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Abstract – Underwater object recognition presents unique challenges due to varying water conditions, low visibility, and 

the presence of noise. This research proposes an advanced methodology that combines transfer learning and hybrid 

optimization techniques to enhance recognition accuracy in underwater environments. Specifically, a pre-trained 

EfficientNet model is employed for feature extraction, leveraging its capacity to capture diverse features in underwater 

images. The model is then optimized using a hybrid Particle Swarm Optimization and Genetic Algorithm (PSOGA) to 

fine-tune hyperparameters such as learning rate, number of layers, and activation functions. This hybrid approach balances 

exploration and exploitation in the search space, allowing the model to converge on an optimal solution that maximizes 

accuracy. The model is evaluated against nine existing deep learning models, including ResNet-50, VGG-16, EfficientNet-

B0, and MobileNetV2. The proposed PSOGA model achieves a superior accuracy of 98.32%, surpassing the best-

performing models like EfficientNet-B0, which reached 95.89%. Furthermore, the model outperforms traditional 

optimizers like Adam, RMSprop, and AdaGrad, which attained lower accuracies. Precision, recall, and F1-score for the 

PSOGA model also demonstrate remarkable improvements, highlighting the model's effectiveness in underwater object 

recognition. The combination of transfer learning and hybrid optimization enables the model to generalize well across 

diverse underwater environments while maintaining computational efficiency.  

 

Keywords – Underwater Object Recognition, Hybrid Optimization, Transfer Learning, PSOGA, Efficientnet, Feature 

Extraction, Particle Swarm Optimization, Genetic Algorithm. 

 

I. INTRODUCTION 

Underwater Object Recognition is a burgeoning discipline that embodies technology, computer vision, marine biology, 

and Robotics where objects detected underwater are recognized and segregated. It is very important for certain operations 

and activities such as underwater vehicle guidance and positioning, marine research, environmental surveillance, and 

warfare [1] [2]. A precise real-time identification of objects under water has the potential of increase our knowledge about 

the underwater environment, aide in the preservation of marine habitats and increase safety and efficiency of underwater 

operations. Recognizing objects underwater is difficult because of certain conditions that may exist at the bottom of the 

sea or river bed such as dull lighting and haze. These challenges do require designing algorithm and imaging process that 

can suit the dynamic nature of the underwater environments. To navigate through the darkness of the ocean, and deal with 

the effects of distance, waves and underwater environment sonar imaging, lidar and underwater cameras are used at times 

with machine learning and deep learning models trained to identify objects in such environments [3] [4]. 

With the development of the AUVs and ROVs the requirement for high accuracy and stability in the underwater object 

recognition systems also increases. These systems allow AUVs and ROVs to move by themselves, avoid other objects or 

barriers and involves in functions that include: sea floor surveying, scanning of underwater structures, and identification 

of mines underwater [5] [6]. Furthermore, underwater object recognition system is becoming more adopted in marine 

conservation where it helps in tracking marine animals, identifying species in danger of extinction and the health status of 
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the coral reefs. Underwater object recognition is considered as one of the most important branches motivating 

improvements in the field of underwater robotics and marine science, opening up new opportunities in studying remote 

areas of our planet that are dangerous for people and are almost completely unexplored. 

It is considered as a modern concept in the sphere of marine technology seeking to improve the methods of object 

recognition in the sea. By incorporating transfer learning within the hybrid optimization methodologies, the above issues 

typical for the underwater environment with the kind of lighting and object distortion, multiple imagery backgrounds, 

noise, or low contrast and visibility are solved. While the idea of transfer learning has been incorporated to use pre-trained 

models originating from more typical ground-based or other object recognition tasks, the present models are adapted 

specifically for the peculiarities in underwater images [7] [8]. This substantially decreases the amount of labeled data which 

are frequently a bottleneck in underwater object recognition. By virtue of sharing the knowledge from the models trained 

with large and varied data sets, transfer learning can work round the problem of shortage of underwater data sets and/or 

enhance the recognition ability in such an environment even if there is scarcity of data. Fig 1 shows the importance of 

underwater objet recognition. 

 

Underwater Object Recognition

Environmental Monitoring Safety and Navigation

Scientific ResearchSecurity and Defense

 
Fig 1. Importance of Underwater Object Recognition. 

 

Other improvements include the use of mixed optimization approaches in recognizing underwater objects, where there 

can be genetic algorithm optimization, particle swarm optimization, as well as gradient optimization strategies. These 

techniques are applied in fine tuning of deep learning models so that they fit the underwater applications appropriately [9]. 

Hybrid optimization can also assist in the process of feature selection – finding out which of the provided data features are 

the most important and must therefore be included in the models while the rest must be left out in order to simplify the 

models and make them capable of generalization. When combining transfer learning with hybrid optimization techniques, 

scientists are able to increase the effectiveness of the created models increasing their speed and accuracy needed for the 

proper recognition of objects in various underwater environments. Especially, the integration of transfer learning and 

hybrid optimization is effective for real-time or near real-time object detection application as AUVs and ROVs. Such 

systems may greatly benefit from the increase in the speed and accuracy of the object detection process to move around 

more efficiently, avoid detecting objects and perform functions such as surveillance and monitoring, underwater surveys, 

and search and rescue missions [10] [11]. This kind of approach also has the possibility of improving marine biology 

research since identification of species and habitats are paramount in the conservation initiative. Transfer learning 

combined with another optimization technique in underwater object recognition provides a great solution for the problems 

of underwater imaging. This approach allows not only enhancing the accuracy and speed of the objects’ recognition but 

also enriching the opportunities for exploration, monitoring, and preservation of the underwater environment. 

Object recognition in an underwater environment is a challenging problem because of inherent factors like turbidity 

and poor visibility. Traditional models typically tuned for above clear water imaging are not optimal for handling 

underwater specific issues. The color distortions and scattering effects caused by turbidity obscure object boundaries, low 

light reduces contrast and visibility. These environmental factors require models that can adapt to distorted, noisy visuals 

and reliably detect objects, even in an environment with these challenging settings. In underwater scenarios for example 

the sea, light conditions, water particles, and availability of light present a unique problem that requires unique algorithms 

and imaging techniques. These technologies are, therefore, required to work in real and highly unpredictable environments 

as can be seen with underwater scenes. Sophisticated tools such as sonar imaging, lidar, and underwater cameras are used 

along with machine learning and deep learning models that are especially designed to work under such conditions. Since 

the application of AUVs and ROVs is rapidly developing, it is significant to enhance the stability and reliability of UOR 

systems. These systems also allow the AUVs and ROVs to navigate, to avoid other objects as well as to survey the sea 

floor, inspect structures and man-made objects or identifying the presence of mines on the sea bed. In addition, the 

technology has been used in conservation activities of marine life where it helps to monitor, identify threatened species, 

and evaluate the state of health of coral reefs. 
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Underwater object detection faces its own set of challenges arising from particular environmental conditions, such as 

the absorption and scattering of light, and varying turbidity levels, which may not always be so well met by conventional 

models. 

 

Light Absorption 

Although depth increases, available light decreases significantly and yields darker images with reduced contrast. This is 

an impediment for models to correctly recognize features. 

 

Scattering 

Scattering occurs when water particles direct light and reduces image clarity due to blurriness. Since suspended particles 

amplify this scattering effect, interpreting the object boundaries can be difficult. 

 

Turbidity Variability 

Visibility becomes even more complicated depending on the water, which may be full of different amounts of turbidity, 

including silt and plankton. Because of color distortions and inconsistencies caused by these particles, models are hard 

pressed to generalize on a variety of underwater environments. 

However, the training of conventional data models does not consider these distortions, as they are specific to underwater 

environment, resulting in lower detection accuracy and generalization capabilities.  This paper presents a complex approach 

which combines transfer learning with mixed optimization algorithms to increase the accuracy of identification of 

underwater objects. This approach takes advantage of the efficiency of the pre-trained EfficientNet model for feature 

extraction together with the PSOGA to improve recognition accuracy while addressing underwater challenges. 

 

Main Contributions of This Work 

Integration of Transfer Learning 

Utilizes a pre-trained EfficientNet model for feature extraction, leveraging its capability to capture diverse features in 

underwater images, which is critical given the unique challenges of underwater environments. 

 

Hybrid Optimization Techniques 

Employs a novel hybrid optimization strategy combining Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), 

termed PSOGA, to fine-tune hyperparameters such as learning rate, number of layers, and activation functions. This 

approach balances exploration and exploitation in the optimization process, enhancing model accuracy. 

 

Robustness Against Underwater Challenges 

Demonstrates remarkable improvements in precision, recall, and F1-score, highlighting the model's effectiveness in dealing 

with the challenges posed by varying water conditions, low visibility, and noise, which are prevalent in underwater object 

recognition tasks. 

 

Applicability to Real-World Underwater Navigation and Research 

Provides a robust solution that can be employed in various practical applications, including autonomous navigation of 

underwater vehicles, marine life monitoring, and underwater infrastructure inspection, thereby contributing to safer and 

more efficient underwater operations. 

