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Abstract - Maritime surveillance remains a critical component of national security an
necessitating the continuous advancement of vessel detection technologies. Traditional ods often struggle with the
challenges posed by Synthetic Aperture Radar (SAR) imagery, particularly in detect?\a artially obscured vessels

mental monitoring thereby

within complex marine environments. This paper introduces a novel approacip that sig@ficantly enhances the accuracy and
eS. Utilizing the High-Resolution SAR

Filtering for noise reduction and Adaptive Histogram Equalizatio ast ejlancement. The novelty in proposed
work methodology is a state-of-the-art segmentation proce i ‘

vessels, integrating spatial and temporal data to enh ection accuracy. The proposed approach not only fills the
existing gap in real-time and reliable small vessel deteCNg@R but also sets new benchmarks in computational efficiency
which is a critical factor for real-time applications. ExpelNg@ental results demonstrate significant improvements over
existing methods in both accuracy and proceggiig speed, promlsing a substantial impact on the operational capabilities of

maritime surveillance systems.

Keywords - Synthetic Aperture Ra AR) ery; Deep Learning in Maritime Surveillance; Mask-RCNN for
Object Segmentation; Dense %) Extraction; Convolutional Recurrent Neural Network (CRNN); Adaptive
Histogram Equalization.

I. INTRODUCTION

n images that are essential for identifying vessels in various weather conditions, day or night.
lex nature of marine environments, coupled with the challenges posed by SAR imagery, such as speckle

ore is depicted in Figure 1. Recent advancements in image processing and machine learning have opened new
r enhancing vessel detection techniques. In spite of these technological advancements, the detection of small,
partially obscured, or closely positioned vessels remains a significant challenge. Traditional methods often fall short in
andling the high noise levels and the dynamic range of pixel intensities found in SAR images []. Moreover, the increasing
olume of data from modern SAR sensors demands algorithms that are not only accurate but also computationally efficient
to enable real-time processing.
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Fig 1. Hlustration of SAR imagery of vessels anchore

Several research works [3] [4] [5] [6] [7] have addressed these challenges by exploring deep learning architectures,
which have shown promise in many image recognition tasks due to their ability to lear plex patterns and features
directly from the data. Among these, convolutional neural networks (CNNSs) stand owhel ectiveness in spatial data
analysis. However, the unique characteristics of SAR images require adagisiigas t®hese models or the development of
hybrid models that can better capture the spatial and temporal features rel @7 gfitime scenarios. Neural networks are

also used in a variety of applications[8]
i -Architecture Neural Synthesis, which

utilizes the strengths of multiple neural network architg ask-RCNN for segmentation, DenseNet101 for
feature extraction, and Convolutional Recurrent i ) for classification. This multi-architecture
approach is designed to enhance both the accuracy a Fputational efficiency of vessel detection systems. Mask-
RCNN provides precise segmentation capabilities that X
backgrounds. DenseNet101 is utilized for its efficiency in TO%@e extraction, capturing essential details from SAR images
that are critical for classification. Lastly, C combines cOnvolutional and recurrent layers to effectively handle the
sequential and spatial dependencies in im us improving classification outcomes. This paper aims address the
research gap by targeting the specific R image processing for vessel detection, particularly focusing on
small and obscured vessel identificalgcl in cluttere ritime scenes. By integrating advanced preprocessing methods with
sophisticated feature extraction and CIg chniques, our approach sets a new benchmark for SAR-based maritime
surveillance systems. Througjg rimental analysis, this research work demonstrates the superior performance
of the proposed framework ods, contributing significantly to the fields of remote sensing and maritime
surveillance.

This paper introduces a novel Integrated Deep Learning Eig

1. LITERATURE REVIEW

y Zhao et al. [9] for vessel identification in synthetic aperture radar (SAR) images. To improve
~Net combines phase and amplitude information from complex-valued SAR data with an entirely
oling technique called Complex Area Max-Pooling. The network's architecture is based on the VGG
to handle complex-valued data through complex convolutional blocks, batch normalization, and
ons tailored for the complex domain. Experimental evaluation on two SAR datasets showed that CVGG-
s traditional real-valued convolutional networks. The superior performance is depending on the effective
plex data characteristics and the network's ability to maintain the integrity of complex information throughout
he layers. Merits of the work include the innovative approach to complex data handling in neural networks and the
demonstrated effectiveness of complex max-pooling. Demerits may include the potential complexity and computational
emands of the network, given the need for specialized operations to process complex data. Moreover, while the network
shows improved performance, the gains in accuracy may require validation in broader real-world applications to establish
its practical benefits beyond the datasets used.



