
Journal Pre-proof

Efficient Resource Allocation in Cloud Environment: A Hybrid

Circle Chaotic Genetic Osprey Solution

Rajgopal K. T, Manoj T. Gadiyar H, Nagesh Shenoy H and Goudar R H

DOI: 10.53759/7669/jmc202505021

Reference: JMC202505021

Journal: Journal of Machine and Computing.

Received 10 May 2024

Revised form 02 October 2024

Accepted 15 November 2024

Please cite this article as: Rajgopal K. T, Manoj T. Gadiyar H, Nagesh Shenoy H and Goudar R H, “Efficient Resource

Allocation in Cloud Environment: A Hybrid Circle Chaotic Genetic Osprey Solution”, Journal of Machine and Computing.

(2025). Doi: https:// doi.org/10.53759/7669/jmc202505021

This PDF file contains an article that has undergone certain improvements after acceptance. These enhancements

include the addition of a cover page, metadata, and formatting changes aimed at enhancing readability. However, it is

important to note that this version is not considered the final authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting, typesetting,

and comprehensive review. These processes are implemented to ensure the article's final form is of the highest quality.

The purpose of sharing this version is to offer early visibility of the article's content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be identified,

which could impact the content. Additionally, all legal disclaimers applicable to the journal remain in effect.

© 2025 Published by AnaPub Publications.

Efficient Resource Allocation in Cloud

Environment: A Hybrid Circle Chaotic Genetic

Osprey Solution

1a,b Rajgopal K. T., *2a,b H. Manoj T. Gadiyar, 3 Nagesh Shenoy H, 4 R H Goudar
1aDepartment of Computer Science and Engineering,

Canara Engineering College, Mangalore, Karnataka, India– 574219.
1bResearch Scholar,

Visvesvaraya Technological University, Belagavi, Karnataka, India.
*2aDepartment of Information Science and Engineering,

Canara Engineering College, Mangalore, Karnataka, India – 574219
*2bResearch Supervisor, Visvesvaraya Technological University, Belagavi, Karnataka, India.

3Department of Computer Science and Engineering,

Canara Engineering College, Mangalore, Karnataka, India– 574219.
4Department of Computer Science and Engineering,

Visvesvaraya Technological university, Belagavi, 590018.
1rajgopal.kt@canaraengineering.in 2hmanojtgadiyar@gmail.com 3h.nagesh.shenoy@gmail.com 4 rhgoudar@vtu.ac.in

Abstract: Organizations and individuals now access and use computing resources in a completely new way due to cloud

computing. However, efficient resource allocation remains a significant challenge in cloud environments. Existing techniques,

such as static, dynamic, heuristic, and meta-heuristic, often lead to locally optimal solutions, suffering from slow convergence

rates that hinder the achievement of global optimality. To address this challenge, this paper presents a novel Hybrid Circle

Chaotic Genetic Osprey Optimization Algorithm (HC2GOO). This innovative approach synergizes the strengths of the Osprey

Optimization Algorithm (O2A) and Genetic Algorithm (GA) to significantly enhance resource allocation efficiency in cloud

environments. The HC2GOO incorporates a circle chaotic map to replace the random initialization values in the Osprey

population update phase. Furthermore, the integration of the GA effectively balances the exploration and exploitation processes

of the osprey optimization, facilitating the discovery of optimal solutions. The effectiveness of the HC2GOO algorithm is

assessed using the GWA-T-12 Bitbrains dataset and is benchmarked against established algorithms. The results indicate that

HC2GOO outperforms existing methods, achieving significant improvements in key performance indicators: energy

consumption (36 kWh), host utilization (13,800), SLA violations (7.2), average execution time (16.2 ms), service cost ($12.5),

number of migrations (3,050), and throughput (28.6%) based on 100VMs. Overall, the HC2GOO algorithm represents a

substantial advancement in the field of cloud resource allocation, offering more effective solutions for optimizing computing

resource management.

Keywords: Circle chaotic, Cloud computing, Genetic algorithm, Internet, Optimization, Osprey optimization, Resource

allocation, Service level agreement (SLA).

I. INTRODUCTION

Cloud computing has fundamentally transformed the landscape of distributed computing, concealing traditional paradigms such

as mainframe and client-server architectures. This revolutionary approach provides a comprehensive suite of features and

services that organizations and individuals increasingly adopt as they embrace cloud-centric operations [1]. Functionality across

cloud services spans critical areas, including communication, integration, management, platform delivery, and networking,

illustrating the versatility and depth of cloud solutions personalized to meet specific operational needs [2]. Consequently, cloud

computing has become integral across diverse sectors, encompassing education, geospatial sciences, technology, manufacturing,

engineering, healthcare, data-intensive applications, and numerous scientific and business fields [3].

The advantages of cloud computing are substantial, offering organizations significant cost savings, enhanced data security,

scalability, increased mobility, robust disaster recovery options, comprehensive control over resources, and a competitive edge

in the marketplace. These benefits have solidified cloud computing’s position as a reliable and indispensable technology within

the contemporary business environment [4]. Three main service models, Infrastructure as a Service (IaaS), Platform as a Service

Auth
ors

 Pre-
Proo

f

mailto:rajgopal.kt@canaraengineering.in
mailto:hmanojtgadiyar@gmail.com

(PaaS), and Software as a Service (SaaS), deliver virtualized resources, which form the foundation of cloud computing

architecture [5]. IaaS provides essential hardware resources such as memory, CPU, servers, and storage, with notable examples

including Microsoft Azure, Apple iCloud, Google Drive, and Amazon Web Services (AWS) [6] [7]. One example of a platform

as a service (PaaS) is Google App Engine, which provides developers with an OS and framework to build, test, run, and manage

apps [8] [9][10]. SaaS offers applications as services that users can access through an internet interface, eliminating the need for

local installation examples include Google Apps, Cisco WebEx, and Salesforce [11][12].

Despite these capable advantages, cloud computing faces significant challenges shaped by user demands and provider

constraints. A critical issue is resource scheduling, an NP-hard problem that profoundly influences cloud system performance

[13]. As cloud computing endeavours to provide shared resources as on-demand services, efficient job scheduling is paramount

to optimize resource utilization, especially with the numerous resources offered by cloud service providers, including virtual

machines (VMs) [14]. Effective VM allocation is not only essential for accommodating diverse user needs but also for

maximizing resource efficiency.

The operational efficacy of cloud systems hinges on the optimal performance of all applications. Thus, efficient resource

management and job scheduling are foundational requirements for sustaining high operational efficiency in cloud environments

[15]. This allocation process involves assigning available resources to incoming applications within designated timeframes,

subsequently enhancing the Quality of Service (QoS) for each application [16]. Constraints specified by both cloud service

providers and clients are used to strategically divide various projects over different sorts of resources [17].

Due to factors such as rising need for digital transformation, rising costs, and more and more people using cloud-based

services, the cloud computing market is expected to experience substantial growth in the near future [18]. From 2024–2029, the

market is projected to expand from an initial 2023 valuation of about $587.78B to a final 2029 valuation of between $947.3B

and $1.806B, representing a CAGR of 13.3% to 18.49%. However, the market also faces challenges, including inefficient

resource allocation, which can lead to underutilization of cloud resources, with approximately 35% of cloud resources remaining

underutilized. Optimized use of cloud services can lead to significant cost savings, with AWS reporting that customers may

achieve up to 70% savings.

