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Abstract 

A more efficient food production system is essential in all industries, but notably 

agriculture, to meet the needs of world's growing populace. However, there will be times 

when supply and demand are out of sync. One of the most difficult and time-consuming tasks 

in increasing agricultural output is managing and maintaining human and financial resources. 

In terms of increasing food production, managing resources, and manpower, smart agriculture 

is the way to go. to develop an IoT system for identifying crop diseases at a finer grain size 

by combining IoT with deep learning. This technology has the capability to identify 

agricultural diseases autonomously and provide farmers with diagnostic data. The research 

suggests a model for fine-grained disease diagnosis in the system called an attention-based 

convolution neural network with bidirectional long short-term memory (ACNN-BLSTM). 

The suggested approach incorporates a compensation layer that use a compensation algorithm 

to combine the outcomes of multidimensional recognition. It does this by first identifying in 

three dimensions: species, coarse-grained disease, besides fine-grained disease. The ACNN-

BLSTM model's hyperparameters are fine-tuned using a hybrid approach called SA-GSO, 

which combines simulated annealing with glowworm swarm optimisation. This improves the 

model's detection performance. In comparison to other well-known deep learning 

representations, the studies demonstrate that the suggested neural network outperforms them 

in terms of recognition effect and usefulness for teaching real-world agricultural production 

tasks..  

Keywords: Internet of Things; Attention-based convolution neural network; Glowworm 

swarm optimization; Simulated annealing; Agriculture; Crop Disease.  

Introduction 

The goal of modern agricultural practices is to cultivate crops in carefully managed 

spaces, like greenhouses, that can either increase plant yields or mimic the weather patterns 

of certain regions so that imported goods can be grown locally [1]. A thorough 

implementation of modern monitoring cellphones, can also help farmers minimise the 
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negative effects of weather and disease changes on agricultural yields and quality [2]. Thanks 

to recent advancements, farmers can now assess their crops' health with great precision and 

make informed decisions about irrigation, climate change, and soil nutrition [3]. This allows 

for more efficient automation of management tasks, higher crop yields, and less 

environmental damage [4]. Agronomists and farmers have started using technology to make 

greenhouse operations more efficient [5]. In order to remotely monitor their crops and 

equipment, grasp the complete management state properly through statistical analysis, and 

tell the robots to carry out agricultural chores, they use smartphones and the data acquired 

and communicated by the Internet of Things (IoT) to do so [6]. The present state of artificial 

intelligence (AI) in agricultural machinery and systems is inadequate to accomplish fully 

automated operations [7] and management with minimal oversight to maximise output while 

taking variability and uncertainties into account within precision agriculture (PA) [8]. 

Nevertheless, greenhouses are making good use of this integration of technologies with 

efficient human intervention. 

To maximise the PA's economic value, intelligence is seen as both a key technological 

challenge and an additional facilitator [9]. With the advent of deep learning technology, 

numerous areas of PA have become much easier to manage and make decisions about. This 

includes visual crop categorisation [10], real-time plant disease and pest recognition [11], 

autonomous robots for picking and harvesting [12], and monitoring the growth of crops for 

quality and health [13]. And with the proliferation of data-gathering devices like 

smartphones, cameras, and sensors, deep-learning algorithms are poised to make significant 

strides in the agriculture sector in the not-too-distant future [12]. Deep learning is based on 

the way the human brain processes visual information, which involves multiple levels of 

abstraction. It enables computational models with many processing layers to learn these 

representations by utilising non-linear modules, such as memory units, which take the raw 

input as input and transform it into a slightly more abstract representation at each level [13]. 

Agricultural tasks can be automatically completed with the synthesis of enough such 

transformations, allowing for the learning of very complex functions and the discovery of 

challenging structures in high-dimensional data. 

In contrast to their state-of-the-art performance in other areas of study, deep-learning 

networks are not well-suited to the irrigation, picking, pesticide spraying, and fertilisation 

tasks that are integral to crop management in agriculture [14]. The lack of publicly available 

benchmark datasets tailored to different agricultural missions is the primary reason why deep-

learning technologies and the advancement of greenhouse intelligence have been set back 

[15]. These cases highlight the importance of building suitable crop datasets by making full 

use of different gathering devices for broader and deeper networks to produce superior 

outcomes. The first stage in preventing diseases is rapid and precise identification [16]. 

