
Journal Pre-proof

HydroLens: Pioneering Underwater Surveillance with IoT-powered

Object Detection and Tracking using the Hybrid ResNeXt-DenseNet

Model

Sujilatha Tada and Jeevanantham Vellaichamy

DOI: 10.53759/7669/jmc202505022

Reference: JMC202505022

Journal: Journal of Machine and Computing.

Received 15 April 2024

Revised form 26 July 2024

Accepted 16 November 2024

Please cite this article as: Sujilatha Tada and Jeevanantham Vellaichamy, “HydroLens: Pioneering

Underwater Surveillance with IoT-powered Object Detection and Tracking using the Hybrid ResNeXt-

DenseNet Model”, Journal of Machine and Computing. (2025). Doi: https://

doi.org/10.53759/7669/jmc202505022

This PDF file contains an article that has undergone certain improvements after acceptance. These

enhancements include the addition of a cover page, metadata, and formatting changes aimed at

enhancing readability. However, it is important to note that this version is not considered the final

authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,

typesetting, and comprehensive review. These processes are implemented to ensure the article's final

form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's

content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may

be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal

remain in effect.

© 2025 Published by AnaPub Publications.

HydroLens: Pioneering Underwater Surveillance with IoT-

powered Object Detection and Tracking using the Hybrid

ResNeXt-DenseNet Model

1Sujilatha Tada*,2Jeevanantham Vellaichamy

1,2 Department of Computer Science and Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of

Science and Technology,Chennai,India

vtd994@veltech.edu.in, drjeevananthamv@veltech.edu.in

*Corresponding Author: Sujilatha Tada

Abstract

Efficient object detection and tracking approaches are gaining popularity and being actively used in the

world of underwater surveillance. This study presents an innovative protocol that combines a Hybrid ResNeXt-

DenseNet Model to boost the visual perceptivity of the Internet of Things (IoT)-based underwater surveillance.

The model focuses on what is the best of ResNeXt and DenseNet, yielding higher accuracy at lower computational

cost than either. Its components are: IoT-enabled underwater sensors for data capture, a robust data preprocessing

pipeline designed for underwater imagery, and the innovative Hybrid ResNeXt-DenseNet Model for object

detection and tracking. The architecture of the model is proposed in order to overcome the issues related to

underwater environments, such as low visibility, changeable illumination conditions, and complex background.

Python was used to implement the proposed model and experiments have been conducted on popular benchmarks

of underwater datasets, and the proposed approach obtains a recognition accuracy of 98%. In this model, the

Hybrid ResNeXt-DenseNet Model has the notable ability to accurately identify and track objects of interest in

real-time underwater situations. Furthermore, the inclusion of IoT features ensures data flows without interruption,

allowing for prompt response and action. This research leads towards better situational awareness and marine

environment protection systems by proliferating IoT and exploiting sophisticated deep learning methods at the

root level.

Keywords: Object Detection, Deep Learning, Underwater Surveillance, Internet of Things, Cascaded CNN,

Modified Gaussian Filter, Hybrid ResNeXt-DenseNet Model.

1. Introduction

Underwater surveillance has become a significant area particularly for maritime security, environmental

monitoring, and resource management. The traditional methods of underwater surveillance are frequently

constrained due to poor visibility, high cost of operation and difficult underwater conditions [1] [2] [3]. A

transformative solution to these limitations lies in combining Internet of Things (IoT) technology with cutting-

edge object detection and tracking system. Deployment of IoT enabled sensors and devices to deploy without any

need of staff to continuous monitoring of underwater environments, which is not possible for variety of

applications. There are various reasons for this necessity and surveillance underwater. Detection of unauthorized

vessels, submarines, and underwater mines is critical for preventing maritime threats, and for safe navigation [4].

Another key use case is environmental monitoring, which includes monitoring marine life, pollution levels, and

assessing the impact of environmental changes on the underwater ecosystem. This is important information for

researchers and policymakers involved in maintaining marine biodiversity and sustainable use of resources. In

addition, underwater surveillance is also very important in infrastructure inspection, such as, pipelines, cables,

offshore platforms, to guarantee the integrity of these structures, and to avoid costly reparations [5] [6] [7].

One of the major drawbacks of conventional underwater surveillance systems is that most of them require

human intervention in terms of manual monitoring; thus, they are time-consuming and more susceptible to errors.

The traditional techniques are labour-intensive, costly, and un-tolerant to human factor and weather-dependent

factors, as indicated by the need for cameras mounted on existing equipment, such as divers or remotely operated

vehicles (ROVs) [8]. In addition, the underwater environment itself presents many challenges – from changing

light conditions to water turbidity, to marine life – all of which may compromise the accuracy and effectiveness

of surveillance operations. Water by nature is not very transparent, so we cannot expect a very good ability to

detect and track objects at big distances underwater [9] [10] [11]. The timely identification of objects in an

underwater environment is necessary to address potential threats, reduce accidents, and protect aquatic

ecosystems. Early detection of unauthorized vessels or underwater mines as anomalies are an integral part of

securing maritime operations. Similarly, early identification of pollution sources can trigger immediate abatement

initiatives which safeguard marine biodiversity and prevent lasting environmental impacts. In terms of

infrastructure, being able to sense ruptures / defects in pipelines and cables before they become catastrophic

Auth
ors

 Pre-
Proo

f

failures would save a large amount of money in repair costs. Hence, effective underwater surveillance demands

the early and accurate detection of objects [12] [13] [14].

Underwater surveillance systems with built-in deep learning (DL) and machine learning (ML) models

have redefined object detection and tracking capabilities. These are good models at working through lots of data

to figure out patterns that we as humans might not be able to detect. DL and ML algorithms can be used to improve

the accuracy, processing rate, and the ability of underwater surveillance systems to adapt to changing

environmental factors. This can be combined with neural networks, Convolutional Neural Networks (CNNs) and

other high-precision DL architectures to achieve accurate identification and classification of underwater objects

under challenging circumstances [15] [16]. DL and ML models are suitable to navigate the challenging and

changing characteristics of underwater environments. CNNs, for example, are structured to automatically and

adaptively learn spatial hierarchies of features from input images, which is perfect for object detection

applications. Such models can be trained on extensive datasets to recognize everything underwater creatures, to

artificial object at many different levels of clarity. In addition, the emphasis on continual learning in these models

allows them to learn new object types and adapt to environmental changes over long periods [17] [18]. Figure 1

shows the underwater surveillance.

Figure 1. Underwater Surveillance

In this paper, we introduce a new model for object detection and tracking underwater using a hybrid

model based on ResNeXt and DenseNet architectures. The Hybrid ResNeXt-DenseNet Model utilizes the residual

connections of ResNeXt to strengthen the feature extraction ability and the dense connectivity of DenseNet to

encourage more information flow and easier gradient propagation. This hybrid model has been developed

specifically to deal with problems found in underwater situations, so that object detection and tracking are made

resilient and robust. ResNeXt is an improvement over ResNet architecture where it bring in another dimension

called cardinality (the size of the set of transformations) to the network. It enables for more versatile and efficient

leaning of features. This is mainly due to the residual connections in ResNeXt which can address this problem

and allows us to train networks to great depths. In contrast, DenseNet connects each layer to every other layer in

a feed-forward fashion and strengthens feature propagation through the network, which combats the vanishing-

gradient problem. The hybrid model of these two architectures combines the best of them — this combination

tries to provide an efficient support for underwater object detection and tracking. The Hybrid ResNeXt-DenseNet

Model is initially trained on a large dataset of underwater images that contain different types of objects and

conditions. During training trials, the process has been refined to enable the model to better detect and categorize

objects in the underwater environment, with all of its individual challenges. The architecture of the hybrid model

is also capable of learning efficiently while robust to the noise and distortions that are typically encountered under

water [19] [20].

Improved Feature Extraction is one of the major advantages of the hybrid model. The residual

connections in ResNeXt allow the model to learn more complex features since the information in different layers

is merged, while the dense connections in DenseNet maximize the flow of important features across the network.

This leads to a more robust and accurate object detection, even under difficult conditions such as darkness or high

turbidity. Additionally, the hybrid model scales up to high-volume, real-time data, which is an essential capability

Auth
ors

 Pre-
Proo

f

when applied to IoT powered underwater surveillance systems. With the hybrid model, IoT devices can collect

and send data from a variety of underwater sensors 24/7, displaying a continuous stream of data for analysis. This

is important as a decisive tool for real time, to detect or prevent threats for suspicious events immediately. The

power of IoT technology complements the Hybrid ResNeXt -DenseNet Model to an extensive approach in the

front of the underwater surveillance. In a number of strategic locations, underwater cameras, sonar sensors, and

autonomous underwater vehicles (AUVs) may be strategically placed to observe large areas of the ocean with the

contours of submerged ice formations. These devices are gathering data and sending it to an individual processor

where the hybrid model works with that data in real time.

1.1 Main Contribution of the Work

This work improves the detection and tracking underwater objects by using Noise Reduction, Feature

Extraction, and Hybrid Model Architecture for the proposed model to overcome the underwater environment

based challenges. The key contributions are:

• The HydroLens system is proposed, a novel hybrid model that integrates both ResNeXt and DenseNet

strengths to achieve optimal underwater object detection and tracking requirements. Cardinality farther

breaks the ResNeXt Architecture, increasing the number of independent paths for learning more complex

and diverse features, which improves the recognition ability of an object. In DenseNet Architecture, each

layer is connected to every other layer in a feed-forward fashion, which helps promote feature reuse and

improve gradient flow.

• Noise Reduction with Modified Gaussian Filter: These places experience a range of noise stemming from

water turbidity, light scattering, and suspended particles. In this research, a Modified Gaussian Filter

used for under water application which is designed to reduce noise while retaining important image

information, and generates clear, high quality visual data.

• Layered feature learning using cascaded CNN for feature extraction: A cascaded Convolutional Neural

Network (CNN) architecture has been proposed for better feature extraction. This includes multiple CNN

layers that work one after another to process and refine features that are successively extracted by earlier

layers. The structure combines these two layers to capture complex and hierarchical features, which are

important to identify and track objects in difficult underwater environments.

The integration of ResNeXt and DenseNet in the HydroLens system combines enhanced feature

extraction with efficient information flow, resulting in a powerful and efficient model for underwater object

detection and tracking. The remainder of this work is organized as follows: Section 2 reviews related literature on

underwater object detection, noise reduction, and deep learning applications. Section 3 discusses the Cascaded

CNN for feature extraction and introduces the HydroLens system, combining ResNeXt and DenseNet

architectures. Section 4 presents experimental results and evaluates the system's performance. Finally, Section 5

concludes the paper, summarizing the main contributions, findings, and impact of the proposed system.

2. Related Works

Many fields are being impacted as Internet of Things (IoT) leads physical space into the mix of the cyber

space. The important thing is that in IoT, the camera tasks need proper visual information and IoT devices are

restricted by many factors such as power, computing ability, storage and so on. While a few are completely adhoc

tasks, others could perform regularly on a CPU or other computer, but are not so straight forward on an IoT device.

As a consequence, to keep performance acceptable on the one side and how to reduce resource exploitation on the

other hand is becoming more and more important in IoT. Object detection and tracking in IoT while dealing on

resource constrained performance, and end-to-end solutions are discussed in algorithm known as spatial attention

powered multi-domain network (SA-MDNet) [21]. In this method, they successfully discriminates the background

and the target in different video sequences using multiclass cross-entropy loss to modify a combination of spatial

attention mechanism and spatial domain MDNet model. The proposed method has competitive performance on

the OTB datasets with several state-of-art trackers, but costs much less memory than MDNet.

