
ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

243

A Study on the Security Weakness Detection of

Solidity Smart Contracts using Graph Neural

Networks on Blockchain Platforms

1Sunghyun Kim, 2Seunggi Jung, 3Yunsik Son and 4Yangsun Lee

1,2,4Department of Computer Engineering, Seokyeong University, Jungneung-Dong, Sungbuk-Ku, Seoul, Korea.
3Department of Computer Science and Engineering, Dongguk University, Pil-dong, Jung-gu, Seoul, Korea.

1ksh990408@skuniv.ac.kr, 2tmdrl8336@skuniv.ac.kr, 3sonbug@dongguk.edu, 4yslee@skuniv.ac.kr

Correspondence should be addressed to Yangsun Lee and Yunsik Son : yslee@skuniv.ac.kr, sonbug@dongguk.edu

Article Info

Journal of Machine and Computing (https://anapub.co.ke/journals/jmc/jmc.html)

Doi : https://doi.org/10.53759/7669/jmc202505019

Received 16 August 2024; Revised from 24 October 2024; Accepted 12 November 2024.

Available online 05 January 2025.

©2025 The Authors. Published by AnaPub Publications.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract – Blockchain is a distributed ledger technology that allows users to record and share information safely and

transparently. A smart contract is a contract decided based on a blockchain and is a program that automatically executes or

executes contract terms. Smart contracts improve the transparency and reliability of transactions by utilizing the tampering

prevention function of blockchain technology. Software security vulnerability refers to the fundamental cause of

vulnerabilities caused by logical errors, bugs, and mistakes that can be defective in software development. To prevent

software security accidents, security weaknesses must be analyzed before the program is distributed. Smart contract codes

that operate on ethereum, a blockchain-based framework, can have security vulnerabilities inside the code. When the

contract is completed and the block is created, the chaincode cannot be arbitrarily modified, so the security weakness must

be analyzed before execution. In this paper, we used deep learning's graph neural network (GNN) to detect security

vulnerabilities in solidity codes. To analyze security vulnerabilities in solidity code, we defined eight types of security

weakness items, converted the solidity code into graph data. In order to represent both the structural elements of the

program, the control flow, and the data flow, the solidity code was converted into an abstract syntax tree (AST) and the

graph information required for GNN learning was extracted from AST to convert the solidity code into a graph. Next, after

generating several datasets for training GNN models by integrating graph data and their properties with labels, it is possible

to detect whether security vulnerabilities exist in the solidity code through GNN learning. This method performs security

weakness detection more effectively than conventional rule-based methods.

Keywords – Blockchain, Smart Contract, Security Vulnerability, Solidity, Ethereum, Security Weakness Analyzer, Graph

Neural Networks, Graph Convolution Network.

I. INTRODUCTION

Blockchain is a distributed ledger technology that allows users to record and share information safely and transparently. A

smart contract is a contract decided based on a blockchain and is a program that automatically executes or executes contract

terms. Smart contracts improve the transparency and reliability of transactions by utilizing the tampering prevention

function of blockchain technology [1-5].

Software security vulnerability refers to the fundamental cause of vulnerabilities caused by logical errors, bugs, and

mistakes that can be defective in software development. To prevent software security accidents, security weaknesses must

be analyzed before the program is distributed. Smart contract codes that operate on ethereum, a blockchain-based

framework, can have security vulnerabilities inside the code. Due to the nature of the blockchain, no one can arbitrarily

modify the contract when the contract is completed and the block is created, so if you sign a chain code with weak security,

it cannot be modified, which creates a security threat. Software security weakness analysis is a process of inspecting the

security weaknesses inherent in the developed source code to remove security threats by finding and removing the security

weaknesses inherent in the software in advance [6-11].

