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Abstract 

Blockchain is a distributed ledger technology that allows users to record and share information safely 

and transparently. A smart contract is a contract decided based on a blockchain and is a program that 

automatically executes or executes contract terms. Smart contracts improve the transparency and reliability 

of transactions by utilizing the tampering prevention function of blockchain technology. Software security 

vulnerability refers to the fundamental cause of vulnerabilities caused by logical errors, bugs, and mistakes 

that can be defective in software development. To prevent software security accidents, security weaknesses 

must be analyzed before the program is distributed. Smart contract codes that operate on ethereum, a 

blockchain-based framework, can have security vulnerabilities inside the code. When the contract is 

completed and the block is created, the chaincode cannot be arbitrarily modified, so the security weakness 

must be analyzed before execution. 

In this paper, we used deep learning's graph neural network (GNN) to detect security vulnerabilities in 

solidity codes. To analyze security vulnerabilities in solidity code, we defined eight types of security 

weakness items, converted the solidity code into graph data. In order to represent both the structural 

elements of the program, the control flow, and the data flow, the solidity code was converted into an abstract 

syntax tree (AST) and the graph information required for GNN learning was extracted from AST to convert 

the solidity code into a graph. Next, after generating several datasets for training GNN models by integrating 

these graph data and their properties with labels, it is possible to detect whether security vulnerabilities 

exist in the solidity code through GNN learning. This method performs security weakness detection more 

effectively than conventional rule-based methods.  

 

Keywords: Blockchain, Smart Contract, Security vulnerability, Solidity, Ethereum, Security Weakness 

Analyzer, Graph Neural Networks(GNN), Graph Convolution Network(GCN) 

 

1. Introduction 

Blockchain is a distributed ledger technology that allows users to record and share information safely 

and transparently. A smart contract is a contract decided based on a blockchain and is a program that 

automatically executes or executes contract terms. Smart contracts improve the transparency and reliability 

of transactions by utilizing the tampering prevention function of blockchain technology [1-5].  

Software security vulnerability refers to the fundamental cause of vulnerabilities caused by logical errors, 

bugs, and mistakes that can be defective in software development. To prevent software security accidents, 

security weaknesses must be analyzed before the program is distributed. Smart contract codes that operate 
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on ethereum, a blockchain-based framework, can have security vulnerabilities inside the code. Due to the 

nature of the blockchain, no one can arbitrarily modify the contract when the contract is completed and the 

block is created, so if you sign a chain code with weak security, it cannot be modified, which creates a 

security threat. Software security weakness analysis is a process of inspecting the security weaknesses 

inherent in the developed source code to remove security threats by finding and removing the security 

weaknesses inherent in the software in advance [6-11].  

In this paper, we used deep learning's graph neural network (GNN) to detect security vulnerabilities 

in solidity codes [12-13]. To analyze security vulnerabilities in solidity code, we defined eight types 

of security weakness items, converted the solidity code into graph data . In order to represent both 

the structural elements of the program, the control flow, and the data flow, the solidity code was 

converted into an abstract syntax tree (AST) and the graph information required for GNN learning 

was extracted from AST to convert the solidity code into a graph. Next, after generating several 

datasets for training GNN models by integrating these graph data and their properties with labels, it 

is possible to detect whether security vulnerabilities exist in the solidity code through GNN learning. 

This method performs security weakness detection more effectively than conventional rule -based 

methods. 

 

2. Related Studies 
 
2.1. Blockchain and Smart Contracts 

Blockchain is a distributed ledger technology that allows users to record and share information safely 

and transparently. A smart contract is a contract decided based on a blockchain and is a program that 

automatically executes or executes contract terms. Smart contracts improve the transparency and reliability 

of transactions by utilizing the tampering prevention function of blockchain technology [1-5].  

Smart contracts security vulnerability analysis is an analysis technique that diagnoses whether the 

security vulnerability, which is the basis cause of security vulnerability, exists inside the program, and 

proactively detects and removes potential vulnerabilities such as program defects and errors in advance to 

proactively eliminate the possibility of security threats such as hacking [6-11]. The smart contract 

vulnerability analysis method is divided into static analysis through the existing rule -based method 

and dynamic analysis through flow graph [3-5].  