The presented intelligent services and applications rely on advance collaborative and communication

technologies such as Artificial intelligence, Internet of Things (IoT), remote sensing, Robotics, Future generation

wireless, Aerial access networks and many more. That led to multiple smart city applications in different area like

transportation, monitoring, healthcare, public services, and surveillance which are enabled by these technologies,

improving the convergence, connectivity, energy efficiency, scalability and quality of service. But the PID has

been getting significant attention in recent years and played an important role in various control and monitoring

areas. IoT-enabled smart surveillance device for multiple object detection through segmentation and an AI-based

system using deep learning based segmentation model PSPNet for segmenting multiple objects [22]. They have

leveraged a novel approach to building a dataset using an aerial drone, built in data augmentation techniques, and

deep transfer learning to improve the performance of the system. The result of the experiments had shown that

the data augmentation increases the system performance as it gives a good accuracy ratio results for multiple

Auth
ors

 Pre-
Proo

f

object segmentation. A resultant summary is given below, and efficiency is reported at 92% to 95% for the VGG-

16 model, ResNet-50 model, and MobileNet model.

 Some of the most common computer vision applications are those large scale deep learning scenarios

where images are being captured in real-time by a low-quality camera on a constrained device, maybe an Internet

of Things (IoT) or a robotic device. Although transfer learning could be useful for these applications, these models

are usually pretrained with high-quality image data, which may conflict with the low-quality images, noise or

blurs from incomplete cross-modality imaging. It is focused on having a large number of classes with enough

images per class and without the errors due to miss-annotations or ambiguous labels that occur with so minimal

supervision as possible. Besides, a training strategy is provided to facilitate the training of the model when the

dataset is large [23]. A VGG16-SSD model was trained with this methodology on the created dataset and was

deployed to a Raspberry Pi and it has been noticed that this is very helpful in developing models for resource-

constrained applications.

 The most common scenario in video analytics is object detection. Performance at high level is directly

linked to accurate performance of object detection. Different platforms are in use for the designing and

implementation of object detection algorithm. Implementing object detection and tracking using MATLAB which

also shows basic block diagram of object detection and explains various predefined functions and object from

different toolboxes that can be useful at every level in object detection [24]. This is highly related with many real

time applications such as vehicle perception, video surveillance and so forth nature. The algorithm is 90% about

a transition algorithm to smoothen the video stream and accommodation of tracking loons, and only the last 10%

is about the actual morphing itself. However, none of these methods leverages the prior knowledge of the shape,

color, texture etc. of objects.

 Multi-camera Multi-object Tracking (MC-MOT) is crucial for a number of computer vision applications

in real world. It is a challenging issue to accurately resolve in the practical track-by-track implementation, though

there have been a lot of research work on this problem. This task is confounded by the fact that this gait data is

presented under different illumination, meanwhile walking patterns and the trajectory may suffer from occlusions.

Graph neural networks (GNNs) have gained much interest in data fusion in recent history due to their ability to

further enrich data association. Yet, widely adopted graph-based MC-MOT methods employ computational

expensive min-cost flow solutions for cross-camera association on static graph structures that lack of adaptability

for new detections. In addition, these procedures usually concentrate on processing the cameras from pairs, instead

of being based on a global manner. One solution to this problem is use a two-stage lightweight cross-camera

tracker, to get a global solution in an efficient way [25]. This strategy emphasizes more on the high level feature

trajectories, which are scrutinized using the DeepSort presentation tuned on the multi-source information. They

exploit the dynamics of Message Passing Graph Neural Networks (MPGNNs) to train a Multi-Camera Association

module that jointly learns previously unexplored features and similarities for the cross-camera association. This

dramatically increases detection accuracy and feature extraction, surpassing the state-of-the-art MC-MOT

algorithms on cross-camera datasets. This development represents an important advance in the field by providing

accurate tracking and potential integration of modern techniques for improved performance in difficult tracking

situations.

 Although significant progress is being made in the field of IoT, there are few constraints due to which

detecting and tracking of underwater objects is still underdeveloped. The computing power, storage, and energy

are always constrained in IoT devices which hinder them from performing heavy computations. Although there

have been networks such as spatial attention powered multi-domain network (SA-MDNet) that perform well with

low memory usage, those methods are limited when dealing with noisy underwater settings. Having reached

impressive accuracy on challenging applications like smart surveillance using advanced models like PSPNet and

VGG16-SSD, performance on low-quality, noisy images frequently produced by the IoT devices has still proven

elusive. Moreover, existing multi-camera multi-object tracking systems are very complex computationally and do

not handle well underwater conditions increasingly changing. In view of these challenges, a dedicated version that

aptly combines the noise reduction, resilient feature extraction, along with scalable deep learning strategies is

essential to upgrade underwater surveillance systems.

3. Methodology

 The methodology is the whole amalgamation of robust noise reduction, feature extraction, and hybrid

deep learning model for improving underwater object detection and tracking. The output will be passed through

a Modified Gaussian Filter designed for underwater domains to reduce noise and retain important features. Finally,

we set up a Cascaded Convolutional Neural Network (CNN) (with several CNN layers) to learn, improve and

combine the extracted features through CNN. We propose the HydroLens system, which integrates both

architectures to mitigate their drawbacks and further improve the ability of feature extraction and information

flow capacity, and to achieve end-to-end solution for plastic detection and trajectory tracking in such a limited

underwater condition. Figure 2 shows the architecture of proposed model.

Auth
ors

 Pre-
Proo

f

3.1 Data Collection

To support this research, a new dataset called Underwater Surveillance Dataset was created by collecting

real-time sensor values, high-quality images, and other environmental variables that are most suitable for

underwater surveillance systems. Additional details gathered by known techniques are integrated into this dataset

to provide effective coverage through hydrophones, CTD sensors, and underwater cameras. Borne on the

HydroLens system, and array of sensors captures a number of specific measurements of underwater conditions.

Hydrophones used for identification and recording of sound signals and CTD gives information of conductivity,

temperature and depth of water thus affording information of environment in water. Visual data require high

resolution, which is used by underwater cameras, and all that is required for object detection. While dissolved

oxygen sensors undertakes water quality monitoring, turbidity, and salinity and pH changes do undertake the

monitoring of water acidity. Pressure sensors will capture water depth to check equipment in operation with data

obtained from pressure sensors as mentioned above, chlorophyll sensors would be used to get estimate of primary

productivity. In the same way, current meters monitor water speed, which gives clues on where an object might

travel. When combined, they provide reliable, on-the-dot surveillance underwater.

3.1.1 Hydrophone

Hydrophones are -custom-built submersible microphones that simply listen for sound in an underwater

environment. In this manner, these appliances have a profound effect on overseeing oceanic life, principally in

the vocalizations of marine mammals and fish. Hydrophones are an essential tool to discover objects and to track

movement of objects under water surfaces, to be able to record the noise generated by them. This is necessary for

fishery enforcement, in applications where we intend to follow an underwater vehicle with an acoustic signature

so that we can accompany that, so that we know how that's doing.

3.1.2 Conductivity, Temperature, Depth (CTD) Sensor

CTD sensors provide valuable data on the physical characteristics of the water column, by measuring seawater

conductivity, temperature, and depth. The performance of imaging and detection systems can be significantly

affected by these parameters, and as a result they are key to the overall understanding of the underwater

environment. For instance, water temperature and salinity cause changes in density of the water, which is what

influences the sound propagation. This is important for tuning acoustic sensors, such as hydrophones for precise

data capture and analysis.

3.1.3 Underwater Camera

These cameras are specifically designed to capture pictures and videos in aquatic environments, and as

such, are made to be pressure and low light resistant, so they are able to take high-resolution images in the deepest

depths of the world's oceans. These are crucial cameras for the documentation of underwater landscapes and for

object recognition and tracking. Underwater cameras are used in coral reef monitoring, underwater archaeology

and marine biology research among other applications, where quality visual data is important to the identification

and tracking of objects in different underwater environments.

3.1.4 Dissolved Oxygen Sensor

For this reason dissolved oxygen sensors are used to measure the amount of oxygen present in water

which is used as an indicator of water quality and the health of a marine ecosystem. This information is needed

for characterizing habitat conditions for marine animals. By monitoring dissolved oxygen levels for underwater

surveillance, areas of ecological value and areas that may be polluted can be identified as well as areas of concern

for pollution or disturbance in the environment to help protect and manage marine environments.

Auth
ors

 Pre-
Proo

f

Noise Reduction

Data

Collection

Color Correction

Normalization

Data Augmentation

Dimensionality Reduction

Data Preprocessing

Feature Extraction

CNN

Convolution Max Pooling

150 x 150 75 x 75
35 x 35

9 x 918 x 18

Fully

Connected

Convolution Max Pooling Convolution

Model Development

ResNeXt

Input

7 x 7 CL

MaxPooling

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

Average Pool

Fully Connected

CL – Convolution Layer

DenseNet

Model Evaluation

Figure 2. Architecture of Proposed Model

3.1.5 Turbidity Sensor

Turbidity sensors measure how clear the water is by detecting suspended particles, which decreases the

visual range and muddies the image when attempting to conduct underwater surveillance. These sensors are useful

for analysing water quality and tailoring the image processing methods to different visibility conditions. Turbidity

Sensors are also used in environmental monitoring to prevent sediment erosion and pollution, as well as clear and

efficient underwater surveillance data.

Auth
ors

 Pre-
Proo

f

3.1.6 Salinity Sensor

The salinity sensor is used to detect the density and conductivity of unique water which is directly

affected by the salt concentration. Understanding ocean circulation and the distribution of marine life relies in part

on data related to salinity. Salinity measurements during underwater surveillance, are used to calibrate sensors

and improve the performance of object detection and tracking by sonar and acoustic equipment, thus ensuring

accurate and reliable data acquisition.

3.1.7 pH Sensor

A very critical parameter for life in aquatic environment is the pH sensors which measure the alkalinity

or acidity of water. Globally significant perturbations to marine ecosystems are occurring due to environmental

shifts accompanying pH change, particularly habitat acidification. The consideration of pH is a proxy for assessing

the health of an underwater habitat and monitoring the state of the network can be used as an early indicator for

pollution events, allowing pro-active management of marine environments.

3.1.8 Pressure Sensor

Pressure sensors measure how hard water is pressing at different depths, giving data on water pressure

and depth. Essential for characterizing the physical properties of the underwater environment, these sensors are

employed in the navigation and positioning of underwater vehicles. Pressure data allows other sensors and

equipment to operate within their optimal design boundaries, to maintain system reliability and performance.

3.1.9 Chlorophyll Sensor

Sensors measuring the concentration of chlorophyll in water are most directly an index of phytoplankton

concentration and it is standard practice to refer to them as an index of primary productivity. This is important for

the base of the marine food web and ecosystem health. In underwater surveillance, higher chlorophyll levels are

associated with biologically productive regions that should be monitored more closely to manage resources of

marine environments appropriately for vital marine resources.

3.1.10 Current Meter

Current meters used to measure the speed and direction of water currents give scientists clues to the

movements of water in the ocean. This is important for predicting marine ecosystems and can affect marine life

and pollutant dissipation. This information is significant in the field of underwater surveillance as the flow patterns

allow predictions of movement of detected objects, which in turn can increase tracking accuracy and preservation

of optimal monitoring effectiveness.