Section 2 of this document delves into related studies, highlighting the advancements and existing methods in 

underwater object recognition. It critically examines previous approaches and sets the stage for the innovations introduced 

in this study. Section 3 details the proposed methodology, explaining the integration of transfer learning with the PSOGA 

optimization technique, the architectural specifics, and the implementation processes. Section 4 discusses the results, 

comparing the proposed model's performance against traditional models and articulating the significance of the findings. 

Finally, the conclusion summarizes the key achievements and outlines the future scope, suggesting potential enhancements 

and applications of the developed methodology in broader underwater research and operational contexts. 

 

II. RELATED WORK 

Combing from the feature extraction of small targets and the efficiency of identifying objects from complex environments 

especially underwater, the detection is usually poor. In order to deal with these limitations and study the semantic properties 

of small moving objects in a complex environment, a path-enhanced Transformer detection was provided to approach. 

First, the optimization approach for semantic representation of unique characteristics of small-scale underwater objects is 

established in the form of embedded local route detection information technique that allows the interaction between high-

level and low-level features. In the encoding step, CSWin-Transformer framework enriches the dependence connection 

between the high and low level elements gathered during the conceptualization step. As for any level of a hierarchy, 

characteristics are adjusted/optimized and justification is provided concerning utilized individual loss function [12]. In 

contrast, an alternative to the traditional square detection approaches is developed: a detection module that employed a 

general and malleable point representation. The feature selection between the points and the conspicuous point samples in 
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the classification localization enhances the detection of underwater objects, concurrently; this module targets the 

underwater from any position. Based on this consideration, a new weighted loss function was introduced in order to enhance 

the convergence of the established networks. Experimental results were conducted on the UTDAC, RUOD, and ADios 

datasets of photos of objects obtained from submarine photography. The results also reveal that the suggested method is 

more accurate in comparing with other methods in terms of precision (P), recall (R) and F1-score and frames per second 

(FPS). 

In terms of ocean engineering an underwater vehicle is one of the necessary tools used to navigate the water. Due to 

light attenuation and reflection in an underwater environment, the optical system of an underwater vehicle may capture 

images in a complex environment, but the images are usually have low visibility, low contrast, and distorted colors. In 

order to solve this problem, an underwater image improvement framework based on transfer learning was proposed, which 

includes a domain transformation module and an image enhancement module. The color correction and image enhancement 

are separately defined in two modules for easier understanding and translation of in-air image enhancing to underwater 

image enhancement [13]. The physical model is integrated into the domain transformation module so that after the 

particular image has been converted, it meets the physical model specifications to retain the physical characteristics of an 

underwater image. To improve the model and get rid of the color divergence consistently, the domain transformation 

module is modified to incorporate a coarse-grained similarity computation. The offered technique is numerically and 

subjectively superior when compared to other complex underwater image improvement algorithms on experiments done 

on real-life underwater images of different scenarios. Ablation experiments was carried out in order to better understand 

the contribution of each component to the end task. 

Loss of light and turbidity are among the main factors responsible for image degradation in underwater photographs, 

which results to poor image quality. The lack of pair images in some datasets and the difference in domain between the 

source and target domains is the reason why learning-based algorithms fail to generalize well and retain image features. 

The proposed solution for these problems in this research is a hybrid loss-based adversarial transfer learning method for 

enhancing underwater image scenes [14]. In order to enable the method to automatically learn image characteristics and 

the pattern of air and underwater photos, the critical approach is based on domain adaptation and adversarial transfer 

learning. To establish the forward and backward processes between source and destination domains, domain-adaptive 

generators solely was proposed for this purpose. Hybrid losses was introduced for domain adaptation which is useful for 

underwater image enhancement. Much of the future generator has rather encouraging generalization. The proposed method 

offers a robust solution to underwater and air photos and have depicted that it is very much viable and successful in 

enhancing underwater photos. 

As a result of the instability in a fluid, and the distortion of objects when viewed through water, it is difficult to 

distinguish between items. Basically, dealing with these feature extraction issues straight on, this research study presents 

the multi-scale mindful turbulence network or MATNet approach particularly for the identification of underwater object. 

In order to better preprocess object contour features, as well as texture features, the article puts forward a module called 

the multi-scale feature extraction pyramid network module. This module tends to employ thick linking methods as well as 

position learning approaches [15]. For better enhancements of the identification process of multi-scale information, this 

module facilitates the extraction process. After that, the characteristics that were retrieved are adjusted by matching them 

with positive samples and negative samples. Based on the enhanced multi-scale characteristics, the study provides multi-

scale item recognition approaches and builds a multiscalar object recognition network for recognizing underwater objects 

precisely. The steps involved in the method are first of all distorting the image and then figuring out the item that has been 

rectified. As demonstrated by the author, the suggested strategy is more efficient than other methods in quantitative and 

qualitative performance assessment on the underwater distorted image enhancement dataset. 

In this regard, in light of the problems of feature homogenization in underwater acoustic target identification, and lack 

of feature representation and information exchange, a Mobile_ViT network was proposed. This network is the combination 

of the MobileNet and Transformer techniques. An incorporated coordinate attention method that applies in the network’s 

convolutional backbone enhances the local details of the inputs. This system zeroed targeted the spatial locations of features 

as well as the exact frequency-domain relation and long-term temporal relation of signals. As a result, to solve the problem 

of CNN lacks the ability to collect long-range feature dependencies, the Transformer’s Encoder is added at the end of the 

backbone so that it can give a global representation [16]. Comparing the results with the baseline, new proposed method 

achieved accuracy of 98.50% on Shipsear and 94.57% on DeepShip datasets. When compared to other existing 

Transformers, the proposed strategy has fewer parameters and distinct separation coefficients which suggest a better 

clustering ability.  

The challenges regarding the related research studies focusing on underwater object recognition are leeward owing to 

the constraints of the underwater environment. Conventional object detection techniques are not very effective in 

recognizing targets against cluttered backdrops, and they do not capture the details of targets that are comparatively tiny, 

which results in unsatisfactory detection results in general. Problems like light reflection, colors distortions, or blurring as 

a result of water turbidity interfere a lot even with techniques like transfer learning. Furthermore, a significant number of 

the existing methods experience a problem of domain shift between training set and underwater environment, which limits 

their applicability. Moreover, the use of multi-scale feature extraction techniques are relatively helpful, but these 

approaches also have problems, such as the dynamic changes in underwater turbulence and the variations in appearances 
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of objects. Such challenges call for the establishment of a more stringent, flexible and accurate methods for improving the 

feature representation and the rate of recognition in the underwater environments. 

 

III. METHODOLOGY 

The approach for increasing the efficiency of distinguishing objects underwater combines transfer learning with hybrid 

optimization methods to consider the conditions underwater. First, the EfficientNet model is used to extract features from 

the underwater images due to its strong ability to extract various features on the images. This model is then optimized 

utilizing a hybrid PSO–GA technique referred to as PSOGA. This type of optimization will focus and try to adjust various 

hyper parameters for learning rate, number of layers, activation functions to ensure the model is perfectly optimized for 

underwater imagery. The process of training and validation can be repeated several times with minor or major changes in 

the model that takes into account the accuracy standards set for the model. This methodology contributes to improving the 

detection accuracy and guarantees that the model will work stably under various conditions when interacting with the 

underwater environment. Fig 2 shows the architecture of proposed model. 

 

Data Collection 

The data collection process entails the use of a sophisticated network of IoT devices that have been developed to locate 

objects buried underground. Several sensors are used to obtain different types of data that can recognize various 

underground items including pipe network, cables, buried waste, and geology. Some of the appearing tools are GPR for 

the subsurface visualisation, electromagnetic sensors for conductive object detection, seismic sensors for capturing 

vibration and acoustic signals, and thermal sensors for the manifestation of temperature irregularities beneath the surface. 

One of the most important data set is the Ground Penetrating Radar (GPR), which uses high-frequency radio waves that 

are transmitted in the subsurface and the signals that are reflected are recorded and processed to create subsurface images. 

It gives vital data as to the size, form and make up of structures beneath the surface of the earth. Electromagnetic sensors 

combined with GPR procedures correspond to changes in electromagnetic fields most often resulting from metallic objects 

or other conductive items hence can be used to detect pipelines or utility cables. 

Vibrational information is recorded by seismic sensors to assist in identifying solid objects and changes in the earth 

material. These sensors normally determine movement on the ground in response to the acoustic waves that it produces 

and can easily identify areas of the ground that has hard surfaces or voids. Moreover there are thermal sensors which help 

to measure the temperatures below the surface of ice. These sensors are quite effective in sensing objects with temperature 

range characteristics such as underground water pipes and geological formations with different temperatures. This data 

from these sensors is captured and integrated into an aggregate multi-dimensional dataset. The dataset typically includes 

the following features: data concerning depth GPR, measurement timestamp, electromagnetic field variation, Seismograms 

amplitude and frequency, and thermal gradient. It means that each entry in the data base equals a certain location and, 

accordingly, sensor reading which gives a good basis to detect an enormous amount of underground objects and classify 

them. 

