
ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

264

Efficient Resource Allocation in Cloud

Environment: A Hybrid Circle Chaotic Genetic

Osprey Solution

1Rajgopal K T, 2H Manoj T Gadiyar, 3Nagesh Shenoy H and 4Goudar R H
1,3Department of Computer Science and Engineering, Canara Engineering College, Mangalore, Karnataka, India.
2Department of Information Science and Engineering, Canara Engineering College, Mangalore, Karnataka, India.

1,2Visvesvaraya Technological University, Belagavi, Karnataka, India.
4Department of Computer Science and Engineering, Visvesvaraya Technological university, Belagavi, Karnataka, India.
1rajgopal.kt@canaraengineering.in, 2hmanojtgadiyar@gmail.com, 3h.nagesh.shenoy@gmail.com, 4rhgoudar@vtu.ac.in

Correspondence should be addressed to H Manoj T Gadiyar : hmanojtgadiyar@gmail.com

Article Info

Journal of Machine and Computing (https://anapub.co.ke/journals/jmc/jmc.html)

Doi : https://doi.org/10.53759/7669/jmc202505021

Received 10 May 2024; Revised from 02 October 2024; Accepted 15 November 2024.

Available online 05 January 2025.

©2025 The Authors. Published by AnaPub Publications.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract – Organizations and individuals now access and use computing resources in a completely new way due to cloud

computing. However, efficient resource allocation remains a significant challenge in cloud environments. Existing

techniques, such as static, dynamic, heuristic, and meta-heuristic, often lead to locally optimal solutions, suffering from

slow convergence rates that hinder the achievement of global optimality. To address this challenge, this paper presents a

novel Hybrid Circle Chaotic Genetic Osprey Optimization Algorithm (HC2GOO). This innovative approach synergizes the

strengths of the Osprey Optimization Algorithm (O2A) and Genetic Algorithm (GA) to significantly enhance resource

allocation efficiency in cloud environments. The HC2GOO incorporates a circle chaotic map to replace the random

initialization values in the Osprey population update phase. Furthermore, the integration of the GA effectively balances the

exploration and exploitation processes of the osprey optimization, facilitating the discovery of optimal solutions. The

effectiveness of the HC2GOO algorithm is assessed using the GWA-T-12 Bitbrains dataset and is benchmarked against

established algorithms. The results indicate that HC2GOO outperforms existing methods, achieving significant

improvements in key performance indicators: energy consumption (36 kWh), host utilization (13,800), SLA violations

(7.2), average execution time (16.2 ms), service cost ($12.5), number of migrations (3,050), and throughput (28.6%) based

on 100VMs. Overall, the HC2GOO algorithm represents a substantial advancement in the field of cloud resource allocation,

offering more effective solutions for optimizing computing resource management.

Keywords – Circle Chaotic, Cloud Computing, Genetic Algorithm, Internet, Optimization, Osprey Optimization, Resource

Allocation, Service Level Agreement (SLA).

I. INTRODUCTION

Cloud computing has fundamentally transformed the landscape of distributed computing, concealing traditional paradigms

such as mainframe and client-server architectures. This revolutionary approach provides a comprehensive suite of features

and services that organizations and individuals increasingly adopt as they embrace cloud-centric operations [1].

Functionality across cloud services spans critical areas, including communication, integration, management, platform

delivery, and networking, illustrating the versatility and depth of cloud solutions personalized to meet specific operational

needs [2]. Consequently, cloud computing has become integral across diverse sectors, encompassing education, geospatial

sciences, technology, manufacturing, engineering, healthcare, data-intensive applications, and numerous scientific and

business fields [3].

The advantages of cloud computing are substantial, offering organizations significant cost savings, enhanced data

security, scalability, increased mobility, robust disaster recovery options, comprehensive control over resources, and a

competitive edge in the marketplace. These benefits have solidified cloud computing’s position as a reliable and

indispensable technology within the contemporary business environment [4]. Three main service models, Infrastructure as

a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), deliver virtualized resources, which form

the foundation of cloud computing architecture [5]. IaaS provides essential hardware resources such as memory, CPU,

servers, and storage, with notable examples including Microsoft Azure, Apple iCloud, Google Drive, and Amazon Web

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

265

Services (AWS) [6, 7]. One example of a platform as a service (PaaS) is Google App Engine, which provides developers

with an OS and framework to build, test, run, and manage apps [8-10]. SaaS offers applications as services that users can

access through an internet interface, eliminating the need for local installation examples include Google Apps, Cisco

WebEx, and Salesforce [11, 12].

Despite these capable advantages, cloud computing faces significant challenges shaped by user demands and provider

constraints. A critical issue is resource scheduling, an NP-hard problem that profoundly influences cloud system

performance [13]. As cloud computing endeavours to provide shared resources as on-demand services, efficient job

scheduling is paramount to optimize resource utilization, especially with the numerous resources offered by cloud service

providers, including virtual machines (VMs) [14]. Effective VM allocation is not only essential for accommodating diverse

user needs but also for maximizing resource efficiency.

The operational efficacy of cloud systems hinges on the optimal performance of all applications. Thus, efficient resource

management and job scheduling are foundational requirements for sustaining high operational efficiency in cloud

environments [15]. This allocation process involves assigning available resources to incoming applications within

designated timeframes, subsequently enhancing the Quality of Service (QoS) for each application [16]. Constraints

specified by both cloud service providers and clients are used to strategically divide various projects over different sorts of

resources [17].

Due to factors such as rising need for digital transformation, rising costs, and more and more people using cloud-based

services, the cloud computing market is expected to experience substantial growth in the near future [18]. From 2024–

2029, the market is projected to expand from an initial 2023 valuation of about $587.78B to a final 2029 valuation of

between $947.3B and $1.806B, representing a CAGR of 13.3% to 18.49%. However, the market also faces challenges,

including inefficient resource allocation, which can lead to underutilization of cloud resources, with approximately 35%

of cloud resources remaining underutilized. Optimized use of cloud services can lead to significant cost savings, with AWS

reporting that customers may achieve up to 70% savings.

The implementation of effective resource allocation techniques necessitates advanced real-time decision-making

capabilities to mitigate instances of underutilization and overutilization, thereby ensuring compliance with Service Level

Agreements (SLAs) [19]. Non-compliance can lead to detrimental effects for both customers and service providers,

creating financial challenges and reducing profitability [20]. Consequently, cloud providers strive to accommodate a

maximized number of incoming requests, focusing on profitability while adhering to the QoS standards delineated within

SLAs [21]. To accomplish this, the cloud must have efficient mechanisms for allocating resources in response to user

demands; these mechanisms must minimize response times and costs while taking availability, dependability, and response

time restrictions service level agreements (SLAs) into account [22].

On-demand resource allocation embodies inherent complexities, recognized as an NP-complete challenge in cloud

environments [23]. Algorithms created to handle these problems become more complicated as the amount of resources

allocated increases [24]. Although extensive research has been aimed at cloud resource allocation, the domain is influenced

by a variety of factors, including substantial request volumes, heterogeneous workloads, dynamic network circumstances,

flexible resource provisioning and de-provisioning, fluctuating request, and intricate pricing models [25]. Therefore, it is

essential to create a plan for allocating resources that satisfies the needs of service providers as well as those of the end

customers.

