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Abstract 

Efficient object detection and tracking approaches are gaining popularity and being actively used in the 

world of underwater surveillance. This study presents an innovative protocol that combines a Hybrid ResNeXt-

DenseNet Model to boost the visual perceptivity of the Internet of Things (IoT)-based underwater surveillance. 

The model focuses on what is the best of ResNeXt and DenseNet, yielding higher accuracy at lower computational 

cost than either. Its components are: IoT-enabled underwater sensors for data capture, a robust data preprocessing 

pipeline designed for underwater imagery, and the innovative Hybrid ResNeXt-DenseNet Model for object 

detection and tracking. The architecture of the model is proposed in order to overcome the issues related to 

underwater environments, such as low visibility, changeable illumination conditions, and complex background. 

Python was used to implement the proposed model and experiments have been conducted on popular benchmarks 

of underwater datasets, and the proposed approach obtains a recognition accuracy of 98%. In this model, the 

Hybrid ResNeXt-DenseNet Model has the notable ability to accurately identify and track objects of interest in 

real-time underwater situations. Furthermore, the inclusion of IoT features ensures data flows without interruption, 

allowing for prompt response and action. This research leads towards better situational awareness and marine 

environment protection systems by proliferating IoT and exploiting sophisticated deep learning methods at the 

root level. 

Keywords: Object Detection, Deep Learning, Underwater Surveillance, Internet of Things, Cascaded CNN, 

Modified Gaussian Filter, Hybrid ResNeXt-DenseNet Model. 

1. Introduction

Underwater surveillance has become a significant area particularly for maritime security, environmental 

monitoring, and resource management. The traditional methods of underwater surveillance are frequently 

constrained due to poor visibility, high cost of operation and difficult underwater conditions [1] [2] [3]. A 

transformative solution to these limitations lies in combining Internet of Things (IoT) technology with cutting-

edge object detection and tracking system. Deployment of IoT enabled sensors and devices to deploy without any 

need of staff to continuous monitoring of underwater environments, which is not possible for variety of 

applications. There are various reasons for this necessity and surveillance underwater. Detection of unauthorized 

vessels, submarines, and underwater mines is critical for preventing maritime threats, and for safe navigation [4]. 

Another key use case is environmental monitoring, which includes monitoring marine life, pollution levels, and 

assessing the impact of environmental changes on the underwater ecosystem. This is important information for 

researchers and policymakers involved in maintaining marine biodiversity and sustainable use of resources. In 

addition, underwater surveillance is also very important in infrastructure inspection, such as, pipelines, cables, 

offshore platforms, to guarantee the integrity of these structures, and to avoid costly reparations [5] [6] [7]. 

One of the major drawbacks of conventional underwater surveillance systems is that most of them require 

human intervention in terms of manual monitoring; thus, they are time-consuming and more susceptible to errors. 

The traditional techniques are labour-intensive, costly, and un-tolerant to human factor and weather-dependent 

factors, as indicated by the need for cameras mounted on existing equipment, such as divers or remotely operated 

vehicles (ROVs) [8]. In addition, the underwater environment itself presents many challenges – from changing 

light conditions to water turbidity, to marine life – all of which may compromise the accuracy and effectiveness 

of surveillance operations. Water by nature is not very transparent, so we cannot expect a very good ability to 

detect and track objects at big distances underwater [9] [10] [11]. The timely identification of objects in an 

underwater environment is necessary to address potential threats, reduce accidents, and protect aquatic 

ecosystems. Early detection of unauthorized vessels or underwater mines as anomalies are an integral part of 

securing maritime operations. Similarly, early identification of pollution sources can trigger immediate abatement 

initiatives which safeguard marine biodiversity and prevent lasting environmental impacts. In terms of 

infrastructure, being able to sense ruptures / defects in pipelines and cables before they become catastrophic 
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failures would save a large amount of money in repair costs. Hence, effective underwater surveillance demands 

the early and accurate detection of objects [12] [13] [14]. 

Underwater surveillance systems with built-in deep learning (DL) and machine learning (ML) models 

have redefined object detection and tracking capabilities. These are good models at working through lots of data 

to figure out patterns that we as humans might not be able to detect. DL and ML algorithms can be used to improve 

the accuracy, processing rate, and the ability of underwater surveillance systems to adapt to changing 

environmental factors. This can be combined with neural networks, Convolutional Neural Networks (CNNs) and 

other high-precision DL architectures to achieve accurate identification and classification of underwater objects 

under challenging circumstances [15] [16]. DL and ML models are suitable to navigate the challenging and 

changing characteristics of underwater environments. CNNs, for example, are structured to automatically and 

adaptively learn spatial hierarchies of features from input images, which is perfect for object detection 

applications. Such models can be trained on extensive datasets to recognize everything underwater creatures, to 

artificial object at many different levels of clarity. In addition, the emphasis on continual learning in these models 

allows them to learn new object types and adapt to environmental changes over long periods [17] [18]. Figure 1 

shows the underwater surveillance. 

Figure 1. Underwater Surveillance 

In this paper, we introduce a new model for object detection and tracking underwater using a hybrid 

model based on ResNeXt and DenseNet architectures. The Hybrid ResNeXt-DenseNet Model utilizes the residual 

connections of ResNeXt to strengthen the feature extraction ability and the dense connectivity of DenseNet to 

encourage more information flow and easier gradient propagation. This hybrid model has been developed 

specifically to deal with problems found in underwater situations, so that object detection and tracking are made 

resilient and robust. ResNeXt is an improvement over ResNet architecture where it bring in another dimension 

called cardinality (the size of the set of transformations) to the network. It enables for more versatile and efficient 

leaning of features. This is mainly due to the residual connections in ResNeXt which can address this problem 

and allows us to train networks to great depths. In contrast, DenseNet connects each layer to every other layer in 

a feed-forward fashion and strengthens feature propagation through the network, which combats the vanishing-

gradient problem. The hybrid model of these two architectures combines the best of them — this combination 

tries to provide an efficient support for underwater object detection and tracking. The Hybrid ResNeXt-DenseNet 

Model is initially trained on a large dataset of underwater images that contain different types of objects and 

conditions. During training trials, the process has been refined to enable the model to better detect and categorize 

objects in the underwater environment, with all of its individual challenges. The architecture of the hybrid model 

is also capable of learning efficiently while robust to the noise and distortions that are typically encountered under 

water [19] [20]. 

Improved Feature Extraction is one of the major advantages of the hybrid model. The residual 

connections in ResNeXt allow the model to learn more complex features since the information in different layers 

is merged, while the dense connections in DenseNet maximize the flow of important features across the network. 

This leads to a more robust and accurate object detection, even under difficult conditions such as darkness or high 

turbidity. Additionally, the hybrid model scales up to high-volume, real-time data, which is an essential capability 
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when applied to IoT powered underwater surveillance systems. With the hybrid model, IoT devices can collect 

and send data from a variety of underwater sensors 24/7, displaying a continuous stream of data for analysis. This 

is important as a decisive tool for real time, to detect or prevent threats for suspicious events immediately. The 

power of IoT technology complements the Hybrid ResNeXt -DenseNet Model to an extensive approach in the 

front of the underwater surveillance. In a number of strategic locations, underwater cameras, sonar sensors, and 

autonomous underwater vehicles (AUVs) may be strategically placed to observe large areas of the ocean with the 

contours of submerged ice formations. These devices are gathering data and sending it to an individual processor 

where the hybrid model works with that data in real time. 

1.1 Main Contribution of the Work 

This work improves the detection and tracking underwater objects by using Noise Reduction, Feature 

Extraction, and Hybrid Model Architecture for the proposed model to overcome the underwater environment 

based challenges. The key contributions are: 

• The HydroLens system is proposed, a novel hybrid model that integrates both ResNeXt and DenseNet

strengths to achieve optimal underwater object detection and tracking requirements. Cardinality farther

breaks the ResNeXt Architecture, increasing the number of independent paths for learning more complex

and diverse features, which improves the recognition ability of an object. In DenseNet Architecture, each

layer is connected to every other layer in a feed-forward fashion, which helps promote feature reuse and

improve gradient flow.

• Noise Reduction with Modified Gaussian Filter: These places experience a range of noise stemming from

water turbidity, light scattering, and suspended particles. In this research, a Modified Gaussian Filter

used for under water application which is designed to reduce noise while retaining important image

information, and generates clear, high quality visual data.

• Layered feature learning using cascaded CNN for feature extraction: A cascaded Convolutional Neural

Network (CNN) architecture has been proposed for better feature extraction. This includes multiple CNN

layers that work one after another to process and refine features that are successively extracted by earlier

layers. The structure combines these two layers to capture complex and hierarchical features, which are

important to identify and track objects in difficult underwater environments.

The integration of ResNeXt and DenseNet in the HydroLens system combines enhanced feature

extraction with efficient information flow, resulting in a powerful and efficient model for underwater object 

detection and tracking. The remainder of this work is organized as follows: Section 2 reviews related literature on 

underwater object detection, noise reduction, and deep learning applications. Section 3 discusses the Cascaded 

CNN for feature extraction and introduces the HydroLens system, combining ResNeXt and DenseNet 

architectures. Section 4 presents experimental results and evaluates the system's performance. Finally, Section 5 

concludes the paper, summarizing the main contributions, findings, and impact of the proposed system. 

2. Related Works

Many fields are being impacted as Internet of Things (IoT) leads physical space into the mix of the cyber 

space. The important thing is that in IoT, the camera tasks need proper visual information and IoT devices are 

restricted by many factors such as power, computing ability, storage and so on. While a few are completely adhoc 

tasks, others could perform regularly on a CPU or other computer, but are not so straight forward on an IoT device. 

As a consequence, to keep performance acceptable on the one side and how to reduce resource exploitation on the 

other hand is becoming more and more important in IoT. Object detection and tracking in IoT while dealing on 

resource constrained performance, and end-to-end solutions are discussed in algorithm known as spatial attention 

powered multi-domain network (SA-MDNet) [21]. In this method, they successfully discriminates the background 

and the target in different video sequences using multiclass cross-entropy loss to modify a combination of spatial 

attention mechanism and spatial domain MDNet model. The proposed method has competitive performance on 

the OTB datasets with several state-of-art trackers, but costs much less memory than MDNet. 

