
ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

281

HydroLens: Pioneering Underwater Surveillance

with IoT-powered Object Detection and Tracking

using the Hybrid ResNeXt DenseNet Model

1Sujilatha Tada and 2Jeevanantham Vellaichamy
1,2Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and

Technology, Chennai, Tamil Nadu, India
1vtd994@veltech.edu.in, 2drjeevananthamv@veltech.edu.in

Correspondence should be addressed to Sujilatha Tada : vtd994@veltech.edu.in

Article Info

Journal of Machine and Computing (https://anapub.co.ke/journals/jmc/jmc.html)

Doi : https://doi.org/10.53759/7669/jmc202505022

Received 15 April 2024; Revised from 26 July 2024; Accepted 16 November 2024.

Available online 05 January 2025.

©2025 The Authors. Published by AnaPub Publications.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract – Efficient object detection and tracking approaches are gaining popularity and being actively used in the world

of underwater surveillance. This study presents an innovative protocol that combines a Hybrid ResNeXt-DenseNet Model

to boost the visual perceptivity of the Internet of Things (IoT)-based underwater surveillance. The model focuses on what

is the best of ResNeXt and DenseNet, yielding higher accuracy at lower computational cost than either. Its components

are: IoT-enabled underwater sensors for data capture, a robust data preprocessing pipeline designed for underwater

imagery, and the innovative Hybrid ResNeXt-DenseNet Model for object detection and tracking. The architecture of the

model is proposed in order to overcome the issues related to underwater environments, such as low visibility, changeable

illumination conditions, and complex background. Python was used to implement the proposed model and experiments

have been conducted on popular benchmarks of underwater datasets, and the proposed approach obtains a recognition

accuracy of 98%. In this model, the Hybrid ResNeXt-DenseNet Model has the notable ability to accurately identify and

track objects of interest in real-time underwater situations. Furthermore, the inclusion of IoT features ensures data flows

without interruption, allowing for prompt response and action. This research leads towards better situational awareness and

marine environment protection systems by proliferating IoT and exploiting sophisticated deep learning methods at the root

level.

Keywords – Object Detection, Deep Learning, Underwater Surveillance, Internet of Things, Cascaded CNN, Modified

Gaussian Filter, Hybrid ResNeXt-DenseNet Model.

I. INTRODUCTION

Underwater surveillance has become a significant area particularly for maritime security, environmental monitoring, and

resource management. The traditional methods of underwater surveillance are frequently constrained due to poor visibility,

high cost of operation and difficult underwater conditions [1-3]. A transformative solution to these limitations lies in

combining Internet of Things (IoT) technology with cutting-edge object detection and tracking system. Deployment of IoT

enabled sensors and devices to deploy without any need of staff to continuous monitoring of underwater environments,

which is not possible for variety of applications. There are various reasons for this necessity and surveillance underwater.

Detection of unauthorized vessels, submarines, and underwater mines is critical for preventing maritime threats, and for

safe navigation [4]. Another key use case is environmental monitoring, which includes monitoring marine life, pollution

levels, and assessing the impact of environmental changes on the underwater ecosystem. This is important information for

researchers and policymakers involved in maintaining marine biodiversity and sustainable use of resources. In addition,

underwater surveillance is also very important in infrastructure inspection, such as, pipelines, cables, offshore platforms,

to guarantee the integrity of these structures, and to avoid costly reparations [5-7].

One of the major drawbacks of conventional underwater surveillance systems is that most of them require human

intervention in terms of manual monitoring; thus, they are time-consuming and more susceptible to errors. The traditional

techniques are labour-intensive, costly, and un-tolerant to human factor and weather-dependent factors, as indicated by the

need for cameras mounted on existing equipment, such as divers or remotely operated vehicles (ROVs) [8]. In addition,

the underwater environment itself presents many challenges – from changing light conditions to water turbidity, to marine

life – all of which may compromise the accuracy and effectiveness of surveillance operations. Water by nature is not very

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

282

transparent, so we cannot expect a very good ability to detect and track objects at big distances underwater [9-11]. The

timely identification of objects in an underwater environment is necessary to address potential threats, reduce accidents,

and protect aquatic ecosystems. Early detection of unauthorized vessels or underwater mines as anomalies are an integral

part of securing maritime operations. Similarly, early identification of pollution sources can trigger immediate abatement

initiatives which safeguard marine biodiversity and prevent lasting environmental impacts. In terms of infrastructure, being

able to sense ruptures / defects in pipelines and cables before they become catastrophic failures would save a large amount

of money in repair costs. Hence, effective underwater surveillance demands the early and accurate detection of objects [12-

14].

Underwater surveillance systems with built-in deep learning (DL) and machine learning (ML) models have redefined

object detection and tracking capabilities. These are good models at working through lots of data to figure out patterns that

we as humans might not be able to detect. DL and ML algorithms can be used to improve the accuracy, processing rate,

and the ability of underwater surveillance systems to adapt to changing environmental factors. This can be combined with

neural networks, Convolutional Neural Networks (CNNs) and other high-precision DL architectures to achieve accurate

identification and classification of underwater objects under challenging circumstances [15, 16]. DL and ML models are

suitable to navigate the challenging and changing characteristics of underwater environments. CNNs, for example, are

structured to automatically and adaptively learn spatial hierarchies of features from input images, which is perfect for object

detection applications. Such models can be trained on extensive datasets to recognize everything underwater creatures, to

artificial object at many different levels of clarity. In addition, the emphasis on continual learning in these models allows

them to learn new object types and adapt to environmental changes over long periods [17, 18]. Fig 1 shows the underwater

surveillance.

Fig 1. Underwater Surveillance.

In this paper, we introduce a new model for object detection and tracking underwater using a hybrid model based on

ResNeXt and DenseNet architectures. The Hybrid ResNeXt-DenseNet Model utilizes the residual connections of ResNeXt

to strengthen the feature extraction ability and the dense connectivity of DenseNet to encourage more information flow

and easier gradient propagation. This hybrid model has been developed specifically to deal with problems found in

underwater situations, so that object detection and tracking are made resilient and robust. ResNeXt is an improvement over

ResNet architecture where it bring in another dimension called cardinality (the size of the set of transformations) to the

network. It enables for more versatile and efficient leaning of features. This is mainly due to the residual connections in

ResNeXt which can address this problem and allows us to train networks to great depths. In contrast, DenseNet connects

each layer to every other layer in a feed-forward fashion and strengthens feature propagation through the network, which

combats the vanishing-gradient problem. The hybrid model of these two architectures combines the best of them — this

combination tries to provide an efficient support for underwater object detection and tracking. The Hybrid ResNeXt-

DenseNet Model is initially trained on a large dataset of underwater images that contain different types of objects and

conditions. During training trials, the process has been refined to enable the model to better detect and categorize objects

in the underwater environment, with all of its individual challenges. The architecture of the hybrid model is also capable

of learning efficiently while robust to the noise and distortions that are typically encountered under water [19, 20].

Improved Feature Extraction is one of the major advantages of the hybrid model. The residual connections in ResNeXt

allow the model to learn more complex features since the information in different layers is merged, while the dense

connections in DenseNet maximize the flow of important features across the network. This leads to a more robust and

accurate object detection, even under difficult conditions such as darkness or high turbidity. Additionally, the hybrid model

scales up to high-volume, real-time data, which is an essential capability when applied to IoT powered underwater

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

283

surveillance systems. With the hybrid model, IoT devices can collect and send data from a variety of underwater sensors

24/7, displaying a continuous stream of data for analysis. This is important as a decisive tool for real time, to detect or

prevent threats for suspicious events immediately. The power of IoT technology complements the Hybrid ResNeXt -

DenseNet Model to an extensive approach in the front of the underwater surveillance. In a number of strategic locations,

underwater cameras, sonar sensors, and autonomous underwater vehicles (AUVs) may be strategically placed to observe

large areas of the ocean with the contours of submerged ice formations. These devices are gathering data and sending it to

an individual processor where the hybrid model works with that data in real time.

Main Contribution of the Work

This work improves the detection and tracking underwater objects by using Noise Reduction, Feature Extraction, and

Hybrid Model Architecture for the proposed model to overcome the underwater environment based challenges. The key

contributions are:

• The HydroLens system is proposed, a novel hybrid model that integrates both ResNeXt and DenseNet strengths

to achieve optimal underwater object detection and tracking requirements. Cardinality farther breaks the ResNeXt

Architecture, increasing the number of independent paths for learning more complex and diverse features, which

improves the recognition ability of an object. In DenseNet Architecture, each layer is connected to every other

layer in a feed-forward fashion, which helps promote feature reuse and improve gradient flow.

• Noise Reduction with Modified Gaussian Filter: These places experience a range of noise stemming from water

turbidity, light scattering, and suspended particles. In this research, a Modified Gaussian Filter used for under

water application which is designed to reduce noise while retaining important image information, and generates

clear, high quality visual data.

• Layered feature learning using cascaded CNN for feature extraction: A cascaded Convolutional Neural Network

(CNN) architecture has been proposed for better feature extraction. This includes multiple CNN layers that work

one after another to process and refine features that are successively extracted by earlier layers. The structure

combines these two layers to capture complex and hierarchical features, which are important to identify and track

objects in difficult underwater environments.

The integration of ResNeXt and DenseNet in the HydroLens system combines enhanced feature extraction with efficient

information flow, resulting in a powerful and efficient model for underwater object detection and tracking. The remainder

of this work is organized as follows: Section 2 reviews related literature on underwater object detection, noise reduction,

and deep learning applications. Section 3 discusses the Cascaded CNN for feature extraction and introduces the HydroLens

system, combining ResNeXt and DenseNet architectures. Section 4 presents experimental results and evaluates the system's

performance. Finally, Section 5 concludes the paper, summarizing the main contributions, findings, and impact of the

proposed system.

II. RELATED WORKS

Many fields are being impacted as Internet of Things (IoT) leads physical space into the mix of the cyber space. The

important thing is that in IoT, the camera tasks need proper visual information and IoT devices are restricted by many

factors such as power, computing ability, storage and so on. While a few are completely adhoc tasks, others could perform

regularly on a CPU or other computer, but are not so straight forward on an IoT device. As a consequence, to keep

performance acceptable on the one side and how to reduce resource exploitation on the other hand is becoming more and

more important in IoT. Object detection and tracking in IoT while dealing on resource constrained performance, and end-

to-end solutions are discussed in algorithm known as spatial attention powered multi-domain network (SA-MDNet) [21].

In this method, they successfully discriminates the background and the target in different video sequences using multiclass

cross-entropy loss to modify a combination of spatial attention mechanism and spatial domain MDNet model. The proposed

method has competitive performance on the OTB datasets with several state-of-art trackers, but costs much less memory

than MDNet.

The presented intelligent services and applications rely on advance collaborative and communication technologies such

as Artificial intelligence, Internet of Things (IoT), remote sensing, Robotics, Future generation wireless, Aerial access

networks and many more. That led to multiple smart city applications in different area like transportation, monitoring,

healthcare, public services, and surveillance which are enabled by these technologies, improving the convergence,

connectivity, energy efficiency, scalability and quality of service. But the PID has been getting significant attention in

recent years and played an important role in various control and monitoring areas. IoT-enabled smart surveillance device

for multiple object detection through segmentation and an AI-based system using deep learning based segmentation model

PSPNet for segmenting multiple objects [22]. They have leveraged a novel approach to building a dataset using an aerial

drone, built in data augmentation techniques, and deep transfer learning to improve the performance of the system. The

result of the experiments had shown that the data augmentation increases the system performance as it gives a good

accuracy ratio results for multiple object segmentation. A resultant summary is given below, and efficiency is reported at

92% to 95% for the VGG-16 model, ResNet-50 model, and MobileNet model.