 

Data Preprocessing 

Data Cleaning 

Missing values are not desirable in machine learning and therefore their management is an important step during data 

preprocessing. One of the approaches utilized in imputing missing observations in categorical datasets is applying mode 

imputation whereby missing values in one of the feature columns is replaced with the mode. In this technique, the missing 

values are can be estimated which is helpful in making the dataset aggregated and simple to use, especially when the 

number of the lost values is less compared to the entire set of the data. By imputing missing values the dataset stays 

complete making models perform with fewer iterations and without discarding useful information that would be got rid 

when a row with missing value is eliminated. Mode imputation replaces the missing values by the mode of the data set. 

Given a dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, where 𝑥𝑖 ∈ {𝐶1, 𝐶2, … , 𝐶𝑚} are categorical values, the mode imputation replaces any 

missing value 𝑥𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔 with: 

 

 𝑥𝑖,𝑖𝑚𝑝𝑢𝑡𝑒𝑑 = 𝑀𝑜𝑑𝑒(𝑋) = arg max
𝐶𝑗

𝑐𝑜𝑢𝑛𝑡(𝐶𝑗)  (1) 

 

Where 𝐶𝑗 is a category in the dataset, and 𝑐𝑜𝑢𝑛𝑡(𝐶𝑗) is the frequency of category 𝐶𝑗. Furthermore, minimization of the 

number of duplicate datasets is crucial when pre-processing the dataset. Such issues arise from having two or more similar 

entries in the datasets and could lead to overfitting or get the model to learn skewed data. It is necessary to eliminate such 

observations so as to have non-redundant observations in the dataset, which would make the analysis and prediction more 

credible. This technique includes row filtering that targets the rows which are similar in all aspects and retains only one of 

them. For any two rows 𝑋𝑖 and 𝑋𝑗 in the dataset 𝑋, where: 

 

 𝑋𝑖 = 𝑋𝑗              𝑖𝑓           ∀𝑘 ∈ [1, 𝑛],        𝑥𝑖𝑘 = 𝑥𝑗𝑘   (2) 
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The duplicate entry 𝑋𝑗 is removed. 

 

Data Transformation 

Log and Box-Cox transformations are the two common approaches that can be used when handling for data with non-

normal distribution. Log transformation is commonly used in an attempt to de-skew the data thus making it symmetric as 

well as stabilizing variance. This technique is especially useful when is applicable to income, population counts or any 

other data where the distribution is dominated by high values. By doing so, wild values are reduced in the data, making it 

easier for models that assumes normality such as the linear regression. Likewise the Box-Cox Transformation also attempt 

to bring the variance to scale and standardise the data in as much as makes it look more like normal distribution by adopting 

a power value. Log transformation is applied to reduce skewness and stabilize variance in a feature 𝑥. Given a feature 𝑥, 

the log transformation is defined as: 

 

 𝑥′ = log(𝑥 + 𝜖) (3) 

 

Where 𝜖 is a small constant added to handle cases where 𝑥 = 0. Compared to log transformation, Box-Cox 

transformation benefits from the fact that it can work with positive and negative data values. It is helpful for enhancing 

qualitative properties of a model in cases where normality of the data is desirable such as in a number of statistical and 

machine learning algorithms. Box-Cox transformation is a family of power transformations parameterized by 𝜆 to make 

data more normal like. For a feature 𝑥, the Box-Cox transformation is defined as: 

 

 𝑥′ = {
𝑥𝜆−1

𝜆
,            𝑖𝑓 𝜆 ≠ 0

log(𝑥),            𝑖𝑓 𝜆 = 0
  (4) 

 

Here, 𝜆 is a parameter that maximizes the likelihood function of the transformed data being normally distributed. 

 

Feature Encoding 

Since machine learning models only work with numeric values, categorical data must first be transformed into numbers, 

which is known as feature encoding. Label Encoding is one of the widely used techniques which transform categorical 

variables in features to numerical labels that are in sequence starting with 0, 1, 2 and so on. Such approach is very basic 

and efficient for the ordinal data especially because the categorical variables in such type of data have the order. 

Nevertheless, for nominal data where no such order exists, Target Encoding is available as a solution. Conversion can be 

done in two ways, that is, target encoding where we replace the categorical values with the mean of the target variable of 

that particular category. Perhaps the most important advantage of this technique is when there are many categories and the 

conventional the one-hot will add as many extra columns as there are categories. By using the target mean, it makes models 

to learn the actual relationships in between the categorical feature and the target variable, increasing model performance. 

For a categorical feature 𝐶𝑖 and target variable 𝑦, the target encoding for category 𝐶𝑖 is given by: 

 

 𝐶𝑖
′ =

1

|𝐶𝑖|
∑ 𝑦𝑥𝑥∈𝐶𝑖

   (5) 

 

Where |𝐶𝑖| is the number of samples in category 𝐶𝑖 and 𝑦𝑥 is the target value for each sample 𝑥 ∈ 𝐶𝑖. 

 

Dimensionality Reduction 

Whenever datasets contain a large number of features, various dimensionality reduction methodologies assist in decreasing 

the features subset while at the same time retaining relevant information. Linear Discriminant Analysis (LDA) is one of 

the methods of dimensionality reduction techniques that in addition, takes into account the separability of classes. LDA 

maps the data to lower-dimensional space in a way that separates them by classes maximally, making LDA very effective 

for supervised learning problems. It does not only lead to necessary reduction of features but also contributes to the given 

classification scheme by focusing on the most valuable aspects of given data in terms of the target variable. The projection 

𝑤 is found by maximizing the Fisher criterion: 

 

 𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑤𝑤
   (6) 

 

Where 𝑆𝐵 is the between-class scatter matrix, and 𝑆𝑊 is the within-class scatter matrix. The optimal projection vector 

𝑤 maximizes this ratio. 

 

Feature Selection 

Feature selection plays a significant role in enhancing model performance and preventing overfitting of models. The first 

one is Variance Thresholding which simply discards features with very low variance because there is very little information 
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that the model can utilize. If features with little variation are retained, then they cause redundancy and if eliminated, then 

the complexity of the model is also eliminated. Another is L1 Regularization also known as Lasso Regression which is a 

method that helps to reduce the number of features. Lasso indirectly reveals such by adding an L1 penalty to the regression 

coefficients making the feature coefficients zero, and hence eliminating irrelevant features from the model. This method is 

most suitable with large number of input variables where some of them may not highly relate with the output variable. The 

Lasso cost function is: 

 

 𝐽(𝜃) =
1

2𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2𝑚
𝑖=1 + 𝜆 ∑ |𝜃𝑗|𝑛

𝑗=1   (7) 

 

Where 𝜃 is the regularization parameter, 𝜃 are the model parameters, and ℎ𝜃(𝑥(𝑖)) is the predicted value. 

 

 
Fig 2. Architecture of Proposed Model. 
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Noise Reduction 

Noise removal is critical so that there is a better signal to noise ratio so that the model’s performance is better. The Wavelet 

Transform technique forms an efficient tool for the removal of noise and for time-series and signal data. The technique 

involves the wavelet to transform the data domain to capture data in equal time and frequency; this way, it is easier to 

remove noises. This method aid in reducing noises when modelling and at the same time retaining useful features hence 

clean input data for machine learning algorithms. Wavelet transforms are used in many areas such as signal processing, 

image filtering and pattern recognition. The continuous wavelet transform (CWT) of a signal 𝑓(𝑡) is given by: 

 

 𝑊(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑓(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡

∞

−∞
  (8) 

 

Where 𝜓 is the mother wavelet, 𝑎 is the scaling factor, 𝑏 is the translation factor, and 𝜓∗ is the complex conjugate of 

the wavelet function. 

 

Feature Extraction 

Feature extraction is a significant step in computer vision tasks especially in recognizing underwater objects since images 

are always poor due to low visibility and noises. In such cases, one of the most efficient techniques to perform feature 

extraction is the transfer learning which involves using a pre trained deep learning model such as EfficientNet for this 

process of feature extraction from the underwater image. A recent and advanced CNN known as EfficientNet is appropriate 

for this task because of its ability to adapt the depth, width, and resolution of the model while maintaining high accuracy 

with minimal computational overhead. By passing underwater images through EfficientNet’s layers, high level of 

hierarchical features are obtained from different layers of EfficientNet for recognizing complex underwater objects. For an 

input image 𝐼, the feature extraction process using a CNN like EfficientNet can be described as: 

 

 𝐹 = 𝐶𝑁𝑁(𝐼; 𝑊𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑)  (9) 

 

Where 𝐼 is the input image (e.g., underwater images), 𝑊𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑  represents the weights of the EfficientNet model that 

were pre-trained on a large-scale dataset like ImageNet, and 𝐹 is the feature map generated by the convolutional layers of 

EfficientNet. These features depict the salient attributes of the image that has been sought out and extracted from it. 