While several heuristic algorithms have been proposed to approach cloud resource allocation, such as particle swarm

optimization (PSO) [26], harmony search (HS) [27], Hill climbing algorithm (HCA) [28], and Nearest Neighbor heuristic

(NHH) [29], have not provided satisfactory solutions within practical timeframes. So many researchers nowadays use

nature-inspired algorithms for cloud resource allocation, such as genetic algorithm (GA) [30], simulated annealing (SA)

[31], and ant colony optimization [32], which are inspired by natural phenomena and are used to elucidate complex

optimization difficulties. However, these possess numerous constraints, including raised energy consumption, excessive

host utilization, diminished network stability, significant computational complexity, and high-cost utilization. Motivated

by these challenges, this paper presents a novel HC2GOO, which is specifically designed to enhance resource allocation in

cloud environments while effectively addressing user demand. The key contributions of this research are outlined as

follows:

● A hybrid circle chaotic genetic osprey optimization (HC2GOO) algorithm is proposed to identify optimal solutions

for scientific applications while meeting end-user demands.

● A model for optimizing power consumption and costs associated with computational resources is developed,

focused on significantly reducing energy usage and overall deployment costs.

● The performance and effectiveness of the developed framework are validated across various workloads, with

comparisons made against existing algorithms.

Research Questions:

☞ How does HC2GOO minimize energy consumption in cloud environments?

☞ How does HC2GOO allocate resources in cloud environments, and what are the key performance indicators (KPIs)

to measure its effectiveness?

☞ Can HC2GOO reduce costs associated with resource allocation, energy consumption, and host utilization in cloud

environments?

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

266

☞ How does HC2GOO compare to existing nature-inspired and meta-heuristic algorithms in terms of optimization

performance, computational complexity, and scalability?

The rest of the paper is organized as follows: A thorough analysis of relevant literature about state-of-the-art methods

for allocating resources in cloud systems is given in Section 2. The proposed HC2GOO-based virtual machine allocation

mechanism is detailed in Section 3. In Section 5, the study is concluded and future directions for this field of study are

outlined. In Section 4, the results and discussions surrounding the proposed model are presented.

II. RELATED WORKS

An analysis and description of a survey of different methods currently in use for allocating resources in a cloud environment

are provided below.

The efficient resource scheduling algorithm can dynamically schedule tasks on cloud infrastructure, reducing the entire

cost of rental virtual machines while ensuring efficient resource utilization. Devi et al. [33] developed a genetic algorithm

known as the Genetic Encoded Chromosome for Dynamic Resource Scheduling Policy (GEC-DRP). This approach was

tested on both the Google and NASA datasets, achieving a throughput of 95% when scheduling 100 tasks. However, as the

amount of tasks augmented to 1000, the throughput decreased to 46%, highlighting the challenges posed by the high

computational complexity associated with the GEC-DRP method.

In order to schedule work on already-existing virtual machines (VMs), Shooli et al. [34] devised an efficient resource

allocation technique that coupled fuzzy logic with the Gravitational Search Algorithm (GSA). They employed an approach

that involved mass creation through the combination of job sequences allocated to numerous machines, GSA for identifying

the best assignments, and fuzzy logic for evaluating the interactions between these masses. The performance of the

algorithm was evaluated using three metrics: Make-span, Mean Flow Time, and Load imbalance, demonstrating improved

results compared to traditional genetic algorithms and GSA without fuzzy logic. However, the algorithm’s utility was

constrained in very large-scale cloud environments due to its significant computational resource requirements.

To enhance task scheduling efficiency and promote fairness while minimizing idle time, Manavi et al. [35] developed

a hybrid algorithm that integrated genetic algorithms with neural networks. This approach aimed to achieve performance

improvements in execution time, cost, and response time. It outperformed cutting-edge techniques, showing improvements

of 3.2% in execution time, 13.3% in cost, and 12.1% in reaction time. Nonetheless, the model faced scalability issues when

applied to larger datasets or complex task dependencies.

For dynamic resource allocation, Abedi et al. [36] introduced an Improved Firefly Algorithm based on load balancing

optimization, termed IFA-DSA. This method sought to efficiently utilize resources and maximize productivity by balancing

workloads across existing virtual machines, thereby reducing completion time. Experimental results indicated that the

proposed method outpaced the ICFA method in the makespan criterion by an average of 3%. However, IFA-DSA relied

on heuristic methods for initial population creation, which may not consistently yield optimal solutions.

In order to optimize resource allocation time and meet task deadlines, Selvapandian et al. [37] created a hybrid

optimized allocation model that integrated the PSO algorithm and the Bat Optimization Algorithm (BOA) for resource

allocation in multi-cloud environments. This model minimized energy usage. The evaluation of the BOA-PSO model

utilized a dataset of 500 tasks with varying requirements and resource availability. The results indicated an allocation time

of 47 seconds while achieving a minimum energy consumption of 200 kWh. However, the BOA-PSO model encountered

scalability issues when dealing with larger datasets.

Moazeni et al. [38] developed a dynamic resource allocation strategy utilizing a multi-objective teaching-learning-based

optimization (AMO-TLBO) algorithm for dynamic effective resource allocation in cloud data centers. This algorithm

aimed to efficiently allocate resources for fine-grained computational tasks using datasets generated through simulation

tools. The evaluation yielded an impressive resource utilization rate of 80% across 100 tasks. Still, the AMO-TLBO method

was limited by its high computational complexity.

In order to minimize execution times, task failure rates, and power consumption, Gupta et al. [39] used a hybrid

technique that integrated artificial neural networks (ANN) with the Harmony Search Algorithm (HAS) to optimize resource

allocation in cloud computing. The performance of the HAS-ANN model was evaluated using real-world cloud data,

yielding an execution time efficiency of 78%. However, this model faced challenges related to high host utilization.

Du et al. [40] developed a cloud computing distribution algorithm based on an enhanced ant colony approach. The goal

of this technique was to find the nodes with the fastest response times among all of the available resources and then pick

the best ones to meet quality standards. The model was verified through MATLAB simulation experiments, achieving an

execution time of 679 seconds; however, it struggled with low throughput performance.

Abouelyazid et al. [41] introduced the Deep-Hill algorithm, which combined a 5-layer Deep Neural Network (DNN)

with a Hill-Climbing algorithm to enhance cloud resource allocation by accurately predicting SaaS instance configurations.

The performance of the Deep-Hill algorithm was assessed using historical data on SaaS configurations, user demand, and

resource allocation, achieving an accuracy of 96.33%. Nevertheless, the Deep-Hill algorithm faced challenges associated

with high-cost consumption.

Vhatkar et al. [42] developed a hybrid model known as the Whale Random Update Assisted Lion Algorithm (WR-LA)

to improve container resource allocation in cloud-based microservices. This model utilized container resource allocation

data derived from cloud computing environments, yielding a performance throughput of 67%. However, it was constrained

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

267

by longer execution times. The survey of existing techniques with their performance and limitations is explained in

Table 1.

Table 1. Survey of Existing Techniques

Author

name and

reference

Technique used Aim Performance Limitation

Devi et al.

[33]
GEC-DRP

Minimize total cost of

rental virtual machines

while ensuring efficient

resource utilization

95% throughput for 100

tasks, 46% for 1000

tasks

High computational

complexity and

scalability issues

Shooli et al.

[34]

GSA combined

with fuzzy logic

Schedule tasks on existing

VMs

Improved results

compared to traditional

genetic algorithms and

GSA without fuzzy

logic.

Significant

computational

resource requirements,

limited utility in very

large-scale cloud

environments

Manavi et al.