Damage can be mitigated and less drastic steps can be taken when detected early. If crop 

illnesses are wrongly recognized, then treatments may be inefficient or even damaging to 

crops. Manual approaches are primarily used to identify crop diseases worldwide, particularly 

in underdeveloped nations [17].  

To have developed an agrarian IoT scheme for identification by combining deep 

learning with IoT technology. Our goal is to make a positive impact on agricultural 

production. to built the ACNN-BiLSTM with the SA-GSO algorithm for the IoT system's 

deep learning module. In real-world agricultural production activities, our model is 
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instructive since it can detect the severity of crop diseases compared to current methods of 

disease identification. In a timely manner, this technology can gather data on crop diseases 

and relay it to farmers. to fine-tune the network model by modifying the residual network's 

optimisation and initialisation processes. to build the model to detect agricultural diseases 

with a finer degree of specificity.  

In ensuing sections of the paper, to will go over the relevant literature, present our IoT 

system and the model that is suggested in this article, analyse the experimental results, and 

then present our conclusions and recommendations for future research.  

2. Related works 

A new hybrid blockchain system called RENECBCB was developed by Mahalingam 

and Sharma [18] to safely store the detected agricultural data on a cloud server. All of the data 

came from a regular old website. Following the pre-processing step, this model passes the 

filtered input dataset on to the field monitoring module. The offered method's monitoring 

system extracts useful features and enables continuous monitoring. In order to prevent 

unauthorised parties from accessing the extracted features, crypto analysis was also 

performed. The data was subsequently saved on the cloud server using encryption. In 

addition, assaults were launched on the cloud server to conduct security analysis, with 

findings estimated in two situations, one before and one after the attack. Following its 

implementation in Python, the given model achieved an accuracy of approximately 97.7 

percent, a confidentiality rate of about 97.08%, and an execution time of approximately 2.7 

milliseconds for encryption, 2.6 milliseconds for decryption, and 11 milliseconds for the 

overall process. In addition, the suggested model reduced the error rate to approximately 

0.0227%. There was a comparison between the computed results and the current security 

methods. 

A thorough framework for smart farming has been proposed by Rehman et al., [19]. 

Three technological integrations make up the proposed framework: 1) an effective 

combination of battery energy storage systems (BESS) with renewable energy resources 

(RERs); 2) a precision irrigation system operated by an android app that monitors the 

environment; and 3) a robotic system that applies chemicals to specific areas. In order to 

examine and evaluate best-case scenarios including various energy sources, the suggested 

framework examines a case study on Sharjah, UAE. to successfully integrated multiple 

prototypes using the Blynk IoT platform, which gave users a uniform boundary. The findings 

also offer a thorough examination of the interactions between the grid and RERs in different 

configurations. The results show that this framework has the ability to greatly improve 

farming practices in terms of sustainability, efficiency, and technology. In addition, it is a step 

towards a more sustainable and intelligent agricultural future by providing a comprehensive 

answer to the problems facing modern agriculture. 

Performance, scalability, adaptability, , extensibility, and security are some of the 

quality features that Mishra et al., [20] has identified and addressed. They have also mapped 

these traits to relevant IoT-based farm software architecture. Also, some difficulties were 

recognised and explored for the software architectural quality of IoT-based agriculture 

schemes, can help in planning, implementing, and improving agricultural systems that rely on 

the IoT to meet the evolving needs of the agricultural sector. 
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An innovative and enhanced method that allows plants to converse with humans via 

the IoT is suggested in a work by Kaur et al. [21]. To make sure the plants are healthy, it's 

important to track and categorise their related parameters. The suggested system uses the IoT 

and a sum of sensors to track the needs of plants. Environmental sensors gather data, which is 

then transmitted to the user's Android app on their smartphone. After this, the data is analysed 

to determine if the plant is healthy or not. The proposed framework outperforms the current 

classifiers utilised in previous studies in terms of accuracy (89.85%), precision (88.37%), 

besides recall (86.55%), all achieved through the use of the machine learning classifier 

Random Forest (RF). 