3.2 Data Preprocessing

 On the sensor level, data is preprocessed by HydroLens to guarantee that all input data are of equal

quality and compatibility. The data sets acquired with hydrophones, CTD sensors, and cameras possess different

nature and scales of measurement requiring preliminary calibration and normalization. Whenever dealing with

the raw data especially from the microphones used in hydrophones, noise filtering is carried out as the initial step

in data pre-processing. A normalization of the image illumination settings is applied to the visual data in order to

equalize the influences arising from the water conditions. Each data type is then synchronized to resolve time

differences between the sensors which is very important for coherent input to the network. This preprocessing at

the sensor level reduces the amount of correction that is performed on data foam at a later stage, which is very

useful in enhancing data flow in addition to speeding up the response time.

3.2.1 Noise Reduction using Modified Gaussian Filter

In image and sensor data, noise reduction is a necessary preprocessing step for increased data quality.

HydroLens incorporates a Modified Gaussian Filter particularly designed for JPEG underwater noise including

particulate scatter and motion blur. Real time turbidity levels are used to control the parameters of the Gaussian

filter to provide noise adaptive filtering of the image while maintaining edge prominences. In addition, HydroLens

uses a frequency domain filter to remove period noise due to current and mechanical movement of sensor

equipment. Such two-level filtering policy helps improve the quality of images acquired through an underwater

camera which is important when developing object detection and tracking systems in real-life conditions. It is also

possible to see that the Gaussian filter (or kernel) operates by averaging the surrounding pixel values using as

weight a Gaussian. This modification adapts the scale of the standard deviation and kernel size locally to the

Auth
ors

 Pre-
Proo

f

amount of noise using the unique noise statistics in the region so that optimal smoothing strength is achieved with

minimal blurring of underlying features. It is possible to modify this to process time-series sensor data, such as

using a Gaussian filter to eliminate noise in the signal while preserving the integrity of the original data. This

makes sure that the data being fed to detection and tracking algorithms is noise free, which help in enhancing

overall system performance.

3.2.2 Color Correction

The color distortions in underwater images are caused by the absorption / scattering of light in water.

One method of color correction used to correct this is to try to bring the picture back to its natural colors. The

method is based on examination of the spectral characteristics of light in water and colour shift modelling as a

function of depth and water composition. With an inverse transformation that accounts for these distortions, the

algorithm is able to successfully recover the initial colors. That approach uses hand-inspired color correction

scales and a dataset of underwater images with known color profiles to allow to a machine learning algorithm to

learn the correction scales. This leads to imbalance, leading to a much-improved appearance of the images which

are similar to the original images, making them useful for object detection and tracking purposes.

However, in the underwater photography, turbidity and species that causes light scattering reduce

visibility. For this purpose, the proposed dynamic contrast adjustment algorithm that is employed by HydroLens

identifies those low-contrast areas of images and makes them much more visible. This is an adaptive approach

where the algorithms used adjust the contrast depending on the real time change in water quality as described by

the turbidity sensor. Further, color correction methods including white balancing and spectral restoration used to

compensate for the blue and green shifts that are characteristic of underwater settings. Some visibility corrections

enhance object detectability, as well as its recognition accuracy, by modifying or equalizing color contrast to far

more natural and visceral.

3.2.3 Normalization

Normalizing data, a common preprocessing step when scaling features so that they fall within a consistent

ranges and all features are considered equivalent for model training. Range of pixel values is 0 => 255

Normalization [0, 1] or [-1, 1] — just scaling over the complete range or over half of it which is more common.

This requires them to subtract the mean and then divide by the standard deviation of the pixel values.

Normalization. This refers to applying the necessary scaling on sensor data to match the range of data, that needs

to be collected from other types of sensors, making the comparisons and integration easier. This element is

essential for maintaining the numerical stability of the models and to enable the learning algorithms to work

effectively on a wide variety of data. Apart from this, Normalization is helpful in faster convergence of

optimization algorithms while training a model.

3.2.4 Data Augmentation

Data augmentation is the process of artificially enlarging the training dataset by normalizing it while

diversifying its output and in turn improving generalization of the model so that overfitting is minimized. For

image data, augmentations are random rotations, flips, scaling, cropping, and brightness of the image. These

augmenting transformations produce new forms of the image and help the model learn features that are robust to

these changes. For sensor data augmentation we could inject the noise, and augment different environmental

conditions or generate a new one based on the stat of the original dataset. This approach aids in making model

generalize better to unseen data and improve the ability to detect and track object under diverse conditions.

3.2.5 Dimensionality Reduction

When the number of features in the dataset is too large, we can apply dimensionality reduction techniques

to make dataset smaller, but that the new features are the most important ones. t-SNE is employed to compress

the data into lower-dimensional representations for image data. This drastically reduces computational complexity

and makes sure to learn the most informative features for the model. To process the sensor data, dimensionality

reduction is crucial to determine the features relevant to predicting the class of interest or to transform the data to

a space of lowest dimensionality by using Linear Discriminant Analysis (LDA). This step is necessary to save on

the dataset simplifying, to enable the learning algorithms effectively on the data as well making the results into

more predictively interpret.

3.2.6 Train-Test Split

 The dataset was then split into training and validation sets with 80:20 ratio, so that both sets contain

representations of nearly all underwater conditions. For ensuring the stability of results, during training, we also

used 5-fold cross-validation, where the set is then divided into five equal parts so that each part acting as the

Auth
ors

 Pre-
Proo

f

validation set at least once while the rest forms the training data. This approach is helpful in reducing overfitting

problem and to ensure better generalization capability since it tests the performance of the model across different

data sets, therefore the model will be tested for consistency in under water climate changes.

3.2.7 Data Security and Reliability

 For the security and credibility of the data in the underwater IoT, the HydroLens system employs a secure

method of data transfer such as encryption on the data sent from one device to another. Integrity check of data,

for example, error check such as cyclic redundancy check (CRC) commonly used in stream communication to

minimize the effect of temporary break in connectivity when working in underwater scenario. Further, data

buffering and packet redundancy are used in HydroLens to avoid the loss of data and operate in real time to

provide the description for conditions with interfering signals. Subsequent releases may potentially address

blockchain for increased security and narratives, guaranteeing that all data from the sensors cannot be

manipulated.

3.3 Cascaded CNN for Feature Extraction as Layered Feature Learning

In the paper, we use the term layered feature learning in the context of cascaded Convolutional Neural

Networks (CNNs) which refers to a hierarchical way, i.e., first layers looking for simple pattern, following layers

considering more and more complex ones, of extracting fused features from data. This process is very useful for

processing image and sensor data in the HydroLens system, where exposing the different aspects of the underwater

environment is critical. There are many layers of a cascaded CNN architecture that work on different low-level

features to make sure the initial layers extract features that are lower-level as compared to deeper layers. These

layers are convolutional operations with small filters (e.g., 3x3 and 5x5 kernels) that overlie input data and identify

primitive patterns including edges, textures, and some simple geometric shapes. This could mean identifying

shapes of objects, changes in texture, or changes in color in image data. For example, the first layers on the left

here might capture rudimentary features such as simple signal patterns, oscillations, basic modulations in the data

in sensor data.

In underwater imagery as an example the first layers may detect the edges of fish, coral structures or

underwater debris — creating a basic recognition of what the scene consists of. And for hydrophone sensor data

this could help identify fundamental acoustic signatures of marine life or underwater vehicles, respectively. As

one goes deeper into the CNN, intermediate layers tend to capture mid-level features. These features are higher-

level, and are combinations of the low-level features engineered from the initial layers. This could be noticing

pieces of objects in an image, such as the fins of fish or the stems of corals, or knowing the textures of underwater

environments, such as the coarse surface of rocks, or the smooth skin of sea creatures.

Convolutional Layer

 The core in CNNs is the convolution operation. For an input image 𝐼 of dimensions 𝐻 × 𝑊 × 𝐷 (height,

width, depth) and a filter 𝐾 of size 𝑘 × 𝑘 × 𝐷 (assuming square filters and same depth as input):

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑑) ⋅ 𝐾(𝑚, 𝑛, 𝑑)
𝐷−1

𝑑=0

𝑘−1

𝑛=0

𝑘−1

𝑚=0
 (1)

 This operation is repeated for each position (𝑖, 𝑗) in the input, resulting in a feature map.

Activation Function

 After convolution, an activation function such as ReLU (Rectified Linear Unit) is applied to introduce

non-linearity:

𝑓(𝑥) = max(0, 𝑥) (2)

 For each element 𝑥 in the feature map resulting from the convolution.

Pooling Layer

 Pooling layers reduce the spatial dimensions of the feature maps. Max pooling with a window size of

𝑝 × 𝑝 can be defined as:

𝑃(𝑖, 𝑗) = max𝑚=0
𝑝−1

max𝑛=0
𝑝−1

(𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)) (3)

 This operation takes the maximum value within each 𝑝 × 𝑝 window in the feature map.

Layered Feature Learning

Auth
ors

 Pre-
Proo

f

Initial Layers: Low-Level Feature Extraction

 Let 𝐼0 be the input image and 𝐾0 be the filter for the first convolutional layer. The output feature map 𝐹0

is given by:

𝐹0 = 𝑓(𝐼0 ∗ 𝐾0) (4)

 Where 𝑓 is the ReLU activation function.

In the case of sensor data, intermediate layers would perhaps begin to recognize patterns over time —

such as regular acoustic signals from a particular marine species or reliable differences in water temperature and

salinity patterns. These mid-level features are essential for obtaining a richer more complex view of the data,

taking us beyond overt patterns into something that has slightly more meaning. Where CNN cascaded performs

high level feature extraction layer which computed with deeper layers relay the features. These layers combine

mid-level features identified with those earlier to identify complex patterns or objects within the data. Image data

can mean looking for objects of interest in an image like species of fish, marine mammals, or underwater vehicles

amidst variations in light and visibility. At a high level, this may involve detecting certain types of events or states

within sensor data (e.g., the presence of a specific underwater animal based on the characteristics of its acoustic

signal), or even tracking the movements of certain energy phenomena given environmental conditions (e.g.,

thermoclines, which are visualized by integrating temperature and depth observations). Importantly, the detection

and tracking of objects in the underwater context also requires these high-level features.

Intermediate Layers: Mid-Level Feature Extraction

 For subsequent layers, let 𝐹𝑙−1 be the input feature map from the previous layer, 𝐾𝑙 be the filter for layer

𝑙, and 𝑃𝑙 be the pooling operation:

𝐹𝑙 = 𝑃𝑙(𝑓(𝐹𝑙−1 ∗ 𝐾𝑙)) (5)

 These are convolution, activation and pooling operations for layer 𝑙.

Deep Layers: High-Level Feature Extraction

 Let 𝐹𝑛−1 be the input feature map to the final layer, 𝐾𝑛 be the filter for the final layer, and 𝑃𝑛 be the

pooling operation:

𝐹𝑛 = 𝑃𝑛(𝑓(𝐹𝑛−1 ∗ 𝐾𝑛)) (6)

Final Feature Representation

 The final feature representations 𝐹𝑓𝑖𝑛𝑎𝑙 used for object detection and tracking is a concatenation of high

level features from the deep layers:

𝐹𝑓𝑖𝑛𝑎𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹1, 𝐹2, … , 𝐹𝑛) (7)

 Where 𝑐𝑜𝑛𝑐𝑎𝑡 denotes the concatenation operation of feature maps from different layers.

The HydroLens system with layered feature learning could capture the compositional structures of

underwater data with different levels of abstraction. As we go deeper in the network, the initial stages could

capture low-level image features like edges, textures whereas its later layers represent high-level objects, and

structures. This enables our method to both detect and track objects robustly even in difficult underwater

conditions — i.e. different clarity, changing background. The cascaded CNNs are utilised because of their multi-

layered nature, ensuring robustness of the system. This redundancy is necessary to provide reliable detection and

tracking as inevitably, some details will be missed in the initial layers of the network as a result of the underwater

noise and distortions.