In this paper, we used deep learning's graph neural network (GNN) to detect security vulnerabilities in solidity codes

[12-13]. To analyze security vulnerabilities in solidity code, we defined eight types of security weakness items, converted

the solidity code into graph data. In order to represent both the structural elements of the program, the control flow, and

the data flow, the solidity code was converted into an abstract syntax tree (AST) and the graph information required for

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

244

GNN learning was extracted from AST to convert the solidity code into a graph. Next, after generating several datasets for

training GNN models by integrating these graph data and their properties with labels, it is possible to detect whether

security vulnerabilities exist in the solidity code through GNN learning. This method performs security weakness detection

more effectively than conventional rule-based methods.

II. RELATED STUDIES

Blockchain and Smart Contracts

Blockchain is a distributed ledger technology that allows users to record and share information safely and transparently. A

smart contract is a contract decided based on a blockchain and is a program that automatically executes or executes contract

terms. Smart contracts improve the transparency and reliability of transactions by utilizing the tampering prevention

function of blockchain technology [1-5].

Smart contracts security vulnerability analysis is an analysis technique that diagnoses whether the security vulnerability,

which is the basis cause of security vulnerability, exists inside the program, and proactively detects and removes potential

vulnerabilities such as program defects and errors in advance to proactively eliminate the possibility of security threats

such as hacking [6-11]. The smart contract vulnerability analysis method is divided into static analysis through the existing

rule-based method and dynamic analysis through flow graph [3-5].

Security weakness analysis for smart contracts is an analysis technique that diagnoses whether the security weakness

which is the basis cause of security vulnerability exists inside the program, and it is a method that proactively eliminates

the possibility of causing security threats such as hacking by detecting and removing potential vulnerabilities such as

defects and errors in program in advance. Security weakness analysis method is divided into static analysis and dynamic

analysis. Static analysis is usually done by code review and is performed during the implementation phase of the security

development life cycle. Dynamic analysis, unlike static analysis, does not have access to source code, and is a method of

finding security weaknesses in a running application program, such as vulnerability scanning and penetration testing [6-

11, 15-17].

Solidity

Solidity was first proposed by Gavin Wood in august 2014 and developed by the solidity team led by Christian Reitwiessner

of the ethereum project. Solidity is a smart contract development language provided by ethereum and is used to write or

implements smart contracts for various blockchain platforms. It mainly provides data types and functions needed to

exchange ether (ETH). This language is a statically typed language, so the types of variables are determined at compile

time. Solidity was designed to target the ethereum virtual machine (EVM), a virtual machine shared by nodes of the

ethereum blockchain network and the engine that operates the entire ethereum.

Solidity is designed to develop smart contracts that run on the EVM and are compiled into bytecode that can run on the

EVM. Through solidity, developers can implement applications by including self-executing business logic in a smart

contract. Matters recorded in the smart contract cannot be denied and are performed forcefully. In addition, Ethereum is a

platform that allows multiple distributed applications to be used as a new blockchain network [18-21].

Since ethereum supports the complete turing language, it can accommodate various applications implemented using the

language mainly used by developers. However, due to the nature of the blockchain, it cannot be arbitrarily modified when

the contract of the chain code is completed, so there is a problem that if a chain code with a security weakness is executed

on ethereum, it can develop into a security weakness.

Graph Neural Networks(GNNs)

Fig 1. GNN Model Structure.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

245

GNN is a type of artificial neural network for processing data that can be expressed as a graph, and is a powerful deep

learning model designed to operate on graph-structured data. Unlike traditional neural networks, which process data in

grid-like structures such as images or sequences, GNNs can process complex non-Euclidean structures in graphs. This

feature makes GNNs particularly suitable for tasks involving relationships and interactions between entities, such as smart

contract analysis [12-14].

Smart contract codes can be naturally expressed as a graph with CFG(control flow graph) and DFG(data flow graph)

[22] representing execution and data flow. GNN can effectively analyze and detect security vulnerabilities by converting

smart contracts into a graph representation. Through this processing, GNN captures complex relationships and

dependencies within code, which are important for identifying security problems in smart contracts, and can efficiently

process large graphs, making it suitable for analyzing complex smart contracts. Additionally, GNNs can improve detection

of new vulnerabilities by generalizing training data to new, unseen data. This approach can detect a wider range of security

vulnerabilities more effectively than traditional methods. Fig 1 shows the GNN model structure.