A cloud-based smart irrigation scheme has been introduced by Et-taibi et al., [22] to 

link multiple small-scale smart farms and consolidate relevant data. By collecting, storing, 

and analysing large amounts of data, the system maximises the efficiency of irrigation water 

utilisation. In dry areas in particular, this data can help with water management decisions, 

which in turn can encourage conservation measures. Additionally, this project studies weather 

prediction services to increase intermittent wet times, within a real-world testbed powered by 

solar energy. The testbed is equipped with an advanced technology for managing massive 

data. Displayed here is a model of a Smart Farm that makes use of IoT, embedded systems, 

cheap WSNs, an NI CompactRIO computing. The results show that there are noticeable 

increases in water saving, which is encouraging. In addition, the study's deployment 

methodology offers a straightforward road map that may be easily adjusted for future 

projects. 

One method for remote, real-time pest identification that makes use of IoT and DL 

architectures is proposed by Dhanaraj et al., [23]. The IoT and DMF-ResNet, part of the 

integrated pest detection approach, are the major components that make up the construction 

of the remote pest detection system. Insect and rodent noises are used to train the DMF-

ResNet method for pest detection. The results of this potential of the IoT and artificial 

intelligence (AI) for field-based pest monitoring, and they show that humans are nearly 

unnecessary for constant vigilance. The proposed DMF-ResNet technology accurately 

automate the finding based on studies in vast agricultural areas. It pest identification than the 

traditional methods used by DenseNet, VGG-16, YOLOv5, DCNN, ANN, KNN, ResNet-50, 

with a score of 99.75%, sensitivity of 98.64%, specificity of 98.48%, recall of 99.08%, 

precision of 99.18%, and an F1 score of 99.11%. 

3. Proposed Methodology 

In this work, the crop leaves that is collected from agriculture land is used to detect 

diseases by using advanced deep learning model, where Figure 1 demonstrations the working 

flow of the proposed perfect.  
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Figure 1: Workflow of  Research Prototypical 

3.1. System Structure 

Intelligent terminal devices, video cameras, and deep learning models make up the 

proposed Internet of Things system. Cameras are used by the system to gather cropped 

videos. It analyses crop health using deep learning models and then relays that information to 

farmers via smart terminal applications, which can be web apps or smartphone apps. The six 

components that make up the system are as follows: a terminal (computer or smartphone), a 

message centre, a deep learning model, a decoder, and one or more video cameras. These are 

the primary roles that each par plays in the system's operation:: 

❖ The video camera is installed in greenhouses or crop fields in order to gather data 

about the crops. In most cases, we'll install a number of video cameras. 

❖ The crop image can be extracted from the decoded information stream by using the 

decoder, which can receive data from numerous video cameras and decode it. 

❖ The decoder transmits the crop image to the deep learning model, which then uses the 

learnt model to determine the crop's health state and sends the result to centre. 

❖ The results of the discrimination are received by the message centre, which then 

organises and handles them using the message queue that the processor employs. 

❖ The processor receives data from the message centre, performs processing on the data, 

and then notifies the web app and smartphone app.. 

An integral aspect of the system, deep learning models have a direct impact on how 

well the IoT scheme functions. Most current crop disease identification schemes can only 

name the various illnesses that affect crops; they can't tell you which ones specifically. Crop 

disease severity varies, though, in the context of actual agricultural production. This means 

that not only is the dosage of medication different, but so is the treatment approach. When it 

comes to treating diseases, lowering pesticide use, and safeguarding crops and the 

environment, fine-grained disease diagnosis is instructive. Accordingly, the research suggests 

a modified LSTM model for the system's model; this model is better able to detect common 

and severe crop diseases and is more stringent in real-world agricultural production 

operations. Here to will go over the proposed model in great depth.. 
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3.2. Data Collection and Processing 

The data set used in this investigation is available from AI Challenger [24]. There 

were 59 categories, broken down as follows: 10 species, 49 illness types with extensive 

descriptions, and 10 health-related categories, with a 36,258 images. Each image was 

collected from a crop in a natural context and modified with only one leaf.  

Various factors, including variations in crop species, shooting conditions, equipment, 

and picture sources, rendered the dataset unfit for use in image classification. Issues with 

picture recognition arise from significantly different picture types, variable picture sizes, and 

uneven picture quality. to processed the dataset prior to training the model in order to resolve 

these issues. There were three main components to the process: data normalisation, data 

augmentation, and SVD. The issue of large disparities in the quantity of images across the 

different categories is addressed in the first stage of data augmentation. The largest category 

comprises 2473 photographs, and the smallest 22 images. The training of the model is 

affected by the quantity of photos in categories, which in turn reduces the test accuracy. 