The presented intelligent services and applications rely on advance collaborative and communication 

technologies such as Artificial intelligence, Internet of Things (IoT), remote sensing, Robotics, Future generation 

wireless, Aerial access networks and many more. That led to multiple smart city applications in different area like 

transportation, monitoring, healthcare, public services, and surveillance which are enabled by these technologies, 

improving the convergence, connectivity, energy efficiency, scalability and quality of service. But the PID has 

been getting significant attention in recent years and played an important role in various control and monitoring 

areas. IoT-enabled smart surveillance device for multiple object detection through segmentation and an AI-based 

system using deep learning based segmentation model PSPNet for segmenting multiple objects [22]. They have 

leveraged a novel approach to building a dataset using an aerial drone, built in data augmentation techniques, and 

deep transfer learning to improve the performance of the system. The result of the experiments had shown that 

the data augmentation increases the system performance as it gives a good accuracy ratio results for multiple 
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object segmentation. A resultant summary is given below, and efficiency is reported at 92% to 95% for the VGG-

16 model, ResNet-50 model, and MobileNet model. 

 Some of the most common computer vision applications are those large scale deep learning scenarios 

where images are being captured in real-time by a low-quality camera on a constrained device, maybe an Internet 

of Things (IoT) or a robotic device. Although transfer learning could be useful for these applications, these models 

are usually pretrained with high-quality image data, which may conflict with the low-quality images, noise or 

blurs from incomplete cross-modality imaging. It is focused on having a large number of classes with enough 

images per class and without the errors due to miss-annotations or ambiguous labels that occur with so minimal 

supervision as possible. Besides, a training strategy is provided to facilitate the training of the model when the 

dataset is large [23]. A VGG16-SSD model was trained with this methodology on the created dataset and was 

deployed to a Raspberry Pi and it has been noticed that this is very helpful in developing models for resource-

constrained applications. 

 The most common scenario in video analytics is object detection. Performance at high level is directly 

linked to accurate performance of object detection. Different platforms are in use for the designing and 

implementation of object detection algorithm. Implementing object detection and tracking using MATLAB which 

also shows basic block diagram of object detection and explains various predefined functions and object from 

different toolboxes that can be useful at every level in object detection [24]. This is highly related with many real 

time applications such as vehicle perception, video surveillance and so forth nature. The algorithm is 90% about 

a transition algorithm to smoothen the video stream and accommodation of tracking loons, and only the last 10% 

is about the actual morphing itself. However, none of these methods leverages the prior knowledge of the shape, 

color, texture etc. of objects. 

 Multi-camera Multi-object Tracking (MC-MOT) is crucial for a number of computer vision applications 

in real world. It is a challenging issue to accurately resolve in the practical track-by-track implementation, though 

there have been a lot of research work on this problem. This task is confounded by the fact that this gait data is 

presented under different illumination, meanwhile walking patterns and the trajectory may suffer from occlusions. 

Graph neural networks (GNNs) have gained much interest in data fusion in recent history due to their ability to 

further enrich data association. Yet, widely adopted graph-based MC-MOT methods employ computational 

expensive min-cost flow solutions for cross-camera association on static graph structures that lack of adaptability 

for new detections. In addition, these procedures usually concentrate on processing the cameras from pairs, instead 

of being based on a global manner. One solution to this problem is use a two-stage lightweight cross-camera 

tracker, to get a global solution in an efficient way [25]. This strategy emphasizes more on the high level feature 

trajectories, which are scrutinized using the DeepSort presentation tuned on the multi-source information. They 

exploit the dynamics of Message Passing Graph Neural Networks (MPGNNs) to train a Multi-Camera Association 

module that jointly learns previously unexplored features and similarities for the cross-camera association. This 

dramatically increases detection accuracy and feature extraction, surpassing the state-of-the-art MC-MOT 

algorithms on cross-camera datasets. This development represents an important advance in the field by providing 

accurate tracking and potential integration of modern techniques for improved performance in difficult tracking 

situations. 

 Although significant progress is being made in the field of IoT, there are few constraints due to which 

detecting and tracking of underwater objects is still underdeveloped. The computing power, storage, and energy 

are always constrained in IoT devices which hinder them from performing heavy computations. Although there 

have been networks such as spatial attention powered multi-domain network (SA-MDNet) that perform well with 

low memory usage, those methods are limited when dealing with noisy underwater settings. Having reached 

impressive accuracy on challenging applications like smart surveillance using advanced models like PSPNet and 

VGG16-SSD, performance on low-quality, noisy images frequently produced by the IoT devices has still proven 

elusive. Moreover, existing multi-camera multi-object tracking systems are very complex computationally and do 

not handle well underwater conditions increasingly changing. In view of these challenges, a dedicated version that 

aptly combines the noise reduction, resilient feature extraction, along with scalable deep learning strategies is 

essential to upgrade underwater surveillance systems. 

3. Methodology 

 The methodology is the whole amalgamation of robust noise reduction, feature extraction, and hybrid 

deep learning model for improving underwater object detection and tracking. The output will be passed through 

a Modified Gaussian Filter designed for underwater domains to reduce noise and retain important features. Finally, 

we set up a Cascaded Convolutional Neural Network (CNN) (with several CNN layers) to learn, improve and 

combine the extracted features through CNN. We propose the HydroLens system, which integrates both 

architectures to mitigate their drawbacks and further improve the ability of feature extraction and information 

flow capacity, and to achieve end-to-end solution for plastic detection and trajectory tracking in such a limited 

underwater condition. Figure 2 shows the architecture of proposed model. 
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3.1 Data Collection 

To support this research, a new dataset called Underwater Surveillance Dataset was created by collecting 

real-time sensor values, high-quality images, and other environmental variables that are most suitable for 

underwater surveillance systems. Additional details gathered by known techniques are integrated into this dataset 

to provide effective coverage through hydrophones, CTD sensors, and underwater cameras. Borne on the 

HydroLens system, and array of sensors captures a number of specific measurements of underwater conditions. 

Hydrophones used for identification and recording of sound signals and CTD gives information of conductivity, 

temperature and depth of water thus affording information of environment in water. Visual data require high 

resolution, which is used by underwater cameras, and all that is required for object detection. While dissolved 

oxygen sensors undertakes water quality monitoring, turbidity, and salinity and pH changes do undertake the 

monitoring of water acidity. Pressure sensors will capture water depth to check equipment in operation with data 

obtained from pressure sensors as mentioned above, chlorophyll sensors would be used to get estimate of primary 

productivity. In the same way, current meters monitor water speed, which gives clues on where an object might 

travel. When combined, they provide reliable, on-the-dot surveillance underwater. 

3.1.1 Hydrophone 

Hydrophones are -custom-built submersible microphones that simply listen for sound in an underwater 

environment. In this manner, these appliances have a profound effect on overseeing oceanic life, principally in 

the vocalizations of marine mammals and fish. Hydrophones are an essential tool to discover objects and to track 

movement of objects under water surfaces, to be able to record the noise generated by them. This is necessary for 

fishery enforcement, in applications where we intend to follow an underwater vehicle with an acoustic signature 

so that we can accompany that, so that we know how that's doing. 

3.1.2 Conductivity, Temperature, Depth (CTD) Sensor 

CTD sensors provide valuable data on the physical characteristics of the water column, by measuring seawater 

conductivity, temperature, and depth. The performance of imaging and detection systems can be significantly 

affected by these parameters, and as a result they are key to the overall understanding of the underwater 

environment. For instance, water temperature and salinity cause changes in density of the water, which is what 

influences the sound propagation. This is important for tuning acoustic sensors, such as hydrophones for precise 

data capture and analysis. 

3.1.3 Underwater Camera 

These cameras are specifically designed to capture pictures and videos in aquatic environments, and as 

such, are made to be pressure and low light resistant, so they are able to take high-resolution images in the deepest 

depths of the world's oceans. These are crucial cameras for the documentation of underwater landscapes and for 

object recognition and tracking. Underwater cameras are used in coral reef monitoring, underwater archaeology 

and marine biology research among other applications, where quality visual data is important to the identification 

and tracking of objects in different underwater environments. 

3.1.4 Dissolved Oxygen Sensor 

For this reason dissolved oxygen sensors are used to measure the amount of oxygen present in water 

which is used as an indicator of water quality and the health of a marine ecosystem. This information is needed 

for characterizing habitat conditions for marine animals. By monitoring dissolved oxygen levels for underwater 

surveillance, areas of ecological value and areas that may be polluted can be identified as well as areas of concern 

for pollution or disturbance in the environment to help protect and manage marine environments. 
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Figure 2. Architecture of Proposed Model 

3.1.5 Turbidity Sensor 

Turbidity sensors measure how clear the water is by detecting suspended particles, which decreases the 

visual range and muddies the image when attempting to conduct underwater surveillance. These sensors are useful 

for analysing water quality and tailoring the image processing methods to different visibility conditions. Turbidity 

Sensors are also used in environmental monitoring to prevent sediment erosion and pollution, as well as clear and 

efficient underwater surveillance data. 
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3.1.6 Salinity Sensor 

The salinity sensor is used to detect the density and conductivity of unique water which is directly 

affected by the salt concentration. Understanding ocean circulation and the distribution of marine life relies in part 

on data related to salinity. Salinity measurements during underwater surveillance, are used to calibrate sensors 

and improve the performance of object detection and tracking by sonar and acoustic equipment, thus ensuring 

accurate and reliable data acquisition. 

3.1.7 pH Sensor 

A very critical parameter for life in aquatic environment is the pH sensors which measure the alkalinity 

or acidity of water. Globally significant perturbations to marine ecosystems are occurring due to environmental 

shifts accompanying pH change, particularly habitat acidification. The consideration of pH is a proxy for assessing 

the health of an underwater habitat and monitoring the state of the network can be used as an early indicator for 

pollution events, allowing pro-active management of marine environments. 

3.1.8 Pressure Sensor 

Pressure sensors measure how hard water is pressing at different depths, giving data on water pressure 

and depth. Essential for characterizing the physical properties of the underwater environment, these sensors are 

employed in the navigation and positioning of underwater vehicles. Pressure data allows other sensors and 

equipment to operate within their optimal design boundaries, to maintain system reliability and performance. 

3.1.9 Chlorophyll Sensor 

Sensors measuring the concentration of chlorophyll in water are most directly an index of phytoplankton 

concentration and it is standard practice to refer to them as an index of primary productivity. This is important for 

the base of the marine food web and ecosystem health. In underwater surveillance, higher chlorophyll levels are 

associated with biologically productive regions that should be monitored more closely to manage resources of 

marine environments appropriately for vital marine resources. 

3.1.10 Current Meter 

Current meters used to measure the speed and direction of water currents give scientists clues to the 

movements of water in the ocean. This is important for predicting marine ecosystems and can affect marine life 

and pollutant dissipation. This information is significant in the field of underwater surveillance as the flow patterns 

allow predictions of movement of detected objects, which in turn can increase tracking accuracy and preservation 

of optimal monitoring effectiveness. 