The implementation of effective resource allocation techniques necessitates advanced real-time decision-making capabilities

to mitigate instances of underutilization and overutilization, thereby ensuring compliance with Service Level Agreements

(SLAs) [19]. Non-compliance can lead to detrimental effects for both customers and service providers, creating financial

challenges and reducing profitability [20]. Consequently, cloud providers strive to accommodate a maximized number of

incoming requests, focusing on profitability while adhering to the QoS standards delineated within SLAs [21]. To accomplish

this, the cloud must have efficient mechanisms for allocating resources in response to user demands; these mechanisms must

minimize response times and costs while taking availability, dependability, and response time restrictions service level

agreements (SLAs) into account [22].

On-demand resource allocation embodies inherent complexities, recognized as an NP-complete challenge in cloud

environments [23]. Algorithms created to handle these problems become more complicated as the amount of resources allocated

increases [24]. Although extensive research has been aimed at cloud resource allocation, the domain is influenced by a variety

of factors, including substantial request volumes, heterogeneous workloads, dynamic network circumstances, flexible resource

provisioning and de-provisioning, fluctuating request, and intricate pricing models [25]. Therefore, it is essential to create a plan

for allocating resources that satisfies the needs of service providers as well as those of the end customers.

While several heuristic algorithms have been proposed to approach cloud resource allocation, such as particle swarm

optimization (PSO) [26], harmony search (HS) [27], Hill climbing algorithm (HCA) [28], and Nearest Neighbor heuristic (NHH)

[29], have not provided satisfactory solutions within practical timeframes. So many researchers nowadays use nature-inspired

algorithms for cloud resource allocation, such as genetic algorithm (GA) [30], simulated annealing (SA) [31], and ant colony

optimization [32], which are inspired by natural phenomena and are used to elucidate complex optimization difficulties.

However, these possess numerous constraints, including raised energy consumption, excessive host utilization, diminished

network stability, significant computational complexity, and high-cost utilization. Motivated by these challenges, this paper

presents a novel HC2GOO, which is specifically designed to enhance resource allocation in cloud environments while effectively

addressing user demand. The key contributions of this research are outlined as follows:

● A hybrid circle chaotic genetic osprey optimization (HC2GOO) algorithm is proposed to identify optimal solutions for

scientific applications while meeting end-user demands.
● A model for optimizing power consumption and costs associated with computational resources is developed, focused on

significantly reducing energy usage and overall deployment costs.
● The performance and effectiveness of the developed framework are validated across various workloads, with comparisons

made against existing algorithms.
Research Questions:

☞ How does HC2GOO minimize energy consumption in cloud environments?
☞ How does HC2GOO allocate resources in cloud environments, and what are the key performance indicators (KPIs) to

measure its effectiveness?

Auth
ors

 Pre-
Proo

f

☞ Can HC2GOO reduce costs associated with resource allocation, energy consumption, and host utilization in cloud

environments?
☞ How does HC2GOO compare to existing nature-inspired and meta-heuristic algorithms in terms of optimization

performance, computational complexity, and scalability?
The rest of the paper is organized as follows: A thorough analysis of relevant literature about state-of-the-art methods for

allocating resources in cloud systems is given in Section 2. The proposed HC2GOO-based virtual machine allocation mechanism

is detailed in Section 3. In Section 5, the study is concluded and future directions for this field of study are outlined. In Section

4, the results and discussions surrounding the proposed model are presented.

II. RELATED WORKS

An analysis and description of a survey of different methods currently in use for allocating resources in a cloud environment

are provided below.

The efficient resource scheduling algorithm can dynamically schedule tasks on cloud infrastructure, reducing the entire cost

of rental virtual machines while ensuring efficient resource utilization. Devi et al. [33] developed a genetic algorithm known as

the Genetic Encoded Chromosome for Dynamic Resource Scheduling Policy (GEC-DRP). This approach was tested on both

the Google and NASA datasets, achieving a throughput of 95% when scheduling 100 tasks. However, as the amount of tasks

augmented to 1000, the throughput decreased to 46%, highlighting the challenges posed by the high computational complexity

associated with the GEC-DRP method.

In order to schedule work on already-existing virtual machines (VMs), Shooli et al. [34] devised an efficient resource

allocation technique that coupled fuzzy logic with the Gravitational Search Algorithm (GSA). They employed an approach that

involved mass creation through the combination of job sequences allocated to numerous machines, GSA for identifying the best

assignments, and fuzzy logic for evaluating the interactions between these masses. The performance of the algorithm was

evaluated using three metrics: Make-span, Mean Flow Time, and Load imbalance, demonstrating improved results compared to

traditional genetic algorithms and GSA without fuzzy logic. However, the algorithm’s utility was constrained in very large-scale

cloud environments due to its significant computational resource requirements.

To enhance task scheduling efficiency and promote fairness while minimizing idle time, Manavi et al. [35] developed a hybrid

algorithm that integrated genetic algorithms with neural networks. This approach aimed to achieve performance improvements

in execution time, cost, and response time. It outperformed cutting-edge techniques, showing improvements of 3.2% in

execution time, 13.3% in cost, and 12.1% in reaction time. Nonetheless, the model faced scalability issues when applied to

larger datasets or complex task dependencies.

For dynamic resource allocation, Abedi et al. [36] introduced an Improved Firefly Algorithm based on load balancing

optimization, termed IFA-DSA. This method sought to efficiently utilize resources and maximize productivity by balancing

workloads across existing virtual machines, thereby reducing completion time. Experimental results indicated that the proposed

method outpaced the ICFA method in the makespan criterion by an average of 3%. However, IFA-DSA relied on heuristic

methods for initial population creation, which may not consistently yield optimal solutions.

In order to optimize resource allocation time and meet task deadlines, Selvapandian et al. [37] created a hybrid optimized

allocation model that integrated the PSO algorithm and the Bat Optimization Algorithm (BOA) for resource allocation in multi-

cloud environments. This model minimized energy usage. The evaluation of the BOA-PSO model utilized a dataset of 500 tasks

with varying requirements and resource availability. The results indicated an allocation time of 47 seconds while achieving a

minimum energy consumption of 200 kWh. However, the BOA-PSO model encountered scalability issues when dealing with

larger datasets.

Moazeni et al. [38] developed a dynamic resource allocation strategy utilizing a multi-objective teaching-learning-based

optimization (AMO-TLBO) algorithm for dynamic effective resource allocation in cloud data centers. This algorithm aimed to

efficiently allocate resources for fine-grained computational tasks using datasets generated through simulation tools. The

evaluation yielded an impressive resource utilization rate of 80% across 100 tasks. Still, the AMO-TLBO method was limited

by its high computational complexity.

In order to minimize execution times, task failure rates, and power consumption, Gupta et al. [39] used a hybrid technique

that integrated artificial neural networks (ANN) with the Harmony Search Algorithm (HAS) to optimize resource allocation in

cloud computing. The performance of the HAS-ANN model was evaluated using real-world cloud data, yielding an execution

time efficiency of 78%. However, this model faced challenges related to high host utilization.

Du et al. [40] developed a cloud computing distribution algorithm based on an enhanced ant colony approach. The goal of

this technique was to find the nodes with the fastest response times among all of the available resources and then pick the best

ones to meet quality standards. The model was verified through MATLAB simulation experiments, achieving an execution time

of 679 seconds; however, it struggled with low throughput performance.

Abouelyazid et al. [41] introduced the Deep-Hill algorithm, which combined a 5-layer Deep Neural Network (DNN) with a

Hill-Climbing algorithm to enhance cloud resource allocation by accurately predicting SaaS instance configurations. The

Auth
ors

 Pre-
Proo

f

performance of the Deep-Hill algorithm was assessed using historical data on SaaS configurations, user demand, and resource

allocation, achieving an accuracy of 96.33%. Nevertheless, the Deep-Hill algorithm faced challenges associated with high-cost

consumption.