Some of the most common computer vision applications are those large scale deep learning scenarios where images are

being captured in real-time by a low-quality camera on a constrained device, maybe an Internet of Things (IoT) or a robotic

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

284

device. Although transfer learning could be useful for these applications, these models are usually pretrained with high-

quality image data, which may conflict with the low-quality images, noise or blurs from incomplete cross-modality

imaging. It is focused on having a large number of classes with enough images per class and without the errors due to miss-

annotations or ambiguous labels that occur with so minimal supervision as possible. Besides, a training strategy is provided

to facilitate the training of the model when the dataset is large [23]. A VGG16-SSD model was trained with this

methodology on the created dataset and was deployed to a Raspberry Pi and it has been noticed that this is very helpful in

developing models for resource-constrained applications.

The most common scenario in video analytics is object detection. Performance at high level is directly linked to accurate

performance of object detection. Different platforms are in use for the designing and implementation of object detection

algorithm. Implementing object detection and tracking using MATLAB which also shows basic block diagram of object

detection and explains various predefined functions and object from different toolboxes that can be useful at every level in

object detection [24]. This is highly related with many real time applications such as vehicle perception, video surveillance

and so forth nature. The algorithm is 90% about a transition algorithm to smoothen the video stream and accommodation

of tracking loons, and only the last 10% is about the actual morphing itself. However, none of these methods leverages the

prior knowledge of the shape, color, texture etc. of objects.

Multi-camera Multi-object Tracking (MC-MOT) is crucial for a number of computer vision applications in real world.

It is a challenging issue to accurately resolve in the practical track-by-track implementation, though there have been a lot

of research work on this problem. This task is confounded by the fact that this gait data is presented under different

illumination, meanwhile walking patterns and the trajectory may suffer from occlusions. Graph neural networks (GNNs)

have gained much interest in data fusion in recent history due to their ability to further enrich data association. Yet, widely

adopted graph-based MC-MOT methods employ computational expensive min-cost flow solutions for cross-camera

association on static graph structures that lack of adaptability for new detections. In addition, these procedures usually

concentrate on processing the cameras from pairs, instead of being based on a global manner. One solution to this problem

is use a two-stage lightweight cross-camera tracker, to get a global solution in an efficient way [25]. This strategy

emphasizes more on the high level feature trajectories, which are scrutinized using the DeepSort presentation tuned on the

multi-source information. They exploit the dynamics of Message Passing Graph Neural Networks (MPGNNs) to train a

Multi-Camera Association module that jointly learns previously unexplored features and similarities for the cross-camera

association. This dramatically increases detection accuracy and feature extraction, surpassing the state-of-the-art MC-MOT

algorithms on cross-camera datasets. This development represents an important advance in the field by providing accurate

tracking and potential integration of modern techniques for improved performance in difficult tracking situations.

Although significant progress is being made in the field of IoT, there are few constraints due to which detecting and

tracking of underwater objects is still underdeveloped. The computing power, storage, and energy are always constrained

in IoT devices which hinder them from performing heavy computations. Although there have been networks such as spatial

attention powered multi-domain network (SA-MDNet) that perform well with low memory usage, those methods are

limited when dealing with noisy underwater settings. Having reached impressive accuracy on challenging applications like

smart surveillance using advanced models like PSPNet and VGG16-SSD, performance on low-quality, noisy images

frequently produced by the IoT devices has still proven elusive. Moreover, existing multi-camera multi-object tracking

systems are very complex computationally and do not handle well underwater conditions increasingly changing. In view

of these challenges, a dedicated version that aptly combines the noise reduction, resilient feature extraction, along with

scalable deep learning strategies is essential to upgrade underwater surveillance systems.

III. METHODOLOGY

The methodology is the whole amalgamation of robust noise reduction, feature extraction, and hybrid deep learning model

for improving underwater object detection and tracking. The output will be passed through a Modified Gaussian Filter

designed for underwater domains to reduce noise and retain important features. Finally, we set up a Cascaded Convolutional

Neural Network (CNN) (with several CNN layers) to learn, improve and combine the extracted features through CNN. We

propose the HydroLens system, which integrates both architectures to mitigate their drawbacks and further improve the

ability of feature extraction and information flow capacity, and to achieve end-to-end solution for plastic detection and

trajectory tracking in such a limited underwater condition. Fig 2 shows the architecture of proposed model.

Data Collection

To support this research, a new dataset called Underwater Surveillance Dataset was created by collecting real-time sensor

values, high-quality images, and other environmental variables that are most suitable for underwater surveillance systems.

Additional details gathered by known techniques are integrated into this dataset to provide effective coverage through

hydrophones, CTD sensors, and underwater cameras. Borne on the HydroLens system, and array of sensors captures a

number of specific measurements of underwater conditions. Hydrophones used for identification and recording of sound

signals and CTD gives information of conductivity, temperature and depth of water thus affording information of

environment in water. Visual data require high resolution, which is used by underwater cameras, and all that is required

for object detection. While dissolved oxygen sensors undertakes water quality monitoring, turbidity, and salinity and pH

changes do undertake the monitoring of water acidity. Pressure sensors will capture water depth to check equipment in

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

285

operation with data obtained from pressure sensors as mentioned above, chlorophyll sensors would be used to get estimate

of primary productivity. In the same way, current meters monitor water speed, which gives clues on where an object might

travel. When combined, they provide reliable, on-the-dot surveillance underwater.

Fig 2. Architecture of Proposed Model.

Noise Reduction

Data

Collection

Color Correction

Normalization

Data Augmentation

Dimensionality Reduction

Data Preprocessing

Feature Extraction

CNN

Convolution Max Pooling

150 x 150 75 x 75
35 x 35

9 x 918 x 18

Fully

Connected

Convolution Max Pooling Convolution

Model Development

ResNeXt

Input

7 x 7 CL

MaxPooling

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

1 x 1 CL

3 x 3 CL

1 x 1 CL

Average Pool

Fully Connected

CL – Convolution Layer

DenseNet

Model Evaluation

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

286

Hydrophone

Hydrophones are -custom-built submersible microphones that simply listen for sound in an underwater environment. In

this manner, these appliances have a profound effect on overseeing oceanic life, principally in the vocalizations of marine

mammals and fish. Hydrophones are an essential tool to discover objects and to track movement of objects under water

surfaces, to be able to record the noise generated by them. This is necessary for fishery enforcement, in applications where

we intend to follow an underwater vehicle with an acoustic signature so that we can accompany that, so that we know how

that's doing.

Conductivity, Temperature, Depth (CTD) Sensor

CTD sensors provide valuable data on the physical characteristics of the water column, by measuring seawater

conductivity, temperature, and depth. The performance of imaging and detection systems can be significantly affected by

these parameters, and as a result they are key to the overall understanding of the underwater environment. For instance,

water temperature and salinity cause changes in density of the water, which is what influences the sound propagation. This

is important for tuning acoustic sensors, such as hydrophones for precise data capture and analysis.

Underwater Camera

These cameras are specifically designed to capture pictures and videos in aquatic environments, and as such, are made to

be pressure and low light resistant, so they are able to take high-resolution images in the deepest depths of the world's

oceans. These are crucial cameras for the documentation of underwater landscapes and for object recognition and tracking.

Underwater cameras are used in coral reef monitoring, underwater archaeology and marine biology research among other

applications, where quality visual data is important to the identification and tracking of objects in different underwater

environments.

Dissolved Oxygen Sensor

For this reason dissolved oxygen sensors are used to measure the amount of oxygen present in water which is used as an

indicator of water quality and the health of a marine ecosystem. This information is needed for characterizing habitat

conditions for marine animals. By monitoring dissolved oxygen levels for underwater surveillance, areas of ecological

value and areas that may be polluted can be identified as well as areas of concern for pollution or disturbance in the

environment to help protect and manage marine environments.

Turbidity Sensor

Turbidity sensors measure how clear the water is by detecting suspended particles, which decreases the visual range and

muddies the image when attempting to conduct underwater surveillance. These sensors are useful for analysing water

quality and tailoring the image processing methods to different visibility conditions. Turbidity Sensors are also used in

environmental monitoring to prevent sediment erosion and pollution, as well as clear and efficient underwater surveillance

data.

Salinity Sensor

The salinity sensor is used to detect the density and conductivity of unique water which is directly affected by the salt

concentration. Understanding ocean circulation and the distribution of marine life relies in part on data related to salinity.

Salinity measurements during underwater surveillance, are used to calibrate sensors and improve the performance of object

detection and tracking by sonar and acoustic equipment, thus ensuring accurate and reliable data acquisition.

pH Sensor

A very critical parameter for life in aquatic environment is the pH sensors which measure the alkalinity or acidity of water.

Globally significant perturbations to marine ecosystems are occurring due to environmental shifts accompanying pH

change, particularly habitat acidification. The consideration of pH is a proxy for assessing the health of an underwater

habitat and monitoring the state of the network can be used as an early indicator for pollution events, allowing pro-active

management of marine environments.

Pressure Sensor

Pressure sensors measure how hard water is pressing at different depths, giving data on water pressure and depth. Essential

for characterizing the physical properties of the underwater environment, these sensors are employed in the navigation and

positioning of underwater vehicles. Pressure data allows other sensors and equipment to operate within their optimal design

boundaries, to maintain system reliability and performance.

Chlorophyll Sensor

Sensors measuring the concentration of chlorophyll in water are most directly an index of phytoplankton concentration and

it is standard practice to refer to them as an index of primary productivity. This is important for the base of the marine food

web and ecosystem health. In underwater surveillance, higher chlorophyll levels are associated with biologically productive

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

287

regions that should be monitored more closely to manage resources of marine environments appropriately for vital marine

resources.

Current Meter

Current meters used to measure the speed and direction of water currents give scientists clues to the movements of water

in the ocean. This is important for predicting marine ecosystems and can affect marine life and pollutant dissipation. This

information is significant in the field of underwater surveillance as the flow patterns allow predictions of movement of

detected objects, which in turn can increase tracking accuracy and preservation of optimal monitoring effectiveness.

Data Preprocessing

On the sensor level, data is preprocessed by HydroLens to guarantee that all input data are of equal quality and

compatibility. The data sets acquired with hydrophones, CTD sensors, and cameras possess different nature and scales of

measurement requiring preliminary calibration and normalization. Whenever dealing with the raw data especially from the

microphones used in hydrophones, noise filtering is carried out as the initial step in data pre-processing. A normalization

of the image illumination settings is applied to the visual data in order to equalize the influences arising from the water

conditions. Each data type is then synchronized to resolve time differences between the sensors which is very important

for coherent input to the network. This preprocessing at the sensor level reduces the amount of correction that is performed

on data foam at a later stage, which is very useful in enhancing data flow in addition to speeding up the response time.