3.2 Data Preprocessing 

 On the sensor level, data is preprocessed by HydroLens to guarantee that all input data are of equal 

quality and compatibility. The data sets acquired with hydrophones, CTD sensors, and cameras possess different 

nature and scales of measurement requiring preliminary calibration and normalization. Whenever dealing with 

the raw data especially from the microphones used in hydrophones, noise filtering is carried out as the initial step 

in data pre-processing. A normalization of the image illumination settings is applied to the visual data in order to 

equalize the influences arising from the water conditions. Each data type is then synchronized to resolve time 

differences between the sensors which is very important for coherent input to the network. This preprocessing at 

the sensor level reduces the amount of correction that is performed on data foam at a later stage, which is very 

useful in enhancing data flow in addition to speeding up the response time. 

 

 

3.2.1 Noise Reduction using Modified Gaussian Filter 

In image and sensor data, noise reduction is a necessary preprocessing step for increased data quality. 

HydroLens incorporates a Modified Gaussian Filter particularly designed for JPEG underwater noise including 

particulate scatter and motion blur. Real time turbidity levels are used to control the parameters of the Gaussian 

filter to provide noise adaptive filtering of the image while maintaining edge prominences. In addition, HydroLens 

uses a frequency domain filter to remove period noise due to current and mechanical movement of sensor 

equipment. Such two-level filtering policy helps improve the quality of images acquired through an underwater 

camera which is important when developing object detection and tracking systems in real-life conditions. It is also 

possible to see that the Gaussian filter (or kernel) operates by averaging the surrounding pixel values using as 

weight a Gaussian. This modification adapts the scale of the standard deviation and kernel size locally to the 
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amount of noise using the unique noise statistics in the region so that optimal smoothing strength is achieved with 

minimal blurring of underlying features. It is possible to modify this to process time-series sensor data, such as 

using a Gaussian filter to eliminate noise in the signal while preserving the integrity of the original data. This 

makes sure that the data being fed to detection and tracking algorithms is noise free, which help in enhancing 

overall system performance. 

3.2.2 Color Correction 

The color distortions in underwater images are caused by the absorption / scattering of light in water. 

One method of color correction used to correct this is to try to bring the picture back to its natural colors. The 

method is based on examination of the spectral characteristics of light in water and colour shift modelling as a 

function of depth and water composition. With an inverse transformation that accounts for these distortions, the 

algorithm is able to successfully recover the initial colors. That approach uses hand-inspired color correction 

scales and a dataset of underwater images with known color profiles to allow to a machine learning algorithm to 

learn the correction scales. This leads to imbalance, leading to a much-improved appearance of the images which 

are similar to the original images, making them useful for object detection and tracking purposes. 

However, in the underwater photography, turbidity and species that causes light scattering reduce 

visibility. For this purpose, the proposed dynamic contrast adjustment algorithm that is employed by HydroLens 

identifies those low-contrast areas of images and makes them much more visible. This is an adaptive approach 

where the algorithms used adjust the contrast depending on the real time change in water quality as described by 

the turbidity sensor. Further, color correction methods including white balancing and spectral restoration used to 

compensate for the blue and green shifts that are characteristic of underwater settings. Some visibility corrections 

enhance object detectability, as well as its recognition accuracy, by modifying or equalizing color contrast to far 

more natural and visceral. 

3.2.3 Normalization 

Normalizing data, a common preprocessing step when scaling features so that they fall within a consistent 

ranges and all features are considered equivalent for model training. Range of pixel values is 0 => 255 

Normalization [0, 1] or [-1, 1] — just scaling over the complete range or over half of it which is more common. 

This requires them to subtract the mean and then divide by the standard deviation of the pixel values. 

Normalization. This refers to applying the necessary scaling on sensor data to match the range of data, that needs 

to be collected from other types of sensors, making the comparisons and integration easier. This element is 

essential for maintaining the numerical stability of the models and to enable the learning algorithms to work 

effectively on a wide variety of data. Apart from this, Normalization is helpful in faster convergence of 

optimization algorithms while training a model. 

3.2.4 Data Augmentation 

Data augmentation is the process of artificially enlarging the training dataset by normalizing it while 

diversifying its output and in turn improving generalization of the model so that overfitting is minimized. For 

image data, augmentations are random rotations, flips, scaling, cropping, and brightness of the image. These 

augmenting transformations produce new forms of the image and help the model learn features that are robust to 

these changes. For sensor data augmentation we could inject the noise, and augment different environmental 

conditions or generate a new one based on the stat of the original dataset. This approach aids in making model 

generalize better to unseen data and improve the ability to detect and track object under diverse conditions. 

 

3.2.5 Dimensionality Reduction 

When the number of features in the dataset is too large, we can apply dimensionality reduction techniques 

to make dataset smaller, but that the new features are the most important ones. t-SNE is employed to compress 

the data into lower-dimensional representations for image data. This drastically reduces computational complexity 

and makes sure to learn the most informative features for the model. To process the sensor data, dimensionality 

reduction is crucial to determine the features relevant to predicting the class of interest or to transform the data to 

a space of lowest dimensionality by using Linear Discriminant Analysis (LDA). This step is necessary to save on 

the dataset simplifying, to enable the learning algorithms effectively on the data as well making the results into 

more predictively interpret. 

3.2.6 Train-Test Split 

 The dataset was then split into training and validation sets with 80:20 ratio, so that both sets contain 

representations of nearly all underwater conditions. For ensuring the stability of results, during training, we also 

used 5-fold cross-validation, where the set is then divided into five equal parts so that each part acting as the 
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validation set at least once while the rest forms the training data. This approach is helpful in reducing overfitting 

problem and to ensure better generalization capability since it tests the performance of the model across different 

data sets, therefore the model will be tested for consistency in under water climate changes. 

3.2.7 Data Security and Reliability 

 For the security and credibility of the data in the underwater IoT, the HydroLens system employs a secure 

method of data transfer such as encryption on the data sent from one device to another. Integrity check of data, 

for example, error check such as cyclic redundancy check (CRC) commonly used in stream communication to 

minimize the effect of temporary break in connectivity when working in underwater scenario. Further, data 

buffering and packet redundancy are used in HydroLens to avoid the loss of data and operate in real time to 

provide the description for conditions with interfering signals. Subsequent releases may potentially address 

blockchain for increased security and narratives, guaranteeing that all data from the sensors cannot be 

manipulated. 

3.3 Cascaded CNN for Feature Extraction as Layered Feature Learning 

In the paper, we use the term layered feature learning in the context of cascaded Convolutional Neural 

Networks (CNNs) which refers to a hierarchical way, i.e., first layers looking for simple pattern, following layers 

considering more and more complex ones, of extracting fused features from data. This process is very useful for 

processing image and sensor data in the HydroLens system, where exposing the different aspects of the underwater 

environment is critical. There are many layers of a cascaded CNN architecture that work on different low-level 

features to make sure the initial layers extract features that are lower-level as compared to deeper layers. These 

layers are convolutional operations with small filters (e.g., 3x3 and 5x5 kernels) that overlie input data and identify 

primitive patterns including edges, textures, and some simple geometric shapes. This could mean identifying 

shapes of objects, changes in texture, or changes in color in image data. For example, the first layers on the left 

here might capture rudimentary features such as simple signal patterns, oscillations, basic modulations in the data 

in sensor data.  

In underwater imagery as an example the first layers may detect the edges of fish, coral structures or 

underwater debris — creating a basic recognition of what the scene consists of. And for hydrophone sensor data 

this could help identify fundamental acoustic signatures of marine life or underwater vehicles, respectively. As 

one goes deeper into the CNN, intermediate layers tend to capture mid-level features. These features are higher-

level, and are combinations of the low-level features engineered from the initial layers. This could be noticing 

pieces of objects in an image, such as the fins of fish or the stems of corals, or knowing the textures of underwater 

environments, such as the coarse surface of rocks, or the smooth skin of sea creatures. 

Convolutional Layer 

 The core in CNNs is the convolution operation. For an input image 𝐼 of dimensions 𝐻 × 𝑊 × 𝐷 (height, 

width, depth) and a filter 𝐾 of size 𝑘 × 𝑘 × 𝐷 (assuming square filters and same depth as input): 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑑) ⋅ 𝐾(𝑚, 𝑛, 𝑑)
𝐷−1

𝑑=0

𝑘−1

𝑛=0

𝑘−1

𝑚=0
                                   (1) 

 This operation is repeated for each position (𝑖, 𝑗) in the input, resulting in a feature map. 

Activation Function 

 After convolution, an activation function such as ReLU (Rectified Linear Unit) is applied to introduce 

non-linearity: 

𝑓(𝑥) = max(0, 𝑥)                                                                                           (2) 

 For each element 𝑥 in the feature map resulting from the convolution. 

Pooling Layer 

 Pooling layers reduce the spatial dimensions of the feature maps. Max pooling with a window size of 

𝑝 × 𝑝 can be defined as: 

𝑃(𝑖, 𝑗) = max𝑚=0
𝑝−1

max𝑛=0
𝑝−1

(𝐼(𝑖 + 𝑚, 𝑗 + 𝑛))                                         (3) 

 This operation takes the maximum value within each 𝑝 × 𝑝 window in the feature map. 

Layered Feature Learning 
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Initial Layers: Low-Level Feature Extraction 

 Let 𝐼0 be the input image and 𝐾0 be the filter for the first convolutional layer. The output feature map 𝐹0 

is given by: 

𝐹0 = 𝑓(𝐼0 ∗ 𝐾0)                                                                                   (4) 

 Where 𝑓 is the ReLU activation function. 

In the case of sensor data, intermediate layers would perhaps begin to recognize patterns over time — 

such as regular acoustic signals from a particular marine species or reliable differences in water temperature and 

salinity patterns. These mid-level features are essential for obtaining a richer more complex view of the data, 

taking us beyond overt patterns into something that has slightly more meaning. Where CNN cascaded performs 

high level feature extraction layer which computed with deeper layers relay the features. These layers combine 

mid-level features identified with those earlier to identify complex patterns or objects within the data. Image data 

can mean looking for objects of interest in an image like species of fish, marine mammals, or underwater vehicles 

amidst variations in light and visibility. At a high level, this may involve detecting certain types of events or states 

within sensor data (e.g., the presence of a specific underwater animal based on the characteristics of its acoustic 

signal), or even tracking the movements of certain energy phenomena given environmental conditions (e.g., 

thermoclines, which are visualized by integrating temperature and depth observations). Importantly, the detection 

and tracking of objects in the underwater context also requires these high-level features. 

Intermediate Layers: Mid-Level Feature Extraction 

 For subsequent layers, let 𝐹𝑙−1 be the input feature map from the previous layer, 𝐾𝑙  be the filter for layer 

𝑙, and 𝑃𝑙  be the pooling operation: 

𝐹𝑙 = 𝑃𝑙(𝑓(𝐹𝑙−1 ∗ 𝐾𝑙))                                                                  (5) 

 These are convolution, activation and pooling operations for layer 𝑙. 