EfficientNet’s architecture allows scaling of three main dimensions: They include width, depth and the input image 

resolution. The scaling follows the equation: 

 

 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑠𝑐𝑎𝑙𝑖𝑛𝑔: 𝐷𝑒𝑝𝑡ℎ ∼ 𝑑𝐷 ,     𝑊𝑖𝑑𝑡ℎ ∼ 𝑑𝑊,      𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∼ 𝑑𝑅  (10) 

 

Where 𝑑 is a compound coefficient, and 𝐷, 𝑊, and 𝑅 are constants that control how depth, width and resolution are 

scaled, respectively. Fine-tuning entails the modification of the weights of higher layers of the pre-trained model from the 

underwater data set. This process can be represented as: 

 

 𝑊𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑 = 𝑊𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 + Δ𝑊  (11) 

 

Where 𝑊𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑 are the weights after fine-tuning on the specific underwater dataset, 𝑊𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑  are the original 

weights of the pre-trained model, and Δ𝑊 is the adjustment to the weights based on training with the new dataset. The 

fine-tuning process minimizes the loss function 𝐿 over the underwater dataset, which can be represented as: 

 

 𝐿 =
1

𝑛
∑ 𝐿𝑜𝑠𝑠(𝑦𝑖 , 𝑦̂𝑖)

𝑛
𝑖=1   (12) 

 

Where 𝑛 is the number of samples in the underwater dataset, 𝑦𝑖  is the true label of the 𝑖-th image, and 𝑦̂𝑖 is the predicted 

label from the fine-tuned model. Another advantage of using transfer learning is the fact that the model has been trained 

on large datasets such as ImageNet, with data that includes millions of images across thousands of categories. The pre-

training that is done here enables the model to learn features that are general and can be applicable for different fields 

including underwater fields. With these pre-trained models, the requirement of large annotated underwater data sets is 

eliminated since the model is able to transfer learn from the pre-trained data to underwater data. All the first layers of the 

pre-trained model can then be utilized for feature extraction followed by the fine-tuning of the model using underwater 

data. Transfer learning is the process of retraining the parameters of the layers with the specific images of the underwater 

environment which helps the model to deal with specific scenario challenges of the underwater environment like lighting 

conditions, noise and occlusions. This is because through the scalable architecture EfficientNet is able to extract features 

at different scales due to its capability of processing images at different resolutions. This multi-scale feature extraction can 

be represented by multiple feature maps 𝐹𝑠, where each scale captures different characteristics of the underwater objects: 
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 𝐹𝑠 = 𝐶𝑁𝑁𝑠(𝐼; 𝑊𝑠)  (13) 

 

Where 𝐹𝑠 is the feature map at scale 𝑠, 𝐶𝑁𝑁𝑠 is the network at scale 𝑠 (with a specific depth, width, and resolution), 

and 𝑊𝑠 represents the weights at each scale. The final feature map used for classification or further processing can be an 

aggregation of these multi-scale features: 

 

 𝐹𝑚𝑢𝑙𝑡𝑖−𝑠𝑐𝑎𝑙𝑒 = ∑ 𝛼𝑠𝐹𝑠
𝑆
𝑠=1   (14) 

 

Where 𝛼𝑠 are the weights assigned to each scale 𝑠, controlling the importance of each scale in the final feature map, 

and 𝑆 is the total number of scales considered. This multi-scale aggregation enables the model to detect small, medium and 

large sized objects under water hence improving on the detection accuracy of the model. One of the main concepts in this 

approach is the feature extraction at multiple scales, which is the key to recognizing and categorizing underwater objects 

of various sizes, forms, and colours. It is worth noting that EfficientNet’s architecture can learn features at multiple scales 

since compound scaling considers changes in the depth, width as well as the resolution of the network in an efficient 

manner. This leads to higher accuracy and different range of feature maps that allow to distinguish small objects as well as 

large ones in the underwater environment. For instance, the fish or debris may be seen in the first instances while large 

formation or structures such as geological formations or structures developed by man may be captured in the later instances. 

This multi-scale feature extraction captures many characteristics of underwater objects, improving the model’s recognition 

and classification accuracy, considering a large range of objects even in the underwater problem environment. Once the 

features are extracted, the features go through a classifier in order to recognize the object. The classification output is given 

by: 

 

 𝑦̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝐹 + 𝑏𝑐)  (15) 

 

Where 𝑊𝑐 and 𝑏𝑐 are the weights and biases of the fully connected classification layer, 𝐹 is the feature vector (multi-

scale features or fine-tuned features), and 𝑦̂ is the predicted class probabilities after applying the Softmax function.  

EfficientNet was chosen as the feature extraction because it has a versatile shape that allows it to incorporate scale and 

high efficiency into its parameters. First, EfficientNet conditions depth, width, and resolution, which is uncommon for 

many deep learning models, thus allowing the model capturing detailed features at different scales. This multiscale 

capability is especially important in underwater conditions for objects appearing at different sizes and sometimes with less 

contrast because of light absorption and scattering. Flexibility and efficient parameters are some of the advantages of 

EfficientNet. A fewer number of parameters are used while obtaining high accuracy, therefore, greatly cutting on the 

amount of computations required. This is especially useful in under water environments where algorithms need to be 

processed in real time but available hardware can be scarce. When visibility is relatively low, which is typical for 

underwater scenarios, EfficientNet can improve the object features and differentiate between objects and background, 

improving the overall object detection. 

 

Hybrid Optimization Techniques 

Optimization is a critical component in the machine learning process that aims to achieve the best model’s performance, 

particularly in challenging scenarios such as underwater object recognition. Another major concern in models based on 

deep learning is that of parameter settings; including learning rate, number of layers, neurons per layer and activation 

functions. The classical optimization techniques popularly known as gradient-based approaches come with a lot of 

challenges and work inefficiently in situations where the search space is large with a high number of dimensions and a lot 

of stochastic noise. To address this limitation, further improvements including the PSO algorithm as well as the GA to 

form PSOGA for hyperparameter tuning that is quite effective. PSO is based on the concept of social perturbation modelling 

bird flocking or fish schooling in which individual “particles” embody possible solutions to a problem in the search space. 

Such particles, therefore, swim through the search space in the light of their own experiences as well as previous 

experiences of the other neighbouring particles. The new position and velocity of each particle are calculated from the 

personal best position of the particle and the position found by all the particles in the swarm. This is represented as: 

 

 𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) (16) 

 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1  (17) 

 

Where 𝑣𝑖
𝑡  is the velocity of particle 𝑖 and iteration 𝑡, 𝑥𝑖

𝑡 is the position of particle 𝑖 at iteration 𝑡, 𝑝𝑖
𝑏𝑒𝑠𝑡  is the best-known 

position of particle 𝑖, 𝑔𝑏𝑒𝑠𝑡  is the global best position found by the swarm, 𝑤, 𝑐1, and 𝑐2 are coefficients controlling inertia 

and the influence of personal and social components, and 𝑟1 and 𝑟2 are random numbers uniformly distributed in [0,1]. In 

particular, PSO is characterized by its fast convergence and its capacity to focus effectively on some regions of the search 

space. However, it is occasionally unable to introduce sufficient variability to get out of the local optima, especially when 

faced with complicated multimodal environments. The other one, called Genetic Algorithm or simply GA, tries to work in 
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similar way to natural selection and the processes of genetic evolution. They begin with a set of potential solutions and 

move on from one generation to another through operations such as selection, crossover and mutation. Selection is used to 

pick the best solutions to the problem according to a defined fitness function, while crossover and mutation act as the 

genetic operators that create variability by generation of new individual from two or more or by randomly altering one. 

The aim is to identify the optimal solution in successive generations using the strong donors and maintaining the population 

diversity and preventing convergence. 

 

Selection 

Individuals are selected based on their fitness score 𝑓(𝑥), often using methods like roulette wheel selection or tournament 

selection. The probability 𝑃(𝑥𝑖) of selecting individual 𝑥𝑖 is given by: 

 

 𝑃(𝑥𝑖) =
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)𝑛
𝑗=1

   (18) 

Crossover 

Two parents 𝑥1 and 𝑥2 are selected, and a crossover point 𝑘 is chosen. The offspring is generated by combining the parents’ 

genes: 

 

 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1 = (𝑥1[1: 𝑘], 𝑥2[𝑘 + 1: 𝑛])  (19) 

 

 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 = (𝑥2[1: 𝑘], 𝑥1[𝑘 + 1: 𝑛]) (20) 

 

Mutation 

Mutation introduces random changes to individuals to explore new solutions. For an individual 𝑥, mutation randomly alters 

a gene: 

 

 𝑥𝑖
′ = 𝑥𝑖 + Δ𝑥  (21) 

 

Where Δ𝑥 is a small random value. Therefore, PSOGA that combines PSO and GA can demonstrate an optimal level 

of exploitation and exploration. The speed convergence of PSO makes the search narrow on promising regions, while GA 

operations prevent the solution from being trapped in local optima. Hence, this hybrid mode of learning is especially useful 

when trying to fine tweak hyperparameters of complicated deep learning models for object recognition in water bodies. 

PSOGA does not only adjust the small parameters such as learning rates but also the big parameters which concern the 

model structure like the number of layers, number of neurons per layer, and the activation function they apply. This enables 

the model to learn and change its structure depending on the conditions at the underwater scenario, hence variations in the 

luminosity, visibility, and the geometry of the underwater object pose a significant influence to the general performance of 

the model. In addition to improving the convergence of PSOGA to a global solution and better overall performance across 

various underwater environments, the evolutionary strategies embedded in PSOGA also factor useful evolutionary 

strategies. The use of the proposed hybrid optimization method can be deemed highly beneficial for real-life applications 

as it provides much better presentation when it comes to the model’s stability as well as its precision and ability to 

generalize. 

