'WhileEnd', 'normal'),
(‘break’, 'break’, 'normal'), ('throw', 'throw', 'normal)])...

Fig. 8 DGL graph generated by the DGL graph generator

3.8. Graph Neural Network(GNN) Learning

To analyze the security weakness of the solidity code, a heterogeneous graph classification
through GNN learning of deep learning using the data set of the DGL graph generated thr
generator. Figure 9 shows the structure of the learning part of the solidity smart contr, C \weak

Graph Neural Network Learning

HeteroClassifier

GCN1 GCN2

DGLGraph

Relu

I Prediction Results

The GNN learning model consists gf onvolution Network (GCN) consisting of two layers. graph
raph-type dataset generated by the DGL graph generator, and
v applies the ReLu function in the net propagation process, and
function after the second convolution layer.

5s between the predicted result obtained through the Softmax function and
the actual label is calg A ¥ is calculated by backpropagating the model through the calculation result.
After that, the s 0 the Adam optimization algorithm is applied to the weight of the model and
updated.

The GNN
node thro rocess, and based on this, the existence of security weaknesses in the input graph is
edittion and Active Labels. Figure 10 shows the prediction result example of the model for the

Predictions: |tensor([[0.0048, ©.9952]], device="cuda:@', grad fn=<SoftmaxBackward@>)

Actual Labels: tensor([1]| device="cuda:0")

Fig. 10 Prediction Result Example of Security Weakness of GNN Learning Model

Predictions is a result of predicting the existence of a security weakness in the code after the model who has
completed training receives the solidity code, and the value of index O indicates that there will be no security

weakness, and the value of index 1 indicates that there will be a vulnerability to that security weakness. Since the
model predicts probabilistically, if the value of index O is larger, it is predicted to be higher that there is no security
weakness, and if the value of index 1 is larger, it is predicted that there is a high probability that there will be a
security weakness.

Actual Labels indicates whether there is a security weakness in the corresponding code, and if it is 0, it indic
a code without a security weakness, and if it is 1, it indicates a code with a security weakness. Therefore, there a
security weaknesses in the program used as an example, and a security weakness analyzer through graph-base
deep learning (GAN) detects the security weaknesses present in the smart contract program

There are 8 models for each security weakness, and Figure 11 shows the prediction results example of t odel
obtained by inputting a DGL graph into 8 models learned according to each security weakness. If the oYgmde
0 of Prediction is larger, undetected is output, and if the value of index 1 is larger, detected is out

block number dependency : undetected
dangerous delegatecall : undetected
ether frozen : undetected

ether strict equality : undetected

integer overflow : detected

reentrancy : undetected
timestamp dependency : undetected
unchecked external call : undetec*

Fig. 11 Security Weakness Prediction Regal ;or 8 Models

4. Experimental Results and Analysis

In order to detect the security weakness q written with the solidity code on the
ethereum platform where the solidity smart cont an experiment was conducted to detect the security
weaknesses by analyzing various vulnerability pal™g@Rs of the solidity code. Figure 12 shows the results of
detecting security weaknesses for the integer overflo¥ the solidity code used in the experiment.

UINT256 =2**256 - 1;
ublic balances;

sg.sender] = 10*¥10%*26;
Supply = 10*¥10**26;
= "LHIT";

cimals = 18;

ymbol = "LHJT";

function transfer(address to, uint256 _value) public returns (bool success) {
require(balances[msg.sender]>= _value);
balances[msg.sender] -= _value;
balances| to] += value;
emit Transfer(msg.sender, to, value);
return true;

!