[35]

Hybrid algorithm

integrating genetic

algorithms with

neural networks

Enhance task scheduling

efficiency and promote

fairness while minimizing

idle time

3.2% improvement in

execution time, 13.3% in

cost, 12.1% in response

time

Scalability issues

when applied to larger

datasets or complex

task dependencies

Abedi et al.

[36]
IFA-DSA

Efficiently utilize

resources and maximize

productivity by balancing

workloads across existing

virtual machines.

Outperformed ICFA

method in makespan

criterion by an average

of 3%

Rely on heuristic

methods for initial

population creation

may not consistently

yield optimal

solutions

Selvapandian

et al. [37]

Hybrid optimized

allocation model

combining BOA

and PSO algorithm

Minimize energy

consumption while

meeting task deadlines and

optimizing resource

allocation time

Allocation time of 47

seconds, minimum

energy consumption of

200 kWh

Scalability issues

when dealing with

larger datasets

Moazeni et

al. [38]

AMO-TLBO

algorithm

Efficiently allocate

resources for fine-grained

computational tasks

Resource utilization rate

of 80% across 100 tasks

High computational

complexity

Gupta et al.

[39]

Hybrid approach

combining ANN

with HAS

Optimize resource

allocation in cloud

computing by reducing

execution time, task

failure counts, and power

consumption.

Execution time

efficiency of 78%
High host utilization

Du et al. [40]

Cloud computing

allocation

algorithm based on

an enhanced ant

colony approach

Identify the shortest

response times across

resource nodes and select

the best available nodes to

meet quality requirements.

Execution time of 679

seconds

Low throughput

performance

Abouelyazid

et al. [41]

Deep-hill

algorithm

Enhance cloud resource

allocation by accurately

predicting SaaS instance

configurations.

Accuracy of 96.33%
High-cost

consumption

Vhatkar et

al. [42]
WR-LA

Optimize container

resource allocation in

cloud-based microservices

Performance throughput

of 67%

Longer execution

times

Despite the existence of optimization algorithms, their limitations highlight the need for further enhancements to

address the challenges in cloud resource allocation. A thorough review of these algorithms reveals that techniques such as

PSO, IACO, HAS, AMO-TLB, and BAO are not sufficiently effective for addressing the challenges of resource allocation

in the cloud without risking SLAs and deadlines. Consequently, this study introduces an improved HC2GOO-based nature-

inspired approach that effectively tackles these existing challenges by efficiently allocating incoming requests to resources

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

268

based on a fitness function. Additionally, the proposed method optimizes key performance indicators while adhering to

user-defined deadlines and budget constraints.

III. PROPOSED METHODOLOGY

The proposed methodology for efficient resource allocation in a cloud environment is embodied in the HC2GOO

framework. This innovative approach integrates a circle chaotic map to enhance the initialization process, replacing

traditional random values during the Osprey population update phase. By introducing the circle chaotic map, this study

aims to improve the diversity of initial solutions, thereby fostering a more effective exploration of the solution space.

Moreover, during the osprey optimization process, the GA in the HC2GOO framework is intended to preserve a careful

balance between exploration and exploitation. This dual focus allows the algorithm to efficiently converge toward the most

optimal solution while ensuring that diverse potential solutions are thoroughly investigated. Fig 1 displays the proposed

model workflow diagram.

Fig 1. Graphical Abstract of The Proposed Model.

Osprey Optimization

The osprey is a raptor that preys on fish and is well-known for its wide geographic range and nocturnal habits. It goes by

several other names, including sea hawk, river hawk, and fish hawk. With a wingspan of 127–180 cm, these birds weigh

between 0.9 and 2.1 kg and measure 50–66 cm in length. Their physical characteristics include:

☞ Rich glossy brown upperparts and pure white underparts, with irregular brown streaks on their white breast.

☞ A white head is surrounded by a black facial mask that extends to the neck.

☞ Light blue translucent nictitating membranes and irises that range in color from golden to brown.

☞ A black beak with a blue cere and white feet equipped with black claws.

☞ Short tails and long, slender wings.

As piscivorous birds, ospreys primarily feed on fish, which constitutes about 99% of their diet. Live fish weighing 150–

300 g and 25–35 cm long are usual, yet they can catch anything from 2 kg to 50 g. Ospreys can see their underwater prey

from 10–40 meters away, due to their extraordinary vision. After identifying a fish, they glide toward it, extend a foot to

touch the water, and dive to catch their meal. After catching their meal, ospreys will often take it to a nearby rock to eat.

This clever fishing strategy and the behavior of transporting food to a suitable location demonstrates a fascinating instinct

that could inspire the development of innovative optimization algorithms.

Genetic Algorithm

Charles Darwin's idea of natural selection in which the fittest individuals survive to procreate provided the theoretical

foundation for a search strategy known as a genetic algorithm. A fitness function is used to assess the quality of the

candidate solutions in the algorithm, and selection, crossover, and mutation are employed to evolve the population towards

better solutions. The algorithm iterates through initialization, evaluation, selection, crossover, mutation, and replacement

until a closure circumstance is met, such as a extreme quantity of generations. By mimicking the natural selection process,

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

269

genetic algorithms can effectively search for optimal solutions in complex problem spaces, making them a powerful tool

for optimization and search problems.

Step Involved in the HC2GOO Algorithms

The HC2GOO algorithm is a hybrid optimization algorithm that syndicates the principles of genetic algorithm and osprey

optimization. The steps involved in the HC2GOO algorithm are:

Initialization

The O2A is a population-based approach that iteratively searches for an optimum solution in the problem-solving space.

Each osprey in the OOA population represents a potential solution, and its position in the search space is randomly

initialized at the beginning of the algorithm. According to equation (1), the population of osprey is described, and equation

(2) describes the randomly initialized position of osprey in search space.

 NM
Nmqmm

npqpp

nq

nMm

P

ggg

ggg

ggg

G

G

G

G


























=























=















1

,,1,

,1,11,11

 (1)

() NqMpaArag qqqpqqp ,...,2,1,,....,2,1,,, ==−+=

, (2)

Here, the population matrix of the osprey position is represented as G , the
thP position of osprey is PG with its

thq

dimension is denoted as qpG , . The number of osprey signifies M , the number of problem variables represented as N , and

the random number in interval [0, 1] is denoted as qpr , .

The improvement of this algorithm is improved by a circle chaotic map in the initialization phase population updating

in the original O2A to equation (2) to increase the performance. The circle chaotic map is a one –one-dimensional map

which is a population of a dynamical system on the circle. This map is defined as:

() NqMpaArag qqqqp ,...,2,1,,....,2,1,2.0,5.0, ==−+=

 (3)

Here, equation (3) generated a chaotic number between (0,1) by using 5.0=p and 2.0=q . r is taken as a control

stricture. The objective function is assessed for every osprey to determine the quality of the solution after the ospreys'

positions have been initialized. The objective function value is represented as a vector (equation (4)), and the best and

worst solutions are determined based on the objective function value. After each iteration, the position of the ospreys is

updated to search for an optimal solution.

()

()

()
1

1

1

1
























=























=

mm

p

mm

p

GF

GF

GF

F

F

F

F









 (4)

Where, F and pF
is denoted as the vector of objective function value and

thp objective function value.