Deep Layers: High-Level Feature Extraction 

 Let 𝐹𝑛−1 be the input feature map to the final layer, 𝐾𝑛 be the filter for the final layer, and 𝑃𝑛 be the 

pooling operation: 

𝐹𝑛 = 𝑃𝑛(𝑓(𝐹𝑛−1 ∗ 𝐾𝑛))                                                                       (6) 

Final Feature Representation 

 The final feature representations 𝐹𝑓𝑖𝑛𝑎𝑙  used for object detection and tracking is a concatenation of high 

level features from the deep layers: 

𝐹𝑓𝑖𝑛𝑎𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹1, 𝐹2, … , 𝐹𝑛)                                                            (7) 

 Where 𝑐𝑜𝑛𝑐𝑎𝑡 denotes the concatenation operation of feature maps from different layers. 

The HydroLens system with layered feature learning could capture the compositional structures of 

underwater data with different levels of abstraction. As we go deeper in the network, the initial stages could 

capture low-level image features like edges, textures whereas its later layers represent high-level objects, and 

structures. This enables our method to both detect and track objects robustly even in difficult underwater 

conditions — i.e. different clarity, changing background. The cascaded CNNs are utilised because of their multi-

layered nature, ensuring robustness of the system. This redundancy is necessary to provide reliable detection and 

tracking as inevitably, some details will be missed in the initial layers of the network as a result of the underwater 

noise and distortions. 

The cascaded CNNs are scalable and enables the HydroLens system to expand to multiple demanding 

tasks and datasets. As new demands emerge, and new technologies and sensors come online, the system can 

continue to improve and adapt by adding additional layers or increasing the complexity of layers. By using 

cascaded CNNs which enables layered feature learning, HydroLens can adapt to different data and different 

underwater environments. This flexibility allows the system to operate effectively within a range of scenarios 

from shallow coastal waters to deep ocean environments, ensuring detect and tracking capabilities over a wide 

spectrum of situations. 

3.4 Model Development for HydroLens System 
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A detailed design process used for the development of the HydroLens system which exploits strengths 

of believe both ResNeXt and DenseNet architectures. This model is known about hybrid because it tries to use 

cardinality and dense connectivity advantages to gain better performance in underwater object detection and 

tracking. The HydroLens system is intended to combine the best of ResNeXt and DenseNet in a fusionary design. 

It splits the convolutional layers into several parallel branches (also known as paths) and in turns enrich the model's 

ability to capture separate unique characteristics, and it is well-known for its cardinality feature. However, the 

dense connectivity in DenseNet allows the layers to have direct connections with every other layer below them 

which provides maximum possible information flow between the layers in the network and hence, encourages 

feature reusability through the network. 

The main addition of ResNeXt is the cardinality, that is, the dimension of the set of transformations. This 

is done by applying grouped convolutions and thus, the input is partitioned into a few groups where each group is 

separately worked on before concatenating. This new version not only learned much richer features, but also did 

so without any substantial increase of computational complexity. 

This can alternatively be presented in the following formula as a ResNeXt block: 

𝑦 = ∑ 𝐹𝑖(𝑥𝑖)
𝐶

𝑖=1
                                                                            (8) 

 Where 𝑥𝑖 is the input to the 𝑖-th path, 𝐹𝑖 is the function applied by the 𝑖-th path (typically a series of 

convolutions), and 𝐶 is the cardinality (number of parallel paths). This architecture enables the model to pick up 

many features at each layer, which helps it to classify a wide variety of object and textures in underwater images. 

One method used to solve the problem was to directly connect each layer with other layers in the network 

in a feedforward manner, this method is called DenseNet. This very dense connectivity pattern guarantees that 

whatever the layer, the relevant learnings learned by it are immediately available to all subsequent layers, thereby 

allowing easier feature re-use and facilitating the building of the weight gradients by backpropagation. 

The DenseNet block is represented as: 

𝑦𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1])                                                                (9) 

 Where 𝑦𝑙  is the output of the 𝑙-th layer, 𝐻𝑙  represents the 𝑙-th layer function (typically a composite 

function of batch normalization, ReLU, and convolution), and [𝑥0, 𝑥1, … , 𝑥𝑙−1] represents concatenation of feature 

maps of all the previous layers. This strong bucket brigade structure makes it possible for the layers composing 

the model to gradually construct on previously learned features, which results in improved representation. 

 

3.4.1 Integrating ResNeXt and DenseNet in HydroLens 

For combining the merits of ResNeXt and DenseNet, we propose a hybrid block which integrates both 

cardinality and dense connectivity. In the HydroLens system, ResNeXt and DenseNet are fused to leverage their 

unique advantages: ResNeXt’s cardinality and DenseNet’s dense connections. Multiple pathways, referred to as 

cardinality, are incorporated inside ResNeXt’s residual blocks with the purpose of expanding the number of 

features that can be learned across all layers with relatively little computational overhead. In DenseNet, all layers 

are connected to all subsequent layers, making full use of features from earlier layers and improving gradients 

through the network. By combining these, HydroLens successfully develops a network where each layer obtain 

highly diversely information from the parallel paths of ResNeXt and DenseNet’s direct connection. This fusion 

enables faster and efficient learning of these features, avoids the gradient vanish problem, and greatly cuts down 

on unnecessary computation, positioning the model as ideal for underwater object detection, as detailed in the 

results section, where the extraction of intricate features is critical and must be done in as efficient a manner as 

possible. 

 Hybrid blocks are comprised of ResNeXt pathways in which a single pathway block´s output is logically 

connected to each successive layer. Here, the design is pure such as the model can take advantage of the widely 

distinctive feature sets collected by ResNeXt and the excellent feature reuse offered by DenseNet. The HydroLens 

system is based on stacking hybrid blocks with transition layers in between them, hence the overall architecture. 

The transition layers contains convolutional operations to reduce the number of feature maps for computational 

efficiency. The output may be the bounding box coordinates of the objects, the class probability, and tracking info 

for object detection and tracking in underwater. The training is based on optimizing a multi-task loss function 

derived from the sum of object detection loss and object tracking loss for the HydroLens system. In order to help 

the model to generalize well and avoid overfitting, techniques such as data augmentation, batch normalization, 

and dropout are used. Besides, by using weights that are pre-trained on the ResNeXt and DenseNet models, the 

hybrid model weights initialization is being performed and this is followed with fine-tuning on the underwater 
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datasets. The HydroLens thus offers a compelling solution that realizes a beneficial harmony between the broader 

field of view facilitated by the cardinality of ResNeXt and the focus on dense feature reuse of DenseNet. Such a 

hybrid architecture provides excellent results in the high-variability environments that arise in underwater 

surveillance, yielding an increase in accuracy and robustness of object detection and tracking. 

Underwater environments bring infrastructure restrictions related with transmission media in terms of 

delay and bandwidth. To address this, HydroLens is designed to employ a data down sampling method in which 

only the required fields such as an object’s coordinates and classification are transmitted, not actual data. Buffering 

techniques are also used and data can be sent in breaks if the signal is strong to reduce latency in poor conditions. 

Furthermore, the data collected by the sensor is compressed using the loss-less compression techniques so that the 

volume of data to be transmitted is reduced. HydroLens is confident it shall retain real time processing while not 

consuming bandwidth, which is so crucial in undertakings involving submersion. 

Algorithm: HydroLens Models 

Initialize 𝑯𝒆𝒘𝒆𝒊𝒈𝒉𝒕𝒔 for all layers 

Set initial learning rate 𝜼𝟎 

Set total number of epochs 𝑻 

Set initial dropout probability 𝒑 

Set L2 regularization strength 𝝀 

Set optimizer to Adam with 𝜷𝟏, 𝜷𝟐, and 𝝐 parameters 

function Convolution(𝑰, 𝑲):   // Perform convolution with filter K on input I 

return ∑ ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑑) ∗ 𝐾(𝑚, 𝑛, 𝑑)𝐷−1
𝑑=0

𝑘−1
𝑛=0

𝑘−1
𝑚=0  

function ReLU(x):    // Apply ReLU activation 

return 𝑚𝑎𝑥(0, 𝑥) 

function PReLU(𝒙, 𝜶):    // Apply Parametric ReLU (PReLU) activation 

if 𝑥 ≥ 0: 

return 𝑥 

else 

return 𝛼 ∗ 𝑥 

function MaxPooling(𝑰, 𝒑):   // Perform 𝑚𝑎x pooling on input 𝐼 with window size 𝑝 

return 𝑚𝑎𝑥𝑚=0
𝑝−1

𝑚𝑎𝑥𝑛=0
𝑝−1

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) 

function Dropout(𝒙, 𝒑):    // Apply dropout 

return (
1

1−𝑝
) ∗ 𝑥 ∗ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 

function L2Regularization(𝒘, 𝝀):   // Apply L2 regularization 

return 𝜆 ∗ ∑ 𝑤𝑖
2𝑛

𝑖=1  

function ResNeXtBlock(𝑰, 𝑪):   // Initialize ResNeXt block with cardinality 𝐶 

𝑜𝑢𝑡𝑝𝑢𝑡 = 0  

for 𝑖 = 1 to 𝐶: 

𝑜𝑢𝑡𝑝𝑢𝑡 ± 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐼, 𝐾𝑖)  

return ReLU(output) 

function DenseNetBlock(𝑰, 𝒍𝒂𝒚𝒆𝒓𝒔):  // Initialize DenseNet block 

𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = [𝐼]  

for l in 1 to layers: 

𝑛𝑒𝑤𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑐𝑜𝑛𝑐𝑎𝑡(𝑜𝑢𝑡𝑝𝑢𝑡𝑠), 𝐾𝑙))  
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𝑜𝑢𝑡𝑝𝑢𝑡𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑛𝑒𝑤𝑜𝑢𝑡𝑝𝑢𝑡)  

return 𝑐𝑜𝑛𝑐𝑎𝑡(𝑜𝑢𝑡𝑝𝑢𝑡𝑠) 

function HybridBlock(𝑰, 𝑪, 𝒍𝒂𝒚𝒆𝒓𝒔):  // Initialize Hybrid Block 

𝑟𝑒𝑠𝑛𝑒𝑥𝑡𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑠𝑁𝑒𝑋𝑡𝐵𝑙𝑜𝑐𝑘(𝐼, 𝐶)  