Vhatkar et al. [42] developed a hybrid model known as the Whale Random Update Assisted Lion Algorithm (WR-LA) to

improve container resource allocation in cloud-based microservices. This model utilized container resource allocation data

derived from cloud computing environments, yielding a performance throughput of 67%. However, it was constrained by longer

execution times. The survey of existing techniques with their performance and limitations is explained in Table 1.

Table 1. Survey of existing techniques

Author name

and

reference

Technique

used

Aim Performance Limitation

Devi et al.

[33]

GEC-DRP Minimize total cost of

rental virtual machines

while ensuring efficient

resource utilization

95% throughput for

100 tasks, 46% for

1000 tasks

High

computational

complexity

and scalability

issues

Shooli et al.

[34]

GSA

combined

with fuzzy

logic

Schedule tasks on existing

VMs

Improved results

compared to

traditional genetic

algorithms and GSA

without fuzzy logic.

Significant

computational

resource

requirements,

limited utility

in very large-

scale cloud

environments

Manavi et al.

[35]

Hybrid

algorithm

integrating

genetic

algorithms

with

neural

networks

Enhance task scheduling

efficiency and promote

fairness while minimizing

idle time

3.2% improvement in

execution time, 13.3%

in cost, 12.1% in

response time

Scalability

issues when

applied to

larger datasets

or complex

task

dependencies

Abedi et al.

[36]

 IFA-DSA Efficiently utilize

resources and maximize

productivity by balancing

workloads across existing

virtual machines.

Outperformed ICFA

method in makespan

criterion by an

average of 3%

Rely on

heuristic

methods for

initial

population

creation may

not

consistently

yield optimal

solutions

Selvapandian

et al. [37]

Hybrid

optimized

allocation

model

combining

BOA and

PSO

algorithm

Minimize energy

consumption while

meeting task deadlines and

optimizing resource

allocation time

Allocation time of 47

seconds, minimum

energy consumption

of 200 kWh

Scalability

issues when

dealing with

larger datasets

Moazeni et al.

[38]

AMO-

TLBO

algorithm

Efficiently allocate

resources for fine-grained

computational tasks

Resource utilization

rate of 80% across

100 tasks

High

computational

complexity

Gupta et al.

[39]

Hybrid

approach

combining

Optimize resource

allocation in cloud

computing by reducing

Execution time

efficiency of 78%

High host

utilization

Auth
ors

 Pre-
Proo

f

ANN with

HAS

execution time, task

failure counts, and power

consumption.

Du et al. [40] Cloud

computing

allocation

algorithm

based on

an

enhanced

ant colony

approach

Identify the shortest

response times across

resource nodes and select

the best available nodes to

meet quality requirements.

Execution time of 679

seconds

Low

throughput

performance

Abouelyazid

et al. [41]

Deep-hill

algorithm

Enhance cloud resource

allocation by accurately

predicting SaaS instance

configurations.

Accuracy of 96.33% High-cost

consumption

Vhatkar et al.

[42]

WR-LA Optimize container

resource allocation in

cloud-based microservices

Performance

throughput of 67%

Longer

execution

times

Despite the existence of optimization algorithms, their limitations highlight the need for further enhancements to address the

challenges in cloud resource allocation. A thorough review of these algorithms reveals that techniques such as PSO, IACO,

HAS, AMO-TLB, and BAO are not sufficiently effective for addressing the challenges of resource allocation in the cloud

without risking SLAs and deadlines. Consequently, this study introduces an improved HC2GOO-based nature-inspired approach

that effectively tackles these existing challenges by efficiently allocating incoming requests to resources based on a fitness

function. Additionally, the proposed method optimizes key performance indicators while adhering to user-defined deadlines and

budget constraints.

III. PROPOSED METHODOLOGY

The proposed methodology for efficient resource allocation in a cloud environment is embodied in the HC2GOO framework.

This innovative approach integrates a circle chaotic map to enhance the initialization process, replacing traditional random

values during the Osprey population update phase. By introducing the circle chaotic map, this study aims to improve the diversity

of initial solutions, thereby fostering a more effective exploration of the solution space. Moreover, during the osprey

optimization process, the GA in the HC2GOO framework is intended to preserve a careful balance between exploration and

exploitation. This dual focus allows the algorithm to efficiently converge toward the most optimal solution while ensuring that

diverse potential solutions are thoroughly investigated. Fig. 1 displays the proposed model workflow diagram.

Fig 1. Graphical abstract of the proposed model

Auth
ors

 Pre-
Proo

f

A. Osprey Optimization

The osprey is a raptor that preys on fish and is well-known for its wide geographic range and nocturnal habits. It goes by several

other names, including sea hawk, river hawk, and fish hawk. With a wingspan of 127–180 cm, these birds weigh between 0.9

and 2.1 kg and measure 50–66 cm in length. Their physical characteristics include:

☞ Rich glossy brown upperparts and pure white underparts, with irregular brown streaks on their white breast.
☞ A white head is surrounded by a black facial mask that extends to the neck.
☞ Light blue translucent nictitating membranes and irises that range in color from golden to brown.
☞ A black beak with a blue cere and white feet equipped with black claws.
☞ Short tails and long, slender wings.

As piscivorous birds, ospreys primarily feed on fish, which constitutes about 99% of their diet. Live fish weighing 150–300

g and 25–35 cm long are usual, yet they can catch anything from 2 kg to 50 g. Ospreys can see their underwater prey from 10–

40 meters away, due to their extraordinary vision. After identifying a fish, they glide toward it, extend a foot to touch the water,

and dive to catch their meal. After catching their meal, ospreys will often take it to a nearby rock to eat [43]. This clever fishing

strategy and the behavior of transporting food to a suitable location demonstrates a fascinating instinct that could inspire the

development of innovative optimization algorithms.

B. Genetic Algorithm

Charles Darwin's idea of natural selection in which the fittest individuals survive to procreate provided the theoretical foundation

for a search strategy known as a genetic algorithm [44]. A fitness function is used to assess the quality of the candidate solutions

in the algorithm, and selection, crossover, and mutation are employed to evolve the population towards better solutions. The

algorithm iterates through initialization, evaluation, selection, crossover, mutation, and replacement until a closure circumstance

is met, such as a extreme quantity of generations. By mimicking the natural selection process, genetic algorithms can effectively

search for optimal solutions in complex problem spaces, making them a powerful tool for optimization and search problems.

C. Step involved in the HC2GOO algorithms

The HC
2
GOO algorithm is a hybrid optimization algorithm that syndicates the principles of genetic algorithm and osprey

optimization. The steps involved in the HC
2
GOO algorithm are:

1) Initialization

The O2A is a population-based approach that iteratively searches for an optimum solution in the problem-solving space. Each

osprey in the OOA population represents a potential solution, and its position in the search space is randomly initialized at the

beginning of the algorithm. According to equation (1), the population of osprey is described, and equation (2) describes the

randomly initialized position of osprey in search space.

 NM
Nmqmm

npqpp

nq

nMm

P

ggg

ggg

ggg

G

G

G

G

=

=

1

,,1,

,1,11,11

 (1)

() NqMpaArag qqqpqqp ,...,2,1,,....,2,1,,, ==−+=

, (2)

Here, the population matrix of the osprey position is represented as G , the
thP position of osprey is PG with its

thq

dimension is denoted as qpG , . The number of osprey signifies M , the number of problem variables represented as N , and the

random number in interval [0, 1] is denoted as qpr , .

The improvement of this algorithm is improved by a circle chaotic map in the initialization phase population updating in the

original O2A to equation (2) to increase the performance. The circle chaotic map is a one –one-dimensional map which is a

population of a dynamical system on the circle. This map is defined as:

() NqMpaArag qqqqp ,...,2,1,,....,2,1,2.0,5.0, ==−+=

 (3)

Here, equation (3) generated a chaotic number between (0,1) by using 5.0=p and 2.0=q . r is taken as a control stricture.