III. SOLIDITY SMART CONTRACT SECURITY WEAKNESS ANALYZER

The solidity smart contract security weakness analyzer diagnoses security weaknesses by converting the source program

of solidity, one of the languages that write smart contracts, into a syntax tree. Fig 2 is a structural diagram of the solidity

smart contract security weakness analyzer.

Fig 2. Structure of the Solidity Smart Contract Security Weakness Analyzer.

The solidity smart contract security weakness analyzer consists of a generation unit and a learning unit. The generation

unit receives the solidity code as input to generate a Deep Graph Library (DGL) graph, and the learning unit receives the

DGL graph as input to perform learning to generate a security weakness analysis model and detect the security weakness

of the smart contract.

The DGL graph generation unit consists of an Abstract Syntax Tree(AST) generator that converts the solidity code into

an AST, a dot generator that generates a dot code by extracting only necessary information from the generated AST [23],

a symbol table generator that generates a symbol information table for token embedding, and a DGL graph generator that

converts the Embedded dot code generated by receiving the symbol information table and the Dot code as input into a DGL

graph. In this process, an intuitive understanding of the graph generated by visualizing and representing the Embedded Dot

code using a visualization tool can be provided.

The learning unit's model for solidity smart contract security weak point detection consists of two layers of the Graph

Convolution Network (GCN), which performs graph classification learning using the DGL graph-type dataset generated

by the DGL graph generator, and each layer aggregates neighborhood information to calculate a new node representation.

Defining the Security Weakness of Solidity Code

In order to analyze the security weaknesses of the solidity code, the security weaknesses of the solidity code are first

defined. Table 1 is a list of the items of the solidity code security weaknesses proposed in this paper. The causes of security

weaknesses were defined into eight items as follows in terms of the reliability of code execution and data processing.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

246

Table 1. Defined Security Weakness Items

Solidity Security Weakness Item List

- unchecked external call

- dangerous delegate call

- timestamp dependency

- Integer overflow

- reentrancy

- block number dependency

- ether strict equality

- ether frozen

AST(Abstract Syntax Tree) Generator

The AST generator receives the solidity code as input and generates the AST using the parse method of the solidity parser

library. Fig 3 shows the example solidity code to be used for the analysis of security weaknesses and the AST generated

by the AST generator receiving the solidity code as input.

TestCoin.sol and AST

pragma solidity ^0.4.15;

contract TestCoin is EIP20Interface {

...

function transferFrom(address _from, address _to,

uint256 _value) public returns (bool success) {

uint256 allowance = allowed[_from][msg.sender];

require(balances[_from] >=_value && allowance >= _value);

balances[_to] += _value;

balances[_from] -= _value;

if (allowance < MAX_UINT256) {

allowed[_from][msg.sender] -= _value;

}

emit Transfer(_from, _to, _value);

return true;

}

...

Fig 3. Solidity Code and AST.

Dot Generator

The dot generator receives the AST generated by the AST generator as an input to generate the dot code. The dot code is

a language used to draw graphs in Graphviz, a visualization tool, and only necessary information was reflected when

generating Deep Graph Library(DGL) graphs, and unnecessary information in the AST was removed. Fig 4 is an example

of the dot code generated through the dot code generator.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

247

TestCoin.dot

pragma solidity ^0.4.15;

digraph G {

node[shape=box, style=rounded, fontname="Sans"]

...

9 [label = Function];

9 -> 10;

10 [label = Block];

10 -> 11;

11 [label = "Expression

allowance = allowed [_from] [msg . sender]

require (balances [_from] >= _value && allowance >= _value)

balances [_to] += _value

balances [_from] -= _value"];

11 -> 12;

12 [label = "Condition

allowance < MAX_UINT256", shape = diamond];

12 -> 14 [label = "true", fontcolor="blue"];

12 -> 13 [label = "false", fontcolor="red"];

14 [label = Block];

14 -> 15;

15 [label = "Expression

allowed [_from] [msg . sender] -= _value"];

15 -> 13;

13 [label = IfEnd];

13 -> 16;

16 [label = "return

True"];

16 -> 17;

17 [label = FunctionEnd];

...