𝑑𝑒𝑛𝑠𝑒𝑛𝑒𝑡𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘(𝑟𝑒𝑠𝑛𝑒𝑥𝑡𝑜𝑢𝑡𝑝𝑢𝑡, 𝑙𝑎𝑦𝑒𝑟𝑠)  

return 𝑑𝑒𝑛𝑠𝑒𝑛𝑒𝑡𝑜𝑢𝑡𝑝𝑢𝑡 

function BuildHydroLens(𝑰, 𝒏𝒖𝒎𝒃𝒍𝒐𝒄𝒌𝒔, 𝑪, 𝒍𝒂𝒚𝒆𝒓𝒔𝒑𝒆𝒓𝒃𝒍𝒐𝒄𝒌
):  // Build the overall HydroLens network 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐼  

for 𝑏 in 1 to 𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘𝑠: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐻𝑦𝑏𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘(𝑜𝑢𝑡𝑝𝑢𝑡, 𝐶, 𝑙𝑎𝑦𝑒𝑟𝑠𝑝𝑒𝑟𝑏𝑙𝑜𝑐𝑘
)  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒)  

return 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑜𝑢𝑡𝑝𝑢𝑡) 

function TrainHydroLens(𝒎𝒐𝒅𝒆𝒍, 𝒅𝒂𝒕𝒂, 𝒍𝒂𝒃𝒆𝒍𝒔, 𝒆𝒑𝒐𝒄𝒉𝒔, 𝜼𝟎, 𝑻): // Training loop 

for 𝑡 in 1 to 𝑇: 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 𝜂0 ∗ (1 −
𝑡

𝑇
)  

for batch in data: 

𝐼, 𝑦𝑡𝑟𝑢𝑒 = 𝑏𝑎𝑡𝑐ℎ  

𝑦𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙(𝐼)  

𝑙𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) + 𝐿2𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝜆)  

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑙𝑜𝑠𝑠, 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)  

𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑚𝑜𝑑𝑒𝑙. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 , 𝛽1, 𝛽2, 𝜖)  

𝑚𝑜𝑑𝑒𝑙 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑚𝑜𝑑𝑒𝑙, 𝑝)  

if 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑑𝑎𝑡𝑎) does not improve: 

Stop training 

break 

function LossFunction(𝒚𝒕𝒓𝒖𝒆, 𝒚𝒑𝒓𝒆𝒅):    // Define loss function 

return 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) 

function UpdateParameters(𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔, 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕𝒔, 𝜼, 𝜷𝟏, 𝜷𝟐, 𝝐):    // Define Adam optimizer update rule 

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠  

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠2  

𝑚ℎ𝑎𝑡 =
𝑚𝑡

1−𝛽1𝑡  

𝑣ℎ𝑎𝑡 =
𝑣𝑡

1−𝛽2𝑡  

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠−= 𝜂 ∗
𝑚ℎ𝑎𝑡

√𝑣ℎ𝑎𝑡+𝜖
  

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐻𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠()     // Main execution 

𝑚𝑜𝑑𝑒𝑙 = 𝐵𝑢𝑖𝑙𝑑𝐻𝑦𝑑𝑟𝑜𝐿𝑒𝑛𝑠(𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒 , 𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘𝑠 , 𝐶, 𝑙𝑎𝑦𝑒𝑟𝑠𝑝𝑒𝑟𝑏𝑙𝑜𝑐𝑘
)  

𝑇𝑟𝑎𝑖𝑛𝐻𝑦𝑑𝑟𝑜𝐿𝑒𝑛𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑇, 𝜂0, 𝑇)  

End Algorithm 
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3.4.2 Optimizing Model Parameters and Hyperparameters 

 The parameters and hyperparameters of the HydroLens system should be optimized in order to obtain 

the best performance in terms of underwater object detection and tracking. This includes optimizations across all 

aspects of the model architecture, training pipeline, and data processing pipeline to ensure a good balance between 

model accuracy and efficiency. HydroLens encompasses a multistep optimization scheme for controlling a 

number of parameters that defines the trade-off between the precision of the ray tracing and computation time. 

First, batch sizes are enhanced to allow maximization of the GPU memory without straining it, making the 

processing fast. There is use of learning rate schedule, which means that the learning rate is reduced as the training 

process goes on to adjust the model closer to convergence. In addition, dropout rates are used in an attempt to 

avoid overfitting and define the right L2 for weight magnitude maxima. For the underwater setting, we prune the 

network more and less or some layers with more relevance to feature extraction and less or no relevance having 

redundancy in the basic layers. All these optimizations individually cut down computational time and resource 

utilization, enabling real-time object detection in even low bandwidth contexts. 

Model Parameter Optimization 

1. Weight Initialization 

 The initialization was employed to prevent the weights of the neural network from starting from a place 

that would not make learning more or less possible. 

2. Learning Rate 

 The learning rate started at 0.01 and decreased according to a learning rate schedule. Our numerical 

integration was done by this equation:- 

𝜂𝑡 = 𝜂0 × (1 =
𝑡

𝑇
)                                                        (10) 

 Where 𝜂𝑡 was the learning rate at epoch 𝑡, 𝜂0 was the initial learning rate, and 𝑇 was the total number of 

epochs. This enabled changing the learning rate as the training progressed so that it led to better convergence. 

3. Batch Size 

 We will try batch sizes until at some point where more batch size will finally make gradient estimate 

more correct but requiring really more computational power. 

4. Number of Layers and Units 

 We used cross-validation to optimize the depth of the network, and the number of units in each layer. 

The goal of this process was to balance the model complexity so that it did not underfit or overfit, and to tune the 

best model architecture that yielded the highest validation performance. 

3.5 Hyperparameter Optimization 

3.5.1. Dropout Rate 

 We changed the dropout rate to be able to regularize it. We employed dropout to randomly set a fraction 

of input units to zero at each update during training as follows, 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑥) =
1

1 − 𝑝
⋅ 𝑥 ⋅ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)                                (11) 

 Where 𝑝 was the dropout probability. The model's generalization performance improved by using this 

technique. 

3.5.2. Regularization Parameters 

 We used the L2 regularization (weight decay) to prevent the weights from growing too large, as well as 

to improve generalization. The added regularization term to the loss function was: 

𝐿(𝑤) = 𝐿0 + 𝜆 ∑ 𝑤𝑖
2

𝑛

𝑖=1
                                                          (12) 

 Where 𝐿0 was the original loss, 𝜆 was the regularization strength, and 𝑤𝑖  were weights. 

Auth
ors

 Pre-
Proo

f



 
 

3.5.3 Optimization Algorithm 

 We used the Adam optimization algorithm that dynamically modified the learning rate for each 

parameter. The update rule for Adam was: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                                                          (13) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                                                            (14) 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡                                                                                      (15) 

�̂�𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡                                                                                        (16) 

𝜃𝑡 = 𝜃𝑡−1 − 𝜂
�̂�𝑡

√�̂�𝑡 + 𝜖
                                                                    (17) 

 Where 𝑔𝑡 was the gradient, 𝑚𝑡 and 𝑣𝑡 were moment estimates, 𝛽1 and 𝛽2 were hyperparameters, and 𝜃𝑡 

were the parameters. Adam helped in efficiently navigating the optimization landscape. 

 

3.6 Cross-Validation and Hyperparameter Tuning 

3.6.1 Grid Search 

 To find the best combination, we searched for a combination of hyperparameters. This method did a 

systematic exploration of the hyperparameter space and evaluated each configuration using cross-validation. 

3.6.2 Early Stopping 

 We added early stopping to stop training when the performance on a validation set no longer improved. 

This helped in avoiding overfitting and using the computational forces judiciously as the training once the 

optimization did not get any better. 

 By using ResNeXts cardinality advantages together with DenseNets dense connectivity characteristic, 

the HydroLens system strikes a best equilibrium of multi-features extraction and feature reuse. Especially for 

underwater surveillance tasks which involve a massive variant of complex and dynamic environments, this hybrid 

architecture can, in principle, provide higher accuracy and robustness at the above object detection and tracking 

tasks. This approach allowed them to achieve optimal performance of the HydroLens system for underwater object 

detection and tracking, in which both model parameters and hyperparameters were optimized systematically. This 

included a mix of experimental tuning, validation and optimization methods to ensure the model was both accurate 

and efficient. 

3.7 Novelty of this Work 

 The research elaborates on a number of novel techniques that push the frontiers of underwater object 

detection and tracking, ameliorating longstanding issues and constraints with fetch methods. The key novelty of 

our work is the incorporation of a new noise reduction method, a novel feature extraction approach, and a 

customized hybrid deep learning model for underwater settings. Using the Modified Gaussian Filter for noise 

reduction is a major plus point over noise reduction through traditional methods. Many noise propagates 

underwater included those caused by water turbidity, light scattering and suspended particles, and it is usually 

high. The Modified Gaussian Filter is designed to suppress the noise while preserving important features of the 

image that were adversely affected by noise. Better visual data improves the accuracy of details, which are crucial 

for object detection and tracking. Second, the cascaded Convolutional Neural Network (CNN) for feature 

representation instead developed a hierarchical representation learning and refinement from an underwater image. 

Current CNN-based object detection on datasets may not completely represent the in-depth and varying features 

desirable for known target detection underwater. The cascaded architecture allows the work to build and refine 

the features sequentially which strengthens the discriminative features learned by the model. Here, the model's 

layered feature learning process greatly improves its ability to detect and track objects in the complex underwater 

world, even with noise. The major contribution in this paper: the HydroLens system combines two powerful deep 

graph architectures: ResNeXt and DenseNet. By using the hybrid model, we able to make use of the excellent 

feature extraction abilities of ResNeXt which is capable of extracting rich features within a layer, due to its concept 

of cardinality and DenseNet that able to learn and reuse both diverse and complex features due to its dense 

connectivity within each layers and produce smoother gradient flow. Combining these architectures into one 
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model allows us to create a powerful and efficient system that outperforms both traditional and contemporary 

methods for underwater object detection and tracking. This unusual hybrid modeling technique that combines the 

ResNeXt and DenseNet within the HydroLens system describes a model type that is uniquely suited to the 

challenges of underwater environments. 

4. Results and Discussions 

Python was used to implement the proposed model as it provides wide range of libraries and frameworks 

for deep learning and data manipulation. The machine used for said run packed a 24M cache-holding Intel Core 

i7-1370P Processor with up to 5.20 GHz of clock speed. The high-performance CPU was able to deliver the 

computational power needed for the efficient processing of advanced operations and large datasets. This was 

paired with 16GB of RAM to help keep model sizes and data in memory during both training and inference. For 

even more computational power, we used an ASUS Dual GeForce RTX 4060 OC Edition White 8GB Graphic 

Card. This high performance GPU supported with excellent parallel processing capabilities sped up the training 

of the deep learning models by taking away the heavy lifting from the CPU. By running the workloads on the 

GPU that had architecturally mature architecture with memory and run all of the deep learning workloads on the 

high memory GPU where the very large-sized neural networks could fit into memory and this allowed the large-

scale training of the networks using more layer limits which, in turn, meant the training was converged faster and 

the training times reduced to a minimum. All of these together helped in reproducing the said Hybrid ResNeXt-

DenseNet Model to execute fluidly giving high precision and performance in underwater object detection and 

tracking tasks. 