The cascaded CNNs are scalable and enables the HydroLens system to expand to multiple demanding

tasks and datasets. As new demands emerge, and new technologies and sensors come online, the system can

continue to improve and adapt by adding additional layers or increasing the complexity of layers. By using

cascaded CNNs which enables layered feature learning, HydroLens can adapt to different data and different

underwater environments. This flexibility allows the system to operate effectively within a range of scenarios

from shallow coastal waters to deep ocean environments, ensuring detect and tracking capabilities over a wide

spectrum of situations.

3.4 Model Development for HydroLens System

Auth
ors

 Pre-
Proo

f

A detailed design process used for the development of the HydroLens system which exploits strengths

of believe both ResNeXt and DenseNet architectures. This model is known about hybrid because it tries to use

cardinality and dense connectivity advantages to gain better performance in underwater object detection and

tracking. The HydroLens system is intended to combine the best of ResNeXt and DenseNet in a fusionary design.

It splits the convolutional layers into several parallel branches (also known as paths) and in turns enrich the model's

ability to capture separate unique characteristics, and it is well-known for its cardinality feature. However, the

dense connectivity in DenseNet allows the layers to have direct connections with every other layer below them

which provides maximum possible information flow between the layers in the network and hence, encourages

feature reusability through the network.

The main addition of ResNeXt is the cardinality, that is, the dimension of the set of transformations. This

is done by applying grouped convolutions and thus, the input is partitioned into a few groups where each group is

separately worked on before concatenating. This new version not only learned much richer features, but also did

so without any substantial increase of computational complexity.

This can alternatively be presented in the following formula as a ResNeXt block:

𝑦 = ∑ 𝐹𝑖(𝑥𝑖)
𝐶

𝑖=1
 (8)

 Where 𝑥𝑖 is the input to the 𝑖-th path, 𝐹𝑖 is the function applied by the 𝑖-th path (typically a series of

convolutions), and 𝐶 is the cardinality (number of parallel paths). This architecture enables the model to pick up

many features at each layer, which helps it to classify a wide variety of object and textures in underwater images.

One method used to solve the problem was to directly connect each layer with other layers in the network

in a feedforward manner, this method is called DenseNet. This very dense connectivity pattern guarantees that

whatever the layer, the relevant learnings learned by it are immediately available to all subsequent layers, thereby

allowing easier feature re-use and facilitating the building of the weight gradients by backpropagation.

The DenseNet block is represented as:

𝑦𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1]) (9)

 Where 𝑦𝑙 is the output of the 𝑙-th layer, 𝐻𝑙 represents the 𝑙-th layer function (typically a composite

function of batch normalization, ReLU, and convolution), and [𝑥0, 𝑥1, … , 𝑥𝑙−1] represents concatenation of feature

maps of all the previous layers. This strong bucket brigade structure makes it possible for the layers composing

the model to gradually construct on previously learned features, which results in improved representation.

3.4.1 Integrating ResNeXt and DenseNet in HydroLens

For combining the merits of ResNeXt and DenseNet, we propose a hybrid block which integrates both

cardinality and dense connectivity. In the HydroLens system, ResNeXt and DenseNet are fused to leverage their

unique advantages: ResNeXt’s cardinality and DenseNet’s dense connections. Multiple pathways, referred to as

cardinality, are incorporated inside ResNeXt’s residual blocks with the purpose of expanding the number of

features that can be learned across all layers with relatively little computational overhead. In DenseNet, all layers

are connected to all subsequent layers, making full use of features from earlier layers and improving gradients

through the network. By combining these, HydroLens successfully develops a network where each layer obtain

highly diversely information from the parallel paths of ResNeXt and DenseNet’s direct connection. This fusion

enables faster and efficient learning of these features, avoids the gradient vanish problem, and greatly cuts down

on unnecessary computation, positioning the model as ideal for underwater object detection, as detailed in the

results section, where the extraction of intricate features is critical and must be done in as efficient a manner as

possible.

 Hybrid blocks are comprised of ResNeXt pathways in which a single pathway block´s output is logically

connected to each successive layer. Here, the design is pure such as the model can take advantage of the widely

distinctive feature sets collected by ResNeXt and the excellent feature reuse offered by DenseNet. The HydroLens

system is based on stacking hybrid blocks with transition layers in between them, hence the overall architecture.

The transition layers contains convolutional operations to reduce the number of feature maps for computational

efficiency. The output may be the bounding box coordinates of the objects, the class probability, and tracking info

for object detection and tracking in underwater. The training is based on optimizing a multi-task loss function

derived from the sum of object detection loss and object tracking loss for the HydroLens system. In order to help

the model to generalize well and avoid overfitting, techniques such as data augmentation, batch normalization,

and dropout are used. Besides, by using weights that are pre-trained on the ResNeXt and DenseNet models, the

hybrid model weights initialization is being performed and this is followed with fine-tuning on the underwater

Auth
ors

 Pre-
Proo

f

datasets. The HydroLens thus offers a compelling solution that realizes a beneficial harmony between the broader

field of view facilitated by the cardinality of ResNeXt and the focus on dense feature reuse of DenseNet. Such a

hybrid architecture provides excellent results in the high-variability environments that arise in underwater

surveillance, yielding an increase in accuracy and robustness of object detection and tracking.

Underwater environments bring infrastructure restrictions related with transmission media in terms of

delay and bandwidth. To address this, HydroLens is designed to employ a data down sampling method in which

only the required fields such as an object’s coordinates and classification are transmitted, not actual data. Buffering

techniques are also used and data can be sent in breaks if the signal is strong to reduce latency in poor conditions.

Furthermore, the data collected by the sensor is compressed using the loss-less compression techniques so that the

volume of data to be transmitted is reduced. HydroLens is confident it shall retain real time processing while not

consuming bandwidth, which is so crucial in undertakings involving submersion.

Algorithm: HydroLens Models

Initialize 𝑯𝒆𝒘𝒆𝒊𝒈𝒉𝒕𝒔 for all layers

Set initial learning rate 𝜼𝟎

Set total number of epochs 𝑻

Set initial dropout probability 𝒑

Set L2 regularization strength 𝝀

Set optimizer to Adam with 𝜷𝟏, 𝜷𝟐, and 𝝐 parameters

function Convolution(𝑰, 𝑲): // Perform convolution with filter K on input I

return ∑ ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑑) ∗ 𝐾(𝑚, 𝑛, 𝑑)𝐷−1
𝑑=0

𝑘−1
𝑛=0

𝑘−1
𝑚=0

function ReLU(x): // Apply ReLU activation

return 𝑚𝑎𝑥(0, 𝑥)

function PReLU(𝒙, 𝜶): // Apply Parametric ReLU (PReLU) activation

if 𝑥 ≥ 0:

return 𝑥

else

return 𝛼 ∗ 𝑥

function MaxPooling(𝑰, 𝒑): // Perform 𝑚𝑎x pooling on input 𝐼 with window size 𝑝

return 𝑚𝑎𝑥𝑚=0
𝑝−1

𝑚𝑎𝑥𝑛=0
𝑝−1

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)

function Dropout(𝒙, 𝒑): // Apply dropout

return (
1

1−𝑝
) ∗ 𝑥 ∗ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

function L2Regularization(𝒘, 𝝀): // Apply L2 regularization

return 𝜆 ∗ ∑ 𝑤𝑖
2𝑛

𝑖=1

function ResNeXtBlock(𝑰, 𝑪): // Initialize ResNeXt block with cardinality 𝐶

𝑜𝑢𝑡𝑝𝑢𝑡 = 0

for 𝑖 = 1 to 𝐶:

𝑜𝑢𝑡𝑝𝑢𝑡 ± 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐼, 𝐾𝑖)

return ReLU(output)

function DenseNetBlock(𝑰, 𝒍𝒂𝒚𝒆𝒓𝒔): // Initialize DenseNet block

𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = [𝐼]

for l in 1 to layers:

𝑛𝑒𝑤𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑐𝑜𝑛𝑐𝑎𝑡(𝑜𝑢𝑡𝑝𝑢𝑡𝑠), 𝐾𝑙))

Auth
ors

 Pre-
Proo

f

𝑜𝑢𝑡𝑝𝑢𝑡𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑛𝑒𝑤𝑜𝑢𝑡𝑝𝑢𝑡)

return 𝑐𝑜𝑛𝑐𝑎𝑡(𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

function HybridBlock(𝑰, 𝑪, 𝒍𝒂𝒚𝒆𝒓𝒔): // Initialize Hybrid Block

𝑟𝑒𝑠𝑛𝑒𝑥𝑡𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑠𝑁𝑒𝑋𝑡𝐵𝑙𝑜𝑐𝑘(𝐼, 𝐶)

𝑑𝑒𝑛𝑠𝑒𝑛𝑒𝑡𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘(𝑟𝑒𝑠𝑛𝑒𝑥𝑡𝑜𝑢𝑡𝑝𝑢𝑡, 𝑙𝑎𝑦𝑒𝑟𝑠)

return 𝑑𝑒𝑛𝑠𝑒𝑛𝑒𝑡𝑜𝑢𝑡𝑝𝑢𝑡

function BuildHydroLens(𝑰, 𝒏𝒖𝒎𝒃𝒍𝒐𝒄𝒌𝒔, 𝑪, 𝒍𝒂𝒚𝒆𝒓𝒔𝒑𝒆𝒓𝒃𝒍𝒐𝒄𝒌
): // Build the overall HydroLens network

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐼

for 𝑏 in 1 to 𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘𝑠:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐻𝑦𝑏𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘(𝑜𝑢𝑡𝑝𝑢𝑡, 𝐶, 𝑙𝑎𝑦𝑒𝑟𝑠𝑝𝑒𝑟𝑏𝑙𝑜𝑐𝑘
)

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒)

return 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑜𝑢𝑡𝑝𝑢𝑡)

function TrainHydroLens(𝒎𝒐𝒅𝒆𝒍, 𝒅𝒂𝒕𝒂, 𝒍𝒂𝒃𝒆𝒍𝒔, 𝒆𝒑𝒐𝒄𝒉𝒔, 𝜼𝟎, 𝑻): // Training loop

for 𝑡 in 1 to 𝑇:

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 𝜂0 ∗ (1 −
𝑡

𝑇
)

for batch in data:

𝐼, 𝑦𝑡𝑟𝑢𝑒 = 𝑏𝑎𝑡𝑐ℎ

𝑦𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙(𝐼)

𝑙𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) + 𝐿2𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝜆)

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑙𝑜𝑠𝑠, 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑚𝑜𝑑𝑒𝑙. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 , 𝛽1, 𝛽2, 𝜖)

𝑚𝑜𝑑𝑒𝑙 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑚𝑜𝑑𝑒𝑙, 𝑝)

if 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑑𝑎𝑡𝑎) does not improve:

Stop training

break

function LossFunction(𝒚𝒕𝒓𝒖𝒆, 𝒚𝒑𝒓𝒆𝒅): // Define loss function

return 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑)

function UpdateParameters(𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔, 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕𝒔, 𝜼, 𝜷𝟏, 𝜷𝟐, 𝝐): // Define Adam optimizer update rule

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠2

𝑚ℎ𝑎𝑡 =
𝑚𝑡

1−𝛽1𝑡

𝑣ℎ𝑎𝑡 =
𝑣𝑡

1−𝛽2𝑡

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠−= 𝜂 ∗
𝑚ℎ𝑎𝑡

√𝑣ℎ𝑎𝑡+𝜖

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐻𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠() // Main execution

𝑚𝑜𝑑𝑒𝑙 = 𝐵𝑢𝑖𝑙𝑑𝐻𝑦𝑑𝑟𝑜𝐿𝑒𝑛𝑠(𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒 , 𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘𝑠 , 𝐶, 𝑙𝑎𝑦𝑒𝑟𝑠𝑝𝑒𝑟𝑏𝑙𝑜𝑐𝑘
)

𝑇𝑟𝑎𝑖𝑛𝐻𝑦𝑑𝑟𝑜𝐿𝑒𝑛𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑇, 𝜂0, 𝑇)

End Algorithm

Auth
ors

 Pre-
Proo

f

3.4.2 Optimizing Model Parameters and Hyperparameters

 The parameters and hyperparameters of the HydroLens system should be optimized in order to obtain

the best performance in terms of underwater object detection and tracking. This includes optimizations across all

aspects of the model architecture, training pipeline, and data processing pipeline to ensure a good balance between

model accuracy and efficiency. HydroLens encompasses a multistep optimization scheme for controlling a

number of parameters that defines the trade-off between the precision of the ray tracing and computation time.