Exploration Phase

The exploration phase, in this context, refers to the process by which an osprey identifies and hunts its prey. This phase is

characterized by the osprey’s keen eyesight, which allows it to spot prey underwater, and its swift diving ability to catch

the prey. In this phase, the position of the osprey varies as it searches for prey in its environment. The goal is to improve

the osprey’s exploration power, enabling it to identify the optimal hunting grounds and avoid getting stuck in suboptimal

areas.

Each osprey in the search space aims to have a better objective function than the others. This is achieved by attacking

a set of prey, as represented by the equation (5).

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

270

    ,,...,2,1| bestpiip GFFmiGFN =

 (5)

Where, PFN is denoted as the set of prey’s location for
thp location, bestG

 is denoted as the best candidate solution.

The osprey’s position is updated based on its movement towards the prey, as shown in equations (6)-(8).

(),,,,,,
1
, qpqpqpqpqp

X
qp gHCFrgg −+=

 (6)



















=

.,

;,

;,

1
,

1
,

1
,

1
,

1
,

q
X

qpq

q
X

qpq

q
X

qpp
X

qp

X
qp

AgA

aga

Agag

g

 (7)





 

=
elseG

FFG
G

p

p

X

P

X

p

P
,

;, 11

 (8)

Where, the newly updated position of
thp osprey is denoted as

1X

pG
, its

thq dimension is represented as

1

,

X

qpg
 , and

the objective function value is denoted as
1X

PF . The selected prey for
thp osprey is denoted as pCF

, and its
thq dimension

is denoted as qpCF , , and the random number from set {1, 2} is denoted as qpH , .

Exploitation phase

The exploitation phase is the second phase of the osprey’s hutting process. After catching its prey, the osprey searches for

a suitable location to eat. This phase focuses on improving the osprey’s ability to find better solutions in the local search

space, leading to convergence towards nearby solutions.

The newly updated position of the osprey is determined based on the improvement of the objective function value. This

is represented by equation (9),

()
Oomqmp

o

aAra
gg

qqqpq
qp

X
qp ,...2,1,,..,2,1,,...,2,1,

,
,

1
, ===

−+
+=

 (9)

The update process is described by equations (10) and (11).



















=

.,

;,

;,

1
,

1
,

2
,

2
,

2
,

q
X

qpq

q
X

qpq

q
X

qpp
X

qp

X
qp

AgA

aga

Agag

g

 (10)





 

=
elseG

FFG
G

p

p

X

P

X

p

P
,

;, 22

 (11)

Where, the newly updated position of
thp osprey is denoted as

2X

pG
, its

thq dimension is represented as

2

,

X

qpg
 , and

the objective function value is denoted as
2X

PF . The count of iterations is o and the whole amount of repetitions is

characterized as O . The previous position of the osprey is modified when the objective function value improves, leading

to a new position in the search space.

In equation (6), the qpr , plays a crucial role in altering the position of the osprey, which is subsequently used to manage

the solution search space of the optimization problem. It is essential to maintain a balance between these two properties. If

the solution generated during the osprey’s position update does not demonstrate improvement, it suggests an imbalance

between exploitation and exploration. This imbalance may hinder the algorithm’s ability to effectively navigate the search

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

271

space, limiting its potential for finding optimal solutions. The proposed approach addresses this issue by incorporating

various genetic algorithm operators (selection, mutation, and crossover) aimed at balancing these properties during the

osprey’s position update phase.

This method is referred to as HC2GOO, which combines Circle Chaotic Osprey and Genetic Algorithm. First, the osprey

optimization algorithm and the random numbers for the genetic algorithm are modified. The optimal value is found by

analyzing the fitness values of the randomly generated solutions. Then, based on the distance between each value and the

optimal value as well as other factors taken into account during the Osprey optimization, a new fitness value is computed.

Consequently, all osprey positions are updated using the newly determined fitness values. The next iteration starts if the

updated fitness values indicate improvement; if not, the selection, mutation, and crossover operators of the genetic

algorithm are used to improve the optimization process by strengthening both local and global search capabilities.

Applying the genetic algorithm operators requires several technical steps. The standard osprey optimization algorithm

consists of ospreys, while the standard genetic algorithm employs the concepts of genes and chromosomes. To integrate

genetic algorithm operators into the osprey optimization framework, the first step is to represent the ospreys as

chromosomes in the GA. Each osprey in the O2A corresponds to a chromosome, and collectively, they represent the

population’s chromosomes. The genes in the created chromosomes are changed and switched in accordance with the

mutation and crossover ratios specified in the experimental setup in order to carry out the crossover, mutation, and selection

operators. The fitness values of the optimization functions are evaluated after these processes are finished. The process

ends if the fitness value of a chromosome meets the required requirements. If not, the procedure runs until either the

maximum number of iterations is reached or the termination criteria are met. In the next iteration, the chromosomes are

substituted with fireflies. Fig 2 provides a visual depiction of the flow of the HC2GOO algorithm, highlighting the essential

elements and procedures of the technique.

Fig 2. HC2GOO Algorithm.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

272

The pseudo-code for the HC2GOO algorithm can be found in Table 2.

Table 2. HC2GOO Algorithm

Input: Variables, objective function, and constraints.

Set G is population size of osprey and n is the total number of iterations.

Initial population matrix generated using equation (1) and (2).

 Update the osprey population using equation (3) circle chaotic map.

The objective function is evaluated using equation (4)

For 1=q to n

For 1=p to m

Exploration phase:

 The prey location is updated for
thp osprey using equation (5)

 The selected prey is determined by
thp osprey randomly.

 The updated position of
thp osprey is measured using equation (6).

 The boundary condition is analyzed for the updated location of osprey using equation (7).

 Update
thp osprey using equation (8).

Exploitation phase:

 The updated location of
thp osprey is measured using equation (9).

 The boundary condition is analyzed for the updated location of osprey using equation (10).

 Update
thp osprey using equation (11)

 Save the better candidate solution.

End

If solution improved

{

Go to start of the loop

}

Else

{

Apply GA operators

}

p=p+1;

While (Stopping criteria do not meet)

 Stop

IV. RESULTS AND DISCUSSION

This section presents a comprehensive experimental analysis of the proposed HC2GOO algorithm alongside state-of-the-

art models, evaluating their performance on the GWA-T-12 Bitbrains dataset for resource allocation in a cloud

environment. The performance of the HC2GOO model is compared to established algorithms, including PSO, Artificial

Bee Colony (ABC), Gravitational Search Algorithm (GSA), and Isotropic Markov Mutations with Local Bias (IMMLB)

within the same dataset. The hyperparameter details of the HC2GOO algorithm are described in Table 3. The system

configurations of this study are presented in Table 4.

Table 3. Hyper-Parameter Details in HC2GOO

Parameter Values

Population size (Number of chromosomes and osprey) [10,100,100]

Dimension of every osprey Number tasks

Lower limit -30

Upper Limit 30

Iteration 200

Search agent 200

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

273

Table 4. System Configuration of The Proposed Model

Variables Specifications

Total no of task 10000

RAM 512 mb

Host parameter 6821 MIPS

Host MIPS 1000000

Task length 1000-3000 mps

Bandwidth 2000MIPS

Cloudlets lengths [200000 to 500000] in MI

Virtual machine processing rate [100, 1000] in MIPS

VMs [1, 2000]

Number of hosts [1, 40]

DC 1

Dataset Description

This study focuses on resource allocation in a cloud environment using the GWA-T-12-BitBrains dataset, a comprehensive

collection of VM performance metrics consisting of two distinct subsets: FastStorage and Rnd. The FastStorage subset

encompasses 11,221,800 instances, while the Rnd subset includes 12,496,728 instances. This dataset features ten types of

metrics that provide a detailed overview of VM performance, including timestamp (measured in milliseconds since January

1, 1970), CPU cores (the number of virtual CPU cores provisioned), CPU capacity provisioned (calculated in MHz as the

product of the number of cores and the speed per core), and CPU usage (both in MHz and as a percentage). Additionally,

it includes metrics for memory provisioned (in KB), memory usage (in KB), disk read and write throughput (both in KB/s),

as well as network received and transmitted throughput (also measured in KB/s). The size of the dataset is 1.16 GB for the

FastStorage subset and 1.36 GB for the Rnd subset, highlighting the substantial volume of data captured for effective

resource management and performance analysis in cloud environments.