The proposed methodology for implementing the underwater object recognition is based on the hybrid of PSO and GA, 

which is a useful strategy for improving the results of the model with optimization. PSO has been also recognized for its 

convergence in the useful area and, therefore, increasing the rate of optimization. Nonetheless, PSO may, on its own, fail 

to escape these local optima particularly in complex search spaces such as underwater imagery where solution space is rich 

in structural features due to issues such as light distortion and varying turbidity. Due to this, the hybrid PSO-GA approach, 

with the introduction of GA combined with its crossover and mutation operations, avoids this problem by searching a more 

diverse solution space. Through GA’s ability to reflect the maintenance of diversity in the solution set, the model avoids 

being stuck in local optima and increases the overall robustness and accuracy of the optimization. This hybrid method is a 

combination of the two kinds of algorithm and effectively used for the hyperparameters tuning in deep learning models 

suitable for underwater environments. 

The building of PSOGA as a combined model allows us to achieve the fine balance between convergence and 

divergence, which will make possible to escape solution space local optima as well as to improve high potential solutions. 

This trade-off is especially useful in application to models for underwater image, which encompass complicated settings 

such as fluctuation in turbidity and light. Through subsequent shift of key parameters, PSOGA assist in tuning the model 

to the optimum status both statistically and with high accuracy in difficult underwater environments. 

 

Model Architecture 

The design proposed here of a complex hybrid model for underwater object recognition uses concept of transfer learning 

and optimal optimisation for creating reliable efficient model. In the context of transfer learning, what is obtained is that 

the pre-trained model can extract features generic to all domains such as edges, textures and patterns on images. These 
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features are very useful when it comes to identifying objects in images taken underwater because when submerged other 

factors such as turbidity, brightness and noises affect the identification process. By transferring the learnt features from a 

pre-trained model such as the ImageNet model the system can save time by not having to learn the features from scratch. 

However, Own features are not extracted rather the features learned by the pre-trained CNN model are retrained on the 

underwater dataset. This fine-tuning maneuvers guarantees that the model becomes optimized for the underwater setting 

and is able to detect shapes, sizes, and texture pertaining to objects that are specific to this setting. 

After the way of the features of the underwater images has been defined by applying the transfer learning backbone, an 

optimal classifier is used for the final classification. This classifier is normally made up of Fully Connected Neural 

Networks (FCNN) which are highly connected layers with the aim of mapping of features that have been extracted to the 

output classes (for instance, types of objects found underwater such as rocks, marine life or debris). Every neuron in the 

Final Classification Neuron Network gets input from every neuron in the previous layer thus the FCNN is exceptionally 

good at integrating and interpreting features for a final classification. Thus, the PSOGA is a vital element in adjusting the 

number of neurons and activation functions in the FCNN) and the approaches to weight initialization. All these 

hyperparameters can significantly affect the model’s performance, and thus tuning them is important. PSOGA fine tunes 

these parameters for the FCNN to be in synergy with the transfer learning backdrop and thereby yielded optimal underwater 

object classification models. 

To avoid developing the high levels of complexity that may increase the chances of overfitting the architecture 

incorporates the dropout layer in the neural network. This minimizes the chances of the model developing a particular 

dependence on a certain neuron or a feature while learning, and hence improve its ability to generalize in new data. The 

problem of overfitting is especially urgent in underwater object recognition since the number of existing high-quality 

annotated underwater dataset is relatively small. This risk is addressed by Dropout which prevents the model from 

memorizing the training data while at the same time learning patterns that are generalizable under different underwater 

scenes. In addition, we use batch normalization in order to stabilize and reduce the training time of the model. With batch 

normalization an input layer is normalized to have zero mean and unit variance in order to maintain good scale during the 

layers’ propagation in a network. This assists in avoiding such problems as; vanishing or exploding gradients which are a 

major challenge during training particularly in deep networks. Batch normalization also helps to normalize the inputs into 

each layer while at the same time helps to faster converging thereby increasing the efficiency of the training process. To 

minimize the network and reduce over fitting, the dropout and batch normalization layers are added. Dropout is a 

regularization method, where during training some of the units in the network are dropped out at random. For each neuron 

in the dropout layer, the output is either kept or dropped based on a probability 𝑝: 

 

 𝑦 = {
0,        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝
𝑦,        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝        

  (22) 

 

Batch normalization is another technique used to stabilize and speed up training by normalizing the inputs to each layer. 

The batch normalization operation is given by: 

 

 𝑥̂𝑖 =
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

  (23) 

 

Where 𝑥̂𝑖 is the normalized input, 𝑥𝑖 is the input to the layer, 𝜇𝐵 and 𝜎𝐵
2 are the batch mean and variance, respectively, 

and 𝜖 is a small constant added for numerical stability. During training, the parameters of the model (weights 𝑊 and biases 

𝑏) are updated using gradient descent. The loss function (𝑊) measures the error between the predicted output and the true 

labels. The gradient of the loss function with respect to the parameters is computed, and the weights are updated as follows: 

 

 𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂∇𝐿(𝑊)  (24) 

 

Where 𝜂 is the learning rate, and ∇𝐿(𝑊) is the gradient of the loss function with respect to the weights. The optimized 

architecture of this hybrid model that integrates the strength of both transfer learning in feature extraction and PSOGA in 

optimization provide a formidable framework for solving the problem of underwater object recognition. The use of transfer 

learning, dropout, and batch normalization guarantees the model robustness to changes in underwater lighting, presence of 

noise, and fluctuations in object’s appearance. At the same time, PSOGA fine-tunes all the architecture, from 

hyperparameters to the classifier for both better accuracy and optimal computational savings. This effectively leads to the 

development of an efficient underwater object recognition system which can be implemented in real applications with poor 

environments. 

The hybrid PSOGA approach not only enhances the achievement of the model but also enhances the convergence of 

the model as well. A basic disadvantage of PSOGA with reference to perfect traditions of optimization techniques is that 

it takes lesser number of iterations to arrive at sensible and precise configurations. This efficiency is especially important 

in those cases when time and computational capacity are a deciding factor. 
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Algorithm: Underwater Object Recognition Using AlexNet 

Input: Underwater image dataset 

 Initialize weights 𝑊, biases 𝑏, and learning rate 𝜂. 

Data Collection 

Collect underwater images using sonar, LIDAR, or camera-based systems. 

Data Preprocessing 

Resize each input image to 224 × 224 pixels. 

Normalize pixel values between 0 and 1 to standardize input data. 

Feature Extraction (AlexNet) 

𝐹𝑏 = 𝐴𝑙𝑒𝑥𝑁𝑒𝑡(𝑋𝑏)    // Pass the preprocessed image 

Convolutional Layers 

𝐹𝑐𝑜𝑛𝑣 = 𝜎(𝑊𝑐𝑜𝑛𝑣 ∗ 𝐼 + 𝑏𝑐𝑜𝑛𝑣)    // Apply convolutional layers to extract spatial hierarchies 

Max-Pooling 

𝐹𝑝𝑜𝑜𝑙 = max(𝐹𝑐𝑜𝑛𝑣)    // Perform max-pooling to reduce spatial dimensions 

Fully Connected Layers 

𝐹𝑓𝑐 = 𝑊𝑓𝑐𝐹𝑝𝑜𝑜𝑙 + 𝑏𝑓𝑐    // Flatten the feature map  

Softmax for Classification 

𝑃(𝑦 = 𝑐|𝑥) =
𝑒𝑧𝑐

∑ 𝑒2𝑖𝐶
𝑖=1

    // Apply the Softmax function to predict class probabilities 

Optimization 

𝐿 = − ∑ 𝑦𝑐 log(𝑃(𝑦 = 𝑐|𝑥))𝑐     // Use an optimization algorithm  

Training 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑊
     // Update model parameters using backpropagation 

Prediction 

Use the trained model to classify new underwater images based on the maximum class probability. 

End Algorithm 

 

Hyperparameter Tuning Section 

The learning rate plays a very important role of determining how the model updates its knowledge through data information. 

Optimizing the learning rate makes it possible for a model to move towards an accurate solution without fluctuations or 

lack of identifying some of the best laying points. This is more crucial especially when dealing with underwater image as 

they are normally accompanied with a high noise level and low contrast hence introducing instability in learning. Thus, 

controlling the learning rate allows the model to extract features well while avoiding being stuck at states that do not capture 

the fine detail in underwater environments. Indeed, the number of layers in the model also affects in regulating the 

framework to appropriate underwater environment. A deeper model can capture more elaborate structures, surfaces, and 

form that is frequently low contrast and hard to discern in underwater scenes because objects may not have clear edges due 

to diffusion and haze. In this way, the depth of the model optimized to teach such intricate features while not adding 

overhead computation. This balance is necessary in order not to compromise the efficiency of the model so pertinent to 

realize high performance in the difficult conditions of an underwater environment. Lastly, the type of activation used in 

the model influenced its performance regarding contrast and feature differentiation in low light conditions. Other activation 

functions like ReLU, which have been adopted in this code greatly, assist in improving contrast and making edges stand 

out enabling the identification of objects where the lighting is poor or where visibility is low. In consequently selecting 

and optimizing activation functions, the model is then able to provide emphasis on significant features and address 

challenges implied by light variations to increase its object recognition capabilities in various underwater contexts.  