function transferFrom(address from, address _to, uint256 _value) public returns (bool success) {
uint256 allowance = allowed[from][msg.sender];
require(balances[from]>= value && allowance >=_value);
balances| to] += value;
balances[from]-= value;

if (allowance < MAX_ UINT256) { allowed[from][msg.sender] -= _value; }
emit Transfer(_from, to, value);
return true;

oftmaxBackward@?>)

block number dependency : undetected
dangerous delegatecall : undetected

en : undetec

unchecked external call : undetected

Fig. 12 Integer Overflow Detection Result of Solidi

Security weakness detection for the security weakness detection item, In
with IntegerOverflow.sol, which has a security weakness. In the solidity code
+=_value; the part of transmitting tokens to the other party's account is wrw
function. In this case, be careful of exposure to security vulnerajiiigg
exception is handled to integer overflow using SafeMath. The de
that among the eight security weaknesses, there are security

verflow, was performed
igure 12, balances[_to]
in transfer, transferFrom
integer overflow because no
eglllts of security weaknesses warn
integer overflow.

Figure 13 shows the results of detecting security w
code used in the experiment.

pragma solidity ~0.4.15;
contract Freezable_Token i
function releaseOnce,

s[currentKey];

tKey];

pnder] = balances[msg.sender].add(amount);

E[msg.sender] = freezingBalance[msg.sender].sub(amount);
delete chains[headKey]; }

ains[headKey] = next;
te chains[currentKey];

emit Released(msg.sender, amount);

function releaseAll() public returns (uint tokens) {

uint release;

uint balance;

(release, balance) = getFreezing(msg.sender, 0);

while (release != 0 && block.timestamp > release) {
releaseOnce();
tokens += balance;
(release, balance) = getFreezing(msg.sender, 0);

Predictions: tensor([[4.2811e-88, 1.8088e+08]], grad fn=<SoftmaxBackward@>)

Actual Labels: tensor(|1])

block number dependency : undetected
dangerous delegatecall : undetected
ether frozen : undetected

ether strict equality : undetected

integer overflow : undetected

reentrancy : undetected

timestamp dependency : detected

unchecked external call : undetected

Fig. 13 Timestamp Dependency Detection Result of Solidity Code

The security weakness detection for the timestamp dependency, a security weakness detectjgimi
performed with TimestampDependency.sol that has a timestamp dependency security wg
solidity code of Figure 13, the releaseOnce and releaseAll functions use block.timesta
conditions. However, block.timestamp can be manipulated by miners within a certain
advance or delay the execution point of a specific event, which can lead behavior of the
system. The detection results of security weaknesses warn that among the g i
are security weaknesses for timestamp dependency.

5. Conclusions and Further Researches d{

Blockchain is a distributed ledger technology that allows users tg) d share information safely and
transparently. A smart contract is a contract decided based on a blo
executes or executes contract terms. Smart contracts improve t and reliability of transactions by
utilizing the tampering prevention function of blockchain techgbgy. ¥ security vulnerability refers to the

fundamental cause of vulnerabilities caused by logicg v ¢ nd mistakes that can be defective in software
development. To prevent software security accideg @
here

=

wea es must be analyzed before the program is
distributed. Smart contract codes that operate o , a blockchain-based framework, can have security
vulnerabilities inside the code. When the contract is Sgleted and the block is created, the chaincode cannot be
arbitrarily modified, so the security weakness must b@alyzed before execution. In addition, most security
vulnerability analysis methods for smart ¢ cts are cur¥ntly specialized in detecting specific vulnerabilities

using rule-based methods, which is pronem alse positives when detecting security vulnerabilities.

In order to solve this problem, thi
network (GNN) to detect security
code, we defined eight types g

diclan analysis method through the deep learning's graph neural
erabili solidity codes. To analyze security vulnerabilities in solidity
AV weakness items (unchecked external call, dangerous delegate call,
entrancy, block number dependency, ether strict equality, and ether
graph data. In order to represent both the structural elements of the program,
olidity code was converted into an abstract syntax tree (AST) and the graph

frozen), converted the solidit
the control flowand t

for training GNN models by integrating these graph data and their properties with

leved that more data should be collected and learning about these additional vulnerabilities
in order to allow the proposed system to detect a wider range of security vulnerabilities. In
ected that higher performance can be achieved by training the model using more advanced and

KNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT
(N0.2022R1F1A1063340))

References

[1] LC.Lin, T.C. Liao, “A Survey of Blockchain Security Issues and Challenges”, International Journal of Network Securi
Vol. 19, No. 5, pp. 653-659, 2017.