The objective function is assessed for every osprey to determine the quality of the solution after the ospreys' positions have been

initialized. The objective function value is represented as a vector (equation (4)), and the best and worst solutions are determined

based on the objective function value. After each iteration, the position of the ospreys is updated to search for an optimal solution.

Auth
ors

 Pre-
Proo

f

()

()

()
1

1

1

1

=

=

mm

p

mm

p

GF

GF

GF

F

F

F

F

 (4)

Where, F and pF
is denoted as the vector of objective function value and

thp objective function value.

2) Exploration phase

The exploration phase, in this context, refers to the process by which an osprey identifies and hunts its prey. This phase is

characterized by the osprey’s keen eyesight, which allows it to spot prey underwater, and its swift diving ability to catch the

prey. In this phase, the position of the osprey varies as it searches for prey in its environment. The goal is to improve the osprey’s

exploration power, enabling it to identify the optimal hunting grounds and avoid getting stuck in suboptimal areas.

Each osprey in the search space aims to have a better objective function than the others. This is achieved by attacking a set of

prey, as represented by the equation (5).

 ,,...,2,1| bestpiip GFFmiGFN =

 (5)

Where, PFN is denoted as the set of prey’s location for
thp location, bestG is denoted as the best candidate solution.

The osprey’s position is updated based on its movement towards the prey, as shown in equations (6)-(8).

(),,,,,,

1
, qpqpqpqpqp

X
qp gHCFrgg −+=

 (6)

=

.,

;,

;,

1
,

1
,

1
,

1
,

1
,

q
X

qpq

q
X

qpq

q
X

qpp
X

qp

X
qp

AgA

aga

Agag

g

 (7)

=
elseG

FFG
G

p

p

X

P

X

p

P
,

;, 11

 (8)

Where, the newly updated position of
thp osprey is denoted as

1X

pG
, its

thq dimension is represented as
1

,

X

qpg
 , and the

objective function value is denoted as
1X

PF . The selected prey for
thp osprey is denoted as pCF

, and its
thq dimension is

denoted as qpCF , , and the random number from set {1, 2} is denoted as qpH , .

3) Exploitation phase

The exploitation phase is the second phase of the osprey’s hutting process. After catching its prey, the osprey searches for a

suitable location to eat. This phase focuses on improving the osprey’s ability to find better solutions in the local search space,

leading to convergence towards nearby solutions.

The newly updated position of the osprey is determined based on the improvement of the objective function value. This is

represented by equation (9),

()
Oomqmp

o

aAra
gg

qqqpq
qp

X
qp ,...2,1,,..,2,1,,...,2,1,

,
,

1
, ===

−+
+=

 (9)

The update process is described by equations (10) and (11).

=

.,

;,

;,

1
,

1
,

2
,

2
,

2
,

q
X

qpq

q
X

qpq

q
X

qpp
X

qp

X
qp

AgA

aga

Agag

g

 (10)

=
elseG

FFG
G

p

p

X

P

X

p

P
,

;, 22

 (11)
Auth

ors
 Pre-

Proo
f

Where, the newly updated position of
thp osprey is denoted as

2X

pG
, its

thq dimension is represented as
2

,

X

qpg
 , and the

objective function value is denoted as
2X

PF . The count of iterations is o and the whole amount of repetitions is characterized

as O . The previous position of the osprey is modified when the objective function value improves, leading to a new position in

the search space.

In equation (6), the qpr , plays a crucial role in altering the position of the osprey, which is subsequently used to manage the

solution search space of the optimization problem. It is essential to maintain a balance between these two properties. If the

solution generated during the osprey’s position update does not demonstrate improvement, it suggests an imbalance between

exploitation and exploration. This imbalance may hinder the algorithm’s ability to effectively navigate the search space, limiting

its potential for finding optimal solutions. The proposed approach addresses this issue by incorporating various genetic algorithm

operators (selection, mutation, and crossover) aimed at balancing these properties during the osprey’s position update phase.

This method is referred to as HC2GOO, which combines Circle Chaotic Osprey and Genetic Algorithm. First, the osprey

optimization algorithm and the random numbers for the genetic algorithm are modified. The optimal value is found by analyzing

the fitness values of the randomly generated solutions. Then, based on the distance between each value and the optimal value as

well as other factors taken into account during the Osprey optimization, a new fitness value is computed.

Consequently, all osprey positions are updated using the newly determined fitness values. The next iteration starts if the

updated fitness values indicate improvement; if not, the selection, mutation, and crossover operators of the genetic algorithm

are used to improve the optimization process by strengthening both local and global search capabilities.

Applying the genetic algorithm operators requires several technical steps [45-47]. The standard osprey optimization algorithm

consists of ospreys, while the standard genetic algorithm employs the concepts of genes and chromosomes. To integrate genetic

algorithm operators into the osprey optimization framework, the first step is to represent the ospreys as chromosomes in the GA.

Each osprey in the O2A corresponds to a chromosome, and collectively, they represent the population’s chromosomes. The

genes in the created chromosomes are changed and switched in accordance with the mutation and crossover ratios specified in

the experimental setup in order to carry out the crossover, mutation, and selection operators. The fitness values of the

optimization functions are evaluated after these processes are finished. The process ends if the fitness value of a chromosome

meets the required requirements. If not, the procedure runs until either the maximum number of iterations is reached or the

termination criteria are met. In the next iteration, the chromosomes are substituted with fireflies. Fig. 2 provides a visual

depiction of the flow of the HC2GOO algorithm, highlighting the essential elements and procedures of the technique.

Auth
ors

 Pre-
Proo

f

Fig 2. HC2GOO algorithm

The pseudo-code for the HC2GOO algorithm can be found in Table 2.

Table 2. HC2GOO algorithm

Input: Variables, objective function, and constraints.

Set G is population size of osprey and n is the total number of iterations.

Initial population matrix generated using equation (1) and (2).

 Update the osprey population using equation (3) circle chaotic map.

The objective function is evaluated using equation (4)

For 1=q to n

For 1=p to m

Exploration phase:

Auth
ors

 Pre-
Proo

f

 The prey location is updated for
thp osprey using equation (5)

 The selected prey is determined by
thp osprey randomly.

 The updated position of
thp osprey is measured using equation (6).

 The boundary condition is analyzed for the updated location of osprey using equation (7).

 Update
thp osprey using equation (8).

Exploitation phase:

 The updated location of
thp osprey is measured using equation (9).

 The boundary condition is analyzed for the updated location of osprey using equation (10).

 Update
thp osprey using equation (11)

 Save the better candidate solution.

End

If solution improved

{

Go to start of the loop

}

Else

{

Apply GA operators

}

p=p+1;

While (Stopping criteria do not meet)

 Stop

IV. RESULTS AND DISCUSSION

This section presents a comprehensive experimental analysis of the proposed HC2GOO algorithm alongside state-of-the-art

models, evaluating their performance on the GWA-T-12 Bitbrains dataset for resource allocation in a cloud environment. The

performance of the HC2GOO model is compared to established algorithms, including PSO, Artificial Bee Colony (ABC),

Gravitational Search Algorithm (GSA), and Isotropic Markov Mutations with Local Bias (IMMLB) within the same dataset.

The hyperparameter details of the HC2GOO algorithm are described in Table 3. The system configurations of this study are

presented in Table 4.