In order to make perfect training easier, the second stage in data normalisation is to 

make all the photos the same size. Before the experiment, to made sure that all of the images 

in the dataset were set to 224 × 224 pixels. This picture size is used by a lot of deep learning 

models. 

Image quality is resolved in the third step of decomposition. It eliminates background 

noise and restores the original picture's crucial details. A tiny amount of data contains the 

majority of the info in many photographs, while the rest is unimportant. Images in the 

original dataset have varying degrees of quality. to see how changing the unique value 

impacts the picture. to chose the single value 0.9 to procedure the photos in data set. 

3.3. Classification using ACNN-BLSTM Model 

It is then subjected to the ACNN-BLSTM [25] model for efficient disease 

identification in crops. An innovative time network approach called ACNN-BLSTM can be 

created by integrating CNN, BLSTM network, and a lightweight Effective Channel Attention 

(ECA) component into a unified structure. This will improve feature extraction and 

prediction accuracy. The offered method makes full use of data to automatically learn and 

extract local and long memory characteristics from time series, hence reducing model 

difficulty. Furthermore, the attention process is now well-established for extracting additional 

crucial aspects.  

Finally, the forecast jobs were executed using the dense technique, which has 

numerous fully connected (FC) layers. CNNs were used to effectively extract characteristics 

from the data in this scenario. Similar to the standard NN architecture, convolutional neural 

networks (CNNs) reduce the number of parameters in the connection layer by establishing 

local connections between neurones. In particular, it is a connection component of the CNN's 

n-1 and n layers. The BLSTM network, which applies as both a LSTM network to all learnt 

arrangements, was used to construct an even more accurate forecasting technique. The two 

LSTM networks share an output layer, allowing them to provide complete context data at 

every point in the sequence. 
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An enormous opportunity exists for deep convolutional neural networks (DCNNs) to 

become more efficient through the Channel Attention (CA) method. But, one of the offered 

ways is committed to building extra demanding components for obtaining optimum 

efficiency that unavoidably computational weight of method. The purpose of developing 

ECA, a lightweight and minimally difficult component, was to reduce calculation time and 

prevent method over-fitting. The ECA could figure out the association between the several 

channels and also assign weights to each one. The important characteristic has been given 

more weight in the time series data, whereas the unimportant feature has been given less 

weight [26]. Therefore, ECA focusses on relevant data that makes the network more sensitive 

to important traits. When it comes to channel Global Average Pooling (GAP), the ECA is in 

charge. After that, ECA captures the local connections using all of the channels, including 

their k neighbouring channels. Through the execution of rapid 1D convolutional as 

𝜔 = 𝜎(𝐶1𝐷𝑘(𝑦)) (1) 

where C1D is the 1D k is the 1D convolutional kernel size. Rather than manually changing k, 

ECA uses a channel dimensional adaptably mapping method to find its value. The 

corresponding connection was shown to be because the 1D convolutional kernel size k is 

precisely proportional to C.: 

𝐶 = 𝜙(𝑘) = 2(𝛾∗𝑘−𝑏) (2) 

So, to deliver the C, the kernel extent k is adjustably distinct as: 

𝑘 = 𝜓(𝐶) = |
𝑙𝑜𝑔2(𝐶)

𝛾
+

𝑏

𝛾
|

𝑜𝑑𝑑
 (3) 

where | |odd implies the adjacent odd sum. Both c and b have their parameters set to [2, 1] in 

this case. Compared to the lowest dimensional channel, the high dimensional one has a 

noticeably shorter interface range when dealing with non-linear mapping. Lastly, crop 

diseases are identified from the input data using the softmax layer. The following part details 

how the suggested model is fine-tuned using a hybrid SA-GSO model. 

3.4. Optimal Parameter identification using SA-GSO 

The initialiser and optimiser are crucial components of the model training pipeline 

that considerably affect the output of the final tests. During the routing phase, the SA-GSO 

[27] approach can be utilized efficiently to determine the optimal destination. Intelligently 

calibrated GSO relies on the glow-worm's light signaling to entice additional glow-worms. 