Noise Reduction using Modified Gaussian Filter

In image and sensor data, noise reduction is a necessary preprocessing step for increased data quality. HydroLens

incorporates a Modified Gaussian Filter particularly designed for JPEG underwater noise including particulate scatter and

motion blur. Real time turbidity levels are used to control the parameters of the Gaussian filter to provide noise adaptive

filtering of the image while maintaining edge prominences. In addition, HydroLens uses a frequency domain filter to

remove period noise due to current and mechanical movement of sensor equipment. Such two-level filtering policy helps

improve the quality of images acquired through an underwater camera which is important when developing object detection

and tracking systems in real-life conditions. It is also possible to see that the Gaussian filter (or kernel) operates by

averaging the surrounding pixel values using as weight a Gaussian. This modification adapts the scale of the standard

deviation and kernel size locally to the amount of noise using the unique noise statistics in the region so that optimal

smoothing strength is achieved with minimal blurring of underlying features. It is possible to modify this to process time-

series sensor data, such as using a Gaussian filter to eliminate noise in the signal while preserving the integrity of the

original data. This makes sure that the data being fed to detection and tracking algorithms is noise free, which help in

enhancing overall system performance.

Color Correction

The color distortions in underwater images are caused by the absorption / scattering of light in water. One method of color

correction used to correct this is to try to bring the picture back to its natural colors. The method is based on examination

of the spectral characteristics of light in water and colour shift modelling as a function of depth and water composition.

With an inverse transformation that accounts for these distortions, the algorithm is able to successfully recover the initial

colors. That approach uses hand-inspired color correction scales and a dataset of underwater images with known color

profiles to allow to a machine learning algorithm to learn the correction scales. This leads to imbalance, leading to a much-

improved appearance of the images which are similar to the original images, making them useful for object detection and

tracking purposes.

However, in the underwater photography, turbidity and species that causes light scattering reduce visibility. For this

purpose, the proposed dynamic contrast adjustment algorithm that is employed by HydroLens identifies those low-contrast

areas of images and makes them much more visible. This is an adaptive approach where the algorithms used adjust the

contrast depending on the real time change in water quality as described by the turbidity sensor. Further, color correction

methods including white balancing and spectral restoration used to compensate for the blue and green shifts that are

characteristic of underwater settings. Some visibility corrections enhance object detectability, as well as its recognition

accuracy, by modifying or equalizing color contrast to far more natural and visceral.

Normalization

Normalizing data, a common preprocessing step when scaling features so that they fall within a consistent ranges and all

features are considered equivalent for model training. Range of pixel values is 0 => 255 Normalization [0, 1] or [-1, 1] —

just scaling over the complete range or over half of it which is more common. This requires them to subtract the mean and

then divide by the standard deviation of the pixel values. Normalization. This refers to applying the necessary scaling on

sensor data to match the range of data, that needs to be collected from other types of sensors, making the comparisons and

integration easier. This element is essential for maintaining the numerical stability of the models and to enable the learning

algorithms to work effectively on a wide variety of data. Apart from this, Normalization is helpful in faster convergence

of optimization algorithms while training a model.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

288

Data Augmentation

Data augmentation is the process of artificially enlarging the training dataset by normalizing it while diversifying its output

and in turn improving generalization of the model so that overfitting is minimized. For image data, augmentations are

random rotations, flips, scaling, cropping, and brightness of the image. These augmenting transformations produce new

forms of the image and help the model learn features that are robust to these changes. For sensor data augmentation we

could inject the noise, and augment different environmental conditions or generate a new one based on the stat of the

original dataset. This approach aids in making model generalize better to unseen data and improve the ability to detect and

track object under diverse conditions.

Dimensionality Reduction

When the number of features in the dataset is too large, we can apply dimensionality reduction techniques to make dataset

smaller, but that the new features are the most important ones. t-SNE is employed to compress the data into lower-

dimensional representations for image data. This drastically reduces computational complexity and makes sure to learn the

most informative features for the model. To process the sensor data, dimensionality reduction is crucial to determine the

features relevant to predicting the class of interest or to transform the data to a space of lowest dimensionality by using

Linear Discriminant Analysis (LDA). This step is necessary to save on the dataset simplifying, to enable the learning

algorithms effectively on the data as well making the results into more predictively interpret.

Train-Test Split

The dataset was then split into training and validation sets with 80:20 ratio, so that both sets contain representations of

nearly all underwater conditions. For ensuring the stability of results, during training, we also used 5-fold cross-validation,

where the set is then divided into five equal parts so that each part acting as the validation set at least once while the rest

forms the training data. This approach is helpful in reducing overfitting problem and to ensure better generalization

capability since it tests the performance of the model across different data sets, therefore the model will be tested for

consistency in under water climate changes.

Data Security and Reliability

For the security and credibility of the data in the underwater IoT, the HydroLens system employs a secure method of data

transfer such as encryption on the data sent from one device to another. Integrity check of data, for example, error check

such as cyclic redundancy check (CRC) commonly used in stream communication to minimize the effect of temporary

break in connectivity when working in underwater scenario. Further, data buffering and packet redundancy are used in

HydroLens to avoid the loss of data and operate in real time to provide the description for conditions with interfering

signals. Subsequent releases may potentially address blockchain for increased security and narratives, guaranteeing that all

data from the sensors cannot be manipulated.

Cascaded CNN for Feature Extraction as Layered Feature Learning

In the paper, we use the term layered feature learning in the context of cascaded Convolutional Neural Networks (CNNs)

which refers to a hierarchical way, i.e., first layers looking for simple pattern, following layers considering more and more

complex ones, of extracting fused features from data. This process is very useful for processing image and sensor data in

the HydroLens system, where exposing the different aspects of the underwater environment is critical. There are many

layers of a cascaded CNN architecture that work on different low-level features to make sure the initial layers extract

features that are lower-level as compared to deeper layers. These layers are convolutional operations with small filters (e.g.,

3x3 and 5x5 kernels) that overlie input data and identify primitive patterns including edges, textures, and some simple

geometric shapes. This could mean identifying shapes of objects, changes in texture, or changes in color in image data. For

example, the first layers on the left here might capture rudimentary features such as simple signal patterns, oscillations,

basic modulations in the data in sensor data.

In underwater imagery as an example the first layers may detect the edges of fish, coral structures or underwater debris

— creating a basic recognition of what the scene consists of. And for hydrophone sensor data this could help identify

fundamental acoustic signatures of marine life or underwater vehicles, respectively. As one goes deeper into the CNN,

intermediate layers tend to capture mid-level features. These features are higher-level, and are combinations of the low-

level features engineered from the initial layers. This could be noticing pieces of objects in an image, such as the fins of

fish or the stems of corals, or knowing the textures of underwater environments, such as the coarse surface of rocks, or the

smooth skin of sea creatures.

Convolutional Layer

The core in CNNs is the convolution operation. For an input image 𝐼 of dimensions 𝐻 × 𝑊 × 𝐷 (height, width, depth) and

a filter 𝐾 of size 𝑘 × 𝑘 × 𝐷 (assuming square filters and same depth as input):

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

289

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑑) ⋅ 𝐾(𝑚, 𝑛, 𝑑)
𝐷−1

𝑑=0

𝑘−1

𝑛=0

𝑘−1

𝑚=0

 (1)

This operation is repeated for each position (𝑖, 𝑗) in the input, resulting in a feature map.

Activation Function

After convolution, an activation function such as ReLU (Rectified Linear Unit) is applied to introduce non-linearity:

 𝑓(𝑥) = max(0, 𝑥) (2)

For each element 𝑥 in the feature map resulting from the convolution.

Pooling Layer

Pooling layers reduce the spatial dimensions of the feature maps. Max pooling with a window size of 𝑝 × 𝑝 can be defined

as:

 𝑃(𝑖, 𝑗) = max𝑚=0
𝑝−1

max𝑛=0
𝑝−1

(𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)) (3)

This operation takes the maximum value within each 𝑝 × 𝑝 window in the feature map.

Layered Feature Learning

Initial Layers: Low-Level Feature Extraction

Let 𝐼0 be the input image and 𝐾0 be the filter for the first convolutional layer. The output feature map 𝐹0 is given by:

 𝐹0 = 𝑓(𝐼0 ∗ 𝐾0) (4)

Where 𝑓 is the ReLU activation function.

In the case of sensor data, intermediate layers would perhaps begin to recognize patterns over time — such as regular

acoustic signals from a particular marine species or reliable differences in water temperature and salinity patterns. These

mid-level features are essential for obtaining a richer more complex view of the data, taking us beyond overt patterns into

something that has slightly more meaning. Where CNN cascaded performs high level feature extraction layer which

computed with deeper layers relay the features. These layers combine mid-level features identified with those earlier to

identify complex patterns or objects within the data. Image data can mean looking for objects of interest in an image like

species of fish, marine mammals, or underwater vehicles amidst variations in light and visibility. At a high level, this may

involve detecting certain types of events or states within sensor data (e.g., the presence of a specific underwater animal

based on the characteristics of its acoustic signal), or even tracking the movements of certain energy phenomena given

environmental conditions (e.g., thermoclines, which are visualized by integrating temperature and depth observations).

Importantly, the detection and tracking of objects in the underwater context also requires these high-level features.

Intermediate Layers: Mid-Level Feature Extraction

For subsequent layers, let 𝐹𝑙−1 be the input feature map from the previous layer, 𝐾𝑙 be the filter for layer 𝑙, and 𝑃𝑙 be the

pooling operation:

 𝐹𝑙 = 𝑃𝑙(𝑓(𝐹𝑙−1 ∗ 𝐾𝑙)) (5)

These are convolution, activation and pooling operations for layer 𝑙.

Deep Layers: High-Level Feature Extraction

Let 𝐹𝑛−1 be the input feature map to the final layer, 𝐾𝑛 be the filter for the final layer, and 𝑃𝑛 be the pooling operation:

 𝐹𝑛 = 𝑃𝑛(𝑓(𝐹𝑛−1 ∗ 𝐾𝑛)) (6)

Final Feature Representation

The final feature representations 𝐹𝑓𝑖𝑛𝑎𝑙 used for object detection and tracking is a concatenation of high level features from

the deep layers:

 𝐹𝑓𝑖𝑛𝑎𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹1, 𝐹2, … , 𝐹𝑛) (7)

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

290

Where 𝑐𝑜𝑛𝑐𝑎𝑡 denotes the concatenation operation of feature maps from different layers.

The HydroLens system with layered feature learning could capture the compositional structures of underwater data with

different levels of abstraction. As we go deeper in the network, the initial stages could capture low-level image features

like edges, textures whereas its later layers represent high-level objects, and structures. This enables our method to both

detect and track objects robustly even in difficult underwater conditions — i.e. different clarity, changing background. The

cascaded CNNs are utilised because of their multi-layered nature, ensuring robustness of the system. This redundancy is

necessary to provide reliable detection and tracking as inevitably, some details will be missed in the initial layers of the

network as a result of the underwater noise and distortions.

The cascaded CNNs are scalable and enables the HydroLens system to expand to multiple demanding tasks and datasets.

As new demands emerge, and new technologies and sensors come online, the system can continue to improve and adapt

by adding additional layers or increasing the complexity of layers. By using cascaded CNNs which enables layered feature

learning, HydroLens can adapt to different data and different underwater environments. This flexibility allows the system

to operate effectively within a range of scenarios from shallow coastal waters to deep ocean environments, ensuring detect

and tracking capabilities over a wide spectrum of situations.

Model Development for HydroLens System

A detailed design process used for the development of the HydroLens system which exploits strengths of believe both

ResNeXt and DenseNet architectures. This model is known about hybrid because it tries to use cardinality and dense

connectivity advantages to gain better performance in underwater object detection and tracking. The HydroLens system is

intended to combine the best of ResNeXt and DenseNet in a fusionary design. It splits the convolutional layers into several

parallel branches (also known as paths) and in turns enrich the model's ability to capture separate unique characteristics,

and it is well-known for its cardinality feature. However, the dense connectivity in DenseNet allows the layers to have

direct connections with every other layer below them which provides maximum possible information flow between the

layers in the network and hence, encourages feature reusability through the network.