 

Novelty Of the Work 

The novelty of this work lies in its innovative integration of transfer learning with a hybrid optimization approach, PSOGA, 

to significantly enhance underwater object recognition. This methodology introduces a unique blend of Particle Swarm 

Optimization and Genetic Algorithm to fine-tune a pre-trained EfficientNet model, a strategy not commonly employed in 

underwater imaging. The hybrid optimization technique addresses the dual need for exploration and exploitation within 

the model's parameter space, leading to more accurate hyperparameter adjustments and improved model performance under 

complex and varying underwater conditions. Additionally, the use of EfficientNet for feature extraction capitalizes on its 

state-of-the-art image processing capabilities, which are adapted through transfer learning to tackle the specific challenges 

of low visibility, distortion, and noise characteristic of underwater environments. This approach not only pushes the 

boundaries of accuracy in underwater object recognition but also sets a new standard for the application of machine learning 

techniques in marine exploration and monitoring. 

 

 

 



 

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(1)(2025) 

453 

 

IV. RESULTS AND DISCUSSIONS 

The implementation and execution of the proposed model for improving the identification of underwater objects are done 

in this research using Jupyter Notebook which is a user-friendly software program for development, debugging, and 

visualization of codes. This environment is especially suitable for repeatable testing, data visualization and presentations 

with an ability to interact with the results. The implementation of the model is done on a stable hardware platform: Intel® 

Core™ i7 processor 14700K, which has a quite big 33M Cache and the frequency rate may reach 5. 60 GHz. Due to the 

nature of deep learning model training that requires high performance computational power this high-performance 

processor is of paramount importance especially when approaching problems involving large datasets and complex feature 

extractors like EfficientNet. Furthermore, the system is has 8GB of RAM, which allows for the lightning fast processing 

of large arrays and matrices in memory without a substantial degradation of performance. This configuration helps in 

effective execution of model training and optimization by reducing the amount of time taken to execute them hence 

improving on the general productivity of the development cycle. That kind of configuration is crucial for deploying the 

desired high accuracy and performance to the context of underwater object recognition that is known to be rather 

demanding. 

The working principle of this methodology starts with data acquisition where underwater images are obtained using 

different sensors including sonar LIDARs and optical cameras. These imaging technologies are specifically designed to 

provide information on the specific density of water, objects on the sea – such as rocks, marine life, debris and structures 

created by man. There is always an influence of the environment on the quality of the data that include water clarity, light 

conditions and noise from particles within the water environment. But for machine learning, this data is in an unusable 

form and so it is preprocessed in order to be in a form suitable for training the model. Some of these techniques are median 

filtering which aid in the elimination of noise in the images and methods in image enhancement such as histogram 

equalization which aides in the boosting of brightness of the objects in the images. Before feeding the data to the model, 

the raw images are first pre-processed and improved to mean that more detailed data is passed to the particular model in 

question for feature extraction. 

After data pre-processing, the next operation is feature extraction which involves identification of useful features in the 

images. It is worth mentioning that the feature extraction process is carried out employing the transfer learning technique 

utilizing a Pre Trained Deep Learning Model such as EfficientNet or ResNet. Such training data has already been used in 

large databases such as ImageNet which contains millions of images along with their categories. Because the methodology 

employs a model pre-trained on such an extensive dataset, the methodology benefits from those aspects that are 

generalizable, including edges, shapes, textures, and patterns. These features are rather important in order to distinguish 

objects underwater where light conditions are usually rather low and shapes and outlines of objects may be difficult for 

definition. The main advantage of the transfer learning over the training of the model from scratch is that it helps the system 

start from a highly evolved level, rather than the dataset needed and the amount of time required for learning an underwater 

dataset. The fine-tuning process is centered on their ability to adjust the pre-trained model to new environment, particularly 

underwater, by making the model learn new features of the existing task within the new dataset. The transferred learning 

model analyzed the underwater images by passing it through a cascade of convolution, pooling and activation layers where 

it picks out low level features such as edges and textures, and high level features such as the shapes of various objects in 

the images. This leads to feature map, a format of image containing only salient features of the image and their spatial co-

ordinates. These feature maps are then feed forwarded to the next step of the process in which they will be used for 

classification purposes. 

For image optimization towards the task of underwater object recognition, a PSOGA hybrid optimization is used. 

PSOGA combines two powerful optimization methods: PSO and GA based Development methods are Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA). PSO mimics the phenomenon of bird flocking where the particles which 

represent the solutions travel within the search space depending on experience and the experience of the neighboring 

particles. In this it helps the model to home in to the correct solutions faster. But in some cases, PSO may fall into local 

optima hence not providing the best solution to a given problem. In order to eliminate this drawback, GA is integrated. GA 

rises the concept of natural selection by making use of such operations as crossover to produce new solutions from existing 

ones as well as mutation. This make certain the optimization procedure could still keep the great number of potential 

solutions in its search space, so avoids the drawback of premature convergence. This makes PSOGA to balance between 

exploitation and exploration thus having higher convergence as compared to other methods and having more precise and 

robust solutions found. 

 

Table 1. Accuracy, Precision, Recall and F1-Score Comparison 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

ResNet-50 [17] 94.21 92.58 93.34 92.96 

VGG-16 [18] 93.67 92.12 91.78 91.95 

EfficientNet-B0 [19] 95.89 94.34 94.02 94.17 

DenseNet-121 [20] 94.56 92.89 92.45 92.67 

InceptionV3 [21] 92.34 90.11 90.67 90.39 

Xception [22] 91.72 89.76 89.23 89.49 
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MobileNetV2 [23] 90.45 88.93 88.67 88.8 

ShuffleNet [24] 88.12 87.45 87.12 87.27 

AlexNet [25] 85.78 84.92 85.14 84.87 

Proposed  Model 98.88 97.81 97.75 96.93 

 

In the underwater cases, precision alone might not potentially describe the capacity of the model since the underwater 

environment involves noise and poor visibility. Precision makes it possible to determine the chances of wrongly identifying 

a particular instance as belonging to the model, while recall gives an indication of the possible false negatives. F1-score is 

a feature that is a combination of both precision and recall, which is useful in determining performance during operations 

in the dynamic environment of underwater operations. Table 1 and Fig 3 also demonstrate the scores of several categories 

of deep learning models applicable in underwater object recognition in accuracy, precision recall and F1 score. The 

performance comparison includes several widely recognized deep learning models: ResNet-50, StandardVGNet-16, 

Efficient Net B0, DenseNet-121, Inceptionv3, Xceptionv3, MobileNetv2, ShuffleNet and AlexNet. While comparing 

various existing models, high percentage of accuracy observed with EfficientNet-B0 model with 95.89% for accuracy and 

94.17% for F1 score, whereas DenseNet-121 model has 94.56 % accuracy and ResNet-50 has 94.21% for accuracy. Such 

models known by their precision and ability of generalization about different conditions; however, they provide a worse 

performance compared with the one proposed here. In the same development, VGG-16 provides good precision of 92.12% 

and good recall if 91.78% but poor accuracy that exposes the above-stated weakness of the older architectures in the current 

image domain especially in underwater imagery. 

InceptionV3, Xception, and MobileNetV2 show fairly good performance with the accuracy ranging from 90.45 % to 

92.34%. These models provide less computational complexity and thus a shorter time for model training as compared to 

other models hence suitable for cases where computational power is low. While their overall performance is almost the 

same as that of the ground truth, their precisions and recalls are comparatively lower, thus indicating that they may not be 

as accurate as needed for the high-quality underwater object recognition that requires detailed description of the objects. 

Xception with the use of efficient depth wise separable convolutions performs fairly well while being more efficient than 

some of the previous models but still lacks in comparison to architectures like EfficientNet-B0. ShuffleNet and AlexNet 

mark significantly low accuracy of 85.78% in the above table. This result emphasizes the need to employ deeper 

architectures in today’s world for tasks such as underwater image classification. 

 

 
Fig 3. Performance Metrics Comparison. 
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The proposed model which combines EfficientNet with the hybrid PSOGA optimization technique outperforms all 

other models by quite a large margin; with this proposed model, we obtain an accuracy of 98.88%, precision of 97.81%, 

recall of 97.75%, and f1-score of 96.93%. This has been enhanced by the utilization of transfer learning for feature 

extraction and hybrid optimization for hyperparameters including, learning rate, and architectural models adjustments. The 

enhancement of all the metrics points clearly to the effectiveness of the proposed model that offers high precision and a 

high rate of recall of objects underwater for efficient recognition. The results reveal the importance of using up-to-date 

architectures augments with the best optimization algorithms for improved accuracy and better generalization. PSOGA is 

also used for the final adjusting of the hyperparameters of the model, which may include the learning rates and weight 

initialization, and also of the architecture of the model. This is in terms of the number of layers to incorporate and the 

number of neurons in each layer as well as the selection of activation functions. These are important considerations since 

they go a long way in defining the ability of the model to learn the correct means of classifying underwater objects. Due to 

the application of PSOGA for identifying the appropriate model configuration, the methodology enables obtaining the best 

solution that fits the set task in various underwater conditions. Fig 4 shows the performance comparison of proposed model 

and EfficientNet-B0. 