Fig 4. Dot Code Generated by the Dot Code Generator.

Symbol Table Generator

The symbol table generator generates a symbol information table for token embedding of the dot code. The symbol table

is generated at the time of execution of the dot code generator, and is used to generate the Embedded dot code by

symbolically changing the user-defined function name, variable name, and state variable name. Fig 5 shows the symbol

table structure.

Fig 5. Symbol Table Structure.

Embedded Dot Code Generation

The embedded dot code is generated based on the dot code and the values stored in the symbol table. The embedded dot

code makes the DGL graph symbolic, so that general rules and patterns can be learned without relying on specific data

during training. Fig 6 is an example of the embedded dot code generated

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

248

Embedded Dot Code

pragma solidity ^0.4.15;

digraph G {

node[shape=box, style=rounded, fontname="Sans"]

...

9 [label = Function];

9 -> 10;

10 [label = Block];

10 -> 11;

11 [label = "Expression

variable4 = state_variable2 [variable5] [variable0 . sender]

require (state_variable1 [variable5] >= variable2 && variable4 >= variable2)

state_variable1 [variable3] += variable2

state_variable1 [variable5] -= variable2"];

11 -> 12;

12 [label = "Condition

variable4 < state_variable0", shape = diamond];

12 -> 14 [label = "true", fontcolor="blue"];

12 -> 13 [label = "false", fontcolor="red"];

14 [label = Block];

14 -> 15;

15 [label = "Expression

state_variable2 [variable5] [variable0 . sender] -= variable2"];

15 -> 13;

13 [label = IfEnd];

13 -> 16;

16 [label = "return

True"];

16 -> 17;

17 [label = FunctionEnd];

...

Fig 6. Embedded Dot Code.

Visualization of Embedded Dot Code

Visualization is performed through the Graphviz library to visualize the embedded dot code and facilitates understanding

of the structure of the code and data flow. Fig 8 is an example of visualizing the embedded dot code in Fig 7.

Fig 7. Visualization of Embedded Dot Code.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

249

DGL(Deep Graph Library) Graph Generator

The DGL graph generator receives a dot code as an input to generate a DGL graph. A DGL graph is a heterogeneous graph

containing various types of nodes and edges. There are 13 node types, including 'Block', 'Return', 'Break', 'Expression',

'Throw', 'Condition', 'IfEnd', 'WhenEnd', 'LoopVariable', 'LoopExpression', 'ForEnd', 'Function', and 'FunctionEnd',

and there are three edge types consisting of Normal, True, and False. Fig 8 shows the DGL graph generated by the DGL

graph generator by receiving the embedded dot code in Fig 8 as an input.

TestCoin.sol's DGL Graph

Graph(num_nodes={'Block': 29, 'Condition': 13, 'Expression': 25, 'ForEnd': 2,

 'Function': 28, 'FunctionEnd': 31, 'IfEnd': 14, 'LoopExpression': 2,

 'LoopVariable': 2, 'WhileEnd': 2, 'break': 2, 'return': 30, 'throw': 2},

 num_edges={('Block', 'normal', 'Block'): 1, ('Block', 'normal', 'Expression'): 5,

 ('Block', 'normal', 'return'): 2, ('Condition', 'false', 'IfEnd'): 1,

('Condition', 'true', 'Block'): 1, ('Expression', 'normal', 'Condition'): 1,

('Expression', 'normal', 'FunctionEnd'): 1, ('Expression', 'normal', 'IfEnd'): 1,