Security weakness analysis for smart contracts is an analysis technique that diagnoses whether the 

security weakness which is the basis cause of security vulnerability exists inside the program, and it  

is a method that proactively eliminates the possibility of causing security threats such as hacking  by 

detecting and removing potential vulnerabilities such as defects and errors in program in advance. 

Security weakness analysis method is divided into static analysis and dynamic analysis. Static 

analysis is usually done by code review and is performed during the implementation phase of the 

security development life cycle. Dynamic analysis, unlike static analysis, does not have access to 

source code, and is a method of finding security weaknesses in a running application program, such 

as vulnerability scanning and penetration testing [6-11, 15-17]. 

 

2.2. Solidity  

Solidity was first proposed by Gavin Wood in august 2014 and developed by the solidity team led by 

Christian Reitwiessner of the ethereum project. Solidity is a smart contract development language provided 

by ethereum and is used to write or implements smart contracts for various blockchain platforms. It mainly 

provides data types and functions needed to exchange ether (ETH). This language is a statically typed 
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language, so the types of variables are determined at compile time. Solidity was designed to target the 

ethereum virtual machine (EVM), a virtual machine shared by nodes of the ethereum blockchain network 

and the engine that operates the entire ethereum. 

Solidity is designed to develop smart contracts that run on the EVM and are compiled into bytecode that 

can run on the EVM. Through solidity, developers can implement applications by including self-executing 

business logic in a smart contract. Matters recorded in the smart contract cannot be denied and are 

performed forcefully. In addition, Ethereum is a platform that allows multiple distributed applications to be 

used as a new blockchain network [18-21].  

Since ethereum supports the complete turing language, it can accommodate various applications 

implemented using the language mainly used by developers. However, due to the nature of the blockchain, 

it cannot be arbitrarily modified when the contract of the chain code is completed, so there is a problem 

that if a chain code with a security weakness is executed on ethereum, it can develop into a security 

weakness. 

 

2.3. Graph Neural Networks(GNNs) 

GNN is a type of artificial neural network for processing data that can be expressed as a graph, and is a 

powerful deep learning model designed to operate on graph-structured data. Unlike traditional neural 

networks, which process data in grid-like structures such as images or sequences, GNNs can process 

complex non-Euclidean structures in graphs. This feature makes GNNs particularly suitable for tasks 

involving relationships and interactions between entities, such as smart contract analysis [12-14]. 

Smart contract codes can be naturally expressed as a graph with CFG(control flow graph) and DFG(data 

flow graph) [22] representing execution and data flow. GNN can effectively analyze and detect security 

vulnerabilities by converting smart contracts into a graph representation. Through this processing, GNN 

captures complex relationships and dependencies within code, which are important for identifying security 

problems in smart contracts, and can efficiently process large graphs, making it suitable for analyzing 

complex smart contracts. Additionally, GNNs can improve detection of new vulnerabilities by generalizing 

training data to new, unseen data. This approach can detect a wider range of security vulnerabilities more 

effectively than traditional methods. Figure 1 shows the GNN model structure. 

 

 

Fig. 1 GNN Model Structure 
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3. Solidity Smart Contract Security Weakness Analyzer 

The solidity smart contract security weakness analyzer diagnoses security weaknesses by 

converting the source program of solidity, one of the languages that write smart contracts, into a 

syntax tree. Figure 2 is a structural diagram of the solidity smart contract security weakness analyzer. 

 

 

Fig. 2 Structure of the Solidity Smart Contract Security Weakness Analyzer 
 

The solidity smart contract security weakness analyzer consists of a generation unit and a learning 

unit. The generation unit receives the solidity code as input to generate a Deep Graph Library (DGL) 

graph, and the learning unit receives the DGL graph as input to perform learning to generate a 

security weakness analysis model and detect the security weakness of the smart contract.   

The DGL graph generation unit consists of an Abstract Syntax Tree(AST) generator that converts 

the solidity code into an AST, a dot generator that generates a dot code by extracting only necessary 

information from the generated AST [23], a symbol table generator that generates a symbol 

information table for token embedding, and a DGL graph generator that converts the Embedded dot 

code generated by receiving the symbol information table and the Dot  code as input into a DGL 

graph. In this process, an intuitive understanding of the graph generated by visualizing and 

representing the Embedded Dot code using a visualization tool can be provided.  

The learning unit's model for solidity smart contract security weak point detection consists of two 

layers of the Graph Convolution Network (GCN), which performs graph classification learning using 

the DGL graph-type dataset generated by the DGL graph generator, and each layer aggregates 

neighborhood information to calculate a new node representation. 