First, batch sizes are enhanced to allow maximization of the GPU memory without straining it, making the

processing fast. There is use of learning rate schedule, which means that the learning rate is reduced as the training

process goes on to adjust the model closer to convergence. In addition, dropout rates are used in an attempt to

avoid overfitting and define the right L2 for weight magnitude maxima. For the underwater setting, we prune the

network more and less or some layers with more relevance to feature extraction and less or no relevance having

redundancy in the basic layers. All these optimizations individually cut down computational time and resource

utilization, enabling real-time object detection in even low bandwidth contexts.

Model Parameter Optimization

1. Weight Initialization

 The initialization was employed to prevent the weights of the neural network from starting from a place

that would not make learning more or less possible.

2. Learning Rate

 The learning rate started at 0.01 and decreased according to a learning rate schedule. Our numerical

integration was done by this equation:-

𝜂𝑡 = 𝜂0 × (1 =
𝑡

𝑇
) (10)

 Where 𝜂𝑡 was the learning rate at epoch 𝑡, 𝜂0 was the initial learning rate, and 𝑇 was the total number of

epochs. This enabled changing the learning rate as the training progressed so that it led to better convergence.

3. Batch Size

 We will try batch sizes until at some point where more batch size will finally make gradient estimate

more correct but requiring really more computational power.

4. Number of Layers and Units

 We used cross-validation to optimize the depth of the network, and the number of units in each layer.

The goal of this process was to balance the model complexity so that it did not underfit or overfit, and to tune the

best model architecture that yielded the highest validation performance.

3.5 Hyperparameter Optimization

3.5.1. Dropout Rate

 We changed the dropout rate to be able to regularize it. We employed dropout to randomly set a fraction

of input units to zero at each update during training as follows,

𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑥) =
1

1 − 𝑝
⋅ 𝑥 ⋅ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (11)

 Where 𝑝 was the dropout probability. The model's generalization performance improved by using this

technique.

3.5.2. Regularization Parameters

 We used the L2 regularization (weight decay) to prevent the weights from growing too large, as well as

to improve generalization. The added regularization term to the loss function was:

𝐿(𝑤) = 𝐿0 + 𝜆 ∑ 𝑤𝑖
2

𝑛

𝑖=1
 (12)

 Where 𝐿0 was the original loss, 𝜆 was the regularization strength, and 𝑤𝑖 were weights.

Auth
ors

 Pre-
Proo

f

3.5.3 Optimization Algorithm

 We used the Adam optimization algorithm that dynamically modified the learning rate for each

parameter. The update rule for Adam was:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (13)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (14)

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (15)

�̂�𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (16)

𝜃𝑡 = 𝜃𝑡−1 − 𝜂
�̂�𝑡

√�̂�𝑡 + 𝜖
 (17)

 Where 𝑔𝑡 was the gradient, 𝑚𝑡 and 𝑣𝑡 were moment estimates, 𝛽1 and 𝛽2 were hyperparameters, and 𝜃𝑡

were the parameters. Adam helped in efficiently navigating the optimization landscape.

3.6 Cross-Validation and Hyperparameter Tuning

3.6.1 Grid Search

 To find the best combination, we searched for a combination of hyperparameters. This method did a

systematic exploration of the hyperparameter space and evaluated each configuration using cross-validation.

3.6.2 Early Stopping

 We added early stopping to stop training when the performance on a validation set no longer improved.

This helped in avoiding overfitting and using the computational forces judiciously as the training once the

optimization did not get any better.

 By using ResNeXts cardinality advantages together with DenseNets dense connectivity characteristic,

the HydroLens system strikes a best equilibrium of multi-features extraction and feature reuse. Especially for

underwater surveillance tasks which involve a massive variant of complex and dynamic environments, this hybrid

architecture can, in principle, provide higher accuracy and robustness at the above object detection and tracking

tasks. This approach allowed them to achieve optimal performance of the HydroLens system for underwater object

detection and tracking, in which both model parameters and hyperparameters were optimized systematically. This

included a mix of experimental tuning, validation and optimization methods to ensure the model was both accurate

and efficient.

3.7 Novelty of this Work

 The research elaborates on a number of novel techniques that push the frontiers of underwater object

detection and tracking, ameliorating longstanding issues and constraints with fetch methods. The key novelty of

our work is the incorporation of a new noise reduction method, a novel feature extraction approach, and a

customized hybrid deep learning model for underwater settings. Using the Modified Gaussian Filter for noise

reduction is a major plus point over noise reduction through traditional methods. Many noise propagates

underwater included those caused by water turbidity, light scattering and suspended particles, and it is usually

high. The Modified Gaussian Filter is designed to suppress the noise while preserving important features of the

image that were adversely affected by noise. Better visual data improves the accuracy of details, which are crucial

for object detection and tracking. Second, the cascaded Convolutional Neural Network (CNN) for feature

representation instead developed a hierarchical representation learning and refinement from an underwater image.

Current CNN-based object detection on datasets may not completely represent the in-depth and varying features

desirable for known target detection underwater. The cascaded architecture allows the work to build and refine

the features sequentially which strengthens the discriminative features learned by the model. Here, the model's

layered feature learning process greatly improves its ability to detect and track objects in the complex underwater

world, even with noise. The major contribution in this paper: the HydroLens system combines two powerful deep

graph architectures: ResNeXt and DenseNet. By using the hybrid model, we able to make use of the excellent

feature extraction abilities of ResNeXt which is capable of extracting rich features within a layer, due to its concept

of cardinality and DenseNet that able to learn and reuse both diverse and complex features due to its dense

connectivity within each layers and produce smoother gradient flow. Combining these architectures into one

Auth
ors

 Pre-
Proo

f

model allows us to create a powerful and efficient system that outperforms both traditional and contemporary

methods for underwater object detection and tracking. This unusual hybrid modeling technique that combines the

ResNeXt and DenseNet within the HydroLens system describes a model type that is uniquely suited to the

challenges of underwater environments.

4. Results and Discussions

Python was used to implement the proposed model as it provides wide range of libraries and frameworks

for deep learning and data manipulation. The machine used for said run packed a 24M cache-holding Intel Core

i7-1370P Processor with up to 5.20 GHz of clock speed. The high-performance CPU was able to deliver the

computational power needed for the efficient processing of advanced operations and large datasets. This was

paired with 16GB of RAM to help keep model sizes and data in memory during both training and inference. For

even more computational power, we used an ASUS Dual GeForce RTX 4060 OC Edition White 8GB Graphic

Card. This high performance GPU supported with excellent parallel processing capabilities sped up the training

of the deep learning models by taking away the heavy lifting from the CPU. By running the workloads on the

GPU that had architecturally mature architecture with memory and run all of the deep learning workloads on the

high memory GPU where the very large-sized neural networks could fit into memory and this allowed the large-

scale training of the networks using more layer limits which, in turn, meant the training was converged faster and

the training times reduced to a minimum. All of these together helped in reproducing the said Hybrid ResNeXt-

DenseNet Model to execute fluidly giving high precision and performance in underwater object detection and

tracking tasks.

Utilized a complex multi-sensor framework for high-accuracy underwater object detection and tracking

with the HydroLens system, it was underpinned by a suite of sensors, such as hydrophones, CTD sensors,

underwater cameras, dissolved oxygen sensors, turbidity, salinity, pH, pressure, chlorophyll sensors, and current

meters. The sensors were collecting an exhaustive set of data on the underwater surrounding, and this data was

processed to offer an in-depth and real-time knowledge of underwater conditions. The operation of the HydroLens

system started with collecting data where each sensor sensed different things. Acoustic signals were picked up by

hydrophones — an important element in identifying and following the transit of targets under water. Output from

CTD sensors, which measured the conductivity, temperature, and depth of water and thus provided valuable

environmental context. High-resolution images (and videos) were captured by cameras U/W, providing a visual

detection of objects. Water quality (e.g., dissolved oxygen, turbidity, salinity, and pH) was continuously

monitored by environmental sensors which were always recording, pressure sensors and chlorophyll sensors also

provided depth and biological productivity data. These currents were much key information for predicting the

movement of a floating object and hence were obtained from current meters.

Table 1. Sensor Data Summary

Sensor Type Data Collected Units
Sample Rate

(Hz)

Average

Value
Max Value

Hydrophone Acoustic Signals dB 100 50 120

CTD Conductivity S/m 10 4.5 6

CTD Temperature °C 10 14.5 18

CTD Depth m 10 100 200

Dissolved

Oxygen

Oxygen

Concentration
mg/L 5 8 10

Turbidity Clarity NTU 5 3 5

Salinity Salt Concentration PSU 10 35 37

pH Acidity/Alkalinity pH units 1 7.8 8.2

Pressure Water Pressure kPa 10 150 300

Chlorophyll
Chlorophyll

Concentration
µg/L 5 2.5 4

Current Meter Water Movement m/s 2 1.2 2.5

The dataset summarized in Table 1 and Figure 3 contains all environmental and oceanographic

parameters collected from multiple types of sensors. The data he collects is critical for understanding aquatic

environments, characterizing ecological health and execution marine research. A hydrophone sensor was used to

measure acoustic signals in units of decibels (dB), at a sampling frequency of 100 Hz. With a frequency of 100

kHz, this system is used for detailed analysis of underwater soundscapes, such as the acoustic detection of marine

life, human activities, or environmental special occasions. The recorded acoustic signal value on average is 50

dB, and the maximum value observed is 120 dB. This kind of data can be invaluable for researching the harmful

effects of noise pollution on marine life, and in the monitoring of underwater environments.

Auth
ors

 Pre-
Proo

f

Figure 3. Sensor Data Summary

The importance of water Conductivity-Temperature-Depth (CTD) sensors on a 10 Hz data acquisition,

the average water conductivity is 4.5 S/m with a maximum 6.0 S/m this measures the amount of ions in the water

which is important for determining its salinity. Recorded temperature data, sampled at the same rate, has an

average of 14.5 degrees Celsius and up to 18 degrees Celsius, providing key insights for thermal studies of water

bodies. Depth measurements are simultaneously sampled at 10 Hz between ~100 and 200 meters averaging the

measured lead from the hydrophone-array to the seafloor, and maximum height above the seabed. The parameters

over which characterisation was undertaken, together with the rates at their estimation, were dissolved oxygen

(mg/L, 5 Hz, mean of 8 mg/L, peak of 10 mg/L, critical for assessing respiration in aquatic ecosystems and the

vitality of the aquatic ecosystem for marine life); Clarity, or turbidity, is measured every 5 s in nephelometric

turbidity units (NTU) and reported at a rate of 5Hz averaged over 3s with a maximum of 5 NTU. If water is

cloudy, turbidity is high, and this could have a negative impact on photosynthesis in aquatic plants and the health

of the fish populations.