 

 
Fig 4. Performance Comparison: Proposed PSOGA-Optimized Model vs EfficientNet-B0. 

 

Table 2. Training Time Comparison 

Model Training Time (minutes) 

AlexNet 50 

ShuffleNet 55 

MobileNetV2 60 

ResNet-50 65 

DenseNet-121 72 

EfficientNet-B0 78 

VGG-16 80 

InceptionV3 84 

Xception 90 

Proposed PSOGA Model 85 

 

Table 2 and Fig 5 display the comparisons of the training time to further explain that increasing the depth of the model 

more training time is required. As it is seen, the shallower architecture of AlexNet completes training within the shortest 

time of 50 minutes followed by ShuffleNet’s 55 minutes. These models are light weight and optimized for computation 

and hence suitable in situations where the training time is important. However, the faster training time reduces the accuracy, 

the precision, and the recall as revealed in the above table. These models are therefore most useful in occasions where the 

best performance is not required and instead, the implementation is desired to be faster and less complicated. 
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Fig 5. Training Time Distribution Across Models. 

 

MobileNetV2 and ResNet-50 models show fairly balanced training time and accuracy, with a time of 60 and 65 minutes, 

respectively. While DenseNet-121 and EfficientNet-B0 took more time, 72 and 78 minutes respectively, they recorded a 

better accuracy as indicated in Table 1. For instance, EfficientNet-B0 performs well with an efficient training time and so 

it is employed in many image classification problems. These models are best suited where the application can tolerate 

certain level of error but cannot afford to wait for a long time and resources are not fully available. Proposed PSOGA 

Model takes slightly more time (85 minutes) other than the other models except for Xception model which take the longest 

training time of 90 minutes. The proposed model takes more time to train as compared to other models but in overall 

accuracy as well as performance this model has better results. The longer training time is attributed to the fact that PSOGA 

optimization process goes through a two-step process where the final model is polished to the best generalization levels. 

The use of this type of model guarantees that the resulting model will be well optimized for the task of object recognition 

in water environment and would show the best time/accuracy balance. Hence, for the times when the speed is not the issue 

of great concern, the slightly longer training time of the proposed model is justified. 

This optimized model architecture is primarily based on transfer learning and incorporated a fully-connected classifier 

that is used to classify extracted feature vectors. The fully connected layers are dense layer where each neuron is connected 

to neurons of the previous layer. These layers that are developed upon the transfer learning backbone transform the feature 

map to the target classes like different types of underwater objects. These parameters of these fully connected layers: 

number of neurons and weight initialization strategies for neurons are also tuned using PSOGA with appropriate parameters 

to provide excellent performance. 

The validation loss comparison shown in Table 3 and Fig 6 exhibit generalization capabilities of different models to 

unseen data. AlexNet with the validation loss at 0.082, reveals that the model has poor generalizing capability when used 

in real-world settings such as underwater object recognition. Similarly, ShuffleNet and MobileNetV2 also show fairly 

higher validation losses of 0.072 and 0.065, respectively. These models are light weight architectures designed for speed 

and efficiency at the cost of having complex model and high level of accuracy. These models are good for those applications 

where less computational cost is required and can be used but are not so effective in high-end applications. Other models 

such as Xception, InceptionV3, and VGG-16 present also reasonably good validation loss with values reaching 0.056 down 

to 0.051. Although these architectures are useful in average training settings, they fail to optimize the performance for 

highly complex tasks. Xception and InceptionV3 are especially effective in using deeper layers and more complex methods 

such as depthwise separable convolutions which have been useful in decreasing the validation loss while having an 

acceptable computation overhead. 
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Table 3. Validation Loss Comparison 

Model Validation Loss 

AlexNet 0.082 

ShuffleNet 0.072 

MobileNetV2 0.065 

Xception 0.056 

InceptionV3 0.052 

VGG-16 0.051 

DenseNet-121 0.038 

ResNet-50 0.043 

EfficientNet-B0 0.032 

Proposed PSOGA Model 0.023 

 

The validation loss of the Proposed PSOGA Model is the lowest at 0.023 against all the models, even surpassing 

EfficientNet-B0 that has a validation loss of 0.032. The great decrease in the validation loss proves that optimizing by the 

hybrid PSOGA boosts the model repeatedly, and the parameters of the optimization fine-tune the model’s parameters to 

minimize overfitting while maximizing the model’s generalization capability. Both, DenseNet-121 and ResNet-50 also 

demonstrate more or less satisfactory validation losses (0.038 and 0.043, respectively) but the improved optimization 

techniques used in the proposed model holds the edge. From the findings, it is clear that the Proposed PSOGA Model has 

high generalization capacity hence can perform well in underwater object recognition in different environments. This helps 

in avoiding overfitting which occurs when the model has overly adapted to the training data and thus will not perform well 

on new data, this is achieved by adding dropout layers. Removing a fraction of the neurons in the given network is known 

as Dropout to make the model learn more generalized features with each iteration of the training session. It also helps to 

reduce overfit to the training data through dropout, and in turn, the model makes good generalization to different underwater 

scenes of video footage. Further to dropout, the batch normalization is performed in each of the layers. 

 

 
Fig 6. Validation Loss Comparison across Models. 

 

Batch normalization normalizes the input for each layer to make its distribution stable during training, which is helpful 

in reducing problems of exploding/vanishing gradients. This makes the model less computationally intensive and enables 

it to converge faster hence improving on the generalization capability. Last of all, what can be referred to as the 

classification stage of the model is reached. Finally, after going through these fully connected layers, these are passed 

through a soft-max function, which turns output of each layer into probabilities of the respective classes. The final decision 

is made by using the probability which has the highest value as the predicted class. When the model is distinguishing 

between objects like rocks, marine life, and man-made structures, then the Softmax function will compute the probability 

of each and return the category with the largest probability as the model’s prediction. The probability-based approach guard 

against creating a mere black box since the results obtained can be explained based on the probability computed. 
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Table 4. Activation Function Comparison Based on Accuracy 

Activation Function Accuracy (%) 

ReLU 98.88 

Leaky ReLU 96.23 

Sigmoid 94.56 

Tanh 94.12 

Swish 96.78 

ELU 95.34 

Softplus 93.78 

GELU 96.45 

SELU 96.12 

As presented in Table 4 and Fig 7, a comparative analysis of different types of activation functions shows how the 

choice of activation functions affects the model accuracy. According to the results reflecting models’ accuracy; ReLU is 

considered to be the best activation function for the PSOGA model with 98.88% accuracy. ReLU’s computational 

simplicity and effectiveness also makes it more preferable in large-scale deep learning scenario or when the model 

architecture has many layers. Due to reducing the vanishing gradient problem, self-altering networks have higher accuracy 

in operations like underwater object recognition that area requires feature extraction. 

 

 
Fig 7. Accuracy Comparison across Activation Functions. 

 

Other activation functions like Swish, GELU, and Leaky ReLU performed well too with accuracy of 96.78%, 96.45%, 

and 96.23% respectively. There exists other more enhanced activation functions which bring about smooth gradient, and 

this enables the model to learn and converge. Swish has thus been received for surpassing ReLU in some domains due to 

it having a non-monotonic nature. However, all these functions, namely Swish, GELU, Leaky ReLU, are a bit less accurate 

than ReLU but can be used for tasks that require the simplest gradient control with optimal performance. On the other 

hand, Sigmoid as well as Tanh activation functions that obtain the accuracies of 94.56% and 94.12% respectively are 

considered to be less efficient comparing to the modern ones. It must be noted that both Sigmoid and Tanh have problems 

when it comes to the gradients at the extremities where there is the question of vanishing gradients especially when in 

deeper networks. Consequently, these functions are less efficient with the identification of sophisticated images. The ELU 

activation function is slightly better with 95.34% and SELU is slightly better with 95.61% still not as robust as ReLU 

Swish, or GELU for achieving optimal accuracy. However, for achieving better accuracy, ReLU is still the king of 

activation functions and trying other advanced functions might not give better performance but can definitely be used with 

improved performance for specific purposes. 

Table 5. Memory Usage Comparison 

Model Memory Usage (GB) 

AlexNet 1.5 

ShuffleNet 1.6 

MobileNetV2 1.7 

EfficientNet-B0 1.8 

ResNet-50 2.2 

VGG-16 2.9 

DenseNet-121 2.5 

InceptionV3 2.6 

Xception 2.7 

Proposed Model 2.4 
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The comparison of the memory usage in Table 5 and Fig 8 offers some information regarding the analyzed models 

regarding their computational complexity. AlexNet, ShuffleNet, and MobileNetV2 take the least amount of memory and 

they occupy 1.5GB, 1.6GB, 1.7GB respectively. These models are intended for lightweight applications since these 

applications may be run on platforms that have restricted hardware capability, for example, mobile devices and edges 

systems. Consequently, despite the reduced memory requirement demonstrated in previous performance measures, models 

like these suffer in other aspects such as accuracy and ability to generalize for complicated tasks like object recognition at 

the sea floor. 

 
Fig 8. Memory Usage Comparison Across Models. 