 

3.1. Defining the Security Weakness of Solidity Code 

In order to analyze the security weaknesses of the solidity code, the security weaknesses of the 

solidity code are first defined. Table 1 is a list of the items of the solidity code security weaknesses 

proposed in this paper. The causes of security weaknesses were defined into eight items as follows 

in terms of the reliability of code execution and data processing.  

Table 1. Defined Security Weakness Items 

Solidity Security Weakness Item List 

- unchecked external call 

- dangerous delegate call 
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- timestamp dependency 

- Integer overflow 

- reentrancy 

- block number dependency 

- ether strict equality 

- ether frozen 

 

3.2 AST(Abstract Syntax Tree) Generator 

The AST generator receives the solidity code as input and generates the AST using the parse method of 

the solidity parser library. Figure 3 shows the example solidity code to be used for the analysis of security 

weaknesses and the AST generated by the AST generator receiving the solidity code as input. 

 

TestCoin.sol and AST 

 

pragma solidity ^0.4.15; 
 

contract TestCoin is EIP20Interface { 
... 
function transferFrom(address _from, address _to, 

uint256 _value) public returns (bool success) { 
uint256 allowance = allowed[_from][msg.sender]; 
require(balances[_from] >=_value && allowance >= _value); 

balances[_to] += _value; 
balances[_from] -= _value; 
if (allowance < MAX_UINT256) { 

allowed[_from][msg.sender] -= _value; 
} 
emit Transfer(_from, _to, _value); 
return true; 

} 
... 

 

Fig. 3 Solidity Code and AST 
 

3.3. Dot Generator 

The dot generator receives the AST generated by the AST generator as an input to generate the dot code. 

The dot code is a language used to draw graphs in Graphviz, a visualization tool, and only necessary 

information was reflected when generating Deep Graph Library(DGL) graphs, and unnecessary information 

in the AST was removed. Figure 4 is an example of the dot code generated through the dot code generator. 

 

TestCoin.dot 

pragma solidity ^0.4.15; 
 
digraph G { 
node[shape=box, style=rounded, fontname="Sans"] 
... 
9 [label = Function]; 
9 -> 10; 
10 [label = Block]; 
10 -> 11; 
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11 [label = "Expression 
allowance = allowed [ _from ]  [ msg . sender ]   
require ( balances [ _from ]  >= _value && allowance >= _value )   
balances [ _to ]  += _value  
balances [ _from ]  -= _value"]; 
11 -> 12; 
12 [label = "Condition 
allowance < MAX_UINT256", shape = diamond]; 
12 -> 14 [label = "true", fontcolor="blue"]; 
12 -> 13 [label = "false", fontcolor="red"]; 
14 [label = Block]; 
14 -> 15; 
15 [label = "Expression 
allowed [ _from ]  [ msg . sender ]  -= _value"]; 
15 -> 13; 
13 [label = IfEnd]; 
13 -> 16; 
16 [label = "return 
True"]; 
16 -> 17; 
17 [label = FunctionEnd]; 
... 

Fig. 4 Dot Code generated by the Dot Code Generator 
 

3.4. Symbol Table Generator 

The symbol table generator generates a symbol information table for token embedding of the dot code. 

The symbol table is generated at the time of execution of the dot code generator, and is used to generate the 

Embedded dot code by symbolically changing the user-defined function name, variable name, and state 

variable name. Figure 5 shows the symbol table structure. 

 

 

Fig. 5 Symbol Table Structure 

 

3.5. Embedded Dot Code Generation 

The embedded dot code is generated based on the dot code and the values stored in the symbol table. 

The embedded dot code makes the DGL graph symbolic, so that general rules and patterns can be learned 

without relying on specific data during training. Figure 6 is an example of the embedded dot code generated 

 