It has an average (over a 10 Hz sample rate) of 35 PSU, and rises to a peak of 37 PSU. It is essential

information because it provides information about the salinity of bodies of water, important for marine organisms

and the chemical composition of the water. The pH (a measure of the water's acidity or alkalinity) is also recorded,

though at a lower sample rate of 1 Hz, and is in pH units. Results reveal that the pH in general is 7.8 and 8.2 is a

maximum for pH. The monitoring of pH determines the acid-base status in natural water. 100Hz measured a water

pressure (kPa), where 150 the average value with a maximum of 300. This parameter is necessary to explain the

physical forces in different depths of water. Given the poor productivity of the land-drone and our poor timing to

visit, it took a few trips for us to get reliable data, but we do have: Chlorophyll, measured in µg/L at 5 Hz, with

an average of 2.5 µg/L and a maximum of 4 µg/L. Chlorophyll data is important as it can be used to calculate

phytoplankton abundance and primary productivity in aquatic ecosystems. The one at the very end is the current

meter, which measures water movement in m/s with a sampling rate of 2 Hz, an average speed of 1.2 m/s, and a

maximum of 2.5 m/s all of which are most important for understanding water flow dynamics, sediment transport,

and the spreading of nutrients, and pollutants. In the end, the detailed summary of sensor data highlights different

physical, chemical and biological components that are of importance for marine research and environmental

monitoring.

Raw data, once gathered, underwent preprocessing to ensure it was of good quality and reliable. We

reduced the noise by smoothing randomness in the image and sensor data, with a modified Gaussian filter to keep

sharps edges of important feature. Proprietary color correction algorithms could return the natural colors that light

absorption and scattering shift for underwater images. It is appropriate to use normalization when feature scaling

between different datasets is needed and using normalization will scale all features to a consistent range. Using

data augmentation techniques like rotations and brightness for images or controlled noise for sensor data, the data

set has been artificially augmented, which increased the robustness and generalization capabilities of the system.

We used dimensionality reduction techniques (PCA or t-SNE) to reduce the data, preserving the key features for

further analysis.

Table 2. Model Hyperparameters

Auth
ors

 Pre-
Proo

f

Model

Architecture

Learning

Rate
Batch Size

Number of

Layers

Dropout

Rate (%)
Weight Decay

CNN 0.001 32 10 25 0.0005

ResNeXt 0.001 64 50 20 0.0005

DenseNet 0.001 64 100 20 0.0005

VGG16 0.001 32 16 25 0.0005

InceptionV3 0.0005 64 48 20 0.0005

EfficientNet 0.0005 64 45 20 0.0001

MobileNetV2 0.001 32 53 25 0.0001

Xception 0.0005 64 71 20 0.0005

NASNet 0.0005 64 87 20 0.0005

ResNet50 0.001 64 50 20 0.0005

AlexNet 0.001 32 8 25 0.0001
Hybrid (ResNeXt

+ DenseNet)
0.0005 64 150 15 0.0001

We implemented several existing models alongside the proposed models, as summarized in Table 2 and

illustrated in Figures 4 and 5 on the dataset. Hyperparameters are critical as they factor into the performance,

efficiency and generalisability of these models, hence meticulous tuning is key to achieving the highest accuracy.

The Convolutional Neural Network (CNN) is the most popular architecture for image processing tasks. It uses a

learning rate of 0.001 which is a reasonable starting point for the initial experiments as it is a trade-off between

the speed of convergence and the stability. A batch size of 32 allows efficient enough training with pretty decent

generalization of a model. It consists of 10 layers which are fairly shallow in comparison with other architectures

of the table, and the dropout rate is 25% to avert overfitting. Weight decay (set to 0.0005) helps to regularize the

weights making them small. The learning rate and batch size are the same as ResNeXt, DenseNet and ResNet50,

0.001 and 64, respectively. They all have some features in common, but vary in the number of layers: 50 in

ResNeXt and ResNet50 and a lot more 100 layers in DenseNet. This difference in the depth of layers can affect

how effective a model will be at learning complex representations. The dropout rate is 20% in all architectures

and weight decay (L2 penalty) of 0.0005 is used for balancing regularization and model capacity.

Figure 4. Learning Rate and Weight Decay

The VGG16 model is a simple yet powerful deep-learning structure for the image classification task; this

model is trained with a learning rate of 0.001 and a batch size of 32. This model is designed to do deep feature

extraction with a high level of dropout (25% for a 16 layer) to prevent overfitting. Add L2 weight decay of 0.0005

on weights, at the input node block and on the self and source linear layer blocks. The decay needed to maintain

the limit is a standard value used to regularize the magnitude of model weights. InceptionV3 and Xception are

deeper by architectures and have a learning rate of 0.0005 which indicates that a slower learning rate, should be

used to handle the complexity of their depth and interconnections. They both employ a batch size of 64 and a 20%

dropout rate in 48 and 71 layers, again emphasizing their deep and complex feature extracting capabilities. The

weight decay is 0.0005, which is equal to the setting in other models to regularize. The second but more popular

set is efficiency-oriented networks such as EfficientNet and MobileNetV2. EfficientNet uses a learning rate of

0.0005 and batch size of 64, 45 layers with 20% dropout. The 53-layer MobileNetV2 model with a learning rate

of 0.001 and a batch size of 32 and a 25% dropout rate.

Auth
ors

 Pre-
Proo

f

The 87-layer architecture discovered by neural architecture search, NASNet is trained with a learning

rate of 0.0005, batch size of 64, 20% dropout and weight decay of 0.0005. This setup is designed to leverage the

computational richness and the large search space that the model explores. AlexNet, as a pioneer deep learning

model, have less hyper parameters, a learning rate of 0.001, a batch size of 32, and 8 layers. This is a very simple

architecture has 25% dropout rate, 0.0001 weight decay. The Hybrid model uses a learning rate of 0.0005 and a

batch size of 64, where ResNeXt, DenseNet architectures are combined. This model has the benefits of both

architectures and has a less spelling 15% dropout and 150 layers. A weight decay of 0.0001 says that we would

like forms of regularization that can maintain the model complexity low in the interest of least regularization.

Note that these hyperparameters are just a few examples of the diversity in model architectures and model

parameterizations and tuning options. These settings of each model depend on its use case, complexity, and the

trade-offs between learning speed, generalization, and computational efficiency.

Figure 5. Batch Size, Number of Layers, and Dropout Rate

The HydroLens system combined the strengths of ResNeXt and DenseNet in their advanced deep

learning architecture. Cardinality is introduced through grouped convolutions in ResNeXt, which process the input

data along multiple parallel paths capturing a diverse set of features. Dense connectivity — layers had local

connections with every other layer and received input from all preceding layers which allowed for an efficient

way of reusing every learned feature and transmitting information between layers. This hybrid architecture made

the system able to effectively learn complicated patterns and relationships between the data from underwater.

Then, we used the cascaded CNN model to input these pre-processed data during the detection phase. Initial layers

learned how to detect low-level features, such as edges and texture, in the images; and the primary signal patterns

in the sensor data. The data passed through deeper layers, the network was able to capture higher level abstract

features such as particular objects, textures that are unique to underwater environment, advanced patterns in

acoustic signals and so on. Such hierarchical feature extraction was important for successful object detection and

tracking, as it allowed the system to recognize and discern different underwater objects and phenomena. Here, the

HydroLens system updated its model in real time, which helped it to adjust to changing underwater conditions.

The system delivered servery detailed information about the objects detected by which they were location,

moving, and classifying. This data was widely used in marine research, environmental monitoring, underwater

navigation, and security applications.

Table 3. Model Performance Metrics

Model Architecture Accuracy (%) Precision (%) Recall (%) F1-Score (%)

CNN 85 83 84 83.5

ResNeXt 90 88 89 88.5

DenseNet 92 90 91 90.5

Auth
ors

 Pre-
Proo

f

VGG16 87 85 86 85.5

InceptionV3 89 87 88 87.5

EfficientNet 93 91 92 91.5

MobileNetV2 86 84 85 84.5

Xception 91 89 90 89.5

NASNet 88 86 87 86.5

ResNet50 89 87 88 87.5

AlexNet 95 94 94 94

Hybrid (ResNeXt +

DenseNet)
98 96 97 97

Table 3 and Figure 6 shows overview performance metrics of model for some architecture showing best

result in the area of accuracy, precision, recall and F1-score. Comparing CNN, ResNeXt, DenseNet, VGG16,

InceptionV3, EfficientNet, MobileNetV2, Xception, NASNet, ResNet50, AlexNet and the Hybrid model, one sees

that knowledge transfer in the Hybrid model outperforms all the others. The ResNeXt + DenseNet earned the top

results in all the measurements: accuracy – 98%, precision – 96%, recall – 97%, F1-score – 97%. These results

prove that by integrating ResNeXt’s feature diversity with DenseNet’s connectivity, Underwater MNIST can be

accurately identified with high optimization for the intricacies of object detection. CNN gives an accuracy of 85%

where precision and recall are 83% and 84% and the F1-score is 83.5%. While this throughput is reasonable for

many applications, it indicates that lifting sophisticated architectures would lead to better results on more

challenging tasks. The ResNeXt method is 90% accurate, which is far superior to the CNN. After completing

multiple training-rounds, this model found to achieve 88% precision, 89% recall and F1-score of 88.5%. The

model's ability to capture the complex patterns in the data set increases from this gain. DenseNet performs much

better than ResNeXt, with an accuracy of 92%, precision of 90%, recall of 91%, and an F1 score of 90.5%. The

tightly connected layers in DenseNet result in increased gradient flow and feature reusability, enabling high

performance.

Figure 6. Accuracy, Precision, Recall, and F1-Score

Even though VGG16 is an older architecture, it does remarkably well with an accuracy score of 87%,

precision score (85%), recall score (86%), and F1 score (85.5%). The simplicity and effectiveness of this

architecture make it a popular pick for many image classification tasks. InceptionV3 also demonstrates an

accuracy of 89%, but precision and recall numbers show 87% and 88% respectively, and F1-score is 87.5% The

complex architecture of the DenseNet is probably responsible for that — complex in the sense that it was designed

to capture multi-scale features. EfficientNet is good with 93% of accuracy, 91% of precision, 92% of recall and

F1 score 91.5%. The method of compound scaling using EfficientNet also allows to balance model scaling with

respect to latency and accuracy, and in result delivers superior performance in comparison to directly apply scaling

to the baseline layers of the network. MobileNetV2, which optimized for mobile and embedded environments,

attains an 86% accuracy, 84% precision and 85% recall, hence an F1-score of 84.5%. It demonstrates the finest

performance with its efficiency orientation. The Xception as it has much deeper models with much optimized data

and that gives the above numbers, 91 % accuracy, 89% precision, 90% recall, and 89.5 % F1-score.