Utilized a complex multi-sensor framework for high-accuracy underwater object detection and tracking 

with the HydroLens system, it was underpinned by a suite of sensors, such as hydrophones, CTD sensors, 

underwater cameras, dissolved oxygen sensors, turbidity, salinity, pH, pressure, chlorophyll sensors, and current 

meters. The sensors were collecting an exhaustive set of data on the underwater surrounding, and this data was 

processed to offer an in-depth and real-time knowledge of underwater conditions. The operation of the HydroLens 

system started with collecting data where each sensor sensed different things. Acoustic signals were picked up by 

hydrophones — an important element in identifying and following the transit of targets under water. Output from 

CTD sensors, which measured the conductivity, temperature, and depth of water and thus provided valuable 

environmental context. High-resolution images (and videos) were captured by cameras U/W, providing a visual 

detection of objects. Water quality (e.g., dissolved oxygen, turbidity, salinity, and pH) was continuously 

monitored by environmental sensors which were always recording, pressure sensors and chlorophyll sensors also 

provided depth and biological productivity data. These currents were much key information for predicting the 

movement of a floating object and hence were obtained from current meters. 

Table 1. Sensor Data Summary 

Sensor Type Data Collected Units 
Sample Rate 

(Hz) 

Average 

Value 
Max Value 

Hydrophone Acoustic Signals dB 100 50 120 

CTD Conductivity S/m 10 4.5 6 

CTD Temperature °C 10 14.5 18 

CTD Depth m 10 100 200 

Dissolved 

Oxygen 

Oxygen 

Concentration 
mg/L 5 8 10 

Turbidity Clarity NTU 5 3 5 

Salinity Salt Concentration PSU 10 35 37 

pH Acidity/Alkalinity pH units 1 7.8 8.2 

Pressure Water Pressure kPa 10 150 300 

Chlorophyll 
Chlorophyll 

Concentration 
µg/L 5 2.5 4 

Current Meter Water Movement m/s 2 1.2 2.5 

The dataset summarized in Table 1 and Figure 3 contains all environmental and oceanographic 

parameters collected from multiple types of sensors. The data he collects is critical for understanding aquatic 

environments, characterizing ecological health and execution marine research. A hydrophone sensor was used to 

measure acoustic signals in units of decibels (dB), at a sampling frequency of 100 Hz. With a frequency of 100 

kHz, this system is used for detailed analysis of underwater soundscapes, such as the acoustic detection of marine 

life, human activities, or environmental special occasions. The recorded acoustic signal value on average is 50 

dB, and the maximum value observed is 120 dB. This kind of data can be invaluable for researching the harmful 

effects of noise pollution on marine life, and in the monitoring of underwater environments. 

Auth
ors

 Pre-
Proo

f



 
 

 

Figure 3. Sensor Data Summary 

The importance of water Conductivity-Temperature-Depth (CTD) sensors on a 10 Hz data acquisition, 

the average water conductivity is 4.5 S/m with a maximum 6.0 S/m this measures the amount of ions in the water 

which is important for determining its salinity. Recorded temperature data, sampled at the same rate, has an 

average of 14.5 degrees Celsius and up to 18 degrees Celsius, providing key insights for thermal studies of water 

bodies. Depth measurements are simultaneously sampled at 10 Hz between ~100 and 200 meters averaging the 

measured lead from the hydrophone-array to the seafloor, and maximum height above the seabed. The parameters 

over which characterisation was undertaken, together with the rates at their estimation, were dissolved oxygen 

(mg/L, 5 Hz, mean of 8 mg/L, peak of 10 mg/L, critical for assessing respiration in aquatic ecosystems and the 

vitality of the aquatic ecosystem for marine life); Clarity, or turbidity, is measured every 5 s in nephelometric 

turbidity units (NTU) and reported at a rate of 5Hz averaged over 3s with a maximum of 5 NTU. If water is 

cloudy, turbidity is high, and this could have a negative impact on photosynthesis in aquatic plants and the health 

of the fish populations. 

It has an average (over a 10 Hz sample rate) of 35 PSU, and rises to a peak of 37 PSU. It is essential 

information because it provides information about the salinity of bodies of water, important for marine organisms 

and the chemical composition of the water. The pH (a measure of the water's acidity or alkalinity) is also recorded, 

though at a lower sample rate of 1 Hz, and is in pH units. Results reveal that the pH in general is 7.8 and 8.2 is a 

maximum for pH. The monitoring of pH determines the acid-base status in natural water. 100Hz measured a water 

pressure (kPa), where 150 the average value with a maximum of 300. This parameter is necessary to explain the 

physical forces in different depths of water. Given the poor productivity of the land-drone and our poor timing to 

visit, it took a few trips for us to get reliable data, but we do have: Chlorophyll, measured in µg/L at 5 Hz, with 

an average of 2.5 µg/L and a maximum of 4 µg/L. Chlorophyll data is important as it can be used to calculate 

phytoplankton abundance and primary productivity in aquatic ecosystems. The one at the very end is the current 

meter, which measures water movement in m/s with a sampling rate of 2 Hz, an average speed of 1.2 m/s, and a 

maximum of 2.5 m/s all of which are most important for understanding water flow dynamics, sediment transport, 

and the spreading of nutrients, and pollutants. In the end, the detailed summary of sensor data highlights different 

physical, chemical and biological components that are of importance for marine research and environmental 

monitoring. 

Raw data, once gathered, underwent preprocessing to ensure it was of good quality and reliable. We 

reduced the noise by smoothing randomness in the image and sensor data, with a modified Gaussian filter to keep 

sharps edges of important feature. Proprietary color correction algorithms could return the natural colors that light 

absorption and scattering shift for underwater images. It is appropriate to use normalization when feature scaling 

between different datasets is needed and using normalization will scale all features to a consistent range. Using 

data augmentation techniques like rotations and brightness for images or controlled noise for sensor data, the data 

set has been artificially augmented, which increased the robustness and generalization capabilities of the system. 

We used dimensionality reduction techniques (PCA or t-SNE) to reduce the data, preserving the key features for 

further analysis. 

 

Table 2. Model Hyperparameters 
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Model 

Architecture 

Learning 

Rate 
Batch Size 

Number of 

Layers 

Dropout 

Rate (%) 
Weight Decay 

CNN 0.001 32 10 25 0.0005 

ResNeXt 0.001 64 50 20 0.0005 

DenseNet 0.001 64 100 20 0.0005 

VGG16 0.001 32 16 25 0.0005 

InceptionV3 0.0005 64 48 20 0.0005 

EfficientNet 0.0005 64 45 20 0.0001 

MobileNetV2 0.001 32 53 25 0.0001 

Xception 0.0005 64 71 20 0.0005 

NASNet 0.0005 64 87 20 0.0005 

ResNet50 0.001 64 50 20 0.0005 

AlexNet 0.001 32 8 25 0.0001 
Hybrid (ResNeXt 

+ DenseNet) 
0.0005 64 150 15 0.0001 

We implemented several existing models alongside the proposed models, as summarized in Table 2 and 

illustrated in Figures 4 and 5 on the dataset. Hyperparameters are critical as they factor into the performance, 

efficiency and generalisability of these models, hence meticulous tuning is key to achieving the highest accuracy. 

The Convolutional Neural Network (CNN) is the most popular architecture for image processing tasks. It uses a 

learning rate of 0.001 which is a reasonable starting point for the initial experiments as it is a trade-off between 

the speed of convergence and the stability. A batch size of 32 allows efficient enough training with pretty decent 

generalization of a model. It consists of 10 layers which are fairly shallow in comparison with other architectures 

of the table, and the dropout rate is 25% to avert overfitting. Weight decay (set to 0.0005) helps to regularize the 

weights making them small. The learning rate and batch size are the same as ResNeXt, DenseNet and ResNet50, 

0.001 and 64, respectively. They all have some features in common, but vary in the number of layers: 50 in 

ResNeXt and ResNet50 and a lot more 100 layers in DenseNet. This difference in the depth of layers can affect 

how effective a model will be at learning complex representations. The dropout rate is 20% in all architectures 

and weight decay (L2 penalty) of 0.0005 is used for balancing regularization and model capacity. 

 

Figure 4. Learning Rate and Weight Decay 

The VGG16 model is a simple yet powerful deep-learning structure for the image classification task; this 

model is trained with a learning rate of 0.001 and a batch size of 32. This model is designed to do deep feature 

extraction with a high level of dropout (25% for a 16 layer) to prevent overfitting. Add L2 weight decay of 0.0005 

on weights, at the input node block and on the self and source linear layer blocks. The decay needed to maintain 

the limit is a standard value used to regularize the magnitude of model weights. InceptionV3 and Xception are 

deeper by architectures and have a learning rate of 0.0005 which indicates that a slower learning rate, should be 

used to handle the complexity of their depth and interconnections. They both employ a batch size of 64 and a 20% 

dropout rate in 48 and 71 layers, again emphasizing their deep and complex feature extracting capabilities. The 

weight decay is 0.0005, which is equal to the setting in other models to regularize. The second but more popular 

set is efficiency-oriented networks such as EfficientNet and MobileNetV2. EfficientNet uses a learning rate of 

0.0005 and batch size of 64, 45 layers with 20% dropout. The 53-layer MobileNetV2 model with a learning rate 

of 0.001 and a batch size of 32 and a 25% dropout rate. 
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The 87-layer architecture discovered by neural architecture search, NASNet is trained with a learning 

rate of 0.0005, batch size of 64, 20% dropout and weight decay of 0.0005. This setup is designed to leverage the 

computational richness and the large search space that the model explores. AlexNet, as a pioneer deep learning 

model, have less hyper parameters, a learning rate of 0.001, a batch size of 32, and 8 layers. This is a very simple 

architecture has 25% dropout rate, 0.0001 weight decay. The Hybrid model uses a learning rate of 0.0005 and a 

batch size of 64, where ResNeXt, DenseNet architectures are combined. This model has the benefits of both 

architectures and has a less spelling 15% dropout and 150 layers. A weight decay of 0.0001 says that we would 

like forms of regularization that can maintain the model complexity low in the interest of least regularization. 

Note that these hyperparameters are just a few examples of the diversity in model architectures and model 

parameterizations and tuning options. These settings of each model depend on its use case, complexity, and the 

trade-offs between learning speed, generalization, and computational efficiency. 

 

Figure 5. Batch Size, Number of Layers, and Dropout Rate 

The HydroLens system combined the strengths of ResNeXt and DenseNet in their advanced deep 

learning architecture. Cardinality is introduced through grouped convolutions in ResNeXt, which process the input 

data along multiple parallel paths capturing a diverse set of features. Dense connectivity — layers had local 

connections with every other layer and received input from all preceding layers which allowed for an efficient 

way of reusing every learned feature and transmitting information between layers. This hybrid architecture made 

the system able to effectively learn complicated patterns and relationships between the data from underwater. 