Embedded Dot Code 

pragma solidity ^0.4.15; 
 
digraph G { 
node[shape=box, style=rounded, fontname="Sans"] 
... 
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9 [label = Function]; 
9 -> 10; 
10 [label = Block]; 
10 -> 11; 
11 [label = "Expression 
variable4 = state_variable2 [ variable5 ]  [ variable0 . sender ]   
require ( state_variable1 [ variable5 ]  >= variable2 && variable4 >= variable2 )   
state_variable1 [ variable3 ]  += variable2  
state_variable1 [ variable5 ]  -= variable2"]; 
11 -> 12; 
12 [label = "Condition 
variable4 < state_variable0", shape = diamond]; 
12 -> 14 [label = "true", fontcolor="blue"]; 
12 -> 13 [label = "false", fontcolor="red"]; 
14 [label = Block]; 
14 -> 15; 
15 [label = "Expression 
state_variable2 [ variable5 ]  [ variable0 . sender ]  -= variable2"]; 
15 -> 13; 
13 [label = IfEnd]; 
13 -> 16; 
16 [label = "return 
True"]; 
16 -> 17; 
17 [label = FunctionEnd]; 
... 

Fig. 6 Embedded Dot Code  
 

3.6. Visualization of Embedded Dot Code  

Visualization is performed through the Graphviz library to visualize the embedded dot code and 

facilitates understanding of the structure of the code and data flow. Figure 8 is an example of visualizing 

the embedded dot code in Figure 7. 

 

 

Fig. 7 Visualization of Embedded Dot Code  
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3.7. DGL(Deep Graph Library) Graph Generator  

The DGL graph generator receives a dot code as an input to generate a DGL graph. A DGL graph is a 

heterogeneous graph containing various types of nodes and edges. There are 13 node types, including 

'Block', 'Return', 'Break', 'Expression', 'Throw', 'Condition', 'IfEnd', 'WhenEnd', 'LoopVariable', 

'LoopExpression', 'ForEnd', 'Function', and 'FunctionEnd', and there are three edge types consisting of 

Normal, True, and False. Figure 8 shows the DGL graph generated by the DGL graph generator by 

receiving the embedded dot code in Figure 8 as an input. 

 

TestCoin.sol's DGL Graph  

Graph(num_nodes={'Block': 29, 'Condition': 13, 'Expression': 25, 'ForEnd': 2,  
                   'Function': 28, 'FunctionEnd': 31, 'IfEnd': 14, 'LoopExpression': 2,  
                   'LoopVariable': 2, 'WhileEnd': 2, 'break': 2, 'return': 30, 'throw': 2}, 
      num_edges={('Block', 'normal', 'Block'): 1, ('Block', 'normal', 'Expression'): 5, 
                   ('Block', 'normal', 'return'): 2, ('Condition', 'false', 'IfEnd'): 1,  

('Condition', 'true', 'Block'): 1, ('Expression', 'normal', 'Condition'): 1,  
('Expression', 'normal', 'FunctionEnd'): 1, ('Expression', 'normal', 'IfEnd'): 1,  

                  ('Expression', 'normal', 'return'): 2, ('ForEnd', 'normal', 'ForEnd'): 1,  
                   ('Function', 'normal', 'Block'): 5, ('IfEnd', 'normal', 'return'): 1,  

('LoopExpression', 'normal', 'LoopExpression'): 1,   
                  ('LoopVariable', 'normal', 'LoopVariable'): 1, ('WhileEnd', 'normal', 'WhileEnd'): 1,  
                  ('break', 'normal', 'break'): 1, ('return', 'normal', 'FunctionEnd'): 5, 
                  ('throw', 'normal', 'throw'): 1}, 
      metagraph=[('Block', 'Block', 'normal'), ('Block', 'Expression', 'normal'),  
                  ('Block', 'return', 'normal'), ('Expression', 'Condition', 'normal'),  

('Expression', 'FunctionEnd', 'normal'), ('Expression', 'IfEnd', 'normal'),  
('Expression', 'return', 'normal'), ('return', 'FunctionEnd', 'normal'),  

                  ('Condition', 'IfEnd', 'false'), ('Condition', 'Block', 'true'), ('IfEnd', 'return', 'normal'),  
                  ('ForEnd', 'ForEnd', 'normal'), ('Function', 'Block', 'normal'),  
                  ('LoopExpression', 'LoopExpression', 'normal'),  

('LoopVariable', 'LoopVariable', 'normal'), ('WhileEnd', 'WhileEnd', 'normal'),  
('break', 'break', 'normal'), ('throw', 'throw', 'normal')])... 