The main addition of ResNeXt is the cardinality, that is, the dimension of the set of transformations. This is done by

applying grouped convolutions and thus, the input is partitioned into a few groups where each group is separately worked

on before concatenating. This new version not only learned much richer features, but also did so without any substantial

increase of computational complexity.

This can alternatively be presented in the following formula as a ResNeXt block:

𝑦 = ∑ 𝐹𝑖(𝑥𝑖)
𝐶

𝑖=1

 (8)

Where 𝑥𝑖 is the input to the 𝑖-th path, 𝐹𝑖 is the function applied by the 𝑖-th path (typically a series of convolutions), and

𝐶 is the cardinality (number of parallel paths). This architecture enables the model to pick up many features at each layer,

which helps it to classify a wide variety of object and textures in underwater images.

One method used to solve the problem was to directly connect each layer with other layers in the network in a

feedforward manner, this method is called DenseNet. This very dense connectivity pattern guarantees that whatever the

layer, the relevant learnings learned by it are immediately available to all subsequent layers, thereby allowing easier feature

re-use and facilitating the building of the weight gradients by backpropagation.

The DenseNet block is represented as:

 𝑦𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1]) (9)

Where 𝑦𝑙 is the output of the 𝑙-th layer, 𝐻𝑙 represents the 𝑙-th layer function (typically a composite function of batch

normalization, ReLU, and convolution), and [𝑥0, 𝑥1, … , 𝑥𝑙−1] represents concatenation of feature maps of all the previous

layers. This strong bucket brigade structure makes it possible for the layers composing the model to gradually construct on

previously learned features, which results in improved representation.

Integrating ResNeXt and DenseNet in HydroLens

For combining the merits of ResNeXt and DenseNet, we propose a hybrid block which integrates both cardinality and

dense connectivity. In the HydroLens system, ResNeXt and DenseNet are fused to leverage their unique advantages:

ResNeXt’s cardinality and DenseNet’s dense connections. Multiple pathways, referred to as cardinality, are incorporated

inside ResNeXt’s residual blocks with the purpose of expanding the number of features that can be learned across all layers

with relatively little computational overhead. In DenseNet, all layers are connected to all subsequent layers, making full

use of features from earlier layers and improving gradients through the network. By combining these, HydroLens

successfully develops a network where each layer obtain highly diversely information from the parallel paths of ResNeXt

and DenseNet’s direct connection. This fusion enables faster and efficient learning of these features, avoids the gradient

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

291

vanish problem, and greatly cuts down on unnecessary computation, positioning the model as ideal for underwater object

detection, as detailed in the results section, where the extraction of intricate features is critical and must be done in as

efficient a manner as possible.

Hybrid blocks are comprised of ResNeXt pathways in which a single pathway block´s output is logically connected to

each successive layer. Here, the design is pure such as the model can take advantage of the widely distinctive feature sets

collected by ResNeXt and the excellent feature reuse offered by DenseNet. The HydroLens system is based on stacking

hybrid blocks with transition layers in between them, hence the overall architecture. The transition layers contains

convolutional operations to reduce the number of feature maps for computational efficiency. The output may be the

bounding box coordinates of the objects, the class probability, and tracking info for object detection and tracking in

underwater. The training is based on optimizing a multi-task loss function derived from the sum of object detection loss

and object tracking loss for the HydroLens system. In order to help the model to generalize well and avoid overfitting,

techniques such as data augmentation, batch normalization, and dropout are used. Besides, by using weights that are pre-

trained on the ResNeXt and DenseNet models, the hybrid model weights initialization is being performed and this is

followed with fine-tuning on the underwater datasets. The HydroLens thus offers a compelling solution that realizes a

beneficial harmony between the broader field of view facilitated by the cardinality of ResNeXt and the focus on dense

feature reuse of DenseNet. Such a hybrid architecture provides excellent results in the high-variability environments that

arise in underwater surveillance, yielding an increase in accuracy and robustness of object detection and tracking.

Underwater environments bring infrastructure restrictions related with transmission media in terms of delay and

bandwidth. To address this, HydroLens is designed to employ a data down sampling method in which only the required

fields such as an object’s coordinates and classification are transmitted, not actual data. Buffering techniques are also used

and data can be sent in breaks if the signal is strong to reduce latency in poor conditions. Furthermore, the data collected

by the sensor is compressed using the loss-less compression techniques so that the volume of data to be transmitted is

reduced. HydroLens is confident it shall retain real time processing while not consuming bandwidth, which is so crucial in

undertakings involving submersion.

Algorithm: HydroLens Models

Initialize 𝑯𝒆𝒘𝒆𝒊𝒈𝒉𝒕𝒔 for all layers

Set initial learning rate 𝜼𝟎

Set total number of epochs 𝑻

Set initial dropout probability 𝒑

Set L2 regularization strength 𝝀

Set optimizer to Adam with 𝜷𝟏, 𝜷𝟐, and 𝝐 parameters

function Convolution(𝑰, 𝑲): // Perform convolution with filter K on input I

return ∑ ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑑) ∗ 𝐾(𝑚, 𝑛, 𝑑)𝐷−1
𝑑=0

𝑘−1
𝑛=0

𝑘−1
𝑚=0

function ReLU(x): // Apply ReLU activation

return 𝑚𝑎𝑥(0, 𝑥)

function PReLU(𝒙, 𝜶): // Apply Parametric ReLU (PReLU) activation

if 𝑥 ≥ 0:

return 𝑥

else

return 𝛼 ∗ 𝑥

function MaxPooling(𝑰, 𝒑): // Perform 𝑚𝑎x pooling on input 𝐼 with window size 𝑝

return 𝑚𝑎𝑥𝑚=0
𝑝−1

𝑚𝑎𝑥𝑛=0
𝑝−1

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)

function Dropout(𝒙, 𝒑): // Apply dropout

return (
1

1−𝑝
) ∗ 𝑥 ∗ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

function L2Regularization(𝒘, 𝝀): // Apply L2 regularization

return 𝜆 ∗ ∑ 𝑤𝑖
2𝑛

𝑖=1

function ResNeXtBlock(𝑰, 𝑪): // Initialize ResNeXt block with cardinality 𝐶

𝑜𝑢𝑡𝑝𝑢𝑡 = 0

for 𝑖 = 1 to 𝐶:

𝑜𝑢𝑡𝑝𝑢𝑡 ± 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐼, 𝐾𝑖)

return ReLU(output)

function DenseNetBlock(𝑰, 𝒍𝒂𝒚𝒆𝒓𝒔): // Initialize DenseNet block

𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = [𝐼]

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

292

for l in 1 to layers:

𝑛𝑒𝑤𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑐𝑜𝑛𝑐𝑎𝑡(𝑜𝑢𝑡𝑝𝑢𝑡𝑠), 𝐾𝑙))

𝑜𝑢𝑡𝑝𝑢𝑡𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑛𝑒𝑤𝑜𝑢𝑡𝑝𝑢𝑡)

return 𝑐𝑜𝑛𝑐𝑎𝑡(𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

function HybridBlock(𝑰, 𝑪, 𝒍𝒂𝒚𝒆𝒓𝒔): // Initialize Hybrid Block

𝑟𝑒𝑠𝑛𝑒𝑥𝑡𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑠𝑁𝑒𝑋𝑡𝐵𝑙𝑜𝑐𝑘(𝐼, 𝐶)

𝑑𝑒𝑛𝑠𝑒𝑛𝑒𝑡𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘(𝑟𝑒𝑠𝑛𝑒𝑥𝑡𝑜𝑢𝑡𝑝𝑢𝑡, 𝑙𝑎𝑦𝑒𝑟𝑠)

return 𝑑𝑒𝑛𝑠𝑒𝑛𝑒𝑡𝑜𝑢𝑡𝑝𝑢𝑡

function BuildHydroLens(𝑰, 𝒏𝒖𝒎𝒃𝒍𝒐𝒄𝒌𝒔, 𝑪, 𝒍𝒂𝒚𝒆𝒓𝒔𝒑𝒆𝒓𝒃𝒍𝒐𝒄𝒌
): // Build the overall HydroLens network

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐼

for 𝑏 in 1 to 𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘𝑠:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐻𝑦𝑏𝑟𝑖𝑑𝐵𝑙𝑜𝑐𝑘(𝑜𝑢𝑡𝑝𝑢𝑡, 𝐶, 𝑙𝑎𝑦𝑒𝑟𝑠𝑝𝑒𝑟𝑏𝑙𝑜𝑐𝑘
)

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒)

return 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑜𝑢𝑡𝑝𝑢𝑡)

function TrainHydroLens(𝒎𝒐𝒅𝒆𝒍, 𝒅𝒂𝒕𝒂, 𝒍𝒂𝒃𝒆𝒍𝒔, 𝒆𝒑𝒐𝒄𝒉𝒔, 𝜼𝟎, 𝑻): // Training loop

for 𝑡 in 1 to 𝑇:

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 𝜂0 ∗ (1 −
𝑡

𝑇
)

for batch in data:

𝐼, 𝑦𝑡𝑟𝑢𝑒 = 𝑏𝑎𝑡𝑐ℎ

𝑦𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙(𝐼)

𝑙𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) + 𝐿2𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝜆)

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑙𝑜𝑠𝑠, 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑚𝑜𝑑𝑒𝑙. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 , 𝛽1, 𝛽2, 𝜖)

𝑚𝑜𝑑𝑒𝑙 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑚𝑜𝑑𝑒𝑙, 𝑝)

if 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑠𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑑𝑎𝑡𝑎) does not improve:

Stop training

break

function LossFunction(𝒚𝒕𝒓𝒖𝒆, 𝒚𝒑𝒓𝒆𝒅): // Define loss function

return 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑)

function UpdateParameters(𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔, 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕𝒔, 𝜼, 𝜷𝟏, 𝜷𝟐, 𝝐): // Define Adam optimizer update rule

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠2

𝑚ℎ𝑎𝑡 =
𝑚𝑡

1−𝛽1𝑡

𝑣ℎ𝑎𝑡 =
𝑣𝑡

1−𝛽2𝑡

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠−= 𝜂 ∗
𝑚ℎ𝑎𝑡

√𝑣ℎ𝑎𝑡+𝜖

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐻𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠() // Main execution

𝑚𝑜𝑑𝑒𝑙 = 𝐵𝑢𝑖𝑙𝑑𝐻𝑦𝑑𝑟𝑜𝐿𝑒𝑛𝑠(𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒 , 𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘𝑠 , 𝐶, 𝑙𝑎𝑦𝑒𝑟𝑠𝑝𝑒𝑟𝑏𝑙𝑜𝑐𝑘
)

𝑇𝑟𝑎𝑖𝑛𝐻𝑦𝑑𝑟𝑜𝐿𝑒𝑛𝑠(𝑚𝑜𝑑𝑒𝑙, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎, 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑇, 𝜂0, 𝑇)

End Algorithm

Optimizing Model Parameters and Hyperparameters

The parameters and hyperparameters of the HydroLens system should be optimized in order to obtain the best performance

in terms of underwater object detection and tracking. This includes optimizations across all aspects of the model

architecture, training pipeline, and data processing pipeline to ensure a good balance between model accuracy and

efficiency. HydroLens encompasses a multistep optimization scheme for controlling a number of parameters that defines

the trade-off between the precision of the ray tracing and computation time. First, batch sizes are enhanced to allow

maximization of the GPU memory without straining it, making the processing fast. There is use of learning rate schedule,

which means that the learning rate is reduced as the training process goes on to adjust the model closer to convergence. In

addition, dropout rates are used in an attempt to avoid overfitting and define the right L2 for weight magnitude maxima.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

293

For the underwater setting, we prune the network more and less or some layers with more relevance to feature extraction

and less or no relevance having redundancy in the basic layers. All these optimizations individually cut down computational

time and resource utilization, enabling real-time object detection in even low bandwidth contexts.