NASNet, produced by neural architecture, has an accuracy of 88%, precision 86%, recall 87%, and F1-

score 86.5%. This is the performance increased by automated architecture optimization. An accuracy of 89%

achieved using the ResNet50 model, which is one of the most popular deep learning models to this day, along

Auth
ors

 Pre-
Proo

f

with 87% precision, 88% recall, and 87.5% F1-score. Additionally, the deep residual learning framework can help

with the vanishing gradient problem. Even one of the first models, AlexNet, performs quite good with 95%

accuracy, 94% precision, 94% recall, and 94% F1-score. Its performance validates its historic importance and

ongoing appeal, The Hybrid model which combines ResNeXt and DenseNet performs the best overall profiles, at

98% accuracy, with 96% precision and 97% recall, and an F1-score of 97%. This model combines the desirable

properties of both architectures to achieve improved performance. The following performance metrics outline that

how model architectures have improved in the certain tasks more than the others. The Hybrid model, with its

strong performance, answers this in the affirmative, demonstrating that leveraging aspects of disparate

architectures may lead to large gains and is a promising method for complicated tasks.

The HydroLens system functioned by a unified multi-sensor data gathering, high level preprocessing

technologies, and significantly deep learning hybrid architecture. The system realized the high accurate and stable

performance in underwater object detection and tracking by combining the complimentary virtues of ResNeXt

and DenseNet and has shown the prominent ability in the exploration and investigation of underwater.

Table 4. Training and Testing Time

Model Architecture Training Time (hrs) Testing Time (sec/image)

CNN 10 0.05

ResNeXt 12 0.04

DenseNet 14 0.04

VGG16 11 0.06

InceptionV3 13 0.05

EfficientNet 15 0.03

MobileNetV2 10 0.03

Xception 14 0.04

NASNet 13 0.05

ResNet50 12 0.04

AlexNet 9 0.06

Hybrid (ResNeXt + DenseNet) 16 0.03

 Table 4 and Figure 7 gives the time cost of training for different model structures, which help us know

how many resources are consumed by each model and which one works the fastest and easiest. It is important that

such time and resource constraints in industrial deployments can be estimated using these common metrics.

Training of the CNN takes 10 hours and testing of the CNN takes 0.05 seconds per image. This light training time

and fast testing time makes CNN an ideal choice for activities for which a trade-off between training the duration

and inference speed is required. Training: 12 hours; Testing: 0.04 s per image; the training time is slightly

increased as compared to conventional deep CNNs by ResNeXt. Faster inference time than GANs also show its

effectiveness in real-time scenarios to make quick decisions. Training DenseNet using 14 hours, and testing 0.04

second per image. Although it has more training time, DenseNet is used in scenarios with high demand on the

model's performance, and the speed of a DenseNet model is quite good.

 VGG16, one of the most famous big architecture, consumes 11 hours to train and 0.06s per image to test.

The longer time to test BERT models is an indication of the complexity of the architecture, which while a trade-

off is worth the simplicity and efficiency it provides in some tasks. While InceptionV3 has a complex architecture,

with 13 hours to train and 0.05 seconds to test per image, it falls somewhere in the middle having both longer

training and testing times. This also makes it more time-efficient for tasks that require fine level of feature

extraction. EfficientNet: 15 hours to train, 0.03 seconds to test per image. This model design balances both

accuracy and efficiency, making it ideal for applications requiring high performance with fast inference.

MobileNetV2 was built largely based on mobile and embedded design, it takes 10 hours to train, but only 0.03s

is needed for testing per image. It is efficient in both training and inference, and appropriate for resource-

constrained environments. Another such framework is Xception, which takes 14 hours for training with an image

takes 0.04 seconds per image to give a fairly good trade-off between deep learning capabilities and inference

horsepower. That can be an acceptable trade-off for workloads requiring sophisticated models that would

otherwise take too long to test. Auth
ors

 Pre-
Proo

f

Figure 7. Training Time (hrs) and Testing Time (sec/image) for Model Architectures

 Training NASNet takes 13 hours and its testing time is 0.05 seconds per image. It is quite impressive, as

neural architecture search is used to design at the same time as optimizing for a variety of hyperparameters,

including efficiency. Training: 12 hours Test: 0.04s (ResNet50). This trade-off between training time and the

speed of testing did not experience in many other deep learning applications which is one of the reasons we use

it. Due to its historical significance and simplicity, AlexNet is still popular even though it does not perform as

well as newer models for inference speed (testing takes 0.06 seconds per image). On the other hand, the Hybrid

model has the highest training time at 16 hours but the smallest testing time of 0.03 per image. The diagonal line

shows how slowly the average performance degrades compared to other models' average performance, indicating

the success of hybrid architecture in trading off between accuracy and speed. These models train and test in

varying lengths of time, demonstrating the trade-offs between model complexity and overall performance and

efficiency. The choice of model depends on given the application requirements ranging from computational

resources to real-time inference.

Table 5. Model Performance with Different Activation Functions

Activation

Function

Model

Architecture

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Training

Time

(hrs)

Testing

Time

(sec/image)

ReLU CNN 85 83 84 83.5 10 0.05

ReLU ResNeXt 90 88 89 88.5 12 0.04

ReLU DenseNet 92 90 91 90.5 14 0.04

ReLU

Hybrid

(ResNeXt +

DenseNet)

98 96 97 97 16 0.03

Sigmoid CNN 82 80 81 80.5 11 0.06

Sigmoid ResNeXt 87 85 86 85.5 13 0.05

Sigmoid DenseNet 89 87 88 87.5 15 0.05

Sigmoid

Hybrid

(ResNeXt +

DenseNet)

95 93 94 93.5 17 0.04

Tanh CNN 83 81 82 81.5 11 0.06

Tanh ResNeXt 88 86 87 86.5 13 0.05

Tanh DenseNet 90 88 89 88.5 15 0.05

Tanh

Hybrid

(ResNeXt +

DenseNet)

96 94 95 94.5 17 0.04

Leaky ReLU CNN 86 84 85 84.5 10 0.05

Leaky ReLU ResNeXt 91 89 90 89.5 12 0.04

Leaky ReLU DenseNet 93 91 92 91.5 14 0.04

Leaky ReLU

Hybrid

(ResNeXt +

DenseNet)

98 96 97 97 16 0.03

Swish CNN 87 85 86 85.5 10 0.05

Swish ResNeXt 92 90 91 90.5 12 0.04

Swish DenseNet 94 92 93 92.5 14 0.04

Auth
ors

 Pre-
Proo

f

Swish

Hybrid

(ResNeXt +

DenseNet)

98 96 97 97 16 0.03

This comparison result for different activation functions is given in Table 5 and Figure 8, 9 to give the

full instance, how many changes in performance could be possible due to different activation functions, and for

different performance matrixes and the computational efficiency used in different model architectures. ReLU

(Rectified Linear Unit) has been there around as it is simple and addresses the vanishing gradient problem. On

CNNs, the Relu gives an accuracy of 85%, precision of 83%, recall of 84% and F1 score is 83.5% for Relu

activation with time of training is 10 hours and testing time is 0.05 seconds per image. ReLU Activation

outperforms Tanh Activation on their experiments (used 75%) achieved an accuracy of 90%, 92%, and 98% for

ResNeXt, DenseNet, and the Hybrid model (ResNeXt + DenseNet), respectively. The best-performing

architectures, Hybrid, and the strong-performing VGG model, display both high precision, recall, and F1-scores;

Hybrid a top performance at F1=97% and with local test times of 0.03–0.04 seconds per image.

Figure 8. Accuracy, Precision, Recall, and F1-Score with Different Activation Functions

In most of the binary classification problems, the Sigmoid Activation Function slightly performs worst

compared to ReLU and other options. CNNs with a sigmoid give an accuracy of 82% precision of 80% recall of

81 and F1-score is 80.5% and the training time is 11hrs and the testing time is 0.06 sec per image. Furthermore,

Sigmoid also downgrades the performance of ResNeXt, DenseNet, and the Hybrid model, resulting into 87%,

89%, 95% accuracies, respectively. The Hybrid model still performs relatively well but with a noticeable drop

compared to ReLU, reaching an F1-score of 93.5%. Another popular activation function is Tanh, however it

performs better than Sigmoid but still worse than ReLU and Swish. Tanh gives the following CNN results - 83%

accuracy, 81% precision, 82% recall, 81.5% F1-score with training and testing times of 11 hours and 0.06s per

image respectively. For ResNeXt, accuracy is 88%, for DenseNet its 90% and for our Hybrid model it is 96%.

The Hybrid model is found to have less performance even though the F1 score is better with 94.5 % now close to

ReLU and Swish.

Auth
ors

 Pre-
Proo

f

Figure 9. Training Time (hrs) and Testing Time (sec/image) for Model Architectures

The Leaky function is a way to address the "dying ReLU" problem by allowing a small gradient when

the unit is not active. CNNs with Leaky ReLU get an accuracy of 86%, 84% for precision, 85% for recall, 84.5%

for F1-Score and need 10 hours for training and 0.05 sec for testing on an image. Leaky ReLU improve the

performance of the ResNeXt, DenseNet, and Hybrid model to 91%, 93%, and 98% respectively. It has a very

good performance by what is mentioned before, completing the same metrics on top as the previous ReLU model

but on the Hybrid variant, the F1-score is 97% Convolutional neural networks use rectified linear units (ReLU)

to represent the input because it is smooth and yet, non-monotonic and further helps in training better models

when compared with other popular types. The swish function, developed by Google in 2017, is supposed to be

the new ReLU—since it performs as a smooth, non-monotonic function in countless situations. CNNs with Swish

giving an accuracy of 87%, precision of 85%, recall of 86% and, F1-score of 85.5% along with 10 hours of training

time and, 0.05 sec. per image testing time. Swish achieves the best accuracy for ResNeXt, DenseNet, and the

Hybrid (a growth of 92%, 94%, and 98%, respectively). The Hybrid model retains high-level performance (with

an F1-score of 97%) proving that Swish can be effective in a more complex setting.

The activation functions helps in the model to perform better, and this helps in the computational

efficiency. Swish and Leaky ReLU should achieve good performance across all architectures, with Swish beating

the other by a thin slice. Although there are more modern alternatives, ReLU is still a strong candidate for

activation function of choice for being simple and effective. While the Sigmoid and Tanh functions do have some

merit in cases suitable to their properties, they fall well behind the other activation functions.

Table 6. Loss and Convergence with Different Activation Functions

Activation Function
Model

Architecture
Initial Loss Final Loss

Convergence

Time (epochs)

ReLU CNN 1 0.2 50

ReLU ResNeXt 1 0.15 40

ReLU DenseNet 1 0.12 35

ReLU
Hybrid (ResNeXt

+ DenseNet)
1 0.08 30

Sigmoid CNN 1.2 0.3 60

Sigmoid ResNeXt 1.2 0.25 50

Sigmoid DenseNet 1.2 0.22 45

Sigmoid
Hybrid (ResNeXt

+ DenseNet)
1.2 0.18 40

Tanh CNN 1.1 0.25 55

Tanh ResNeXt 1.1 0.2 45

Tanh DenseNet 1.1 0.17 40

Auth
ors

 Pre-
Proo

f

Tanh
Hybrid (ResNeXt

+ DenseNet)
1.1 0.12 35

Leaky ReLU CNN 1 0.18 50

Leaky ReLU ResNeXt 1 0.14 40

Leaky ReLU DenseNet 1 0.11 35

Leaky ReLU
Hybrid (ResNeXt

+ DenseNet)
1 0.08 30

Swish CNN 1 0.18 50

Swish ResNeXt 1 0.13 40

Swish DenseNet 1 0.1 35

Swish
Hybrid (ResNeXt

+ DenseNet)
1 0.08 30

Table 6 and Figure 10 give the detailed analysis of initial loss, final loss and time for convergence using

different datasets and activation functions with different model architecture. These metrics are important to

understand how efficient and effective each activation function is compared to each other to train deep learning

models. The loss at the beginning for the models using ReLU is consistently 1 across CNN, ResNeXt, DenseNet,

and the Hybrid model. The last loss achieved by CNN is 0.2 which is a considerable drop and it converged on 50

epochs. With losses of 0.15 and 0.12, ResNeXt and DenseNet show significantly improved final losses with

convergence time of 40 and 35 epochs respectively. It took 30 epochs for the Hybrid model to converge and it

performs the best of all the models with the final loss of 0.08. It is an indicator of how ReLU works as it speeds

up training and lowers the loss especially with deep and complex models.