Fig. 8 DGL graph generated by the DGL graph generator 
 

3.8. Graph Neural Network(GNN) Learning 

To analyze the security weakness of the solidity code, a heterogeneous graph classification model is 

learned through GNN learning of deep learning using the data set of the DGL graph generated through the 

DGL graph generator. Figure 9 shows the structure of the learning part of the solidity smart contract security 

weakness analyzer 

 

 

Fig. 9 Structure of Learning Part of the Security Weakness Analyzer 
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The GNN learning model consists of a Graph Convolution Network (GCN) consisting of two layers. 

graph classification learning is performed using the DGL graph-type dataset generated by the DGL graph 

generator, and each convolutional layer updates node features, applies the ReLu function in the net 

propagation process, and predicts class probabilities using the Softmax function after the second 

convolution layer. 

During training, the cross entropy loss between the predicted result obtained through the Softmax 

function and the actual label is calculated. The slope is calculated by backpropagating the model through 

the calculation result. After that, the slope calculated using the Adam optimization algorithm is applied to 

the weight of the model and updated. 

The GNN learning model calculates a new node representation by aggregating neighboring information 

of each node through the above process, and based on this, the existence of security weaknesses in the input 

graph is represented by Prediction and Active Labels. Figure 10 shows the prediction result example of 

the model for the input graph. 

 

 

 
Fig. 10 Prediction Result Example of Security Weakness of GNN Learning Model 

Predictions is a result of predicting the existence of a security weakness in the code after the model who 

has completed training receives the solidity code, and the value of index 0 indicates that there will be no 

security weakness, and the value of index 1 indicates that there will be a vulnerability to that security 

weakness. Since the model predicts probabilistically, if the value of index 0 is larger, it is predicted to be 

higher that there is no security weakness, and if the value of index 1 is larger, it is predicted that there is a 

high probability that there will be a security weakness. 

Actual Labels indicates whether there is a security weakness in the corresponding code, and if it is 0, it 

indicates a code without a security weakness, and if it is 1, it indicates a code with a security weakness. 

Therefore, there are security weaknesses in the program used as an example, and a security weakness 

analyzer through graph-based deep learning (GAN) detects the security weaknesses present in the smart 

contract program 

There are 8 models for each security weakness, and Figure 11 shows the prediction results example of 

the model obtained by inputting a DGL graph into 8 models learned according to each security weakness. 

If the value of index 0 of Prediction is larger, undetected is output, and if the value of index 1 is larger, 

detected is output. 

 

 

Fig. 11 Security Weakness Prediction Results Example for 8 Models 
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4. Experimental Results and Analysis 

In order to detect the security weakness of the smart contract written with the solidity code on the 

ethereum platform where the solidity smart contract runs, an experiment was conducted to detect the 

security weaknesses by analyzing various vulnerability patterns of the solidity code. Figure 12 shows 

the results of detecting security weaknesses for the integer overflow in the solidity code used in the 

experiment. 

 

IntegerOverflow.dot 

pragma solidity ^0.4.15; 
 
contract TestCoin is EIP20Interface { 
    uint256 constant private MAX_UINT256 = 2**256 - 1; 
    mapping (address => uint256) public balances; 
    mapping (address => mapping (address => uint256)) public allowed; 
    string public name; 
    uint8 public decimals; 
    string public symbol; 
 
    function TestCoin( ) public { 
        balances[msg.sender] = 10*10**26; 
        totalSupply = 10*10**26; 
        name = "LHJT"; 
        decimals = 18; 
        symbol = "LHJT"; 
    } 
 
    function transfer(address _to, uint256 _value) public returns (bool success) { 
        require(balances[msg.sender]>= _value); 
        balances[msg.sender] -= _value; 
        balances[_to] += _value; 
        emit Transfer(msg.sender, _to, _value); 
        return true; 
    } 
 
    function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { 
        uint256 allowance = allowed[_from][msg.sender]; 
        require(balances[_from] >= _value && allowance >= _value); 
        balances[_to] += _value; 
        balances[_from] -= _value; 
        if (allowance < MAX_UINT256) { allowed[_from][msg.sender] -= _value; } 
        emit Transfer(_from, _to, _value); 
        return true; 
    } 
} 

 

 

Fig. 12 Integer Overflow Detection Result of Solidity Code 
 

Security weakness detection for the security weakness detection item, Integer overflow, was 

performed with IntegerOverflow.sol, which has a security weakness. In the solidity code of Figure 

12, balances[_to] +=_value; the part of transmitting tokens to the other party's account is written in 
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the transfer, transferFrom function. In this case, be careful of exposure to security vulnerabilities for 

integer overflow because no exception is handled to integer overflow using SafeMath. The 

detection results of security weaknesses warn that among the eight security weaknesses, there are 

security weaknesses for integer overflow. 