Model Parameter Optimization

Weight Initialization

The initialization was employed to prevent the weights of the neural network from starting from a place that would not

make learning more or less possible.

Learning Rate

The learning rate started at 0.01 and decreased according to a learning rate schedule. Our numerical integration was done

by this equation:-

 𝜂𝑡 = 𝜂0 × (1 =
𝑡

𝑇
) (10)

Where 𝜂𝑡 was the learning rate at epoch 𝑡, 𝜂0 was the initial learning rate, and 𝑇 was the total number of epochs. This

enabled changing the learning rate as the training progressed so that it led to better convergence.

Batch Size

We will try batch sizes until at some point where more batch size will finally make gradient estimate more correct but

requiring really more computational power.

Number of Layers and Units

We used cross-validation to optimize the depth of the network, and the number of units in each layer. The goal of this

process was to balance the model complexity so that it did not underfit or overfit, and to tune the best model architecture

that yielded the highest validation performance.

Hyperparameter Optimization

Dropout Rate

We changed the dropout rate to be able to regularize it. We employed dropout to randomly set a fraction of input units to

zero at each update during training as follows,

 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑥) =
1

1−𝑝
⋅ 𝑥 ⋅ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (11)

Where 𝑝 was the dropout probability. The model's generalization performance improved by using this technique.

Regularization Parameters

We used the L2 regularization (weight decay) to prevent the weights from growing too large, as well as to improve

generalization. The added regularization term to the loss function was:

𝐿(𝑤) = 𝐿0 + 𝜆 ∑ 𝑤𝑖
2

𝑛

𝑖=1

 (12)

Where 𝐿0 was the original loss, 𝜆 was the regularization strength, and 𝑤𝑖 were weights.

Optimization Algorithm

We used the Adam optimization algorithm that dynamically modified the learning rate for each parameter. The update rule

for Adam was:

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (13)

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (14)

 𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 (15)

 𝑣̂𝑡 =
𝑣𝑡

1−𝛽2
𝑡 (16)

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

294

 𝜃𝑡 = 𝜃𝑡−1 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡+𝜖
 (17)

Where 𝑔𝑡 was the gradient, 𝑚𝑡 and 𝑣𝑡 were moment estimates, 𝛽1 and 𝛽2 were hyperparameters, and 𝜃𝑡 were the

parameters. Adam helped in efficiently navigating the optimization landscape.

Cross-Validation and Hyperparameter Tuning

Grid Search

To find the best combination, we searched for a combination of hyperparameters. This method did a systematic exploration

of the hyperparameter space and evaluated each configuration using cross-validation.

Early Stopping

We added early stopping to stop training when the performance on a validation set no longer improved. This helped in

avoiding overfitting and using the computational forces judiciously as the training once the optimization did not get any

better.

By using ResNeXts cardinality advantages together with DenseNets dense connectivity characteristic, the HydroLens

system strikes a best equilibrium of multi-features extraction and feature reuse. Especially for underwater surveillance

tasks which involve a massive variant of complex and dynamic environments, this hybrid architecture can, in principle,

provide higher accuracy and robustness at the above object detection and tracking tasks. This approach allowed them to

achieve optimal performance of the HydroLens system for underwater object detection and tracking, in which both model

parameters and hyperparameters were optimized systematically. This included a mix of experimental tuning, validation

and optimization methods to ensure the model was both accurate and efficient.

Novelty of this Work

The research elaborates on a number of novel techniques that push the frontiers of underwater object detection and tracking,

ameliorating longstanding issues and constraints with fetch methods. The key novelty of our work is the incorporation of

a new noise reduction method, a novel feature extraction approach, and a customized hybrid deep learning model for

underwater settings. Using the Modified Gaussian Filter for noise reduction is a major plus point over noise reduction

through traditional methods. Many noise propagates underwater included those caused by water turbidity, light scattering

and suspended particles, and it is usually high. The Modified Gaussian Filter is designed to suppress the noise while

preserving important features of the image that were adversely affected by noise. Better visual data improves the accuracy

of details, which are crucial for object detection and tracking. Second, the cascaded Convolutional Neural Network (CNN)

for feature representation instead developed a hierarchical representation learning and refinement from an underwater

image. Current CNN-based object detection on datasets may not completely represent the in-depth and varying features

desirable for known target detection underwater. The cascaded architecture allows the work to build and refine the features

sequentially which strengthens the discriminative features learned by the model. Here, the model's layered feature learning

process greatly improves its ability to detect and track objects in the complex underwater world, even with noise. The

major contribution in this paper: the HydroLens system combines two powerful deep graph architectures: ResNeXt and

DenseNet. By using the hybrid model, we able to make use of the excellent feature extraction abilities of ResNeXt which

is capable of extracting rich features within a layer, due to its concept of cardinality and DenseNet that able to learn and

reuse both diverse and complex features due to its dense connectivity within each layers and produce smoother gradient

flow. Combining these architectures into one model allows us to create a powerful and efficient system that outperforms

both traditional and contemporary methods for underwater object detection and tracking. This unusual hybrid modeling

technique that combines the ResNeXt and DenseNet within the HydroLens system describes a model type that is uniquely

suited to the challenges of underwater environments.

IV. RESULTS AND DISCUSSIONS

Python was used to implement the proposed model as it provides wide range of libraries and frameworks for deep learning

and data manipulation. The machine used for said run packed a 24M cache-holding Intel Core i7-1370P Processor with up

to 5.20 GHz of clock speed. The high-performance CPU was able to deliver the computational power needed for the

efficient processing of advanced operations and large datasets. This was paired with 16GB of RAM to help keep model

sizes and data in memory during both training and inference. For even more computational power, we used an ASUS Dual

GeForce RTX 4060 OC Edition White 8GB Graphic Card. This high performance GPU supported with excellent parallel

processing capabilities sped up the training of the deep learning models by taking away the heavy lifting from the CPU.

By running the workloads on the GPU that had architecturally mature architecture with memory and run all of the deep

learning workloads on the high memory GPU where the very large-sized neural networks could fit into memory and this

allowed the large-scale training of the networks using more layer limits which, in turn, meant the training was converged

faster and the training times reduced to a minimum. All of these together helped in reproducing the said Hybrid ResNeXt-

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

295

DenseNet Model to execute fluidly giving high precision and performance in underwater object detection and tracking

tasks.

Utilized a complex multi-sensor framework for high-accuracy underwater object detection and tracking with the

HydroLens system, it was underpinned by a suite of sensors, such as hydrophones, CTD sensors, underwater cameras,

dissolved oxygen sensors, turbidity, salinity, pH, pressure, chlorophyll sensors, and current meters. The sensors were

collecting an exhaustive set of data on the underwater surrounding, and this data was processed to offer an in-depth and

real-time knowledge of underwater conditions. The operation of the HydroLens system started with collecting data where

each sensor sensed different things. Acoustic signals were picked up by hydrophones — an important element in identifying

and following the transit of targets under water. Output from CTD sensors, which measured the conductivity, temperature,

and depth of water and thus provided valuable environmental context. High-resolution images (and videos) were captured

by cameras U/W, providing a visual detection of objects. Water quality (e.g., dissolved oxygen, turbidity, salinity, and pH)

was continuously monitored by environmental sensors which were always recording, pressure sensors and chlorophyll

sensors also provided depth and biological productivity data. These currents were much key information for predicting the

movement of a floating object and hence were obtained from current meters.

Table 1. Sensor Data Summary

Sensor Type Data Collected Units Sample Rate (Hz) Average Value Max Value

Hydrophone Acoustic Signals dB 100 50 120

CTD Conductivity S/m 10 4.5 6

CTD Temperature °C 10 14.5 18

CTD Depth m 10 100 200

Dissolved Oxygen Oxygen Concentration mg/L 5 8 10

Turbidity Clarity NTU 5 3 5

Salinity Salt Concentration PSU 10 35 37

pH Acidity/Alkalinity pH units 1 7.8 8.2

Pressure Water Pressure kPa 10 150 300

Chlorophyll Chlorophyll Concentration µg/L 5 2.5 4

Current Meter Water Movement m/s 2 1.2 2.5

The dataset summarized in Table 1 and Fig 3 contains all environmental and oceanographic parameters collected from

multiple types of sensors. The data he collects is critical for understanding aquatic environments, characterizing ecological

health and execution marine research. A hydrophone sensor was used to measure acoustic signals in units of decibels (dB),

at a sampling frequency of 100 Hz. With a frequency of 100 kHz, this system is used for detailed analysis of underwater

soundscapes, such as the acoustic detection of marine life, human activities, or environmental special occasions. The

recorded acoustic signal value on average is 50 dB, and the maximum value observed is 120 dB. This kind of data can be

invaluable for researching the harmful effects of noise pollution on marine life, and in the monitoring of underwater

environments.

Fig 3. Sensor Data Summary.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

296

The importance of water Conductivity-Temperature-Depth (CTD) sensors on a 10 Hz data acquisition, the average

water conductivity is 4.5 S/m with a maximum 6.0 S/m this measures the amount of ions in the water which is important

for determining its salinity. Recorded temperature data, sampled at the same rate, has an average of 14.5 degrees Celsius

and up to 18 degrees Celsius, providing key insights for thermal studies of water bodies. Depth measurements are

simultaneously sampled at 10 Hz between ~100 and 200 meters averaging the measured lead from the hydrophone-array

to the seafloor, and maximum height above the seabed. The parameters over which characterisation was undertaken,

together with the rates at their estimation, were dissolved oxygen (mg/L, 5 Hz, mean of 8 mg/L, peak of 10 mg/L, critical

for assessing respiration in aquatic ecosystems and the vitality of the aquatic ecosystem for marine life); Clarity, or

turbidity, is measured every 5 s in nephelometric turbidity units (NTU) and reported at a rate of 5Hz averaged over 3s with

a maximum of 5 NTU. If water is cloudy, turbidity is high, and this could have a negative impact on photosynthesis in

aquatic plants and the health of the fish populations.

It has an average (over a 10 Hz sample rate) of 35 PSU, and rises to a peak of 37 PSU. It is essential information because

it provides information about the salinity of bodies of water, important for marine organisms and the chemical composition

of the water. The pH (a measure of the water's acidity or alkalinity) is also recorded, though at a lower sample rate of 1 Hz,

and is in pH units. Results reveal that the pH in general is 7.8 and 8.2 is a maximum for pH. The monitoring of pH

determines the acid-base status in natural water. 100Hz measured a water pressure (kPa), where 150 the average value with

a maximum of 300. This parameter is necessary to explain the physical forces in different depths of water. Given the poor

productivity of the land-drone and our poor timing to visit, it took a few trips for us to get reliable data, but we do have:

Chlorophyll, measured in µg/L at 5 Hz, with an average of 2.5 µg/L and a maximum of 4 µg/L. Chlorophyll data is

important as it can be used to calculate phytoplankton abundance and primary productivity in aquatic ecosystems. The one

at the very end is the current meter, which measures water movement in m/s with a sampling rate of 2 Hz, an average speed

of 1.2 m/s, and a maximum of 2.5 m/s all of which are most important for understanding water flow dynamics, sediment

transport, and the spreading of nutrients, and pollutants. In the end, the detailed summary of sensor data highlights different

physical, chemical and biological components that are of importance for marine research and environmental monitoring.