Performance Analysis

The competence of the proposed HC2GOO procedure is thoroughly evaluated based on eight key performance metrics:

energy consumption (KWh), host utilization (%), SLA violations, average execution time (ms), service cost, task rejection

ratio (%), and throughput (m). To provide a comprehensive understanding of the technique’s performance, a comparative

analysis is conducted against PSO, ABC, GSA, and IMMLB. This analysis takes into account the unique challenges

associated with each existing method, including PSO, which can be complex and slow due to high computational demands;

ABC may experience longer execution times that affect service responsiveness; GSA can lead to increased costs; and

IMMLB may consume too much power, making it less suitable for energy-sensitive environments. The HC2GOO technique

aims to address these limitations by combining aspects of various methods, offering reduced complexity, faster execution,

lower costs, and improved energy efficiency. The following sections will provide a comparison of these methods,

highlighting their strengths and weaknesses across key performance metrics.

Energy Consumption with Varying VMs

The energy consumption is important for evaluating cloud data center performance. High energy usage increases costs and

lowers profits. To improve energy efficiency, this study presents the HC2GOO algorithm, which reduces idle and

overloaded VM instances. Fig 3(a) and 3(b) compare energy consumption among different VMs in a cloud environment.

(a) (b)

Fig 3 (a) and (b). Analysis of Energy Consumption.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

274

Fig 3(a) and (b) demonstrate that the energy consumption of different algorithms remains relatively stable as the

quantity of VMs upsurges from 50 to 100. Notably, HC2GOO algorithms achieved significant energy savings, with energy

consumption reduced by 42% in 1,000 tasks and a remarkable 98% in 10,000 tasks. This superior performance can be

attributed to the proposed algorithm’s innovative approach, which combines Osprey and genetic power to optimize resource

allocation in VMs, resulting in substantially less energy consumption compared to other algorithms.

Service Cost Per Hour with Varying VMs

The service cost per hour in a cloud computing environment varies significantly depending on the number of VMs used.

Fig 4(a) and 4(b) compare service cost per hour among different VMs in cloud computing.

(a) (b)
Fig 4 (a) and (b). Analysis of Service Cost.

Fig 4(a) and 4(b) demonstrate that the service costs of various algorithms remain relatively stable as the number of

VMs increases from 1,000 to 5000. Notably, the HC2GOO algorithms demonstrate a significant reduction in service costs

within a cloud environment, achieving a decrease of 7$ for 1,000 tasks and an impressive 9$ for 10,000 tasks. This analysis

indicates that the proposed model offers lower service costs per second compared to existing models. The effectiveness of

the proposed model stems from its innovative approach, which replaces the traditional population in standard osprey with

a circular chaotic map in updated random numbers. As a result of this increased efficiency and speed, the overall cost of

running the algorithm is reduced. In simpler terms, the enhancement helps the algorithm work well and faster, which saves

money in the long run.

Number of Migration with Varying VM

The amount of virtual machines (VMs) involved can have a substantial impact on the number of migrations needed. Fig

5(a) and 5(b) show how the frequency of virtual machine migrations varies in cloud computing settings.

(a) (b)
Fig 5(a) and (b). Analysis of Number of Migrations.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

275

To assess the performance metric of VM migration count, the analysis examines the variation in the number of VMs

ranging from 50 to 100. The HC2GOO algorithms exhibit a substantial reduction in the number of migrations within a

cloud environment, achieving a decrease of 6,000 migrations for every 1,000 in 100 tasks, as well as a notable reduction

of 6,000 migrations for every 10,000 in 100 tasks. This model effectively demonstrates lower migration counts compared

to the existing models, highlighting its efficiency in optimizing VM migrations.

SLA Violation with Varying VM

SLA violations can happen when a supplier fails to provide the specified levels of service, leading to problems like

downtime or data loss. With more VMs involved, SLA violations become more likely and have a different impact. Fig.

6(a) and 6(b) compare service cost per hour among different VMs in computing cloud.

(a) (b)

Fig 6(a) and (b). Analysis of SLA Violations.

To evaluate the performance metric of VM SLA violations, the analysis explores variations in the number of VMs,

increasing from 50 to 100 in increments of 10. The proposed model shows a significant reduction in SLA violations within

a cloud environment, achieving a decrease of 8 violations per 1,000 tasks for 100 tasks and a notable reduction of 12

violations per 10,000 tasks for the same number of tasks. This model outperforms existing models, underscoring its

effectiveness in minimizing VM SLA violations.

Average Execution Time with VM

The number of VMs participating in a job or application can have a substantial impact on its average execution time. Fig

7(a) and 7(b) illustrate how different virtual machines' average execution times (ms) vary inside a cloud computing

environment.

(a) (b)
Fig 7(a) and (b). Analysis of Average Execution Time.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

276

Fig 7(a) and 7(b) demonstrate that the average execution time of various algorithms remains relatively stable as the

number of VMs increases from 1,000 to 5,000. Notably, the proposed model achieves a significant reduction in average

execution time within a cloud environment, with a decrease of 11 ms for 1,000 tasks across 100 VMs and an impressive

22 ms for 10,000 tasks across the same number of VMs. This analysis indicates that the HC2GOO algorithms consistently

outperform existing algorithms in terms of average execution time. The effectiveness of the HC2GOO algorithms is

attributed to its innovative approach, O2A. The HC2GOO algorithms effectively allocate resources across various VMs in

the cloud environment, enhancing overall performance and efficiency.

Throughput with Varying VM

The following equations are used to compute it based on the quantity of applications that are completed in a given amount

of time:

TimegsTotalproce

Tasksofexecutionlysuccessful
Throughput

sin
=

 (12)

Throughput is a critical parameter for assessing the performance of the suggested architecture. A high throughput shows

the ability to handle a greater number of applications in a shorter period, resulting in improved customer happiness and

cloud service quality. Fig 8(a) and 8(b) compare throughput among different VMs in a cloud environment.

(a) (b)
Fig 8(a) and (b). Analysis of Throughput.

Fig 8(a) and (b) carried out six trials to evaluate the HC2GOO algorithm’s performances. Initially, 3,500 tasks were

scheduled across 1,000 and 10,000 virtual machines (VMs), with each schedule running a minimum of ten times to obtain

the average throughput using both the HC2GOO algorithm and existing algorithms. Additionally, the number of tasks

increased by 500 in each schedule, allocated to a fixed number of 1,000 heterogeneous VMs. The throughput of the

HC2GOO algorithm significantly outperforms the existing algorithms. Consequently, the improved HC2GOO algorithm

outperforms the aforementioned baseline techniques in terms of performance by dynamically assigning the best resources

to user requests through an adaptive strategy at runtime.