Mishra et al. [10] proposed deep CNN utilizingVGG16 architecture for classifying vessel images. It employs a transfer
learning strategy by using CNN techniques that have already been trained and are subsequently modified for the
classification of particular vessel types. To improve the method's capacity to generalize from the training set of data, this
approach incorporates data augmentation. Merits of this work include the high accuracy achieved, which indicates the
method's effectiveness in handling complex image classification tasks. The use of transfer learning also allows for mor,
efficient training by adapting a pre-existing method trained on a large dataset. However, demerits include the potential
overfitting, as indicated by the initial high training accuracy versus lower validation accuracy. While methods like Dropou
and Early Stopping were used to mitigate this, the risk remains, especially when adapting to new or more diverse datasets
that were not represented in the training phase. Additionally, the dependency on pre-trained methods may lig
adaptability of the approach to drastically different types of images or classification tasks without gradual re-tra
modification.

In order to improve the classification of vessels in SAR images, Zhang et al. [11] develop HOG-ShipCL §
learning network that fuses Histogram of Oriented Gradients (HOG) features. The classificatio ‘
enhanced by this network through the use of four essential mechanisms: multiscale classificati
completely connected balancing, and HOG feature fusion. Although the excerpt fails tq
for accuracy gains, it is demonstrated that the method outperforms both classic cusjg
CNN-based methods when tested on two available SAR ship datasets. The primar
innovative integration of traditional HOG features with advanced neural network archit? y potentially offering a robust
approach to feature representation and classification. This approach effectively captures al ilizes both local and abstract
features, enhancing the method's ability to generalize across different SAR images. Hoydyer, \@complexity of the method
and the integration of multiple mechanisms could potentially increase compgiat a&s and training time, representing
ional environments or across diverse
ated in controlled experiments.

G-ShipC¥SNet lies in its

with multiscale and rotational ship targets, this network
improves detection efficiency by utilizing both spatial-don\g@aand frequency-domain data. To improve detection accuracy,

Dataset (SSDD), the approach outperform¢@m entional methods based on convolutional neural networks (CNNs),
particularly when faced with difficul as multiscale and rotational objects. The merits of this approach

However, the increased computg lexity and potential overfitting due to the advanced method architecture could
ime application scenarios where computational efficiency is complex.

atic Identification System (AIS). The neural network architecture comprises a joint
into three separate networks for each specific task. This method not only detects ships
0 categories such as Cargo, Tanker, Fishing, and Passenger, and estimates their lengths. During
achieved satisfactory results with precise classification and length estimation. The merits of
novative multi-task approach that effectively handles different aspects of ship analysis in SAR
improving both the efficiency and accuracy over traditional methods that depends on manual

deep [earning method named FishNet is designed by Guan et al. [14], specifically designed for classifying fishing vessels
in SAR images. To improve feature extraction and use, FishNet incorporates novel modules. In order to handle class
balance effectively, the approach also uses an adaptive loss function. One of FishNet's main strengths is that it can handle
the tough components of SAR image analysis (the small size and minor interclass differences among fishing vessels) quite
well. For thorough feature extraction and strong classification performance, it is necessary to combine various deep learning
methods. However, the method's complexity and the intensive computational resources required could be seen as demerits,
potentially limiting its use in real-time applications or on platforms with limited processing power. The method's




performance also heavily depends on the availability of high-quality, labelled training data, which can be challenging to
obtain for SAR images of fishing vessels.

Using a combination of image processing techniques and acnn , Bereta et al. [15] discusses a vessel detection system that
integrates satellite optical imagery with Automatic Identification System (AIS) data. The system is designed to identi
vessels, particularly those that might have their AIS transponders switched off. It utilizes a multistage data-cent
workflow involving the preprocessing of multispectral Sentinel-2 data and the application of CNN for the classification
extracted features. The experimental evaluation of this framework indicates an impressive accuracy exceeding 95%. Th
merits of this work include the integration of different data types and methodologies to improve maritime situgjg
awareness, the high accuracy of vessel detection, and the automation of the data processing pipeline.

could be the complexity and computational demands of managing multi-scale data i
and scalability in real-time applications.