 ('Expression', 'normal', 'return'): 2, ('ForEnd', 'normal', 'ForEnd'): 1,

 ('Function', 'normal', 'Block'): 5, ('IfEnd', 'normal', 'return'): 1,

('LoopExpression', 'normal', 'LoopExpression'): 1,

 ('LoopVariable', 'normal', 'LoopVariable'): 1, ('WhileEnd', 'normal', 'WhileEnd'): 1,

 ('break', 'normal', 'break'): 1, ('return', 'normal', 'FunctionEnd'): 5,

 ('throw', 'normal', 'throw'): 1},

 metagraph=[('Block', 'Block', 'normal'), ('Block', 'Expression', 'normal'),

 ('Block', 'return', 'normal'), ('Expression', 'Condition', 'normal'),

('Expression', 'FunctionEnd', 'normal'), ('Expression', 'IfEnd', 'normal'),

('Expression', 'return', 'normal'), ('return', 'FunctionEnd', 'normal'),

 ('Condition', 'IfEnd', 'false'), ('Condition', 'Block', 'true'), ('IfEnd', 'return', 'normal'),

 ('ForEnd', 'ForEnd', 'normal'), ('Function', 'Block', 'normal'),

 ('LoopExpression', 'LoopExpression', 'normal'),

('LoopVariable', 'LoopVariable', 'normal'), ('WhileEnd', 'WhileEnd', 'normal'),

('break', 'break', 'normal'), ('throw', 'throw', 'normal')])...

Fig 8. DGL Graph Generated by the DGL Graph Generator.

Graph Neural Network(GNN) Learning

To analyze the security weakness of the solidity code, a heterogeneous graph classification model is learned through GNN

learning of deep learning using the data set of the DGL graph generated through the DGL graph generator. Fig 9 shows

the structure of the learning part of the solidity smart contract security weakness analyzer

Fig 9. Structure of Learning Part of the Security Weakness Analyzer.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

250

The GNN learning model consists of a Graph Convolution Network (GCN) consisting of two layers. graph classification

learning is performed using the DGL graph-type dataset generated by the DGL graph generator, and each convolutional

layer updates node features, applies the ReLu function in the net propagation process, and predicts class probabilities using

the Softmax function after the second convolution layer.

During training, the cross entropy loss between the predicted result obtained through the Softmax function and the

actual label is calculated. The slope is calculated by backpropagating the model through the calculation result. After that,

the slope calculated using the Adam optimization algorithm is applied to the weight of the model and updated.

The GNN learning model calculates a new node representation by aggregating neighboring information of each node

through the above process, and based on this, the existence of security weaknesses in the input graph is represented by

Prediction and Active Labels. Fig 10 shows the prediction result example of the model for the input graph.

Fig 10. Prediction Result Example of Security Weakness of GNN Learning Model.

Predictions is a result of predicting the existence of a security weakness in the code after the model who has completed

training receives the solidity code, and the value of index 0 indicates that there will be no security weakness, and the value

of index 1 indicates that there will be a vulnerability to that security weakness. Since the model predicts probabilistically,

if the value of index 0 is larger, it is predicted to be higher that there is no security weakness, and if the value of index 1 is

larger, it is predicted that there is a high probability that there will be a security weakness.

Actual Labels indicates whether there is a security weakness in the corresponding code, and if it is 0, it indicates a code

without a security weakness, and if it is 1, it indicates a code with a security weakness. Therefore, there are security

weaknesses in the program used as an example, and a security weakness analyzer through graph-based deep learning (GAN)

detects the security weaknesses present in the smart contract program

There are 8 models for each security weakness, and Fig 11 shows the prediction results example of the model obtained

by inputting a DGL graph into 8 models learned according to each security weakness. If the value of index 0 of Prediction

is larger, undetected is output, and if the value of index 1 is larger, detected is output.

Fig 11. Security Weakness Prediction Results Example for 8 Models.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to detect the security weakness of the smart contract written with the solidity code on the ethereum platform where

the solidity smart contract runs, an experiment was conducted to detect the security weaknesses by analyzing various

vulnerability patterns of the solidity code. Fig 12 shows the results of detecting security weaknesses for the integer

overflow in the solidity code used in the experiment.