Then, we used the cascaded CNN model to input these pre-processed data during the detection phase. Initial layers 

learned how to detect low-level features, such as edges and texture, in the images; and the primary signal patterns 

in the sensor data. The data passed through deeper layers, the network was able to capture higher level abstract 

features such as particular objects, textures that are unique to underwater environment, advanced patterns in 

acoustic signals and so on. Such hierarchical feature extraction was important for successful object detection and 

tracking, as it allowed the system to recognize and discern different underwater objects and phenomena. Here, the 

HydroLens system updated its model in real time, which helped it to adjust to changing underwater conditions. 

The system delivered servery detailed information about the objects detected by which they were location, 

moving, and classifying. This data was widely used in marine research, environmental monitoring, underwater 

navigation, and security applications. 

 

 

 

Table 3. Model Performance Metrics 

Model Architecture Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

CNN 85 83 84 83.5 

ResNeXt 90 88 89 88.5 

DenseNet 92 90 91 90.5 
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VGG16 87 85 86 85.5 

InceptionV3 89 87 88 87.5 

EfficientNet 93 91 92 91.5 

MobileNetV2 86 84 85 84.5 

Xception 91 89 90 89.5 

NASNet 88 86 87 86.5 

ResNet50 89 87 88 87.5 

AlexNet 95 94 94 94 

Hybrid (ResNeXt + 

DenseNet) 
98 96 97 97 

Table 3 and Figure 6 shows overview performance metrics of model for some architecture showing best 

result in the area of accuracy, precision, recall and F1-score. Comparing CNN, ResNeXt, DenseNet, VGG16, 

InceptionV3, EfficientNet, MobileNetV2, Xception, NASNet, ResNet50, AlexNet and the Hybrid model, one sees 

that knowledge transfer in the Hybrid model outperforms all the others. The ResNeXt + DenseNet earned the top 

results in all the measurements: accuracy – 98%, precision – 96%, recall – 97%, F1-score – 97%. These results 

prove that by integrating ResNeXt’s feature diversity with DenseNet’s connectivity, Underwater MNIST can be 

accurately identified with high optimization for the intricacies of object detection. CNN gives an accuracy of 85% 

where precision and recall are 83% and 84% and the F1-score is 83.5%. While this throughput is reasonable for 

many applications, it indicates that lifting sophisticated architectures would lead to better results on more 

challenging tasks. The ResNeXt method is 90% accurate, which is far superior to the CNN. After completing 

multiple training-rounds, this model found to achieve 88% precision, 89% recall and F1-score of 88.5%. The 

model's ability to capture the complex patterns in the data set increases from this gain. DenseNet performs much 

better than ResNeXt, with an accuracy of 92%, precision of 90%, recall of 91%, and an F1 score of 90.5%. The 

tightly connected layers in DenseNet result in increased gradient flow and feature reusability, enabling high 

performance. 

 

Figure 6. Accuracy, Precision, Recall, and F1-Score 

Even though VGG16 is an older architecture, it does remarkably well with an accuracy score of 87%, 

precision score (85%), recall score (86%), and F1 score (85.5%). The simplicity and effectiveness of this 

architecture make it a popular pick for many image classification tasks. InceptionV3 also demonstrates an 

accuracy of 89%, but precision and recall numbers show 87% and 88% respectively, and F1-score is 87.5% The 

complex architecture of the DenseNet is probably responsible for that — complex in the sense that it was designed 

to capture multi-scale features. EfficientNet is good with 93% of accuracy, 91% of precision, 92% of recall and 

F1 score 91.5%. The method of compound scaling using EfficientNet also allows to balance model scaling with 

respect to latency and accuracy, and in result delivers superior performance in comparison to directly apply scaling 

to the baseline layers of the network. MobileNetV2, which optimized for mobile and embedded environments, 

attains an 86% accuracy, 84% precision and 85% recall, hence an F1-score of 84.5%. It demonstrates the finest 

performance with its efficiency orientation. The Xception as it has much deeper models with much optimized data 

and that gives the above numbers, 91 % accuracy, 89% precision, 90% recall, and 89.5 % F1-score. 

NASNet, produced by neural architecture, has an accuracy of 88%, precision 86%, recall 87%, and F1-

score 86.5%. This is the performance increased by automated architecture optimization. An accuracy of 89% 

achieved using the ResNet50 model, which is one of the most popular deep learning models to this day, along 
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with 87% precision, 88% recall, and 87.5% F1-score. Additionally, the deep residual learning framework can help 

with the vanishing gradient problem. Even one of the first models, AlexNet, performs quite good with 95% 

accuracy, 94% precision, 94% recall, and 94% F1-score. Its performance validates its historic importance and 

ongoing appeal, The Hybrid model which combines ResNeXt and DenseNet performs the best overall profiles, at 

98% accuracy, with 96% precision and 97% recall, and an F1-score of 97%. This model combines the desirable 

properties of both architectures to achieve improved performance. The following performance metrics outline that 

how model architectures have improved in the certain tasks more than the others. The Hybrid model, with its 

strong performance, answers this in the affirmative, demonstrating that leveraging aspects of disparate 

architectures may lead to large gains and is a promising method for complicated tasks. 

The HydroLens system functioned by a unified multi-sensor data gathering, high level preprocessing 

technologies, and significantly deep learning hybrid architecture. The system realized the high accurate and stable 

performance in underwater object detection and tracking by combining the complimentary virtues of ResNeXt 

and DenseNet and has shown the prominent ability in the exploration and investigation of underwater. 

Table 4. Training and Testing Time 

Model Architecture Training Time (hrs) Testing Time (sec/image) 

CNN 10 0.05 

ResNeXt 12 0.04 

DenseNet 14 0.04 

VGG16 11 0.06 

InceptionV3 13 0.05 

EfficientNet 15 0.03 

MobileNetV2 10 0.03 

Xception 14 0.04 

NASNet 13 0.05 

ResNet50 12 0.04 

AlexNet 9 0.06 

Hybrid (ResNeXt + DenseNet) 16 0.03 

 Table 4 and Figure 7 gives the time cost of training for different model structures, which help us know 

how many resources are consumed by each model and which one works the fastest and easiest. It is important that 

such time and resource constraints in industrial deployments can be estimated using these common metrics. 

Training of the CNN takes 10 hours and testing of the CNN takes 0.05 seconds per image. This light training time 

and fast testing time makes CNN an ideal choice for activities for which a trade-off between training the duration 

and inference speed is required. Training: 12 hours; Testing: 0.04 s per image; the training time is slightly 

increased as compared to conventional deep CNNs by ResNeXt. Faster inference time than GANs also show its 

effectiveness in real-time scenarios to make quick decisions. Training DenseNet using 14 hours, and testing 0.04 

second per image. Although it has more training time, DenseNet is used in scenarios with high demand on the 

model's performance, and the speed of a DenseNet model is quite good. 

 VGG16, one of the most famous big architecture, consumes 11 hours to train and 0.06s per image to test. 

The longer time to test BERT models is an indication of the complexity of the architecture, which while a trade-

off is worth the simplicity and efficiency it provides in some tasks. While InceptionV3 has a complex architecture, 

with 13 hours to train and 0.05 seconds to test per image, it falls somewhere in the middle having both longer 

training and testing times. This also makes it more time-efficient for tasks that require fine level of feature 

extraction. EfficientNet: 15 hours to train, 0.03 seconds to test per image. This model design balances both 

accuracy and efficiency, making it ideal for applications requiring high performance with fast inference. 

MobileNetV2 was built largely based on mobile and embedded design, it takes 10 hours to train, but only 0.03s 

is needed for testing per image. It is efficient in both training and inference, and appropriate for resource-

constrained environments. Another such framework is Xception, which takes 14 hours for training with an image 

takes 0.04 seconds per image to give a fairly good trade-off between deep learning capabilities and inference 

horsepower. That can be an acceptable trade-off for workloads requiring sophisticated models that would 

otherwise take too long to test. Auth
ors
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Figure 7. Training Time (hrs) and Testing Time (sec/image) for Model Architectures 

 Training NASNet takes 13 hours and its testing time is 0.05 seconds per image. It is quite impressive, as 

neural architecture search is used to design at the same time as optimizing for a variety of hyperparameters, 

including efficiency. Training: 12 hours Test: 0.04s (ResNet50). This trade-off between training time and the 

speed of testing did not experience in many other deep learning applications which is one of the reasons we use 

it. Due to its historical significance and simplicity, AlexNet is still popular even though it does not perform as 

well as newer models for inference speed (testing takes 0.06 seconds per image). On the other hand, the Hybrid 

model has the highest training time at 16 hours but the smallest testing time of 0.03 per image. The diagonal line 

shows how slowly the average performance degrades compared to other models' average performance, indicating 

the success of hybrid architecture in trading off between accuracy and speed. These models train and test in 

varying lengths of time, demonstrating the trade-offs between model complexity and overall performance and 

efficiency. The choice of model depends on given the application requirements ranging from computational 

resources to real-time inference. 

Table 5. Model Performance with Different Activation Functions 

Activation 

Function 

Model 

Architecture 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Training 

Time 

(hrs) 

Testing 

Time 

(sec/image) 

ReLU CNN 85 83 84 83.5 10 0.05 

ReLU ResNeXt 90 88 89 88.5 12 0.04 

ReLU DenseNet 92 90 91 90.5 14 0.04 

ReLU 

Hybrid 

(ResNeXt + 

DenseNet) 

98 96 97 97 16 0.03 

Sigmoid CNN 82 80 81 80.5 11 0.06 

Sigmoid ResNeXt 87 85 86 85.5 13 0.05 

Sigmoid DenseNet 89 87 88 87.5 15 0.05 

Sigmoid 

Hybrid 

(ResNeXt + 

DenseNet) 

95 93 94 93.5 17 0.04 

Tanh CNN 83 81 82 81.5 11 0.06 

Tanh ResNeXt 88 86 87 86.5 13 0.05 

Tanh DenseNet 90 88 89 88.5 15 0.05 

Tanh 

Hybrid 

(ResNeXt + 

DenseNet) 

96 94 95 94.5 17 0.04 

Leaky ReLU CNN 86 84 85 84.5 10 0.05 

Leaky ReLU ResNeXt 91 89 90 89.5 12 0.04 

Leaky ReLU DenseNet 93 91 92 91.5 14 0.04 

Leaky ReLU 

Hybrid 

(ResNeXt + 

DenseNet) 

98 96 97 97 16 0.03 

Swish CNN 87 85 86 85.5 10 0.05 

Swish ResNeXt 92 90 91 90.5 12 0.04 

Swish DenseNet 94 92 93 92.5 14 0.04 
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Swish 

Hybrid 

(ResNeXt + 

DenseNet) 

98 96 97 97 16 0.03 

 

This comparison result for different activation functions is given in Table 5 and Figure 8, 9 to give the 

full instance, how many changes in performance could be possible due to different activation functions, and for 

different performance matrixes and the computational efficiency used in different model architectures. ReLU 

(Rectified Linear Unit) has been there around as it is simple and addresses the vanishing gradient problem. On 

CNNs, the Relu gives an accuracy of 85%, precision of 83%, recall of 84% and F1 score is 83.5% for Relu 

activation with time of training is 10 hours and testing time is 0.05 seconds per image. ReLU Activation 

outperforms Tanh Activation on their experiments (used 75%) achieved an accuracy of 90%, 92%, and 98% for 

ResNeXt, DenseNet, and the Hybrid model (ResNeXt + DenseNet), respectively. The best-performing 

architectures, Hybrid, and the strong-performing VGG model, display both high precision, recall, and F1-scores; 

Hybrid a top performance at F1=97% and with local test times of 0.03–0.04 seconds per image. 