Table 3. Hyper-parameter details in HC2GOO

Parameter Values

Population size (Number of

chromosomes and osprey)

[10,100,100]

Dimension of every osprey Number tasks

Lower limit -30

Upper Limit 30

Iteration 200

Search agent 200

Table 4. System configuration of the proposed model

Variables Specifications

Total no of task 10000

RAM 512 mb

Host parameter 6821 MIPS

Host MIPS 1000000

Task length 1000-3000 mps

Bandwidth 2000MIPS

Auth
ors

 Pre-
Proo

f

Cloudlets lengths [200000 to 500000] in MI

Virtual machine processing rate [100, 1000] in MIPS

VMs [1, 2000]

Number of hosts [1, 40]

DC 1

A. Dataset Description

 This study focuses on resource allocation in a cloud environment using the GWA-T-12-BitBrains dataset [48-53], a

comprehensive collection of VM performance metrics consisting of two distinct subsets: FastStorage and Rnd. The FastStorage

subset encompasses 11,221,800 instances, while the Rnd subset includes 12,496,728 instances. This dataset features ten types

of metrics that provide a detailed overview of VM performance, including timestamp (measured in milliseconds since January

1, 1970), CPU cores (the number of virtual CPU cores provisioned), CPU capacity provisioned (calculated in MHz as the product

of the number of cores and the speed per core), and CPU usage (both in MHz and as a percentage). Additionally, it includes

metrics for memory provisioned (in KB), memory usage (in KB), disk read and write throughput (both in KB/s), as well as

network received and transmitted throughput (also measured in KB/s). The size of the dataset is 1.16 GB for the FastStorage

subset and 1.36 GB for the Rnd subset, highlighting the substantial volume of data captured for effective resource management

and performance analysis in cloud environments.

B. Performance Analysis

The competence of the proposed HC2GOO procedure is thoroughly evaluated based on eight key performance metrics: energy

consumption (KWh), host utilization (%), SLA violations, average execution time (ms), service cost, task rejection ratio (%),

and throughput (m). To provide a comprehensive understanding of the technique’s performance, a comparative analysis is

conducted against PSO [48], ABC [49], GSA [50], and IMMLB [51]. This analysis takes into account the unique challenges

associated with each existing method, including PSO, which can be complex and slow due to high computational demands;

ABC may experience longer execution times that affect service responsiveness; GSA can lead to increased costs; and IMMLB

may consume too much power, making it less suitable for energy-sensitive environments. The HC2GOO technique aims to

address these limitations by combining aspects of various methods, offering reduced complexity, faster execution, lower costs,

and improved energy efficiency. The following sections will provide a comparison of these methods, highlighting their strengths

and weaknesses across key performance metrics.

1) Energy consumption with varying VMs

The energy consumption is important for evaluating cloud data center performance. High energy usage increases costs and

lowers profits. To improve energy efficiency, this study presents the HC2GOO algorithm, which reduces idle and overloaded

VM instances. Fig. 3(a) and 3(b) compare energy consumption among different VMs in a cloud environment.

(a) (b)
Fig 3 (a) and (b). Analysis of Energy Consumption

Fig. 3(a) and (b) demonstrate that the energy consumption of different algorithms remains relatively stable as the quantity of

VMs upsurges from 50 to 100. Notably, HC2GOO algorithms achieved significant energy savings, with energy consumption

reduced by 42% in 1,000 tasks and a remarkable 98% in 10,000 tasks. This superior performance can be attributed to the

proposed algorithm’s innovative approach, which combines Osprey and genetic power to optimize resource allocation in VMs,

resulting in substantially less energy consumption compared to other algorithms.

2) Service cost per hour with varying VMs

The service cost per hour in a cloud computing environment varies significantly depending on the number of VMs used. Fig.

4(a) and 4(b) compare service cost per hour among different VMs in cloud computing.

Auth
ors

 Pre-
Proo

f

(a) (b)
Fig 4 (a) and (b). Analysis of service cost

Fig. 4(a) and 4(b) demonstrate that the service costs of various algorithms remain relatively stable as the number of VMs

increases from 1,000 to 5000. Notably, the HC2GOO algorithms demonstrate a significant reduction in service costs within a

cloud environment, achieving a decrease of 7$ for 1,000 tasks and an impressive 9$ for 10,000 tasks. This analysis indicates

that the proposed model offers lower service costs per second compared to existing models. The effectiveness of the proposed

model stems from its innovative approach, which replaces the traditional population in standard osprey with a circular chaotic

map in updated random numbers. As a result of this increased efficiency and speed, the overall cost of running the algorithm is

reduced. In simpler terms, the enhancement helps the algorithm work well and faster, which saves money in the long run.

3) Number of Migration with varying VM

The amount of virtual machines (VMs) involved can have a substantial impact on the number of migrations needed. Fig. 5(a)

and 5(b) show how the frequency of virtual machine migrations varies in cloud computing settings.

(a) (b)
Fig 5(a) and (b). Analysis of Number of Migrations

To assess the performance metric of VM migration count, the analysis examines the variation in the number of VMs ranging

from 50 to 100. The HC2GOO algorithms exhibit a substantial reduction in the number of migrations within a cloud environment,

achieving a decrease of 6,000 migrations for every 1,000 in 100 tasks, as well as a notable reduction of 6,000 migrations for

every 10,000 in 100 tasks. This model effectively demonstrates lower migration counts compared to the existing models,

highlighting its efficiency in optimizing VM migrations.

4) SLA violation with varying VM

SLA violations can happen when a supplier fails to provide the specified levels of service, leading to problems like downtime

or data loss. With more VMs involved, SLA violations become more likely and have a different impact. Fig. 6(a) and 6(b)

compare service cost per hour among different VMs in computing cloud.

 Auth
ors

 Pre-
Proo

f

(a) (b)
Fig 6(a) & (b). Analysis of SLA Violations

To evaluate the performance metric of VM SLA violations, the analysis explores variations in the number of VMs, increasing

from 50 to 100 in increments of 10. The proposed model shows a significant reduction in SLA violations within a cloud

environment, achieving a decrease of 8 violations per 1,000 tasks for 100 tasks and a notable reduction of 12 violations per

10,000 tasks for the same number of tasks. This model outperforms existing models, underscoring its effectiveness in minimizing

VM SLA violations.

5) Average Execution Time with VM

The number of VMs participating in a job or application can have a substantial impact on its average execution time. Fig. 7(a)

and 7(b) illustrate how different virtual machines' average execution times (ms) vary inside a cloud computing environment.

(a) (b)
Fig 7(a) & (b). Analysis of Average Execution Time

Fig. 7(a) and 7(b) demonstrate that the average execution time of various algorithms remains relatively stable as the number

of VMs increases from 1,000 to 5,000. Notably, the proposed model achieves a significant reduction in average execution time

within a cloud environment, with a decrease of 11 ms for 1,000 tasks across 100 VMs and an impressive 22 ms for 10,000 tasks

across the same number of VMs. This analysis indicates that the HC2GOO algorithms consistently outperform existing

algorithms in terms of average execution time. The effectiveness of the HC2GOO algorithms is attributed to its innovative

approach, O2A. The HC2GOO algorithms effectively allocate resources across various VMs in the cloud environment, enhancing

overall performance and efficiency.

6) Throughput with varying VM

The following equations are used to compute it based on the quantity of applications that are completed in a given amount of

time:

TimegsTotalproce

Tasksofexecutionlysuccessful
Throughput

sin
=

Auth
ors

 Pre-
Proo

f

Throughput is a critical parameter for assessing the performance of the suggested architecture. A high throughput shows the

ability to handle a greater number of applications in a shorter period, resulting in improved customer happiness and cloud service

quality. Fig. 8(a) and 8(b) compare throughput among different VMs in a cloud environment.