IntegerOverflow.dot

pragma solidity ^0.4.15;

contract TestCoin is EIP20Interface {

 uint256 constant private MAX_UINT256 = 2**256 - 1;

 mapping (address => uint256) public balances;

 mapping (address => mapping (address => uint256)) public allowed;

 string public name;

 uint8 public decimals;

 string public symbol;

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

251

 function TestCoin() public {

 balances[msg.sender] = 10*10**26;

 totalSupply = 10*10**26;

 name = "LHJT";

 decimals = 18;

 symbol = "LHJT";

 }

 function transfer(address _to, uint256 _value) public returns (bool success) {

 require(balances[msg.sender]>= _value);

 balances[msg.sender] -= _value;

 balances[_to] += _value;

 emit Transfer(msg.sender, _to, _value);

 return true;

 }

 function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) {

 uint256 allowance = allowed[_from][msg.sender];

 require(balances[_from] >= _value && allowance >= _value);

 balances[_to] += _value;

 balances[_from] -= _value;

 if (allowance < MAX_UINT256) { allowed[_from][msg.sender] -= _value; }

 emit Transfer(_from, _to, _value);

 return true;

 }

}

Fig 12. Integer Overflow Detection Result of Solidity Code

Security weakness detection for the security weakness detection item, Integer overflow, was performed with

IntegerOverflow.sol, which has a security weakness. In the solidity code of Fig 12, balances[_to] +=_value; the part of

transmitting tokens to the other party's account is written in the transfer, transferFrom function. In this case, be careful of

exposure to security vulnerabilities for integer overflow because no exception is handled to integer overflow using

SafeMath. The detection results of security weaknesses warn that among the eight security weaknesses, there are security

weaknesses for integer overflow.

Fig 13 shows the results of detecting security weaknesses for the timestamp dependency in the solidity code used in

the experiment.

TimestampDependency.sol

pragma solidity ^0.4.15;

contract Freezable_Token is StandardToken {

 function releaseOnce() public {

 bytes32 headKey = toKey(msg.sender, 0);

 uint64 head = chains[headKey];

 require(head != 0);

 require(uint64(block.timestamp) > head);

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

252

 bytes32 currentKey = toKey(msg.sender, head);

 uint64 next = chains[currentKey];

 uint amount = freezings[currentKey];

 delete freezings[currentKey];

 balances[msg.sender] = balances[msg.sender].add(amount);

 freezingBalance[msg.sender] = freezingBalance[msg.sender].sub(amount);

 if (next == 0) { delete chains[headKey]; }

else {

 chains[headKey] = next;

 delete chains[currentKey];

 }

 emit Released(msg.sender, amount);

 }

 function releaseAll() public returns (uint tokens) {

 uint release;

 uint balance;

 (release, balance) = getFreezing(msg.sender, 0);

 while (release != 0 && block.timestamp > release) {

 releaseOnce();

 tokens += balance;

 (release, balance) = getFreezing(msg.sender, 0);

 }

 }

}

Fig 13. Timestamp Dependency Detection Result of Solidity Code.

The security weakness detection for the timestamp dependency, a security weakness detection item, was performed with

TimestampDependency.sol that has a timestamp dependency security weakness. In the solidity code of Fig 13, the

releaseOnce and releaseAll functions use block.timestamp to check specific conditions. However, block.timestamp can

be manipulated by miners within a certain range to intentionally advance or delay the execution point of a specific event,

which can lead to unexpected behavior of the system. The detection results of security weaknesses warn that among the

eight security weaknesses, there are security weaknesses for timestamp dependency.