Host Utilization with Varying VM

Host utilization refers to the percentage of a host’s resources (CPU, RAM, storage, and network) being used by VMs. The

level of host utilization can significantly impact the performance, reliability, and scalability of a virtualized environment.

Fig 9(a) and 9(b) compare host utilization among different VMs in a cloud environment.

(a) (b)
Fig 9(a) and (b). Analysis of Host Utilization.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

277

Fig 9(a) and 9(b) illustrate that host utilization across different algorithms remains fairly consistent as the number of

VMs increases from 50 to 100. Notably, the HC2GOO algorithms significantly reduce host utilization time in a cloud

environment, achieving a 65% decrease for 1,000 tasks distributed across 100 VMs and an impressive 90% reduction for

10,000 tasks under the same conditions. The proposed approach effectively optimizes resource allocation among the VMs,

leading to enhanced overall performance and efficiency in the cloud environment. Table 5 presents an overall comparison

of the HC2GOO and the existing algorithm’s performance.

Table 5. Overall Resource Allocation in Cloud Environment Performance in the HC2GOO and Existing Algorithms

Energy Consumption (Kwh)

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA ABC IMMLB Proposed

50 45 48 47 49 36 100 102 90 98 85

60 50 53 52 54 40 105 105 95 102 91

70 55 58 57 59 44 110 108 88 108 84

80 60 63 61 64 48 114 113 94 110 97

90 65 67 66 68 50 119 115 99 103 101

100 70 72 71 73 52 120 140 102 118 100

SLA Violations

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA ABC IMMLB Proposed

50 9 12 11 11.15 7.2 11.8 12.4 13.4 14.2 11.5

60 9.9 12.1 11.3 11.8 7.5 12.2 12.8 13.2 14.3 11.9

70 10.2 12.4 11.5 12.3 8.1 12.5 12.7 13.6 14.5 12.2

80 10.8 12.6 11.7 12.5 7.8 12.9 13.2 13.8 14.7 12.6

90 11 12.3 11.9 12.7 8.2 12.7 12.9 13.9 14.9 12.4

100 11.4 12.2 12.1 12.9 8.4 13.1 13.3 14.1 15.3 13.2

Average Execution Time (ms)

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA ABC IMMLB Proposed

50 24.7 20.4 22.3 18.5 16.2 34.8 28.4 27.4 26.2 24.5

60 15 14.1 18.3 16.8 13.5 26.2 26.8 25.2 24.3 23.9

70 12 9.4 11.5 13.3 8.1 23.5 21.7 20.6 22.5 21.2

80 13.1 9.6 12.7 14.5 9.8 20.9 23.3 21.3 23.7 22.6

90 14.2 10.3 13.9 14.7 10.2 18.7 23.9 21.9 23.9 22.8

100 16.7 10.5 14.1 15.9 11.4 19.1 24.3 22.1 25.3 23

Number of Migrations (counts)

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA ABC IMMLB Proposed

50 5201 3950 4500 3250 3050 5100 3900 4200 3300 2950

60 5890 4520 5200 4000 3450 5900 4500 5100 4000 3400

70 6750 5800 6100 5000 4250 6800 5600 6150 5100 4700

80 7800 6000 6800 5800 4800 7200 6100 6900 5300 5000

90 7950 6800 7850 6200 5300 7950 6900 7500 6300 5600

100 8200 7500 7950 7000 6800 8400 7300 8100 6800 6500

Service cost per hour is $

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA ABC IMMLB Proposed

1000 16 15.5 15 14 12.5 16.2 15.2 14.8 14.1 12.7

2000 29 28.4 27 26 23 29.3 28.2 27.2 25.9 23.1

3000 37 35 34 34 30 36.9 35.1 34.1 33.8 30.2

4000 42 39 38 38 34 41.8 39.1 38.3 36.2 34.3

5000 49.9 48 47 46 41 49.7 48.3 47.1 45.8 41.2

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

278

Throughput

Table for 1000 Virtual Machines Table for 10000 Virtual Machines

X-tick PSO GSA ABC IMMLB Proposed PSO GSA ABC IMMLB Proposed

3500 15 16 18 20 23 15.2 16.5 18.3 20 23.1

4000 16 17 19 21 24 16.3 17.4 19.2 21.1 24.2

4500 17 18 20 22 25 17.1 18.6 20.1 22.2 25.3

5000 18 19 21 23 26 18.2 19.5 21.4 23.3 26.4

5500 19 20 22 24 27 19.4 20.4 22.3 24.4 27.5

6000 20 21 23 25 28 20.5 21.3 23.2 25.5 28.6

Host Utilization %

Number of VM 1000 Number of VM 10000

Current unit Time in seconds Current unit Time in seconds

50.83 13800 50.83 13700

54.54 12100 54.54 12300

60.52 10900 60.52 11300

64.32 10400 64.32 10700

68.08 9900 68.08 10100

71.63 9400 71.63 9600

74.85 9250 74.85 9300

Table 5 presents a comparative analysis of the HC2GOO algorithm and the existing algorithm based on several

performance metrics. The results denote that the HC2GOO algorithm consistently outperforms the existing algorithms

across all these metrics. This superiority suggests that the HC2GOO algorithm effectively addresses the shortcomings of

the existing algorithms, resulting in improved resource allocation performance in cloud computing environments.

Discussion

In this paper’s discussion, the proposed method provides the cloud resource allocation method to allocate the resource VMs

with better outcomes compared to the existing method. Table 6 compares the performance of the cloud resource allocation

to the existing literature, demonstrating the effectiveness of the HC2GOO model.

Table 6. Execution Time Comparison of Proposed and Existing Literature Work

Author name & References Technique used Performances

Devi et al. [33] GEC-DRP Energy consumption 121%

Shooli et al. [34] GSA Combined with Fuzzy logic Energy consumption 133%

Manavi et al. [35] Hybrid algorithm integrating genetic

algorithms neural network

Energy consumption 152%

Abedi et al.[36] IFA-DSA Energy consumption 281%

Selvapandian et al. [37] BOA and PSO algorithm Energy consumption 227%

Moazeni et al.[38] AMO-TLBO Energy consumption 87%

Gupta et al.[39] ANN with HAS Energy consumption 100%

Du et al. [40] Cloud computing allocation based on an

enhanced ant colony approach

Energy consumption 99%

Abouelyazid et al. [41] Deep-hill algorithm Energy consumption 152%

Vhatkar et al. [42] WR-LA Energy consumption 128%

Proposed HC2GOO Energy Consumption 36%

The HC2GOO has demonstrated exceptional performance in allocating resources in a cloud environment, surpassing

existing methods in terms of energy consumption and execution time. By integrating an O2A with a circle chaotic map to

enhance population random number generation, the model can generate a more diverse and robust population, leading to a

more efficient exploration of the solution space. Furthermore, the GA within the HC2GOO framework is designed to

maintain a delicate balance between exploration and exploitation during the osprey optimization process. This dual focus

allows the algorithm to efficiently converge toward the most optimal solution while ensuring diverse potential solutions.