(a) (b)
Fig 8(a) & (b). Analysis of Throughput

Fig. 8(a) and (b) carried out six trials to evaluate the HC2GOO algorithm’s performances. Initially, 3,500 tasks were scheduled

across 1,000 and 10,000 virtual machines (VMs), with each schedule running a minimum of ten times to obtain the average

throughput using both the HC2GOO algorithm and existing algorithms. Additionally, the number of tasks increased by 500 in

each schedule, allocated to a fixed number of 1,000 heterogeneous VMs. The throughput of the HC2GOO algorithm significantly

outperforms the existing algorithms. Consequently, the improved HC2GOO algorithm outperforms the aforementioned baseline

techniques in terms of performance by dynamically assigning the best resources to user requests through an adaptive strategy at

runtime.

7) Host utilization with varying VM

 Host utilization refers to the percentage of a host’s resources (CPU, RAM, storage, and network) being used by VMs. The level

of host utilization can significantly impact the performance, reliability, and scalability of a virtualized environment. Fig. 9(a)

and 9(b) compare host utilization among different VMs in a cloud environment.

(a) (b)
Fig 9(a) & (b). Analysis of Host Utilization

Fig. 9(a) and 9(b) illustrate that host utilization across different algorithms remains fairly consistent as the number of VMs

increases from 50 to 100. Notably, the HC2GOO algorithms significantly reduce host utilization time in a cloud environment,

achieving a 65% decrease for 1,000 tasks distributed across 100 VMs and an impressive 90% reduction for 10,000 tasks under

the same conditions. The proposed approach effectively optimizes resource allocation among the VMs, leading to enhanced

overall performance and efficiency in the cloud environment. Table 5 presents an overall comparison of the HC2GOO and the

existing algorithm’s performance.

Auth
ors

 Pre-
Proo

f

Table 5. Overall resource allocation in cloud environment performance in the HC2GOO and existing algorithms

Energy Consumption (Kwh)

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA AB

C

IMMLB Proposed

50 45 48 47 49 36 100 102 90 98 85

60 50 53 52 54 40 105 105 95 102 91

70 55 58 57 59 44 110 108 88 108 84

80 60 63 61 64 48 114 113 94 110 97

90 65 67 66 68 50 119 115 99 103 101

100 70 72 71 73 52 120 140 102 118 100

SLA Violations

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA AB

C

IMMLB Proposed

50 9 12 11 11.15 7.2 11.8 12.4 13.4 14.2 11.5

60 9.9 12.1 11.3 11.8 7.5 12.2 12.8 13.2 14.3 11.9

70 10.2 12.4 11.5 12.3 8.1 12.5 12.7 13.6 14.5 12.2

80 10.8 12.6 11.7 12.5 7.8 12.9 13.2 13.8 14.7 12.6

90 11 12.3 11.9 12.7 8.2 12.7 12.9 13.9 14.9 12.4

100 11.4 12.2 12.1 12.9 8.4 13.1 13.3 14.1 15.3 13.2

Average Execution Time (ms)

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA AB

C

IMMLB Proposed

50 24.7 20.4 22.3 18.5 16.2 34.8 28.4 27.4 26.2 24.5

60 15 14.1 18.3 16.8 13.5 26.2 26.8 25.2 24.3 23.9

70 12 9.4 11.5 13.3 8.1 23.5 21.7 20.6 22.5 21.2

80 13.1 9.6 12.7 14.5 9.8 20.9 23.3 21.3 23.7 22.6

90 14.2 10.3 13.9 14.7 10.2 18.7 23.9 21.9 23.9 22.8

100 16.7 10.5 14.1 15.9 11.4 19.1 24.3 22.1 25.3 23

Number of Migrations (counts)

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA AB

C

IMMLB Proposed

50 5201 3950 4500 3250 3050 5100 3900 4200 3300 2950

60 5890 4520 5200 4000 3450 5900 4500 5100 4000 3400

70 6750 5800 6100 5000 4250 6800 5600 6150 5100 4700

80 7800 6000 6800 5800 4800 7200 6100 6900 5300 5000

90 7950 6800 7850 6200 5300 7950 6900 7500 6300 5600

100 8200 7500 7950 7000 6800 8400 7300 8100 6800 6500

Service cost per hour is $

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

Auth
ors

 Pre-
Proo

f

X-tick PSO GSA ABC IMMLB Proposed PSO GSA AB

C

IMMLB Proposed

1000 16 15.5 15 14 12.5 16.2 15.2 14.8 14.1 12.7

2000 29 28.4 27 26 23 29.3 28.2 27.2 25.9 23.1

3000 37 35 34 34 30 36.9 35.1 34.1 33.8 30.2

4000 42 39 38 38 34 41.8 39.1 38.3 36.2 34.3

5000 49.9 48 47 46 41 49.7 48.3 47.1 45.8 41.2

Throughput

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA AB

C

IMMLB Proposed

3500 15 16 18 20 23 15.2 16.5 18.3 20 23.1

4000 16 17 19 21 24 16.3 17.4 19.2 21.1 24.2

4500 17 18 20 22 25 17.1 18.6 20.1 22.2 25.3

5000 18 19 21 23 26 18.2 19.5 21.4 23.3 26.4

5500 19 20 22 24 27 19.4 20.4 22.3 24.4 27.5

6000 20 21 23 25 28 20.5 21.3 23.2 25.5 28.6

Host Utilization %

Number of VM 1000 Number of VM 10000

Current unit Time in seconds Current unit Time in seconds

50.83 13800 50.83 13700

54.54 12100 54.54 12300

60.52 10900 60.52 11300

64.32 10400 64.32 10700

68.08 9900 68.08 10100

71.63 9400 71.63 9600

74.85 9250 74.85 9300

Table 5 presents a comparative analysis of the HC2GOO algorithm and the existing algorithm based on several performance

metrics. The results denote that the HC2GOO algorithm consistently outperforms the existing algorithms across all these metrics.

This superiority suggests that the HC2GOO algorithm effectively addresses the shortcomings of the existing algorithms, resulting

in improved resource allocation performance in cloud computing environments.

C. Discussion

In this paper’s discussion, the proposed method provides the cloud resource allocation method to allocate the resource VMs

with better outcomes compared to the existing method. Table 6 compares the performance of the cloud resource allocation to

the existing literature, demonstrating the effectiveness of the HC2GOO model.

Table 6. Execution time comparison of proposed and existing literature work

Author name & References Technique used Performances

Devi et al. [33] GEC-DRP Energy consumption 121%

Shooli et al. [34] GSA Combined with Fuzzy logic Energy consumption 133%

Manavi et al. [35] Hybrid algorithm integrating genetic

algorithms neural network

Energy consumption 152%

Abedi et al.[36] IFA-DSA Energy consumption 281%

Selvapandian et al. [37] BOA and PSO algorithm Energy consumption 227%

Moazeni et al.[38] AMO-TLBO Energy consumption 87%

Auth
ors

 Pre-
Proo

f

Gupta et al.[39] ANN with HAS Energy consumption 100%

Du et al. [40] Cloud computing allocation based on

an enhanced ant colony approach

Energy consumption 99%

Abouelyazid et al. [41] Deep-hill algorithm Energy consumption 152%

Vhatkar et al. [42] WR-LA Energy consumption 128%

Proposed HC2GOO Energy Consumption 36%

The HC2GOO has demonstrated exceptional performance in allocating resources in a cloud environment, surpassing existing

methods in terms of energy consumption and execution time. By integrating an O2A with a circle chaotic map to enhance

population random number generation, the model can generate a more diverse and robust population, leading to a more efficient

exploration of the solution space. Furthermore, the GA within the HC2GOO framework is designed to maintain a delicate balance

between exploration and exploitation during the osprey optimization process. This dual focus allows the algorithm to efficiently

converge toward the most optimal solution while ensuring diverse potential solutions. As a result, the proposed method achieves

a significant reduction in energy consumption, with a rate of 36%, compared to existing methods, which range from 87% to

281%. This lower energy use results in financial savings as well as a cloud computing environment that is more ecologically

friendly and sustainable. Overall, the HC2GOO model offers a promising solution for cloud resource allocation, addressing the

limitations of existing models and providing a more efficient, effective, and sustainable approach.