 

Figure 8. Accuracy, Precision, Recall, and F1-Score with Different Activation Functions 

In most of the binary classification problems, the Sigmoid Activation Function slightly performs worst 

compared to ReLU and other options. CNNs with a sigmoid give an accuracy of 82% precision of 80% recall of 

81 and F1-score is 80.5% and the training time is 11hrs and the testing time is 0.06 sec per image. Furthermore, 

Sigmoid also downgrades the performance of ResNeXt, DenseNet, and the Hybrid model, resulting into 87%, 

89%, 95% accuracies, respectively. The Hybrid model still performs relatively well but with a noticeable drop 

compared to ReLU, reaching an F1-score of 93.5%. Another popular activation function is Tanh, however it 

performs better than Sigmoid but still worse than ReLU and Swish. Tanh gives the following CNN results - 83% 

accuracy, 81% precision, 82% recall, 81.5% F1-score with training and testing times of 11 hours and 0.06s per 

image respectively. For ResNeXt, accuracy is 88%, for DenseNet its 90% and for our Hybrid model it is 96%. 

The Hybrid model is found to have less performance even though the F1 score is better with 94.5 % now close to 

ReLU and Swish. 
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Figure 9. Training Time (hrs) and Testing Time (sec/image) for Model Architectures 

The Leaky function is a way to address the "dying ReLU" problem by allowing a small gradient when 

the unit is not active. CNNs with Leaky ReLU get an accuracy of 86%, 84% for precision, 85% for recall, 84.5% 

for F1-Score and need 10 hours for training and 0.05 sec for testing on an image. Leaky ReLU improve the 

performance of the ResNeXt, DenseNet, and Hybrid model to 91%, 93%, and 98% respectively. It has a very 

good performance by what is mentioned before, completing the same metrics on top as the previous ReLU model 

but on the Hybrid variant, the F1-score is 97% Convolutional neural networks use rectified linear units (ReLU) 

to represent the input because it is smooth and yet, non-monotonic and further helps in training better models 

when compared with other popular types. The swish function, developed by Google in 2017, is supposed to be 

the new ReLU—since it performs as a smooth, non-monotonic function in countless situations. CNNs with Swish 

giving an accuracy of 87%, precision of 85%, recall of 86% and, F1-score of 85.5% along with 10 hours of training 

time and, 0.05 sec. per image testing time. Swish achieves the best accuracy for ResNeXt, DenseNet, and the 

Hybrid (a growth of 92%, 94%, and 98%, respectively). The Hybrid model retains high-level performance (with 

an F1-score of 97%) proving that Swish can be effective in a more complex setting. 

The activation functions helps in the model to perform better, and this helps in the computational 

efficiency. Swish and Leaky ReLU should achieve good performance across all architectures, with Swish beating 

the other by a thin slice. Although there are more modern alternatives, ReLU is still a strong candidate for 

activation function of choice for being simple and effective. While the Sigmoid and Tanh functions do have some 

merit in cases suitable to their properties, they fall well behind the other activation functions. 

Table 6. Loss and Convergence with Different Activation Functions 

Activation Function 
Model 

Architecture 
Initial Loss Final Loss 

Convergence 

Time (epochs) 

ReLU CNN 1 0.2 50 

ReLU ResNeXt 1 0.15 40 

ReLU DenseNet 1 0.12 35 

ReLU 
Hybrid (ResNeXt 

+ DenseNet) 
1 0.08 30 

Sigmoid CNN 1.2 0.3 60 

Sigmoid ResNeXt 1.2 0.25 50 

Sigmoid DenseNet 1.2 0.22 45 

Sigmoid 
Hybrid (ResNeXt 

+ DenseNet) 
1.2 0.18 40 

Tanh CNN 1.1 0.25 55 

Tanh ResNeXt 1.1 0.2 45 

Tanh DenseNet 1.1 0.17 40 
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Tanh 
Hybrid (ResNeXt 

+ DenseNet) 
1.1 0.12 35 

Leaky ReLU CNN 1 0.18 50 

Leaky ReLU ResNeXt 1 0.14 40 

Leaky ReLU DenseNet 1 0.11 35 

Leaky ReLU 
Hybrid (ResNeXt 

+ DenseNet) 
1 0.08 30 

Swish CNN 1 0.18 50 

Swish ResNeXt 1 0.13 40 

Swish DenseNet 1 0.1 35 

Swish 
Hybrid (ResNeXt 

+ DenseNet) 
1 0.08 30 

 

Table 6 and Figure 10 give the detailed analysis of initial loss, final loss and time for convergence using 

different datasets and activation functions with different model architecture. These metrics are important to 

understand how efficient and effective each activation function is compared to each other to train deep learning 

models. The loss at the beginning for the models using ReLU is consistently 1 across CNN, ResNeXt, DenseNet, 

and the Hybrid model. The last loss achieved by CNN is 0.2 which is a considerable drop and it converged on 50 

epochs. With losses of 0.15 and 0.12, ResNeXt and DenseNet show significantly improved final losses with 

convergence time of 40 and 35 epochs respectively. It took 30 epochs for the Hybrid model to converge and it 

performs the best of all the models with the final loss of 0.08. It is an indicator of how ReLU works as it speeds 

up training and lowers the loss especially with deep and complex models. 

 

Figure 10. Initial Loss, Final Loss and Convergence Time by Activation Function 

The models with sigmoid activation function have an initial loss of 1.2 to begin with. A final loss of 0.3 

is obtained on CNNs with a convergence after 60 epochs, showing that this training can be also slower and less 

efficient than for ReLU. ResNeXt and DenseNet --- final losses: 0.25 and 0.22; convergence times: 50 and 45 

epochs. The Hybrid model has a final loss of 0.18 and converges in 40 epochs, performing just 0.01 better than 

the individual models. This leads as a lot of larger initial and final loss terms as well as longer convergence times 

this gives the impression that Sigmoid is not great at training deep models. For all models, a loss begins from 1.1 

during the first iteration of Tanh function. CNN converges to 0.25 final loss after 55 epochs. ResNeXt and 

DenseNet do better (final losses of 0.2 and 0.17 and decently faster convergence times of 45 and 40 epochs). 
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Hybrid model shows Loss 0.12 Epochs: 35. Although Tanh is better than Sigmoid, it is still worse than ReLU and 

Swish in terms of final loss and convergence speed. 

Leaky ReLU also begins with a malfunction of 1 as ReLU does. The final CNN loss 0.18, convergence 

time of 50 epochs. Few other architectures presented slight improvements in different variations and the lowest 

final losses are of ResNeXt and DenseNet all with 0.14 and 0.11 respectively, after 40 and 35 epochs. The Hybrid 

model obtains a final loss of 0.08 converged over 30 epochs similarly to ReLU and Swish. Leaky ReLU has good 

performance, especially on deeper models, and helps to speed up the training process while lowering the loss. 

Starting with an initial loss of 1 (similar to ReLU, Leaky ReLU), swish begins with the value, “swish”, though 

ranging between 0 and 1. CNN Loss function reaches 0.18 after 50 epochs. The final losses of ResNeXt and 

DenseNet are 0.13, 0.1 with convergence times of 40, 35 epochs correspondingly. The hybrid model performs the 

best with a loss of 0.08 at convergence after 30 epochs. The smooth nature and its non-monotonicity make Swish 

really powerful for training deep models, learnable component and data augmentation to reduce final losses and 

fast convergence. All the models with ReLU, Leaky ReLU, and Swish activation functions have achieved a 

significantly lower final loss, and also some of them have faster convergence times. The Sigmoid and Tanh suffer 

from higher final losses and longer convergence periods, especially in deep and complex models. The Hybrid 

model profits in particular using the superior activation functions and indicates an excellent overall performance. 

However, the HydroLens could be utilized for more than underwater object detection; it can be used in 

such areas as pollution or algae blooms mapping, studies of marine life, or inspection of underwater infrastructure 

such as pipelines and cables. It also has implication for navigation of the autonomous underwater vehicle (AUV) 

and searching for objects or hazard in search and rescue operations where information of the environment needs 

to be as real time as possible. 

5. Conclusion and Future Work 

An effective object detection and tracking system using HydroLens can be implemented using a hybrid 

model of ResNeXt and DenseNet with promising results in underwater object detection and tracking. The resulting 

model has significantly outperformed other popular architectures like CNN, VGG16, InceptionV3, EfficientNet, 

MobileNetV2, Xception, NASNet, ResNet50, and AlexNet. This hybrid model provided the highest levels of 

accuracy (98%), precision (96%), recall (97%), and F1-Score (97%) compared to the individual models. We seek 

thorough behaviour validation of the HydroLens system via extensive experimentation and evaluation on available 

benchmark underwater datasets. This system is powerful enough to deal with the challenges present in underwater 

environment (such as low visibility, varying illumination conditions, and complex background) due to the 

integration of data collection with IoT-enabled underwater sensors, well-designed preprocessing pipeline for 

underwater imagery, and the invention of the hybrid object detection/tracking model. While effective, HydroLens 

faces challenges with extreme noise conditions, such as highly turbulent water or severe lighting imbalances. 

Limited bandwidth also restricts the real-time transmission of high-resolution images, which can influence data 

quality and model responsiveness. To address these challenges, future developments could include integrating 

more advanced noise reduction algorithms tailored for underwater environments and enhancing image 

transmission through optimized compression algorithms that maintain quality without significantly increasing 

data load. Improving latency management in IoT communication would also strengthen real-time performance. 

Additionally, expanding training datasets to include diverse environmental conditions would improve the model’s 

robustness, allowing HydroLens to handle a wider range of underwater settings and challenges. 
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