[2] Zheng, Z.; Xie, S.; Dai, H. N.; Chen, X.; Wang, H. Blockchain Challenges and Opportunities: A Survey., Internation
Journal of Web and Grid Services, 14(4), pp. 352-375, 2018.

[3] S.Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F. Y. Wang, “An Overview of Smart Contract: Architecture, Appli
and Future Trends,” IEEE Intell. Veh. Symp. Proc., Vol. 2018-June, pp. 108-113, Oct. 2018.

[4] S.Y.Lin, L. Zhang,J. Li, L. 1i Ji, and Y. Sun, “A Survey of Application Research based on Blockchain Smart
Wirel. Networks, Vol. 28, No. 2, pp. 635-690, 2022.

[5] S.N.Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-Hani, “Blockchain Smart Contr3

[6] S.S.Kushwaha, S. Joshi, D. Singh, M. Kaur, and H. N. Lee, “Systematic Review of Security Vul
Blockchain Smart Contract,” IEEE Access, vol. 10, pp. 6605-6621, 2022.

[7] Fagan, Michael E “Design and Code Inspections to Reduce Errors in Program Develg
38, No. 2.3, pp. 258-287, 1999.

[8] Y. Son, Y. Lee, S. Oh, “A Software Weakness Analysis Methods for the Secur?
Journal of Life Sciences, Vol. 12, pp. 423-434, 2015.

[9] Y. Son, Y. Lee, "A Smart Contract Weakness and Security Hole Analyzer Using al Machine based Dynamic
Monitor,” Journal of Logistics, Informatics and Service Science, Success Culture
2022.

[10] Y. Lee, "A Study on Intermediate Code Generation for Security We
Journal of Logistics, Informatics and Service Science, Success Culture

[11] S. Kim, Y. Son, Y. Lee, "A Study on Chaincode Security ne
Framework for IT Development," Journal of Green Engjaaari
2020.

[12] Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuc

, No. 1, pp. 53-67, Jan 2022.
in Hyperledger Fabric Blockchain
s, Vol. 10, No. 10, pp. 7820-7844, Oct

nfar G. The Graph Neural Network Model, IEEE

oundations, Frontiers, and Applications, Springer, 2022.

[14] D. Zheng, M. Wang, Q. Gan, Z. Zhang, and G. Karyp thors, Learning Graph Neural Networks with Deep Graph
Library, WWW '20: Companion Proceedings of the Web erence 2020, ACM, pp. 305 - 306, 2020.

ware Vulnerability Detection Methodology Combined with Static and

, Vol. 89, No. 3, pp. 777-793, Dec. 2015.

" IEEE Security & Privacy, 2(6), (2004), pp.76-79.

ies in Web Applications Using Dynamic Analysis with Penetration

ecurity Conference, (2008).

Dynamic Analysis,” Wirel. Pers. Com:
[16] B. Chess, G. McGraw, "Static Anal
[17] A. Petukhov, et al., "Detecting S

[18] Solidity Documentation, Etj 2

[19] Solidity Documentation. Ifs://SONg
0 Etherd

[20] S. Peyrott, An Introductio
Jiwww.dgl.ai/

[21] https:/lwww gther
[22] Deep Graph

AN and Implementation of the Secure Compiler and Virtual Machine for Developing Secure
10T Serv Generation Computer Systems, Vol. 76, pp. 350-357, 2014.

."'S®dthedocs.io/en/v0.4.21/contracts.html
and Smart Contracts, Auth0, 2017.

[23] Y. Son,

https://www.ethereum.org/
https://www.dgl.ai/