V. CONCLUSION

The HC2GOO algorithm presents a novel and effective solution for optimal resource allocation in cloud environments. By

accurately balancing exploration and exploitation strategies in O2A, along with its robust GA algorithm, the algorithm

successfully optimizes resource allocation while minimizing energy consumption. The results from this study highlight the

algorithm’s superior performance in terms of energy consumption (36 kWh), host utilization (13,800), SLA violations (7.2),

average execution time (16.2 ms), service cost ($12.5), number of migrations (3,050), and throughput (28.6%) across 100 virtual

machines setting compared to existing algorithms. This exceptional performance positions the HC2GOO algorithm as a capable

solution for cloud resource allocation, with significant implications for sustainability and reduced operational costs. In future

work, explore the applicability of the HC2GOO algorithm in other contexts such as edge and fog computing. Additionally, the

algorithm’s effectiveness can be enhanced by integrating advanced optimization techniques, including machine learning and

deep learning. Its versatility also opens opportunities for addressing other optimization challenges, such as scheduling and

resource allocation across various domains.

References:

[1]. A. Belgacem, K. Beghdad-Bey, H. Nacer, and S. Bouznad, “Efficient dynamic resource allocation method for cloud computing

environment,” Cluster Computing, vol.23, no.4, pp.2871-2889, 2020.

[2]. K. Saidi, and D. Bardou, “Task scheduling and VM placement to resource allocation in Cloud computing: challenges and

opportunities,” Cluster Computing, vol.26, no.5, pp.3069-3087, 2023.

[3]. H. M. T. Gadiyar, M. Bharathrajkumar, and T.K. Sowmya, “Enhanced cipher text-policy attribute-based encryption and serialization

on media cloud data,” International Journal of Pervasive Computing and Communications, 2022.

[4]. J. Vergara, J. Botero, and L. Fletscher, “A comprehensive survey on resource allocation strategies in fog/cloud

environments,” Sensors, vol.23, no.9, pp.4413, 2023.

[5]. Y. Gong, J. Huang, B. Liu, J. Xu, B. Wu, and Y. Zhang, “Dynamic resource allocation for virtual machine migration optimization using

machine learning,” arXiv preprint arXiv:2403, pp.13619, 2024.

[6]. H. M. T. Gadiyar, G. S. Thyagaraju, and R. H. Goudar, “An adaptive approach for preserving privacy in context aware applications for

smartphones in cloud computing platform,” International Journal of Advanced Computer Science and Applications, vol.13, no.5, 2022.

[7]. A. K. Samha, “Strategies for efficient resource management in federated cloud environments supporting Infrastructure as a Service

(IaaS),” Journal of Engineering Research, vol.12, no.2, pp.101-114, 2024.

[8]. C. O. Kumar, K. Tejaswi, and P. Bhargavi, “A distributed cloud-prevents attacks and preserves user privacy,” In 2013 15th International

Conference on Advanced Computing Technologies (ICACT), pp. 1-6, 2013. IEEE.

[9]. S. Singh, P. Singh, and S. Tanwar, “Energy aware resource allocation via MS-SLnO in cloud data center,” Multimedia Tools and

Applications, vol.82, no.29, pp.45541-45563, 2023.

[10]. K. Malathi, R. Anandan, and J. F. Vijay, “Cloud Environment Task Scheduling Optimization of Modified Genetic Algorithm,” J.

Internet Serv. Inf. Secur., vol.13, no.1, pp.34-43, 2023.

[11]. J. A. Murali, and T. Brindha, “Efficient resource allocation in cloud computing using Hungarian optimization in Aws,” 2023.

Auth
ors

 Pre-
Proo

f

[12]. M. Kumar, K. Dubey, S. Singh, J. Kumar Samriya, and S. S. Gill, “Experimental performance analysis of cloud resource allocation

framework using spider monkey optimization algorithm,” Concurrency and Computation: Practice and Experience, vol.35, no.2,

pp.e7469, 2023 .

[13]. A. K. Sangaiah, A. Javadpour, P. Pinto, S. Rezaei, and W. Zhang, “Enhanced resource allocation in distributed cloud using fuzzy meta-

heuristics optimization,” Computer Communications, vol.209, pp.14-25, 2023.

[14]. A. K. Singh, S. R. Swain, D. Saxena, and C. N. Lee, “A bio-inspired virtual machine placement toward sustainable cloud resource

management,” IEEE Systems Journal, vol.17, no.3, pp.3894-3905, 2023.

[15]. V. Garg, and B. Jindal, “Resource optimization using predictive virtual machine consolidation approach in cloud

environment,” Intelligent Decision Technologies, vol.17, no.2, pp.471-484, 2023.

[16]. I. Petrovska, and H. Kuchuk, “Adaptive resource allocation method for data processing and security in cloud environment,” Advanced

Information Systems, vol.7, no.3, pp.67-73, 2023.

[17]. T. Alyas, T. M. Ghazal, B. S. Alfurhood, G. F. Issa, O. A. Thawabeh, and Q. Abbas, “Optimizing Resource Allocation Framework for

Multi-Cloud Environment,” Computers, Materials and Continua, vol.75, no.2, 2023.

[18]. D. Paulraj, T. Sethukarasi, S. Neelakandan, M. Prakash, and E. Baburaj, “An efficient hybrid job scheduling optimization (EHJSO)

approach to enhance resource search using Cuckoo and Grey Wolf Job Optimization for cloud environment,” Plos one, vol.18, no.3,

pp.e0282600, 2023.

[19]. J. Jeyaraman, S. V. Bayani, and J. N. A. Malaiyappan, “Optimizing Resource Allocation in Cloud Computing Using Machine

Learning,” European Journal of Technology, vol.8, no.3, pp.12-22, 2024.

[20]. V. Ramasamy, and S. Thalavai Pillai, “An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud

environment,” Cluster Computing, vol.23, pp.1711-1724, 2020.

[21]. A. Rajagopalan, D. R. Modale, and R. Senthilkumar, “Optimal scheduling of tasks in cloud computing using hybrid firefly-genetic

algorithm,” In Advances in Decision Sciences, Image Processing, Security and Computer Vision: International Conference on

Emerging Trends in Engineering (ICETE), Vol. 2, pp. 678-687, 2020. Springer International Publishing.

[22]. V. Jafari, and M. H. Rezvani, “Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments

using NSGA-II metaheuristic algorithm,” Journal of Ambient Intelligence and Humanized Computing, vol.14, no.3, pp.1675-1698,

2023.

[23]. M. Ghobaei-Arani, and A. Shahidinejad, “An efficient resource provisioning approach for analyzing cloud workloads: a metaheuristic-

based clustering approach,” The Journal of Supercomputing, vol.77, no.1, pp.711-750, 2021.

[24]. R. K. Kalimuthu, and B. Thomas, “An effective multi-objective task scheduling and resource optimization in cloud environment using

hybridized metaheuristic algorithm,” Journal of Intelligent and Fuzzy Systems, vol.42, no.4, pp.4051-4063, 2022.

[25]. H. Singh, S. Tyagi, and P. Kumar, “Scheduling in cloud computing environment using metaheuristic techniques: a survey,” In Emerging

technology in modelling and graphics: proceedings of IEM graph 2018, pp. 753-763, 2020. Springer Singapore.