Using a Grid Convolutional Neural Network (G-CNN), Zhang et al. [17] presents a methoON@& rapidly identifying ships in

SAR images. This technique uses depthwise separable convolutions to improve dete pe ance while maintaining
accuracy relatively constant. Validation was done on RadarSat-1 and - 3WAR images, and the experimental
evaluation was carried out on an open SAR Ship Detection Dataset (SS e identical hardware settings, G-CNN
outperformed state-of-the-art approaches in terms of detection s t rgmucing accuracy. When it comes to
applications like real-time marine disaster response and military ay, ally shines because of how fast it can

detect ships.

Mukherjee et al. [18] utilized Faster R-CNN model
The model was enhanced through various data augd

f from scNgitlite images, utilizing deep learning techniques.
techniques such as Gaussian filtering, edge detection,
horizontal flipping, random cropping, and color modific2gs, along with Affine transformations. These methods helped
to train the method effectively, achieving high accuracy rat® 98.16% on validation data and 97.33% on test data. The
model used Adam Optimizer and binary crg tropy as the Toss function across 50 training epochs. The merits of this
study include the comprehensive approa cing model accuracy through feature engineering and robust data
augmentation. However, demerits may,g y computational demand due to the complex preprocessing and the
need for extensive training data to Ve suc ccuracy, which may not generalize well across different scenarios
or datasets with less preprocessing.

pt 2L 9] presented a shoreline detection method using satellite Synthetic Aperture
artificial neural network (NN), thereby defining the shoreline as the boundary

To classify land and sea pixg
Radar (SAR) imagery, whi
between these glasse

classification i ocal and broader spatial variations in pixel intensity. This approach is particularly
designed pical challenges in SAR imagery, such as speckle noise and variable backscattering
properties Q ravel beaches. The study demonstrates high classification accuracies, generally exceeding 95%,

and shorgli i ith root mean square errors typically less than 15 meters. These results suggest significant
use, especially given the method's calibration-free approach and adaptability to shorelines of

profiles and conditions. However, the method's performance can be affected by extreme environmental
as very smooth or rough sea states, which can lead to misclassifications. Furthermore, while the method is
0 minimize dependency on specific shoreline orientations or conditions, its effectiveness in highly variable
astal environments may still be an area requiring further validation.

sing a combination of morphological processing and a deep learning neural network method, Joseph et al. [20] present
-DLNN, a new vessel detection and classification algorithm that aims to enhance the detection and classification of
vessels from optical satellite images. Incorporating morphological features for vessel segmentation and detection and using
a deep learning neural network for vessel classification are all parts of the process. The evaluation of the algorithm's
performance is presented with metrics such as accuracy, precision, and classification rates. Specifically, the algorithm
achieved a notable accuracy of 94.89%, a precision rate that significantly reduces false positives, and an improved running




time of 6.54 seconds compared to other traditional methods. Merits of this approach include its high accuracy and precision
in vessel detection under various climatic conditions, and its efficiency in processing due to the integration of
morphological processing with deep learning techniques. However, demerits might include potential challenges in handling
very diverse or low-quality images where morphological traits are not distinctly observable, and the computational demand
of deep learning methods, which might require significant computational resources for training and inference.

Sharifzadeh et al. [21] presents a hybrid deep learning approach for ship classification in SAR images, integrating a mult
layer perceptron and CNN to form a CNN-MLP classifier. This innovative method utilizes the strengths of both networ
to enhance classification accuracy under varied conditions. The hybrid system uses CNN to process raw SAR (
exploit its ability to automatically extract and learn features directly from the images. Performance evaluation
significant improvements with this hybrid approach. For example, the CNN-MLP achieves a precision of 93.199
accuracy of 92%, outperforming CNN or MLP methods. Merits of this method include its high classificatigg
the effective fusion of deep learning with traditional texture analysis, providing robustness against the
common in SAR images. However, a demerit could include the increased computational com

images, achieving a high accuracy rate of over 99.75% using the Adam optimizerY arning rate of 0.0001. The
technique involves fine-tuning three hyperparameters: optimizer selection, batch siz8 d learning rate to optimize
performance. The merits are ability to accurately detect ships in harbour areas, whichg4s cSg@glex for maritime security.
Merits of this approach include the high accuracy rate and the adaptability of the De{et arcMitecture to the specific task
of ship detection, which benefits from DenseNet's capability for featur rough its deep, densely connected
layers. However, the demerits could include the potential need for larg s ¢ computational resources due to the
complexity of the DenseNet architecture and the dependence on a l ried gitaset to maintain performance across
different operational environments. Furthermore, while the uracy, the specifics of its performance
under varying conditions like weather changes and di aging settings were not discussed, which could
affect its practical deployment in real-world sce s are highly useful in various applications,
including image segmentation and predictive model