 

The EfficientNet-B0 is therefore middle of the road in terms of memory utilization, having a memory size of 1.8GB, 

but exceptionally good in the accuracy delivered. This model provides a good compromise of accuracy and simplicity 

which makes them quite preferable in the resource constrained applications while offering high performance. ResNet-50 

has 2.2GB memory usage, which provides a bigger model than the first one and which can handle more intricate tasks with 

reasonable amounts of computing power, which is preferable for more powerful hardware systems. The memory used in 

Proposed Model is 2.4GB which is slightly more than ResNet-50 but less from DenseNet-121, InceptionV3, and Xception. 

Though it consumes a modest amount of RAM than the other models, the proposed model proves to provide better accuracy 

and generalization ability for the underwater object recognition tasks. Parallel models such as VGG-16, DenseNet-121, 

Inception V3, and Xception are slightly bigger in size, requiring 2.9GB, 2.5GB, 2.6GB, and 2.7GB respectively and even 

though they are larger than the proposed model they do not perform as well. This suggests that the Proposed PSOGA Model 

is efficient in terms of memory while at the same time does not compromise on accuracy and hence could be applicable in 

both research and actual practice where memory is a limiting factor but at the same time performance is not negotiable. 

Evaluation of the model takes place after training and the optimization of the given model, and the results are given as 

accuracy, precision, recall, and F1-score. These metrics assist to evaluate the model’s performance and identify if it is 

overfitting or underfitting. The same way, through confusion matrices and ROC curves, it would be possible to have a 

visual representation of the classifier’s ability so that researchers can tweak the model to suit their needs. All this process 

from the data acquisition up to the classification yields a very efficient and optimized workflow to address the challenging 

problem of recognizing objects under water conditions. 

 

Table 6. Optimization Comparison Based on Performance Metrics 

Optimization 

Technique 
Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Adam 95.45 93.67 94.12 93.89 

SGD 94.12 92.34 93.45 92.89 

RMSprop 93.78 92.01 92.78 92.39 

AdaGrad 93.22 91.67 92.34 91.99 

PSO 96.67 95.12 95.34 95.23 

GA 96.12 94.67 95.01 94.84 

PSO-GA (Hybrid) 98.88 97.11 96.75 96.93 

Bayesian Optimization 95.12 93.45 94.23 93.83 

Hyperband 94.89 93.12 93.67 93.39 
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Table 6 and Fig 9 show the differences that exist in the optimization techniques with regards to the performance metrics 

of accuracy, precision, recall and F1-score. From the traditional optimizers, the highest accuracy we achieve is with Adam 

optimizer with 95.45% and the second best is Bayesian optimization with 95.12% followed by SGD with 94.12%. Due to 

this mechanism, the chosen adaptive learning rate, accordingly, enables fast convergence, and it results in very high 

precision (93.67%) and recall (94.12%). Nevertheless, the results suggest the fact that, Adam and other standard optimizers 

such as SGD, RMSprop and AdaGrad do not achieve the highest levels of performance especially with complicated 

problems like underwater objects recognition. 

 
Fig 9. Optimization Comparison. 

 

Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) claims substantial improvement from the traditional 

approach and the former has an accuracy of 96.67% while the later an accuracy of 96.12%. It contributes to the 

improvement of PSO’s chance of searching the whole space by the help of swarm intelligence while GA’s factors that are 

known as mutation and crossover also play an important role. They also have features of high accuracy, recall, F1-score 

that makes them favorably suitable for fine-tuning deep learning networks. Hybrid clearly prevails over all other techniques 

as it has delivered the highest level of accuracy which is 98.88%, not leaving far behind the measures of precision which 

has been recorded to be around 97.11%, the recall which has been determined to be at 96.75% and F1-score which has 

been observed to be at about 96.93%. The proposed hybrid approach incorporates the advantage of faster convergence of 

PSO in identifying best solutions and the second importance of preserving diversity by GA that results in the better choice 

of hyperparameter and consequently higher model efficiency. That is why this hybrid approach is more efficient in such a 

situation when searching for the global optima is vital. Other algorithms such as Bayesian Optimization and Hyperband 

are also noticeable but they do not come anywhere closer to the performance of PSO-GA. In general, it is clear that the 

PSO-GA hybrid all round offers the best performance of all corresponded parameters especially in the difficult category 

of underwater object recognition. 
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Table 7. Optimizer Comparison Based on Performance Metrics 

Optimizer Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Adam 95.45 93.67 94.12 93.89 

SGD 94.12 92.34 93.45 92.89 

RMSprop 93.78 92.01 92.78 92.39 

AdaGrad 93.22 91.67 92.34 91.99 

PSO 96.67 95.12 95.34 95.23 

GA 96.12 94.67 95.01 94.84 

PSO-GA (Hybrid) 98.88 97.81 97.75 97.83 

Bayesian Optimization 95.12 93.45 94.23 93.83 

Hyperband 94.89 93.12 93.67 93.39 

 

Table 7 and Fig 10 shows the comparison of optimizers to students through the aspects of accuracy, precision, recall, 

and F1-score to understand the variations of optimization methods. A reasonable performance is seen from the traditional 

optimizers Adam, SGD, RMSprop with the highest performance being provided by Adam optimizer with an accuracy of 

95.45% and precision of 93.67%. It converges fast since during training, the learning rate can be adjusted as seen in Adam 

such making it popular in deep learning. But even then, it doesn’t achieve the level of performance that is witnessed in 

other more complex optimization algorithms. Determining from the result of this study, RMSprop and SGD while faster 

and less complex in training, yields lower accuracy and slightly lower precision and recall indicating the fact that when it 

comes to tasks as complicated as Underwater Object Recognition more sophisticated optimization algorithms are needed. 

PSO and GA outperform the traditional optimizers by presenting higher accuracy of 96.67% for PSO and 96.12% for 

GA. Since PSO is based on swarm intelligence to search the space this optimizer has an advantage when it comes to fine-

tuning deep learning models with higher accuracy as shown by the use of crossover and mutation by GA. The two also 

have high precision and recall values, and as such, both optimizers can be applied to problems that call for convergence 

and switch in model. Indeed, better results achieved by PSO and GA show that these algorithms are well suited for 

hyperparameters and other parameters tuning of the ANN structure in more complicated search spaces and in a various 

data input environment like underwater imagery. 

 

 
Fig 10. Optimizer Comparison across Metrics. 

 

Comparing all these algorithms, the chosen PSO-GA hybrid optimization algorithm has the overall highest accuracy of 

98.88% and the good precision, recall, and F1-score values. In combining the best feature of PSO rapid convergence, and 

GA to maintain diversity this hybrid improves model in making a best performance. The enhancement in the performance 

parameters in the PSO-GA hybrid method shows that the proposed technique is optimal in terms of exploring the search 

space and exploiting the search space for fine tuning. This makes it the most optimal optimization technique for the 

underwater object detection where accuracy as well as generalization should be optimized. Although Bayesian 

Optimization and Hyperband are better than many of the traditional optimizers, they failed to perform as well as the hybrid 

approach. 

In evaluation, the model outperformed other leading architectures, including EfficientNet-B0, ResNet-50, and VGG-

16, with substantial gains across metrics like precision, recall, and F1-score, reinforcing its robustness in underwater 

settings. This high-performance model has practical value in real-world applications, such as marine biology research, 

underwater infrastructure inspection, and autonomous underwater vehicle (AUV) navigation, where accurate, real-time 

object recognition is critical. These results demonstrate the proposed model’s superior adaptability and precision, making 

it a valuable asset for advancing underwater exploration and monitoring.  
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V. CONCLUSION AND FUTURE WORK  

The proposed methodology of combining transfer learning with hybrid optimization techniques (PSOGA) has proven to 

be highly effective for underwater object recognition. By leveraging EfficientNet as the feature extraction backbone and 

fine-tuning the model using PSOGA, the model outperforms several existing deep learning models and optimization 

techniques. The PSOGA model achieved significant improvements in accuracy, precision, recall, and F1-score compared 

to models using traditional optimizers like Adam, RMSprop, and AdaGrad. This demonstrates the hybrid approach's ability 

to balance exploration and exploitation during hyperparameter tuning, leading to superior performance. In terms of 

practical application, the PSOGA-based model shows great potential for use in underwater exploration, marine biology, 

and environmental monitoring. Its robust performance in challenging underwater environments suggests that this 

methodology can be adapted to other image recognition tasks where the quality of data is affected by noise and 

environmental factors. Additionally, its ability to generalize well across different datasets highlights the flexibility of hybrid 

optimization techniques. Looking ahead, there are several areas for future work. The model could be extended to include 

real-time object detection capabilities, which would be particularly beneficial for autonomous underwater vehicles (AUVs) 

and remotely operated vehicles (ROVs). Furthermore, experimenting with more advanced hybrid optimization methods, 

such as combining PSOGA with reinforcement learning techniques, could further enhance the model’s ability to adapt to 

new underwater conditions. Future work could also focus on expanding the dataset to include more diverse underwater 

scenarios, improving the model's robustness across a wider range of environments. The integration of additional sensor 

data, such as sonar or LIDAR, could also be explored to improve detection capabilities in complex underwater terrains.  
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