This strategy employs a randomly dispersed swarm of solution space glow-worms. A possible 

answer is shown by the placement of each glowworm. The most luminescent glow-worm will 

entice the least luminescent glow-worm. The global optimisation of the method is thus 

achieved. First, there are the essential steps. 

Step 1. Setting the initial value of GSO's primary parameter. Here you can find the following 

parameters: upgrade rate b, population size g, fluorescein upgrade rate g, perception radius rs, 

move step s, threshold nt for the sum of the neighbourhood, and the decision field's group of 

glowworms, Ni(t). 

Step 2. Using the subsequent equation, the fitness value of glow-worm adjusted according to 

the fluorescein value: 
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𝑙𝑖(𝑡) = (1 − 𝜌)𝑙𝑖(𝑡 − 1) + 𝛾𝐽(𝑋(𝑡)) (4) 

where r signifies the fluorescein enhancement constant, and denotes the fluorescein 

decompose constants, which range from zero to one. 

Step 3. Glow worms always go for the brightest people within their radius. 𝑟𝑑
𝑖 (𝑡) for the way 

neighbor set 𝑁𝑖(𝑡). 

Step 4. Compute the likelihood 𝑝𝑖𝑗(𝑡) of glow-worm 𝑋𝑖(𝑡) disturbing the glow-worm 𝑋𝑗(𝑡) 

from their vibrant by Equation (5): 

𝑝𝑖𝑗(𝑡) =
𝑙𝑗(𝑡)−𝑙𝑖(𝑡)

∑ 𝑙𝑘(𝑡)−𝑙𝑖(𝑡)𝑘∈𝑁𝑖(𝑡)
 (5) 

Step 5. Upgrade worm X(t) in Equation (6): 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑠 × [
𝑋𝑗(𝑡)−𝑋𝑖(𝑡)

‖𝑋𝑗(𝑡)−𝑋𝑖(𝑡)‖
] (6) 

Step 6. Upgrade the dynamic result radius 𝑋(𝑡) in Equation (7): 

𝑟𝑑
𝑖 (𝑡 + 1) = 𝑚𝑖𝑛{𝑟𝑠, 𝑚𝑎𝑥{0, 𝛽 × (𝑛𝑡 − |𝑁𝑖(𝑡)|)}} (7) 

Based on predetermined standards, the GSO algorithm will typically set the step size to a 

constant number. This study takes into account two elements that affect the step size—the 

number of rounds and the distance among the ideal glow-worm at the nith round—because 

choosing the right step size is vital for real outcome. The ith glow-worms must be quite 

distant from the ideal solutions for the step size to be large; otherwise, it is microscopic. 

Optimal stride size for the ith glow-worm is zero in the nith round. Before developing the 

SA-GSO algorithm, to examine the effects of varying the step size on the GSO algorithm. 

Afterwards, to apply the self-adaptive step size formulation, which is detailed later on: 

𝑠𝑖(𝑡) = 𝐷𝑖(𝑡). (𝑙𝑒𝑛 (𝑒 −
𝑡

𝑁𝑡
)) ‖𝑥𝑖(𝑡) − 𝑥𝑏(𝑡)‖ (8) 

where each 𝑥𝑖(𝑡) is dispensed to exactly one 𝑠𝑖(𝑡), even if it could be allocated to two or 

more of them, where 𝐷𝑖(𝑡) arbitrary sum in unchanging distribution, 𝑁t denotes maximum 

iterations, and 𝑥𝑏(𝑡) designates the location of the optimal glow-worm at the tth round. 

Because the fitness with the highest value, fitness can be computed using the largest 

parameter assessment from [27]. The maximal fitness function can be evaluated subsequent 

formulas: 

𝐵 =
1

3𝑎2×𝜂
∑ [𝐷𝑇 + 𝑅𝑇 + 𝐻𝑇]𝑎

𝐾=1  (9) 

whereas B characterizes fitness function. 

4. Results and Discussion 

Recent advances in deep learning have led to the proposal and implementation of new 

optimisers and initialisers [28]. Hence, the model is fine-tuned to choose the right initialiser 

and optimiser before the trial. Using the TensorFlow-based Keras framework, which 
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primarily modifies the epoch, besides batch limits, this experiment is executed on a GPU 

situation. Table 1 displays the experimental setup and parameters.. 

Table 1: Environmental Setup 

Numerical Value Parameter 

Using the Keras outline based on 

Tensorflow.  