Raw data, once gathered, underwent preprocessing to ensure it was of good quality and reliable. We reduced the noise

by smoothing randomness in the image and sensor data, with a modified Gaussian filter to keep sharps edges of important

feature. Proprietary color correction algorithms could return the natural colors that light absorption and scattering shift for

underwater images. It is appropriate to use normalization when feature scaling between different datasets is needed and

using normalization will scale all features to a consistent range. Using data augmentation techniques like rotations and

brightness for images or controlled noise for sensor data, the data set has been artificially augmented, which increased the

robustness and generalization capabilities of the system. We used dimensionality reduction techniques (PCA or t-SNE) to

reduce the data, preserving the key features for further analysis.

Table 2. Model Hyperparameters

Model Architecture Learning Rate Batch Size Number of Layers Dropout Rate (%) Weight Decay

CNN 0.001 32 10 25 0.0005

ResNeXt 0.001 64 50 20 0.0005

DenseNet 0.001 64 100 20 0.0005

VGG16 0.001 32 16 25 0.0005

InceptionV3 0.0005 64 48 20 0.0005

EfficientNet 0.0005 64 45 20 0.0001

MobileNetV2 0.001 32 53 25 0.0001

Xception 0.0005 64 71 20 0.0005

NASNet 0.0005 64 87 20 0.0005

ResNet50 0.001 64 50 20 0.0005

AlexNet 0.001 32 8 25 0.0001

Hybrid (ResNeXt +

DenseNet)
0.0005 64 150 15 0.0001

We implemented several existing models alongside the proposed models, as summarized in Table 2 and illustrated in

Fig 4 and 5 on the dataset. Hyperparameters are critical as they factor into the performance, efficiency and generalisability

of these models, hence meticulous tuning is key to achieving the highest accuracy. The Convolutional Neural Network

(CNN) is the most popular architecture for image processing tasks. It uses a learning rate of 0.001 which is a reasonable

starting point for the initial experiments as it is a trade-off between the speed of convergence and the stability. A batch size

of 32 allows efficient enough training with pretty decent generalization of a model. It consists of 10 layers which are fairly

shallow in comparison with other architectures of the table, and the dropout rate is 25% to avert overfitting. Weight decay

(set to 0.0005) helps to regularize the weights making them small. The learning rate and batch size are the same as ResNeXt,

DenseNet and ResNet50, 0.001 and 64, respectively. They all have some features in common, but vary in the number of

layers: 50 in ResNeXt and ResNet50 and a lot more 100 layers in DenseNet. This difference in the depth of layers can

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

297

affect how effective a model will be at learning complex representations. The dropout rate is 20% in all architectures and

weight decay (L2 penalty) of 0.0005 is used for balancing regularization and model capacity.

Fig 4. Learning Rate and Weight Decay.

The VGG16 model is a simple yet powerful deep-learning structure for the image classification task; this model is

trained with a learning rate of 0.001 and a batch size of 32. This model is designed to do deep feature extraction with a

high level of dropout (25% for a 16 layer) to prevent overfitting. Add L2 weight decay of 0.0005 on weights, at the input

node block and on the self and source linear layer blocks. The decay needed to maintain the limit is a standard value used

to regularize the magnitude of model weights. InceptionV3 and Xception are deeper by architectures and have a learning

rate of 0.0005 which indicates that a slower learning rate, should be used to handle the complexity of their depth and

interconnections. They both employ a batch size of 64 and a 20% dropout rate in 48 and 71 layers, again emphasizing their

deep and complex feature extracting capabilities. The weight decay is 0.0005, which is equal to the setting in other models

to regularize. The second but more popular set is efficiency-oriented networks such as EfficientNet and MobileNetV2.

EfficientNet uses a learning rate of 0.0005 and batch size of 64, 45 layers with 20% dropout. The 53-layer MobileNetV2

model with a learning rate of 0.001 and a batch size of 32 and a 25% dropout rate.

The 87-layer architecture discovered by neural architecture search, NASNet is trained with a learning rate of 0.0005,

batch size of 64, 20% dropout and weight decay of 0.0005. This setup is designed to leverage the computational richness

and the large search space that the model explores. AlexNet, as a pioneer deep learning model, have less hyper parameters,

a learning rate of 0.001, a batch size of 32, and 8 layers. This is a very simple architecture has 25% dropout rate, 0.0001

weight decay. The Hybrid model uses a learning rate of 0.0005 and a batch size of 64, where ResNeXt, DenseNet

architectures are combined. This model has the benefits of both architectures and has a less spelling 15% dropout and 150

layers. A weight decay of 0.0001 says that we would like forms of regularization that can maintain the model complexity

low in the interest of least regularization. Note that these hyperparameters are just a few examples of the diversity in model

architectures and model parameterizations and tuning options. These settings of each model depend on its use case,

complexity, and the trade-offs between learning speed, generalization, and computational efficiency.

Fig 5. Batch Size, Number of Layers, and Dropout Rate.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

298

The HydroLens system combined the strengths of ResNeXt and DenseNet in their advanced deep learning architecture.

Cardinality is introduced through grouped convolutions in ResNeXt, which process the input data along multiple parallel

paths capturing a diverse set of features. Dense connectivity — layers had local connections with every other layer and

received input from all preceding layers which allowed for an efficient way of reusing every learned feature and

transmitting information between layers. This hybrid architecture made the system able to effectively learn complicated

patterns and relationships between the data from underwater. Then, we used the cascaded CNN model to input these pre-

processed data during the detection phase. Initial layers learned how to detect low-level features, such as edges and texture,

in the images; and the primary signal patterns in the sensor data. The data passed through deeper layers, the network was

able to capture higher level abstract features such as particular objects, textures that are unique to underwater environment,

advanced patterns in acoustic signals and so on. Such hierarchical feature extraction was important for successful object

detection and tracking, as it allowed the system to recognize and discern different underwater objects and phenomena.

Here, the HydroLens system updated its model in real time, which helped it to adjust to changing underwater conditions.

The system delivered servery detailed information about the objects detected by which they were location, moving, and

classifying. This data was widely used in marine research, environmental monitoring, underwater navigation, and security

applications.

Table 3. Model Performance Metrics

Model Architecture Accuracy (%) Precision (%) Recall (%) F1-Score (%)

CNN 85 83 84 83.5

ResNeXt 90 88 89 88.5

DenseNet 92 90 91 90.5

VGG16 87 85 86 85.5

InceptionV3 89 87 88 87.5

EfficientNet 93 91 92 91.5

MobileNetV2 86 84 85 84.5

Xception 91 89 90 89.5

NASNet 88 86 87 86.5

ResNet50 89 87 88 87.5

AlexNet 95 94 94 94

Hybrid (ResNeXt + DenseNet) 98 96 97 97

Fig 6. Accuracy, Precision, Recall, and F1-Score.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

299

Table 3 and Fig 6 shows overview performance metrics of model for some architecture showing best result in the area

of accuracy, precision, recall and F1-score. Comparing CNN, ResNeXt, DenseNet, VGG16, InceptionV3, EfficientNet,

MobileNetV2, Xception, NASNet, ResNet50, AlexNet and the Hybrid model, one sees that knowledge transfer in the

Hybrid model outperforms all the others. The ResNeXt + DenseNet earned the top results in all the measurements: accuracy

– 98%, precision – 96%, recall – 97%, F1-score – 97%. These results prove that by integrating ResNeXt’s feature diversity

with DenseNet’s connectivity, Underwater MNIST can be accurately identified with high optimization for the intricacies

of object detection. CNN gives an accuracy of 85% where precision and recall are 83% and 84% and the F1-score is 83.5%.

While this throughput is reasonable for many applications, it indicates that lifting sophisticated architectures would lead to

better results on more challenging tasks. The ResNeXt method is 90% accurate, which is far superior to the CNN. After

completing multiple training-rounds, this model found to achieve 88% precision, 89% recall and F1-score of 88.5%. The

model's ability to capture the complex patterns in the data set increases from this gain. DenseNet performs much better

than ResNeXt, with an accuracy of 92%, precision of 90%, recall of 91%, and an F1 score of 90.5%. The tightly connected

layers in DenseNet result in increased gradient flow and feature reusability, enabling high performance.

Even though VGG16 is an older architecture, it does remarkably well with an accuracy score of 87%, precision score

(85%), recall score (86%), and F1 score (85.5%). The simplicity and effectiveness of this architecture make it a popular

pick for many image classification tasks. InceptionV3 also demonstrates an accuracy of 89%, but precision and recall

numbers show 87% and 88% respectively, and F1-score is 87.5% The complex architecture of the DenseNet is probably

responsible for that — complex in the sense that it was designed to capture multi-scale features. EfficientNet is good with

93% of accuracy, 91% of precision, 92% of recall and F1 score 91.5%. The method of compound scaling using EfficientNet

also allows to balance model scaling with respect to latency and accuracy, and in result delivers superior performance in

comparison to directly apply scaling to the baseline layers of the network. MobileNetV2, which optimized for mobile and

embedded environments, attains an 86% accuracy, 84% precision and 85% recall, hence an F1-score of 84.5%. It

demonstrates the finest performance with its efficiency orientation. The Xception as it has much deeper models with much

optimized data and that gives the above numbers, 91 % accuracy, 89% precision, 90% recall, and 89.5 % F1-score.

NASNet, produced by neural architecture, has an accuracy of 88%, precision 86%, recall 87%, and F1-score 86.5%.

This is the performance increased by automated architecture optimization. An accuracy of 89% achieved using the

ResNet50 model, which is one of the most popular deep learning models to this day, along with 87% precision, 88% recall,

and 87.5% F1-score. Additionally, the deep residual learning framework can help with the vanishing gradient problem.

Even one of the first models, AlexNet, performs quite good with 95% accuracy, 94% precision, 94% recall, and 94% F1-

score. Its performance validates its historic importance and ongoing appeal, The Hybrid model which combines ResNeXt

and DenseNet performs the best overall profiles, at 98% accuracy, with 96% precision and 97% recall, and an F1-score of

97%. This model combines the desirable properties of both architectures to achieve improved performance. The following

performance metrics outline that how model architectures have improved in the certain tasks more than the others. The

Hybrid model, with its strong performance, answers this in the affirmative, demonstrating that leveraging aspects of

disparate architectures may lead to large gains and is a promising method for complicated tasks.

The HydroLens system functioned by a unified multi-sensor data gathering, high level preprocessing technologies, and

significantly deep learning hybrid architecture. The system realized the high accurate and stable performance in underwater

object detection and tracking by combining the complimentary virtues of ResNeXt and DenseNet and has shown the

prominent ability in the exploration and investigation of underwater.

Table 4. Training and Testing Time

Model Architecture Training Time (hrs) Testing Time (sec/image)

CNN 10 0.05

ResNeXt 12 0.04

DenseNet 14 0.04

VGG16 11 0.06

InceptionV3 13 0.05

EfficientNet 15 0.03

MobileNetV2 10 0.03

Xception 14 0.04

NASNet 13 0.05

ResNet50 12 0.04

AlexNet 9 0.06

Hybrid (ResNeXt + DenseNet) 16 0.03

Table 4 and Fig 7 gives the time cost of training for different model structures, which help us know how many resources

are consumed by each model and which one works the fastest and easiest. It is important that such time and resource

constraints in industrial deployments can be estimated using these common metrics. Training of the CNN takes 10 hours

and testing of the CNN takes 0.05 seconds per image. This light training time and fast testing time makes CNN an ideal

choice for activities for which a trade-off between training the duration and inference speed is required. Training: 12 hours;

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

300

Testing: 0.04 s per image; the training time is slightly increased as compared to conventional deep CNNs by ResNeXt.