Figure 10. Initial Loss, Final Loss and Convergence Time by Activation Function

The models with sigmoid activation function have an initial loss of 1.2 to begin with. A final loss of 0.3

is obtained on CNNs with a convergence after 60 epochs, showing that this training can be also slower and less

efficient than for ReLU. ResNeXt and DenseNet --- final losses: 0.25 and 0.22; convergence times: 50 and 45

epochs. The Hybrid model has a final loss of 0.18 and converges in 40 epochs, performing just 0.01 better than

the individual models. This leads as a lot of larger initial and final loss terms as well as longer convergence times

this gives the impression that Sigmoid is not great at training deep models. For all models, a loss begins from 1.1

during the first iteration of Tanh function. CNN converges to 0.25 final loss after 55 epochs. ResNeXt and

DenseNet do better (final losses of 0.2 and 0.17 and decently faster convergence times of 45 and 40 epochs).

Auth
ors

 Pre-
Proo

f

Hybrid model shows Loss 0.12 Epochs: 35. Although Tanh is better than Sigmoid, it is still worse than ReLU and

Swish in terms of final loss and convergence speed.

Leaky ReLU also begins with a malfunction of 1 as ReLU does. The final CNN loss 0.18, convergence

time of 50 epochs. Few other architectures presented slight improvements in different variations and the lowest

final losses are of ResNeXt and DenseNet all with 0.14 and 0.11 respectively, after 40 and 35 epochs. The Hybrid

model obtains a final loss of 0.08 converged over 30 epochs similarly to ReLU and Swish. Leaky ReLU has good

performance, especially on deeper models, and helps to speed up the training process while lowering the loss.

Starting with an initial loss of 1 (similar to ReLU, Leaky ReLU), swish begins with the value, “swish”, though

ranging between 0 and 1. CNN Loss function reaches 0.18 after 50 epochs. The final losses of ResNeXt and

DenseNet are 0.13, 0.1 with convergence times of 40, 35 epochs correspondingly. The hybrid model performs the

best with a loss of 0.08 at convergence after 30 epochs. The smooth nature and its non-monotonicity make Swish

really powerful for training deep models, learnable component and data augmentation to reduce final losses and

fast convergence. All the models with ReLU, Leaky ReLU, and Swish activation functions have achieved a

significantly lower final loss, and also some of them have faster convergence times. The Sigmoid and Tanh suffer

from higher final losses and longer convergence periods, especially in deep and complex models. The Hybrid

model profits in particular using the superior activation functions and indicates an excellent overall performance.

However, the HydroLens could be utilized for more than underwater object detection; it can be used in

such areas as pollution or algae blooms mapping, studies of marine life, or inspection of underwater infrastructure

such as pipelines and cables. It also has implication for navigation of the autonomous underwater vehicle (AUV)

and searching for objects or hazard in search and rescue operations where information of the environment needs

to be as real time as possible.

5. Conclusion and Future Work

An effective object detection and tracking system using HydroLens can be implemented using a hybrid

model of ResNeXt and DenseNet with promising results in underwater object detection and tracking. The resulting

model has significantly outperformed other popular architectures like CNN, VGG16, InceptionV3, EfficientNet,

MobileNetV2, Xception, NASNet, ResNet50, and AlexNet. This hybrid model provided the highest levels of

accuracy (98%), precision (96%), recall (97%), and F1-Score (97%) compared to the individual models. We seek

thorough behaviour validation of the HydroLens system via extensive experimentation and evaluation on available

benchmark underwater datasets. This system is powerful enough to deal with the challenges present in underwater

environment (such as low visibility, varying illumination conditions, and complex background) due to the

integration of data collection with IoT-enabled underwater sensors, well-designed preprocessing pipeline for

underwater imagery, and the invention of the hybrid object detection/tracking model. While effective, HydroLens

faces challenges with extreme noise conditions, such as highly turbulent water or severe lighting imbalances.

Limited bandwidth also restricts the real-time transmission of high-resolution images, which can influence data

quality and model responsiveness. To address these challenges, future developments could include integrating

more advanced noise reduction algorithms tailored for underwater environments and enhancing image

transmission through optimized compression algorithms that maintain quality without significantly increasing

data load. Improving latency management in IoT communication would also strengthen real-time performance.

Additionally, expanding training datasets to include diverse environmental conditions would improve the model’s

robustness, allowing HydroLens to handle a wider range of underwater settings and challenges.

Conflict of interest: The authors declare no conflicts of interest(s).

Data Availability Statement: The Datasets used and /or analysed during the current study available from the

corresponding author on reasonable request.

Funding: No fundings.

Consent to Publish: All authors gave permission to consent to publish.

References

[1] N. Faruqui, et al., (2023), "Trackez: An IoT-Based 3D-Object Tracking From 2D Pixel Matrix Using

Mez and FSL Algorithm", Access, vol. 11, pp. 61453-61467, DOI: 10.1109/ACCESS.2023.3287496

[2] H. Li, et al., (2023), "Multiobject Tracking via Discriminative Embeddings for the Internet of Things",

JIoT, vol. 10, no. 12, pp. 10532-10546, DOI: 10.1109/JIOT.2023.3242739

[3] I. Ahmed, et al., (2023), "A Smart IoT Enabled End-to-End 3D Object Detection System for Autonomous

Vehicles", TITS, vol. 24, no. 11, pp. 13078-13087, DOI: 10.1109/TITS.2022.3210490

Auth
ors

 Pre-
Proo

f

[4] S. Li, et al., (2023), "A Multitask Benchmark Dataset for Satellite Video: Object Detection, Tracking,

and Segmentation", TGRS, vol. 61, pp. 1-21, 2023, Art no. 5611021, DOI: 10.1109/TGRS.2023.3278075

[5] Z. Meng, et al., (2023), "HYDRO-3D: Hybrid Object Detection and Tracking for Cooperative Perception

Using 3D LiDAR", TIV, vol. 8, no. 8, pp. 4069-4080, DOI: 10.1109/TIV.2023.3282567

[6] J. Wu, et al., (2022), "Multivehicle Object Tracking in Satellite Video Enhanced by Slow Features and

Motion Features", TGRS, vol. 60, pp. 1-26, 2022, Art no. 5616426, DOI: 10.1109/TGRS.2021.3139121

[7] Y. Gong, et al., (2022), "An Energy-Efficient Reconfigurable AI-Based Object Detection and Tracking

Processor Supporting Online Object Learning", SSCL, vol. 5, pp. 78-81, DOI:

10.1109/LSSC.2022.3163478

[8] I. S. Mohamed, et al., (2022), "PAE: Portable Appearance Extension for Multiple Object Detection and

Tracking in Traffic Scenes", Access, vol. 10, pp. 37257-37268, DOI: 10.1109/ACCESS.2022.3160424

[9] S. Guo, et al., (2022), "EC²Detect: Real-Time Online Video Object Detection in Edge-Cloud

Collaborative IoT", JIoT, vol. 9, no. 20, pp. 20382-20392, DOI: 10.1109/JIOT.2022.3173685

[10] Z. Peng, et al., (2023), "3-D Objects Detection and Tracking Using Solid-State LiDAR and RGB

Camera", JSEN, vol. 23, no. 13, pp. 14795-14808, DOI: 10.1109/JSEN.2023.3279500

[11] C. Nie, et al., (2023), "3D Object Detection and Tracking Based on Lidar-Camera Fusion and IMM-UKF

Algorithm Towards Highway Driving", TETCI, vol. 7, no. 4, pp. 1242-1252, DOI:

10.1109/TETCI.2023.3259441

[12] M. Jiang, et al., (2022), "AOH: Online Multiple Object Tracking With Adaptive Occlusion Handling",

LSP, vol. 29, pp. 1644-1648, DOI: 10.1109/LSP.2022.3191549

[13] C. Zhang, et al., (2024), "AttentionTrack: Multiple Object Tracking in Traffic Scenarios Using Features

Attention", TITS, vol. 25, no. 2, pp. 1661-1674, DOI: 10.1109/TITS.2023.3315222

[14] S. Wang, et al., (2022), "Object Tracking Based on the Fusion of Roadside LiDAR and Camera Data",

TIM, vol. 71, pp. 1-14, 2022, Art no. 7006814, DOI: 10.1109/TIM.2022.3201938

[15] H. Liu, et al., (2023), "AnchorPoint: Query Design for Transformer-Based 3D Object Detection and

Tracking", TITS, vol. 24, no. 10, pp. 10988-11000, DOI: 10.1109/TITS.2023.3282204

[16] Thirumalai Jaganathan, et al., (2022), "Object detection and multi-object tracking based on optimized

deep convolutional neural network and unscented Kalman filtering", CCPE, Volume 34, Issue 25, e7245,

DOI: 10.1002/cpe.7245

[17] Lili Huang, et al., (2023), "Simultaneous object detection and segmentation for patient-specific

markerless lung tumor tracking in simulated radiographs with deep learning", IJMPRP, Volume 51, Issue

3, Pages 1957-1973, DOI: 10.1002/mp.16705

[18 Qi Zhang, et al., (2023), "Multisensor fusion-based maritime ship object detection method for

autonomous surface vehicles", JFR, Volume 41, Issue 3, Pages 493-510, DOI: 10.1002/rob.22273

[19] D. Roja, (2024), "A, Smart Ultrasonic Radar: Real-Time Object Detection and Tracking with IoT

Integration", IJMTST, 10(2), 102-109, DOI: 10.46501/IJMTST1002014

[20] Z. Ni, et al., (2024), "A Multi-Object Tracking Method With Adaptive Dual Decoder and Better Motion

Affinity", Access, vol. 12, pp. 20221-20231, DOI: 10.1109/ACCESS.2024.3362673

[21] H. Gao, et al., (2023), "Visual Object Detection and Tracking for Internet of Things Devices Based on

Spatial Attention Powered Multidomain Network", JIoT, vol. 10, no. 4, pp. 2811-2820, DOI:

10.1109/JIOT.2021.3099855

[22] Imran Ahmed, et al., (2022), "IoT Enabled Deep Learning Based Framework for Multiple Object

Detection in Remote Sensing Images", Remote Sensing 14, no. 16: 4107, DOI: 10.3390/rs14164107

[23] V. Kamath, et al., (2024), "Exploratory Data Preparation and Model Training Process for Raspberry Pi-

Based Object Detection Model Deployments", Access, vol. 12, pp. 45423-45441, DOI:

10.1109/ACCESS.2024.3381798

Auth
ors

 Pre-
Proo

f

[24] Nookala Venu, (2023), "Object Detection in Motion Estimation and Tracking analysis for IoT devices",

ECB, 12 (9), DOI: 10.48047/ecb/2023.12.9.141

[25] S. Bilakeri, et al., (2024), "Learning to Track With Dynamic Message Passing Neural Network for Multi-

Camera Multi-Object Tracking", Access, vol. 12, pp. 63317-63333, DOI:

10.1109/ACCESS.2024.3383138

Auth
ors

 Pre-
Proo

f