[26]. R. R. Dornala, S. Ponnapalli, K. T. Sai, S. R. K. Reddi, R. R. Koteru, and B. Koteru, “Ensemble Resource Allocation using Optimized

Particle Swarm Optimization (PSO) in Cloud Computing,” In 2024 3rd International Conference on Sentiment Analysis and Deep

Learning (ICSADL), pp. 342-348, 2024. IEEE.

[27]. T. Renugadevi, K. Geetha, K. Muthukumar, and Z. W. Geem, “Energy-Efficient Resource Provisioning Using Adaptive Harmony

Search Algorithm for Compute-Intensive Workloads with Load Balancing in Datacenters,” Applied Sciences, vol.10, no.7, pp.2323,

2020.

[28]. S. Achar, “Neural-Hill: A Novel Algorithm for Efficient Scheduling IoT-Cloud Resource to Maintain Scalability,” IEEE

Access, vol.11, pp.26502-26511, 2023.

[29]. W. Bi, J. Ma, X. Zhu, W. Wang, and A. Zhang, “Cloud service selection based on weighted KD tree nearest neighbor search,” Applied

Soft Computing, vol.131, pp.109780, 2022.

[30]. P. Devarasetty, and S. Reddy, “Genetic algorithm for quality of service based resource allocation in cloud computing,” Evolutionary

Intelligence, vol.14, pp.381-387, 2021.

[31]. D. Gabi, N. M. Dankolo, A. A. Muslim, A. Abraham, M. U. Joda, A. Zainal, and Z. Zakaria, “Dynamic scheduling of heterogeneous

resources across mobile edge-cloud continuum using fruit fly-based simulated annealing optimization scheme,” Neural Computing and

Applications, vol.34, no.16, pp.14085-14105, 2022.

[32]. Q. Zhou, “Research on optimization algorithm of cloud computing resource allocation for internet of things engineering based on

improved ant colony algorithm,” Mathematical Problems in Engineering, vol.2022, no.1, pp.5632117, 2022.

[33]. K. L. Devi, and S. Valli, “Multi-objective heuristics algorithm for dynamic resource scheduling in the cloud computing

environment,” The Journal of Supercomputing, vol.77, no.8, pp.8252-8280, 2021.

[34]. Bhanurangarao, M., & Mahaveerakannan, R. (2024, October). Enhancing Hybrid Object Identification for Instantaneous Healthcare

through Lorentz Force. In 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp.

1365-1368). IEEE.

Auth
ors

 Pre-
Proo

f

[35]. M. Manavi, Y. Zhang, and G. Chen, “Resource allocation in cloud computing using genetic algorithm and neural network,” In 2023

IEEE 8th International Conference on Smart Cloud (SmartCloud), pp. 25-32, 2023. IEEE.

[36]. S.Abedi, M. Ghobaei-Arani, E. Khorami, and M. Mojarad, “Dynamic resource allocation using improved firefly optimization algorithm

in cloud environment,” Applied Artificial Intelligence, vol.36, no.1, pp.2055394, 2022.

[37]. D. Selvapandian, and R. Santosh, “A hybrid optimized resource allocation model for multi-cloud environment using bat and particle

swarm optimization algorithms”, Computer Assisted Methods in Engineering and Science, vol.29, no.1–2, pp.87-103, 2022.

[38]. Yuvarani, R., & Mahaveerakannan, R. (2024, October). Enhanced IoT-based Healthcare Device for Secure Patient Data Management

using Hybrid Cryptography Algorithm. In 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and

Cloud)(I-SMAC) (pp. 22-28). IEEE.

[39]. P. Gupta, S. Bhagat, and P. Rawat, “Fault aware hybrid harmony search technique for optimal resource allocation in cloud,” Journal of

Intelligent and Fuzzy Systems, vol.42, no.4, pp.3677-3689, 2022.

[40]. H. Du, and J. Chen, “An Improved Ant Colony Algorithm for New energy Industry Resource Allocation in Cloud

Environment,” Tehnicki vjesnik, vol.30, no.1, pp.153-157, 2023.

[41]. M. Abouelyazid, “Deep-Hill: An Innovative Cloud Resource Optimization Algorithm by Predicting SaaS Instance Configuration using

Deep Learning,” IEEE Access, 2024.

[42]. K. N. Vhatkar, and G. P. Bhole, “Optimal container resource allocation in cloud architecture: A new hybrid model,” Journal of King

Saud University-Computer and Information Sciences, vol.34, no.5, pp.1906-1918, 2022.

[43]. K. Panneerselvam, P. P. Nayudu, M. S. Banu, and P. M. Rekha, “Multi-objective load balancing based on adaptive osprey optimization

algorithm,” International Journal of Information Technology, pp.1-8, 2024.

[44]. G. Portaluri, S. Giordano, D. Kliazovich, and B. Dorronsoro, “A power efficient genetic algorithm for resource allocation in cloud

computing data centers,” In 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), pp. 58-63, 2014. IEEE.

[45]. Mahaveerakannan, R., Choudhary, S. L., Dixit, R. S., Mylapalli, S., & Kumar, M. S. (2024, October). Enhancing Diagnostic Accuracy

and Early Detection Through the Application of Deep Learning Techniques to the Segmentation of Colon Cancer in Histopathological

Images. In 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 1809-1815).

IEEE..

[46]. S. K. Suman, D. Kumar, L. Bhagyalakshmi, "SINR Pricing in Non Cooperative Power Control Game for Wireless Ad Hoc Networks,"

KSII Transactions on Internet and Information Systems, vol. 8, no. 7, pp. 2281-2301, 2014. DOI: 10.3837/tiis.2014.07.005.

[47]. Y. J. Gong, J. Zhang, H. S. H. Chung, W. N. Chen, Z. H. Zhan, Y. Li, and Y. H. Shi, “An efficient resource allocation scheme using

particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol.16, no.6, pp.801-816, 2012.

[48]. R. K, S. K. Suman, U. Rajeswari, S. S, H. Poddar and A. T. S, "Reinforcement Learning Models for Autonomous Decision Making in

Sensor Systems," 2024 International Conference on Advances in Computing Research on Science Engineering and Technology

(ACROSET), Indore, India, 2024, pp. 1-6, doi: 10.1109/ACROSET62108.2024.10743345

[49]. B. Muthulakshmi, and K. Somasundaram, “A hybrid ABC-SA based optimized scheduling and resource allocation for cloud

environment,” Cluster Computing, vol.22, no.Suppl 5, pp.10769-10777, 2019.

[50]. L. Bhagyalakshmi, S. K. Suman and K. Murugan, "Corona based clustering with mixed routing and data aggregation to avoid energy

hole problem in wireless sensor network," 2012 Fourth International Conference on Advanced Computing (ICoAC), Chennai, India,

2012, pp. 1-8, doi: 10.1109/ICoAC.2012.6416860

[51]. L. Datta, and G. Thippanna, “A GSA Based Algorithm to Optimize Task Scheduling in Cloud Computing Environment,”

COMPUTER, vol.24, no.1, 2024.

[52]. A. Gopu, K. Thirugnanasambandam, A. S. AlGhamdi, S. S. Alshamrani, K. Maharajan, and M. Rashid, “Energy-efficient virtual

machine placement in distributed cloud using NSGA-III algorithm,” Journal of Cloud Computing, vol.12, no.1, pp.124, 2023.

[53]. Bhagyalakshmi, L., Suman, S.K. & Sujeethadevi, T. Joint Routing and Resource Allocation for Cluster Based Isolated Nodes in

Cognitive Radio Wireless Sensor Networks. Wireless Pers Commun 114, 3477–3488 (2020). https://doi.org/10.1007/s11277-020-

07543-4

Auth
ors

 Pre-
Proo

f