V. CONCLUSIONS AND FUTURE RESEARCH

Blockchain is a distributed ledger technology that allows users to record and share information safely and transparently. A

smart contract is a contract decided based on a blockchain and is a program that automatically executes or executes contract

terms. Smart contracts improve the transparency and reliability of transactions by utilizing the tampering prevention

function of blockchain technology. Software security vulnerability refers to the fundamental cause of vulnerabilities caused

by logical errors, bugs, and mistakes that can be defective in software development. To prevent software security accidents,

security weaknesses must be analyzed before the program is distributed. Smart contract codes that operate on ethereum, a

blockchain-based framework, can have security vulnerabilities inside the code. When the contract is completed and the

block is created, the chaincode cannot be arbitrarily modified, so the security weakness must be analyzed before execution.

In addition, most security vulnerability analysis methods for smart contracts are currently specialized in detecting specific

vulnerabilities using rule-based methods, which is prone to many false positives when detecting security vulnerabilities.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

253

In order to solve this problem, this paper studied an analysis method through the deep learning's graph neural network

(GNN) to detect security vulnerabilities in solidity codes. To analyze security vulnerabilities in solidity code, we defined

eight types of security weakness items (unchecked external call, dangerous delegate call, timestamp dependency, Integer

overflow, reentrancy, block number dependency, ether strict equality, and ether frozen), converted the solidity code into

graph data. In order to represent both the structural elements of the program, the control flow, and the data flow, the solidity

code was converted into an abstract syntax tree (AST) and the graph information required for GNN learning was extracted

from AST to convert the solidity code into a graph. Next, after generating several datasets for training GNN models by

integrating these graph data and their properties with labels, it is possible to detect whether security vulnerabilities exist in

the solidity code through GNN learning. This proposed method performs security weakness detection more effectively

than conventional rule-based methods.

In the future, it is believed that more data should be collected and learning about these additional vulnerabilities should

be performed in order to allow the proposed system to detect a wider range of security vulnerabilities. In addition, it is

expected that higher performance can be achieved by training the model using more advanced and specialized GNN models

tailored to the dataset.

CRediT Author Statement
The authors confirm contribution to the paper as follows:

Conceptualization: Methodology: Sunghyun Kim, Seunggi Jung, Yunsik Son and Yangsun Lee; Software: Sunghyun

Kim and Seunggi Jung; Data Curation: Yunsik Son and Yangsun Lee; Writing- Original Draft Preparation: Sunghyun

Kim and Seunggi Jung; Visualization: Sunghyun Kim and Seunggi Jung; Investigation: Yunsik Son and Yangsun Lee;

Supervision: Sunghyun Kim and Seunggi Jung; Validation: Sunghyun Kim and Seunggi Jung; Writing- Reviewing and

Editing: Sunghyun Kim and Seunggi Jung; All authors reviewed the results and approved the final version of the

manuscript.

Data Availability

No data was used to support this study.

Conflicts of Interests

The author(s) declare(s) that they have no conflicts of interest.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government

(MSIT (No.2022R1F1A1063340)), This research was supported by the MSIT (Ministry of Science and ICT), Korea, under

the ITRC (Information Technology Research Center) support program (IITP-2024-2020-0-01789).

Competing Interests

There are no competing interests

References
[1]. I.C. Lin and T.C. Liao, “A Survey of Blockchain Security Issues and Challenges”, International Journal of Network Security, Vol. 19, No. 5,

pp. 653–659, 2017.
[2]. Z. Zheng, S. Xie, H. N. Dai, X. Chen, and H. Wang, “Blockchain challenges and opportunities: a survey,” International Journal of Web and

Grid Services, vol. 14, no. 4, p. 352, 2018, doi: 10.1504/ijwgs.2018.095647.
[3]. S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y. Wang, “An Overview of Smart Contract: Architecture, Applications, and Future Trends,”

2018 IEEE Intelligent Vehicles Symposium (IV), pp. 108–113, Jun. 2018, doi: 10.1109/ivs.2018.8500488.

[4]. S.-Y. Lin, L. Zhang, J. Li, L. Ji, and Y. Sun, “A survey of application research based on blockchain smart contract,” Wireless Networks, vol.
28, no. 2, pp. 635–690, Jan. 2022, doi: 10.1007/s11276-021-02874-x.