Faster inference time than GANs also show its effectiveness in real-time scenarios to make quick decisions. Training

DenseNet using 14 hours, and testing 0.04 second per image. Although it has more training time, DenseNet is used in

scenarios with high demand on the model's performance, and the speed of a DenseNet model is quite good.

VGG16, one of the most famous big architecture, consumes 11 hours to train and 0.06s per image to test. The longer

time to test BERT models is an indication of the complexity of the architecture, which while a trade-off is worth the

simplicity and efficiency it provides in some tasks. While InceptionV3 has a complex architecture, with 13 hours to train

and 0.05 seconds to test per image, it falls somewhere in the middle having both longer training and testing times. This

also makes it more time-efficient for tasks that require fine level of feature extraction. EfficientNet: 15 hours to train, 0.03

seconds to test per image. This model design balances both accuracy and efficiency, making it ideal for applications

requiring high performance with fast inference. MobileNetV2 was built largely based on mobile and embedded design, it

takes 10 hours to train, but only 0.03s is needed for testing per image. It is efficient in both training and inference, and

appropriate for resource-constrained environments. Another such framework is Xception, which takes 14 hours for training

with an image takes 0.04 seconds per image to give a fairly good trade-off between deep learning capabilities and inference

horsepower. That can be an acceptable trade-off for workloads requiring sophisticated models that would otherwise take

too long to test.

Fig 7. Training Time (hrs) and Testing Time (sec/image) for Model Architectures.

Training NASNet takes 13 hours and its testing time is 0.05 seconds per image. It is quite impressive, as neural

architecture search is used to design at the same time as optimizing for a variety of hyperparameters, including efficiency.

Training: 12 hours Test: 0.04s (ResNet50). This trade-off between training time and the speed of testing did not experience

in many other deep learning applications which is one of the reasons we use it. Due to its historical significance and

simplicity, AlexNet is still popular even though it does not perform as well as newer models for inference speed (testing

takes 0.06 seconds per image). On the other hand, the Hybrid model has the highest training time at 16 hours but the

smallest testing time of 0.03 per image. The diagonal line shows how slowly the average performance degrades compared

to other models' average performance, indicating the success of hybrid architecture in trading off between accuracy and

speed. These models train and test in varying lengths of time, demonstrating the trade-offs between model complexity and

overall performance and efficiency. The choice of model depends on given the application requirements ranging from

computational resources to real-time inference.

This comparison result for different activation functions is given in Table 5 and Fig 8, 9 to give the full instance, how

many changes in performance could be possible due to different activation functions, and for different performance

matrixes and the computational efficiency used in different model architectures. ReLU (Rectified Linear Unit) has been

there around as it is simple and addresses the vanishing gradient problem. On CNNs, the Relu gives an accuracy of 85%,

precision of 83%, recall of 84% and F1 score is 83.5% for Relu activation with time of training is 10 hours and testing time

is 0.05 seconds per image. ReLU Activation outperforms Tanh Activation on their experiments (used 75%) achieved an

accuracy of 90%, 92%, and 98% for ResNeXt, DenseNet, and the Hybrid model (ResNeXt + DenseNet), respectively. The

best-performing architectures, Hybrid, and the strong-performing VGG model, display both high precision, recall, and F1-

scores; Hybrid a top performance at F1=97% and with local test times of 0.03–0.04 seconds per image.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

301

Table 5. Model Performance with Different Activation Functions

Activation

Function

Model

Architecture

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

Score

(%)

Training

Time (hrs)

Testing

Time

(sec/image)

ReLU CNN 85 83 84 83.5 10 0.05

ReLU ResNeXt 90 88 89 88.5 12 0.04

ReLU DenseNet 92 90 91 90.5 14 0.04

ReLU
Hybrid (ResNeXt

+ DenseNet)
98 96 97 97 16 0.03

Sigmoid CNN 82 80 81 80.5 11 0.06

Sigmoid ResNeXt 87 85 86 85.5 13 0.05

Sigmoid DenseNet 89 87 88 87.5 15 0.05

Sigmoid
Hybrid (ResNeXt

+ DenseNet)
95 93 94 93.5 17 0.04

Tanh CNN 83 81 82 81.5 11 0.06

Tanh ResNeXt 88 86 87 86.5 13 0.05

Tanh DenseNet 90 88 89 88.5 15 0.05

Tanh
Hybrid (ResNeXt

+ DenseNet)
96 94 95 94.5 17 0.04

Leaky ReLU CNN 86 84 85 84.5 10 0.05

Leaky ReLU ResNeXt 91 89 90 89.5 12 0.04

Leaky ReLU DenseNet 93 91 92 91.5 14 0.04

Leaky ReLU
Hybrid (ResNeXt

+ DenseNet)
98 96 97 97 16 0.03

Swish CNN 87 85 86 85.5 10 0.05

Swish ResNeXt 92 90 91 90.5 12 0.04

Swish DenseNet 94 92 93 92.5 14 0.04

Swish
Hybrid (ResNeXt

+ DenseNet)
98 96 97 97 16 0.03

Fig 8. Accuracy, Precision, Recall, and F1-Score with Different Activation Functions.

In most of the binary classification problems, the Sigmoid Activation Function slightly performs worst compared to

ReLU and other options. CNNs with a sigmoid give an accuracy of 82% precision of 80% recall of 81 and F1-score is

80.5% and the training time is 11hrs and the testing time is 0.06 sec per image. Furthermore, Sigmoid also downgrades the

performance of ResNeXt, DenseNet, and the Hybrid model, resulting into 87%, 89%, 95% accuracies, respectively. The

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

302

Hybrid model still performs relatively well but with a noticeable drop compared to ReLU, reaching an F1-score of 93.5%.

Another popular activation function is Tanh, however it performs better than Sigmoid but still worse than ReLU and Swish.

Tanh gives the following CNN results - 83% accuracy, 81% precision, 82% recall, 81.5% F1-score with training and testing

times of 11 hours and 0.06s per image respectively. For ResNeXt, accuracy is 88%, for DenseNet its 90% and for our

Hybrid model it is 96%. The Hybrid model is found to have less performance even though the F1 score is better with 94.5

% now close to ReLU and Swish.

Fig 9. Training Time (hrs) and Testing Time (sec/image) for Model Architectures.

The Leaky function is a way to address the "dying ReLU" problem by allowing a small gradient when the unit is not

active. CNNs with Leaky ReLU get an accuracy of 86%, 84% for precision, 85% for recall, 84.5% for F1-Score and need

10 hours for training and 0.05 sec for testing on an image. Leaky ReLU improve the performance of the ResNeXt,

DenseNet, and Hybrid model to 91%, 93%, and 98% respectively. It has a very good performance by what is mentioned

before, completing the same metrics on top as the previous ReLU model but on the Hybrid variant, the F1-score is 97%

Convolutional neural networks use rectified linear units (ReLU) to represent the input because it is smooth and yet, non-

monotonic and further helps in training better models when compared with other popular types. The swish function,

developed by Google in 2017, is supposed to be the new ReLU—since it performs as a smooth, non-monotonic function

in countless situations. CNNs with Swish giving an accuracy of 87%, precision of 85%, recall of 86% and, F1-score of

85.5% along with 10 hours of training time and, 0.05 sec. per image testing time. Swish achieves the best accuracy for

ResNeXt, DenseNet, and the Hybrid (a growth of 92%, 94%, and 98%, respectively). The Hybrid model retains high-level

performance (with an F1-score of 97%) proving that Swish can be effective in a more complex setting.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

303

The activation functions helps in the model to perform better, and this helps in the computational efficiency. Swish and

Leaky ReLU should achieve good performance across all architectures, with Swish beating the other by a thin slice.

Although there are more modern alternatives, ReLU is still a strong candidate for activation function of choice for being

simple and effective. While the Sigmoid and Tanh functions do have some merit in cases suitable to their properties, they

fall well behind the other activation functions.

Table 6. Loss and Convergence with Different Activation Functions

Activation Function Model Architecture Initial Loss Final Loss Convergence Time (epochs)

ReLU CNN 1 0.2 50

ReLU ResNeXt 1 0.15 40

ReLU DenseNet 1 0.12 35

ReLU Hybrid (ResNeXt + DenseNet) 1 0.08 30

Sigmoid CNN 1.2 0.3 60

Sigmoid ResNeXt 1.2 0.25 50

Sigmoid DenseNet 1.2 0.22 45

Sigmoid Hybrid (ResNeXt + DenseNet) 1.2 0.18 40

Tanh CNN 1.1 0.25 55

Tanh ResNeXt 1.1 0.2 45

Tanh DenseNet 1.1 0.17 40

Tanh Hybrid (ResNeXt + DenseNet) 1.1 0.12 35

Leaky ReLU CNN 1 0.18 50

Leaky ReLU ResNeXt 1 0.14 40

Leaky ReLU DenseNet 1 0.11 35

Leaky ReLU Hybrid (ResNeXt + DenseNet) 1 0.08 30

Swish CNN 1 0.18 50

Swish ResNeXt 1 0.13 40

Swish DenseNet 1 0.1 35

Swish Hybrid (ResNeXt + DenseNet) 1 0.08 30

Table 6 and Fig 10 give the detailed analysis of initial loss, final loss and time for convergence using different datasets

and activation functions with different model architecture. These metrics are important to understand how efficient and

effective each activation function is compared to each other to train deep learning models. The loss at the beginning for the

models using ReLU is consistently 1 across CNN, ResNeXt, DenseNet, and the Hybrid model. The last loss achieved by

CNN is 0.2 which is a considerable drop and it converged on 50 epochs. With losses of 0.15 and 0.12, ResNeXt and

DenseNet show significantly improved final losses with convergence time of 40 and 35 epochs respectively. It took 30

epochs for the Hybrid model to converge and it performs the best of all the models with the final loss of 0.08. It is an

indicator of how ReLU works as it speeds up training and lowers the loss especially with deep and complex models.

The models with sigmoid activation function have an initial loss of 1.2 to begin with. A final loss of 0.3 is obtained on

CNNs with a convergence after 60 epochs, showing that this training can be also slower and less efficient than for ReLU.

ResNeXt and DenseNet --- final losses: 0.25 and 0.22; convergence times: 50 and 45 epochs. The Hybrid model has a final

loss of 0.18 and converges in 40 epochs, performing just 0.01 better than the individual models. This leads as a lot of larger

initial and final loss terms as well as longer convergence times this gives the impression that Sigmoid is not great at training

deep models. For all models, a loss begins from 1.1 during the first iteration of Tanh function. CNN converges to 0.25 final

loss after 55 epochs. ResNeXt and DenseNet do better (final losses of 0.2 and 0.17 and decently faster convergence times

of 45 and 40 epochs). Hybrid model shows Loss 0.12 Epochs: 35. Although Tanh is better than Sigmoid, it is still worse

than ReLU and Swish in terms of final loss and convergence speed.