Figure 13 shows the results of detecting security weaknesses for the timestamp dependency in 

the solidity code used in the experiment. 

 

TimestampDependency.sol 

pragma solidity ^0.4.15; 
contract Freezable_Token is StandardToken { 
    function releaseOnce() public { 
        bytes32 headKey = toKey(msg.sender, 0); 
        uint64 head = chains[headKey]; 
        require(head != 0); 
        require(uint64(block.timestamp) > head); 
        bytes32 currentKey = toKey(msg.sender, head); 
        uint64 next = chains[currentKey]; 
        uint amount = freezings[currentKey]; 
        delete freezings[currentKey]; 
        balances[msg.sender] = balances[msg.sender].add(amount); 
        freezingBalance[msg.sender] = freezingBalance[msg.sender].sub(amount); 
        if (next == 0) { delete chains[headKey]; }  

else { 
            chains[headKey] = next; 
            delete chains[currentKey]; 
        } 
        emit Released(msg.sender, amount); 
    } 
 
    function releaseAll() public returns (uint tokens) { 
        uint release; 
        uint balance; 
        (release, balance) = getFreezing(msg.sender, 0); 
        while (release != 0 && block.timestamp > release) { 
            releaseOnce(); 
            tokens += balance; 
            (release, balance) = getFreezing(msg.sender, 0); 
        } 
     } 
} 

 

 

Fig. 13 Timestamp Dependency Detection Result of Solidity Code 
 

The security weakness detection for the timestamp dependency, a security weakness detection 

item, was performed with TimestampDependency.sol that has a timestamp dependency security 

weakness. In the solidity code of Figure 13, the releaseOnce and releaseAll functions use 

block.timestamp to check specific conditions. However, block.timestamp can be manipulated by 

miners within a certain range to intentionally advance or delay the execution point of a specific 
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event, which can lead to unexpected behavior of the system. The detection results of security 

weaknesses warn that among the eight security weaknesses, there are security weaknesses for 

timestamp dependency. 

 

5. Conclusions and Further Researches 

Blockchain is a distributed ledger technology that allows users to record and share information safely 

and transparently. A smart contract is a contract decided based on a blockchain and is a program that 

automatically executes or executes contract terms. Smart contracts improve the transparency and reliability 

of transactions by utilizing the tampering prevention function of blockchain technology. Software security 

vulnerability refers to the fundamental cause of vulnerabilities caused by logical errors, bugs, and mistakes 

that can be defective in software development. To prevent software security accidents, security weaknesses 

must be analyzed before the program is distributed. Smart contract codes that operate on ethereum, a 

blockchain-based framework, can have security vulnerabilities inside the code. When the contract is 

completed and the block is created, the chaincode cannot be arbitrarily modified, so the security weakness 

must be analyzed before execution. In addition, most security vulnerability analysis methods for smart 

contracts are currently specialized in detecting specific vulnerabilities using rule-based methods, which is 

prone to many false positives when detecting security vulnerabilities. 

In order to solve this problem, this paper studied an analysis method through the deep learning's graph 

neural network (GNN) to detect security vulnerabilities in solidity codes. To analyze security vulnerabilities 

in solidity code, we defined eight types of security weakness items (unchecked external call, dangerous 

delegate call, timestamp dependency, Integer overflow, reentrancy,  block number dependency, ether strict 

equality, and ether frozen), converted the solidity code into graph data. In order to represent both the 

structural elements of the program, the control flow, and the data flow, the solidity code was converted into 

an abstract syntax tree (AST) and the graph information required for GNN learning was extracted from 

AST to convert the solidity code into a graph. Next, after generating several datasets for training GNN 

models by integrating these graph data and their properties with labels, it is possible to detect whether 

security vulnerabilities exist in the solidity code through GNN learning. This proposed method performs 

security weakness detection more effectively than conventional rule-based methods. 

In the future, it is believed that more data should be collected and learning about these additional 

vulnerabilities should be performed in order to allow the proposed system to detect a wider range of security 

vulnerabilities. In addition, it is expected that higher performance can be achieved by training the model 

using more advanced and specialized GNN models tailored to the dataset. 
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