[5]. S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-Hani, “Blockchain smart contracts: Applications, challenges, and

future trends,” Peer-to-Peer Networking and Applications, vol. 14, no. 5, pp. 2901–2925, Apr. 2021, doi: 10.1007/s12083-021-01127-0.
[6]. S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart

Contract,” IEEE Access, vol. 10, pp. 6605–6621, 2022, doi: 10.1109/access.2021.3140091.

[7]. M. E. Fagan, “Design and code inspections to reduce errors in program development,” IBM Systems Journal, vol. 38, no. 2.3, pp. 258–287,
1999, doi: 10.1147/sj.382.0258.

[8]. Y. Son, Y. Lee and S. Oh, “A Software Weakness Analysis Methods for the Secured Software”, The Asian International Journal of Life

Sciences, Vol. 12, pp. 423-434, 2015.
[9]. “A Smart Contract Weakness and Security Hole Analyzer Using Virtual Machine Based Dynamic Monitor,” Journal of Logistics, Informatics

and Service Science, Jan. 2022, doi: 10.33168/liss.2022.0104.

[10]. “A Study on Intermediate Code Generation for Security Weakness Analysis of Smart Contract Chaincode,” Journal of Logistics, Informatics
and Service Science, Jan. 2022, doi: 10.33168/liss.2022.0105.

[11]. S. Kim, Y. Son, Y. Lee, "A Study on Chaincode Security Weakness Detector in Hyperledger Fabric Blockchain Framework for IT

Development," Journal of Green Engineering, Alpha Publishers, Vol. 10, No. 10, pp. 7820-7844, Oct 2020.
[12]. F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini, “The Graph Neural Network Model,” IEEE Transactions on

Neural Networks, vol. 20, no. 1, pp. 61–80, Jan. 2009, doi: 10.1109/tnn.2008.2005605.

[13]. L. Wu, P. Cui, J. Pei, and L. Zhao, Eds., Graph Neural Networks: Foundations, Frontiers, and Applications. Springer Nature Singapore, 2022.
doi: 10.1007/978-981-16-6054-2.

ISSN: 2788–7669 Journal of Machine and Computing 5(1)(2025)

254

[14]. D. Zheng, M. Wang, Q. Gan, Z. Zhang, and G. Karypis, “Learning Graph Neural Networks with Deep Graph Library,” Companion
Proceedings of the Web Conference 2020, pp. 305–306, Apr. 2020, doi: 10.1145/3366424.3383111.

[15]. S. Kim, R. Y. C. Kim, and Y. B. Park, “Software Vulnerability Detection Methodology Combined with Static and Dynamic Analysis,”

Wireless Personal Communications, vol. 89, no. 3, pp. 777–793, Dec. 2015, doi: 10.1007/s11277-015-3152-1.
[16]. B. Chess and G. McGraw, “Static analysis for security,” IEEE Security and Privacy Magazine, vol. 2, no. 6, pp. 76–79, Nov. 2004, doi:

10.1109/msp.2004.111.

[17]. A. Petukhov, et al., "Detecting Security Vulnerabilities in Web Applications Using Dynamic Analysis with Penetration Testing." online
Proceedings of the Application Security Conference, (2008).

[18]. Solidity Documentation, Ethereum, 2022.

[19]. Solidity Documentation. https://solidity.readthedocs.io/en/v0.4.21/contracts.html
[20]. S. Peyrott, An Introduction to Ethereum and Smart Contracts, Auth0, 2017.

[21]. https://www.ethereum.org/

[22]. Deep Graph Library (DGL), https://www.dgl.ai/
[23]. Y. Lee, J. Jeong, and Y. Son, “Design and implementation of the secure compiler and virtual machine for developing secure IoT services,”

Future Generation Computer Systems, vol. 76, pp. 350–357, Nov. 2017, doi: 10.1016/j.future.2016.03.014.