Leaky ReLU also begins with a malfunction of 1 as ReLU does. The final CNN loss 0.18, convergence time of 50

epochs. Few other architectures presented slight improvements in different variations and the lowest final losses are of

ResNeXt and DenseNet all with 0.14 and 0.11 respectively, after 40 and 35 epochs. The Hybrid model obtains a final loss

of 0.08 converged over 30 epochs similarly to ReLU and Swish. Leaky ReLU has good performance, especially on deeper

models, and helps to speed up the training process while lowering the loss. Starting with an initial loss of 1 (similar to

ReLU, Leaky ReLU), swish begins with the value, “swish”, though ranging between 0 and 1. CNN Loss function reaches

0.18 after 50 epochs. The final losses of ResNeXt and DenseNet are 0.13, 0.1 with convergence times of 40, 35 epochs

correspondingly. The hybrid model performs the best with a loss of 0.08 at convergence after 30 epochs. The smooth nature

and its non-monotonicity make Swish really powerful for training deep models, learnable component and data

augmentation to reduce final losses and fast convergence. All the models with ReLU, Leaky ReLU, and Swish activation

functions have achieved a significantly lower final loss, and also some of them have faster convergence times. The Sigmoid

and Tanh suffer from higher final losses and longer convergence periods, especially in deep and complex models. The

Hybrid model profits in particular using the superior activation functions and indicates an excellent overall performance.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

304

Fig 10. Initial Loss, Final Loss and Convergence Time by Activation Function.

However, the HydroLens could be utilized for more than underwater object detection; it can be used in such areas as

pollution or algae blooms mapping, studies of marine life, or inspection of underwater infrastructure such as pipelines and

cables. It also has implication for navigation of the autonomous underwater vehicle (AUV) and searching for objects or

hazard in search and rescue operations where information of the environment needs to be as real time as possible.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

305

V. CONCLUSION AND FUTURE WORK

An effective object detection and tracking system using HydroLens can be implemented using a hybrid model of ResNeXt

and DenseNet with promising results in underwater object detection and tracking. The resulting model has significantly

outperformed other popular architectures like CNN, VGG16, InceptionV3, EfficientNet, MobileNetV2, Xception,

NASNet, ResNet50, and AlexNet. This hybrid model provided the highest levels of accuracy (98%), precision (96%),

recall (97%), and F1-Score (97%) compared to the individual models. We seek thorough behaviour validation of the

HydroLens system via extensive experimentation and evaluation on available benchmark underwater datasets. This system

is powerful enough to deal with the challenges present in underwater environment (such as low visibility, varying

illumination conditions, and complex background) due to the integration of data collection with IoT-enabled underwater

sensors, well-designed preprocessing pipeline for underwater imagery, and the invention of the hybrid object

detection/tracking model. While effective, HydroLens faces challenges with extreme noise conditions, such as highly

turbulent water or severe lighting imbalances. Limited bandwidth also restricts the real-time transmission of high-resolution

images, which can influence data quality and model responsiveness. To address these challenges, future developments

could include integrating more advanced noise reduction algorithms tailored for underwater environments and enhancing

image transmission through optimized compression algorithms that maintain quality without significantly increasing data

load. Improving latency management in IoT communication would also strengthen real-time performance. Additionally,

expanding training datasets to include diverse environmental conditions would improve the model’s robustness, allowing

HydroLens to handle a wider range of underwater settings and challenges.

CRediT Author Statement

The authors confirm contribution to the paper as follows:

Conceptualization: Sujilatha Tada and Jeevanantham Vellaichamy; Methodology: Sujilatha Tada and Jeevanantham

Vellaichamy; Software: Sujilatha Tada; Data Curation: Jeevanantham Vellaichamy; Writing- Original Draft

Preparation: Sujilatha Tada; Visualization: Jeevanantham Vellaichamy; Investigation: Sujilatha Tada; Supervision:

Jeevanantham Vellaichamy; Validation: Sujilatha Tada; Writing- Reviewing and Editing: Sujilatha Tada and

Jeevanantham Vellaichamy; All authors reviewed the results and approved the final version of the manuscript.

Data Availability

The Datasets used and /or analysed during the current study available from the corresponding author on reasonable request.

Conflicts of Interests

The author(s) declare(s) that they have no conflicts of interest.

Funding

No funding agency is associated with this research.

Competing Interests

There are no competing interests

References
[1]. N. Faruqui, M. A. Kabir, M. A. Yousuf, Md. Whaiduzzaman, A. Barros, and I. Mahmud, “Trackez: An IoT-Based 3D-Object Tracking From

2D Pixel Matrix Using Mez and FSL Algorithm,” IEEE Access, vol. 11, pp. 61453–61467, 2023, doi: 10.1109/access.2023.3287496.

[2]. H. Li, X. Liang, H. Yin, L. Xu, X. Kong, and T. A. Gulliver, “Multiobject Tracking via Discriminative Embeddings for the Internet of Things,”

IEEE Internet of Things Journal, vol. 10, no. 12, pp. 10532–10546, Jun. 2023, doi: 10.1109/jiot.2023.3242739.
[3]. I. Ahmed, G. Jeon, and A. Chehri, “A Smart IoT Enabled End-to-End 3D Object Detection System for Autonomous Vehicles,” IEEE

Transactions on Intelligent Transportation Systems, vol. 24, no. 11, pp. 13078–13087, Nov. 2023, doi: 10.1109/tits.2022.3210490.

[4]. S. Li et al., “A Multitask Benchmark Dataset for Satellite Video: Object Detection, Tracking, and Segmentation,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 61, pp. 1–21, 2023, doi: 10.1109/tgrs.2023.3278075.

[5]. Z. Meng, X. Xia, R. Xu, W. Liu, and J. Ma, “HYDRO-3D: Hybrid Object Detection and Tracking for Cooperative Perception Using 3D

LiDAR,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 8, pp. 4069–4080, Aug. 2023, doi: 10.1109/tiv.2023.3282567.

[6]. J. Wu, X. Su, Q. Yuan, H. Shen, and L. Zhang, “Multivehicle Object Tracking in Satellite Video Enhanced by Slow Features and Motion

Features,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–26, 2022, doi: 10.1109/tgrs.2021.3139121.

[7]. Y. Gong et al., “An Energy-Efficient Reconfigurable AI-Based Object Detection and Tracking Processor Supporting Online Object Learning,”
IEEE Solid-State Circuits Letters, vol. 5, pp. 78–81, 2022, doi: 10.1109/lssc.2022.3163478.

[8]. I. S. Mohamed and L. K. Chuan, “PAE: Portable Appearance Extension for Multiple Object Detection and Tracking in Traffic Scenes,” IEEE

Access, vol. 10, pp. 37257–37268, 2022, doi: 10.1109/access.2022.3160424.
[9]. S. Guo, C. Zhao, G. Wang, J. Yang, and S. Yang, “EC²Detect: Real-Time Online Video Object Detection in Edge-Cloud Collaborative IoT,”

IEEE Internet of Things Journal, vol. 9, no. 20, pp. 20382–20392, Oct. 2022, doi: 10.1109/jiot.2022.3173685.

[10]. Z. Peng, Z. Xiong, Y. Zhao, and L. Zhang, “3-D Objects Detection and Tracking Using Solid-State LiDAR and RGB Camera,” IEEE Sensors
Journal, vol. 23, no. 13, pp. 14795–14808, Jul. 2023, doi: 10.1109/jsen.2023.3279500.

[11]. C. Nie, Z. Ju, Z. Sun, and H. Zhang, “3D Object Detection and Tracking Based on Lidar-Camera Fusion and IMM-UKF Algorithm Towards

Highway Driving,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 7, no. 4, pp. 1242–1252, Aug. 2023, doi:
10.1109/tetci.2023.3259441.

[12]. M. Jiang, C. Zhou, and J. Kong, “AOH: Online Multiple Object Tracking With Adaptive Occlusion Handling,” IEEE Signal Processing

Letters, vol. 29, pp. 1644–1648, 2022, doi: 10.1109/lsp.2022.3191549.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

306

[13]. C. Zhang, S. Zheng, H. Wu, Z. Gu, W. Sun, and L. Yang, “AttentionTrack: Multiple Object Tracking in Traffic Scenarios Using Features
Attention,” IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 2, pp. 1661–1674, Feb. 2024, doi:

10.1109/tits.2023.3315222.

[14]. S. Wang et al., “Object Tracking Based on the Fusion of Roadside LiDAR and Camera Data,” IEEE Transactions on Instrumentation and
Measurement, vol. 71, pp. 1–14, 2022, doi: 10.1109/tim.2022.3201938.

[15]. H. Liu, Y. Ma, H. Wang, C. Zhang, and Y. Guo, “AnchorPoint: Query Design for Transformer-Based 3D Object Detection and Tracking,”

IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 10, pp. 10988–11000, Oct. 2023, doi: 10.1109/tits.2023.3282204.
[16]. T. Jaganathan, A. Panneerselvam, and S. K. Kumaraswamy, “Object detection and multi‐object tracking based on optimized deep

convolutional neural network and unscented Kalman filtering,” Concurrency and Computation: Practice and Experience, vol. 34, no. 25, Aug.

2022, doi: 10.1002/cpe.7245.
[17]. L. Huang et al., “Simultaneous object detection and segmentation for patient‐specific markerless lung tumor tracking in simulated radiographs

with deep learning,” Medical Physics, vol. 51, no. 3, pp. 1957–1973, Sep. 2023, doi: 10.1002/mp.16705.

[18]. Q. Zhang, Y. Shan, Z. Zhang, H. Lin, Y. Zhang, and K. Huang, “Multisensor fusion‐based maritime ship object detection method for
autonomous surface vehicles,” Journal of Field Robotics, vol. 41, no. 3, pp. 493–510, Nov. 2023, doi: 10.1002/rob.22273.

[19]. D. Roja, "A, Smart Ultrasonic Radar: Real-Time Object Detection and Tracking with IoT Integration," International Journal for Modern

Trends in Science and Technology, 10(2), 102-109, 2024, DOI: 10.46501/IJMTST1002014
[20]. Z. Ni, C. Zhai, Y. Li, and Y. Yang, “A Multi-Object Tracking Method With Adaptive Dual Decoder and Better Motion Affinity,” IEEE

Access, vol. 12, pp. 20221–20231, 2024, doi: 10.1109/access.2024.3362673.

[21]. H. Gao, L. Yu, I. A. Khan, Y. Wang, Y. Yang, and H. Shen, “Visual Object Detection and Tracking for Internet of Things Devices Based on
Spatial Attention Powered Multidomain Network,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 2811–2820, Feb. 2023, doi:

10.1109/jiot.2021.3099855.

[22]. I. Ahmed, M. Ahmad, A. Chehri, M. M. Hassan, and G. Jeon, “IoT Enabled Deep Learning Based Framework for Multiple Object Detection
in Remote Sensing Images,” Remote Sensing, vol. 14, no. 16, p. 4107, Aug. 2022, doi: 10.3390/rs14164107.

[23]. V. Kamath, R. A., V. G. Kini, and S. Prabhu, “Exploratory Data Preparation and Model Training Process for Raspberry Pi-Based Object

Detection Model Deployments,” IEEE Access, vol. 12, pp. 45423–45441, 2024, doi: 10.1109/access.2024.3381798.
[24]. Nookala Venu, "Object Detection in Motion Estimation and Tracking analysis for IoT devices," European Chemical Bulletin, 12 (9), 2023,

DOI: 10.48047/ecb/2023.12.9.141
[25]. S. Bilakeri and K. A. Kotegar, “Learning to Track With Dynamic Message Passing Neural Network for Multi-Camera Multi-Object Tracking,”

IEEE Access, vol. 12, pp. 63317–63333, 2024, doi: 10.1109/access.2024.3383138.