As a result, the proposed method achieves a significant reduction in energy consumption, with a rate of 36%, compared to

existing methods, which range from 87% to 281%. This lower energy use results in financial savings as well as a cloud

computing environment that is more ecologically friendly and sustainable. Overall, the HC2GOO model offers a promising

solution for cloud resource allocation, addressing the limitations of existing models and providing a more efficient,

effective, and sustainable approach.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

279

V. CONCLUSION

The HC2GOO algorithm presents a novel and effective solution for optimal resource allocation in cloud environments. By

accurately balancing exploration and exploitation strategies in O2A, along with its robust GA algorithm, the algorithm

successfully optimizes resource allocation while minimizing energy consumption. The results from this study highlight the

algorithm’s superior performance in terms of energy consumption (36 kWh), host utilization (13,800), SLA violations

(7.2), average execution time (16.2 ms), service cost ($12.5), number of migrations (3,050), and throughput (28.6%) across

100 virtual machines setting compared to existing algorithms. This exceptional performance positions the HC2GOO

algorithm as a capable solution for cloud resource allocation, with significant implications for sustainability and reduced

operational costs. In future work, explore the applicability of the HC2GOO algorithm in other contexts such as edge and

fog computing. Additionally, the algorithm’s effectiveness can be enhanced by integrating advanced optimization

techniques, including machine learning and deep learning. Its versatility also opens opportunities for addressing other

optimization challenges, such as scheduling and resource allocation across various domains.

CRediT Author Statement
The authors confirm contribution to the paper as follows:

Conceptualization: Rajgopal K T, H Manoj T Gadiyar, Nagesh Shenoy H and Goudar R H; Methodology: Rajgopal K

T, H Manoj T Gadiyar, Nagesh Shenoy H and Goudar R H; Software: Rajgopal K T and H Manoj T Gadiyar; Data

Curation: Nagesh Shenoy H and Goudar R H; Writing- Original Draft Preparation: H Manoj T Gadiyar and Nagesh

Shenoy H; Visualization: Nagesh Shenoy H and Goudar R H; Investigation: H Manoj T Gadiyar and Nagesh Shenoy H;

Supervision: H Manoj T Gadiyar, Nagesh Shenoy H and Goudar R H; Validation: Nagesh Shenoy H and Goudar R H;

Writing- Reviewing and Editing: Nagesh Shenoy H and Goudar R H; All authors reviewed the results and approved the

final version of the manuscript.

Data Availability

No data was used to support this study.

Conflicts of Interests

The author(s) declare(s) that they have no conflicts of interest.

Funding

No funding agency is associated with this research.

Competing Interests

There are no competing interests

References

[1]. A. Belgacem, K. Beghdad-Bey, H. Nacer, and S. Bouznad, “Efficient dynamic resource allocation method for cloud computing environment,”

Cluster Computing, vol. 23, no. 4, pp. 2871–2889, Feb. 2020, doi: 10.1007/s10586-020-03053-x.

[2]. K. Saidi and D. Bardou, “Task scheduling and VM placement to resource allocation in Cloud computing: challenges and opportunities,”
Cluster Computing, vol. 26, no. 5, pp. 3069–3087, Jul. 2023, doi: 10.1007/s10586-023-04098-4.

[3]. M. N. R., H. M. T. Gadiyar, S. S. M., M. Bharathrajkumar, and S. T. K., “Enhanced cipher text-policy attribute-based encryption and

serialization on media cloud data,” International Journal of Pervasive Computing and Communications, vol. 20, no. 5, pp. 593–606, Oct. 2022,
doi: 10.1108/ijpcc-06-2022-0223.

[4]. J. Vergara, J. Botero, and L. Fletscher, “A Comprehensive Survey on Resource Allocation Strategies in Fog/Cloud Environments,” Sensors,

vol. 23, no. 9, p. 4413, Apr. 2023, doi: 10.3390/s23094413.
[5]. Y. Gong, J. Huang, B. Liu, J. Xu, B. Wu, and Y. Zhang, “Dynamic resource allocation for virtual machine migration optimization using

machine learning,” arXiv preprint arXiv:2403, pp.13619, 2024.

[6]. H. M. T. Gadiyar, T. G. S, and R. H. Goudar, “An Adaptive Approach for Preserving Privacy in Context Aware Applications for Smartphones
in Cloud Computing Platform,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 5, 2022, doi:

10.14569/ijacsa.2022.0130561.

[7]. A. K. Samha, “Strategies for efficient resource management in federated cloud environments supporting Infrastructure as a Service (IaaS),”

Journal of Engineering Research, vol. 12, no. 2, pp. 101–114, Jun. 2024, doi: 10.1016/j.jer.2023.10.031.

[8]. C. U. Om Kumar, K. Tejaswi, and P. Bhargavi, “A distributed cloud-prevents attacks and preserves user privacy,” 2013 15th International

Conference on Advanced Computing Technologies (ICACT), pp. 1–6, Sep. 2013, doi: 10.1109/icact.2013.6710509.
[9]. S. Singh, P. Singh, and S. Tanwar, “Energy aware resource allocation via MS-SLnO in cloud data center,” Multimedia Tools and Applications,

vol. 82, no. 29, pp. 45541–45563, May 2023, doi: 10.1007/s11042-023-15521-8.

[10]. K. Malathi, Dr. R. Anandan, and Dr. J. F. Vijay, “Cloud Environment Task Scheduling Optimization of Modified Genetic Algorithm,” Journal
of Internet Services and Information Security, vol. 13, no. 1, pp. 34–43, Jan. 2023, doi: 10.58346/jisis.2023.i1.004.

[11]. J. A. Murali and B. T, “Efficient Resource Allocation in Cloud Computing Using Hungarian Optimization in Aws,” Feb. 2023, doi:

10.21203/rs.3.rs-2543829/v1.
[12]. M. Kumar, K. Dubey, S. Singh, J. Kumar Samriya, and S. S. Gill, “Experimental performance analysis of cloud resource allocation framework

using spider monkey optimization algorithm,” Concurrency and Computation: Practice and Experience, vol. 35, no. 2, Nov. 2022, doi:

10.1002/cpe.7469.
[13]. A. K. Sangaiah, A. Javadpour, P. Pinto, S. Rezaei, and W. Zhang, “Enhanced resource allocation in distributed cloud using fuzzy meta-

heuristics optimization,” Computer Communications, vol. 209, pp. 14–25, Sep. 2023, doi: 10.1016/j.comcom.2023.06.018.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

280

[14]. A. K. Singh, S. R. Swain, D. Saxena, and C.-N. Lee, “A Bio-Inspired Virtual Machine Placement Toward Sustainable Cloud Resource
Management,” IEEE Systems Journal, vol. 17, no. 3, pp. 3894–3905, Sep. 2023, doi: 10.1109/jsyst.2023.3248118.

[15]. V. Garg and B. Jindal, “Resource optimization using predictive virtual machine consolidation approach in cloud environment,” Intelligent

Decision Technologies, vol. 17, no. 2, pp. 471–484, May 2023, doi: 10.3233/idt-220222.
[16]. I. Petrovska and H. Kuchuk, “ADAPTIVE RESOURCE ALLOCATION METHOD FOR DATA PROCESSING AND SECURITY IN

CLOUD ENVIRONMENT,” Advanced Information Systems, vol. 7, no. 3, pp. 67–73, Sep. 2023, doi: 10.20998/2522-9052.2023.3.10.

[17]. T. Alyas, T. M. Ghazal, B. Sulaiman Alfurhood, G. F. Issa, O. Ali Thawabeh, and Q. Abbas, “Optimizing Resource Allocation Framework
for Multi-Cloud Environment,” Computers, Materials & Continua, vol. 75, no. 2, pp. 4119–4136, 2023, doi: 10.32604/cmc.2023.033916.