Development environment -  

0.0001 Learning Rate 

CUDA 9.0 besides Tensorflow-GPU 9.0 GPU 

8 Batch  

Dropout is used to prevent classic 

overfitting with a limit of 0.5.  

Dropout 

 

Throughout the experiment, to make use of 58725 images from the dataset. to have 

4,540 images to work with as test samples and a set of training samples. Table 2 shows the 

data distribution for the training samples, which are split 8:2 between the training set besides 

verification set. 

Table 2: Dataset Description 

Dataset  Effect No. of images 

Train Train the archetypal  35182 

Val Regulate the parameters in 

the exemplary  

8795 

Test  Test the accuracy of the 

classic  

4540 

 

4.1. Validation Analysis of proposed model  

The presentation of the proposed perfect is associated with existing techniques in 

terms of different metrics is given in Table 3 besides Figure 2 to 3.  

Table 3: Analysis of different models 

Measures 

AE CNN 

BiLSTM CNN+BiLSTM 

Proposed 

model 

Accuracy 95.862 95.517 94.828 95.172 97.586 

Sensitivity 93.103 94.483 92.414 92.414 97.241 

Specificity 94.621 96.552 97.241 97.931 97.931 

Precision 95.54 96.479 97.101 97.81 97.917 

FPR 01.3793 03.4483 02.7586 02.069 02.069 

FNR 06.8966 05.5172 07.5862 07.5862 02.7586 

NPV 98.621 96.552 97.241 97.931 97.931 

FDR 01.4599 03.5211 02.8986 02.1898 02.0833 

F1-Score 95.745 95.47 94.7 95.035 97.578 

MCC 91.864 91.054 89.76 90.483 95.175 
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Presentation metrics like accuracy, false positive rate (FPR), false discovery rate (FDR), F1-

score, besides Matthews correlation coefficient (MCC) are examined for each model. The 

suggested model outperforms other models, including Autoencoder (AE) at 95.862%, CNN at 

95.517%, BiLSTM at 94.828%, and CNN+BiLSTM at 95.172%, with the highest accuracy of 

97.586%.  The suggested model also outperforms the other models with a sensitivity of 

97.241%, which indicates the model's capacity to accurately detect true positives. 

CNN+BiLSTM and the suggested model both attain the highest value of 97.931% for 

specificity, which quantifies the true negative rate. The suggested model's precision of 

97.917%, which is marginally higher than that of other models, shows that it is dependable in 

predicting true positives.  In terms of error rates, the suggested model exhibits low false 

positives and false negatives, with the lowest FPR at 2.069% and the lowest FNR at 

2.7586%. With the highest F1-score of 97.578%, the exhibits balanced precision and recall, 

with NPV and FDR of 97.931% and 2.0833%, respectively. Lastly, the suggested model 

performs strongly overall, as evidenced by its 95.175 MCC, a balanced indicator of the 

model's quality that is noticeably higher than the other models.As demonstrated by these 

findings, the suggested model outperforms the others in a sum of metrics, most notably 

accuracy, sensitivity, and F1-score. 

 

Figure 2: Graphical Explanation of proposed classical 
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Figure 3: Loss Investigation of projected model 

5. Conclusion 

Our IoT system has proven to be useful in agriculture industry crop disease 

recognition systems. The suggested strategy may be automatically applied to many crop 

varieties thanks to the integration of IoT technology. In addition to identifying the condition, 

it distinguishes between different stages of the disease.  This work proposes a new DL 

technique that uses integrated sensors to detect disease at an earlier stage. The suggested 

method makes use of a sum of sensors to collect data from the input source. Also, illness 

detection makes use of the ACNN-BLSTM model. The results are examined using multiple 

metrics after a battery of experimental analyses. The SA-GSO technique is employed to 

select the hyperparameter associated with the ACNN-BLSTM model in the most optimal 

manner. The outcomes show that the suggested method is superior on several fronts. Future 

research can focus on determining reasons why some circumstances. Improving precision at 

the low end boosts the efficiency of the scheme. In situations when image quality is an issue, 

to can create standards and criteria for the images included in the dataset. One such approach 

may be the usage of charts comprised in the photos. Next, the image's colours may need to be 

adjusted to meet standards as part of the preprocessing. Afterwards, visual care systems and 

target detection can enhance image data. 
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