[18]. D. Paulraj, T. Sethukarasi, S. Neelakandan, M. Prakash, and E. Baburaj, “An Efficient Hybrid Job Scheduling Optimization (EHJSO) approach

to enhance resource search using Cuckoo and Grey Wolf Job Optimization for cloud environment,” PLOS ONE, vol. 18, no. 3, p. e0282600,
Mar. 2023, doi: 10.1371/journal.pone.0282600.

[19]. J. Jeyaraman, S. V. Bayani, and J. N. A. Malaiyappan, “Optimizing Resource Allocation in Cloud Computing Using Machine Learning,”

European Journal of Technology, vol. 8, no. 3, pp. 12–22, May 2024, doi: 10.47672/ejt.2007.
[20]. V. Ramasamy and S. Thalavai Pillai, “An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud

environment,” Cluster Computing, vol. 23, no. 3, pp. 1711–1724, May 2020, doi: 10.1007/s10586-020-03118-x.

[21]. A. Rajagopalan, D. R. Modale, and R. Senthilkumar, “Optimal Scheduling of Tasks in Cloud Computing Using Hybrid Firefly-Genetic
Algorithm,” Advances in Decision Sciences, Image Processing, Security and Computer Vision, pp. 678–687, Jul. 2019, doi: 10.1007/978-3-

030-24318-0_77.

[22]. V. Jafari and M. H. Rezvani, “Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using
NSGA-II metaheuristic algorithm,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 3, pp. 1675–1698, Jul. 2021, doi:

10.1007/s12652-021-03388-2.

[23]. M. Ghobaei-Arani and A. Shahidinejad, “An efficient resource provisioning approach for analyzing cloud workloads: a metaheuristic-based
clustering approach,” The Journal of Supercomputing, vol. 77, no. 1, pp. 711–750, Apr. 2020, doi: 10.1007/s11227-020-03296-w.

[24]. R. K. Kalimuthu and B. Thomas, “An effective multi-objective task scheduling and resource optimization in cloud environment using

hybridized metaheuristic algorithm,” Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 4051–4063, Mar. 2022, doi: 10.3233/jifs-
212370.

[25]. H. Singh, S. Tyagi, and P. Kumar, “Scheduling in Cloud Computing Environment using Metaheuristic Techniques: A Survey,” Emerging
Technology in Modelling and Graphics, pp. 753–763, Jul. 2019, doi: 10.1007/978-981-13-7403-6_66.

[26]. R. R. Dornala, S. Ponnapalli, K. T. Sai, S. R. Krishna Reddi, R. R. Koteru, and B. Koteru, “Ensemble Resource Allocation using Optimized

Particle Swarm Optimization (PSO) in Cloud Computing,” 2024 3rd International Conference on Sentiment Analysis and Deep Learning
(ICSADL), pp. 342–348, Mar. 2024, doi: 10.1109/icsadl61749.2024.00062.

[27]. T. Renugadevi, K. Geetha, K. Muthukumar, and Z. W. Geem, “Energy-Efficient Resource Provisioning Using Adaptive Harmony Search

Algorithm for Compute-Intensive Workloads with Load Balancing in Datacenters,” Applied Sciences, vol. 10, no. 7, p. 2323, Mar. 2020, doi:
10.3390/app10072323.

[28]. S. Achar, “Neural-Hill: A Novel Algorithm for Efficient Scheduling IoT-Cloud Resource to Maintain Scalability,” IEEE Access, vol. 11, pp.

26502–26511, 2023, doi: 10.1109/access.2023.3257425.
[29]. W. Bi, J. Ma, X. Zhu, W. Wang, and A. Zhang, “Cloud service selection based on weighted KD tree nearest neighbor search,” Applied Soft

Computing, vol. 131, p. 109780, Dec. 2022, doi: 10.1016/j.asoc.2022.109780.

[30]. P. Devarasetty and S. Reddy, “Genetic algorithm for quality of service based resource allocation in cloud computing,” Evolutionary
Intelligence, vol. 14, no. 2, pp. 381–387, Apr. 2019, doi: 10.1007/s12065-019-00233-6.

[31]. D. Gabi et al., “Dynamic scheduling of heterogeneous resources across mobile edge-cloud continuum using fruit fly-based simulated annealing

optimization scheme,” Neural Computing and Applications, vol. 34, no. 16, pp. 14085–14105, Apr. 2022, doi: 10.1007/s00521-022-07260-y.
[32]. Q. Zhou, “Research on Optimization Algorithm of Cloud Computing Resource Allocation for Internet of Things Engineering Based on

Improved Ant Colony Algorithm,” Mathematical Problems in Engineering, vol. 2022, pp. 1–6, Apr. 2022, doi: 10.1155/2022/5632117.

[33]. K. L. Devi and S. Valli, “Multi-objective heuristics algorithm for dynamic resource scheduling in the cloud computing environment,” The
Journal of Supercomputing, vol. 77, no. 8, pp. 8252–8280, Jan. 2021, doi: 10.1007/s11227-020-03606-2.

[34]. B. M and M. R, “Enhancing Hybrid Object Identification for Instantaneous Healthcare through Lorentz Force,” 2024 8th International

Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 1365–1368, Oct. 2024, doi: 10.1109/i-
smac61858.2024.10714704.

[35]. M. Manavi, Y. Zhang, and G. Chen, “Resource Allocation in Cloud Computing Using Genetic Algorithm and Neural Network,” 2023 IEEE

8th International Conference on Smart Cloud (SmartCloud), pp. 25–32, Sep. 2023, doi: 10.1109/smartcloud58862.2023.00013.
[36]. S. Abedi, M. Ghobaei-Arani, E. Khorami, and M. Mojarad, “Dynamic Resource Allocation Using Improved Firefly Optimization Algorithm

in Cloud Environment,” Applied Artificial Intelligence, vol. 36, no. 1, Mar. 2022, doi: 10.1080/08839514.2022.2055394.

[37]. D. Selvapandian, and R. Santosh, “A hybrid optimized resource allocation model for multi-cloud environment using bat and particle swarm
optimization algorithms”, Computer Assisted Methods in Engineering and Science, vol.29, no.1–2, pp.87-103, 2022.

[38]. R. Yuvarani and R. Mahaveerakannan, “Enhanced IoT-based Healthcare Device for Secure Patient Data Management using Hybrid

Cryptography Algorithm,” 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 22–
28, Oct. 2024, doi: 10.1109/i-smac61858.2024.10714879.

[39]. P. Gupta, S. Bhagat, and P. Rawat, “Fault aware hybrid harmony search technique for optimal resource allocation in cloud,” Journal of

Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 3677–3689, Mar. 2022, doi: 10.3233/jifs-211846.

[40]. “An Improved Ant Colony Algorithm for New energy Industry Resource Allocation in Cloud Environment,” Tehnicki vjesnik - Technical

Gazette, vol. 30, no. 1, Feb. 2023, doi: 10.17559/tv-20220712164019.

[41]. M. Abouelyazid, “Deep-Hill: An Innovative Cloud Resource Optimization Algorithm by Predicting SaaS Instance Configuration Using Deep
Learning,” IEEE Access, vol. 12, pp. 92573–92584, 2024, doi: 10.1109/access.2024.3423339.

[42]. K. N. Vhatkar and G. P. Bhole, “Optimal container resource allocation in cloud architecture: A new hybrid model,” Journal of King Saud

University - Computer and Information Sciences, vol. 34, no. 5, pp. 1906–1918, May 2022, doi: 10.1016/j.jksuci.2019.10.009.