To enhance classification performance, Zhu et al. [24] intrO%gges a novel ship classification architecture using SAR images,
incorporating a sequence input method. The method employs¥g@ombination of CNN for feature extraction from individual
frames and Long Short-Term Memory ( networks to process sequences of these frames, capturing temporal
dependencies among consecutive image@l Thi itecture is trained on the OpenSARShip dataset, achieving an
impressive classification accuracy ofg@®. croglsix target classes, which indicates improvement over traditional
methods that use single-image inp The prigaig merit of this approach is its high accuracy and innovative use of
sequence data, which effectivelydili temporal information inherent in SAR image sequences, thus providing a more
robust framework for ship
computational requirement{4
datasets to effectively deain t

1. RESEARCH GAP

able advancements in maritime surveillance technologies, existing methodologies for vessel
hetic Aperture Radar (SAR) imagery often struggle with several persistent challenges. These challenges
n of small vessels, particularly in high sea states or in the presence of close proximity maritime traffic,
processing of large volumes of data generated by modern SAR systems. Traditional algorithms typically
er image processing techniques, which may not adequately distinguish between vessels and sea clutter,
under adverse conditions. Moreover, while recent applications of deep learning have shown improved results,
here remains a significant gap in the integration of these technologies in a way that utilizes their complementary strengths.
Most current systems use either convolutional neural networks (CNNSs) for their strong spatial analysis capabilities or
current neural networks (RNNSs) for their ability to process temporal sequence data. However, few systems effectively
combine these approaches to handle the complexities of SAR images, which require both spatial and temporal data
processing to accurately identify and classify dynamic maritime objects.

V. PROBLEM FORMULATION



The main issue addressed in this research is directed on the development of an efficient and robust system for vessel
detection in SAR imagery, which can overcome the limitations of existing methods in detecting small and partially
obscured vessels under various environmental conditions. The complexities of SAR data, characterized by high levels
of speckle noise and significant variation in backscatter from different surfaces, require a sophisticated approach that
can adaptively distinguish vessels from complex backgrounds.

To address these challenges, this study proposes a hybrid deep learning framework that combines the spati
discrimination power of convolutional layers and the sequence processing capabilities of recurrent layers. The specifi
objectives are to:

1. Enhance the clarity and contrast of SAR images through advanced preprocessing techniques, making
to identify vessels.

2. Achieve precise segmentation of vessels from highly cluttered maritime backgrounds usig
Mask-RCNN model.

3. Extract robust features from segmented images using DenseNet101, which is renownd@Ptor
learning important features without overfitting.
ur

4. Classify the features into vessel and non-vessel categories using a Convg C eural Network,
which integrates temporal and spatial data for improved accuracy.

V. RESEARCH CONTRIBUTION

Particularly in the area of SAR image processing and analysis for vesfcogn ion, this study provides a
number of new features to marine surveillance. These are the ions:

. Development of an Integrated Deep Learning Fr, ? By ghthesizing the capabilities of Mask-

RCNN, DenseNet101, and CRNN into a singl i ame research addresses the gap in existing
maritime surveillance systems that do not N nergies of these advanced neural architectures.

. The introduction of a combinatiog adaptive histogram equalization specifically
tailored for SAR images represents a sig ancement over traditional preprocessing methods, which

often fail to adequately suppress noise and €
. The application of Mask-RCNN for seCW@antation and DenseNet101 for feature extraction sets new
standards for accuracy in distinggishing vesselsNom complex maritime backgrounds. This methodology
ensures that essential featur tured more effectively, significantly improving the reliability of
subsequent classification s
. Utilizing a CRNN f@clasSTyi sels incorporates both the spatial features extracted by CNN layers
and the sequence analy ovide NN layers. The accuracy of vessel recognition and classification is
enhanced by this g § hich allows for a more advanced understanding of the temporal dynamics in
SAR imagery.
. The resea h thorough evaluation of the proposed framework against established benchmarks,
pravidi gocod its superior performance in terms of metrics.

ce feature definition in such images.

VI. MATERIALS AND METHODS

advanced deep learning models which are crucial for various stages for processing. The overall
ed work is depicted din Figure 2. The illustration outlines an advanced image processing workflow
ing synthetic aperture radar (SAR) images through several stages of refinement and analysis. Initially,

a median filter to reduce speckle noise, followed by adaptive histogram equalization to enhance image
aking features more distinct. Following preprocessing, the image enters a segmentation phase using a Mask R-
NN model, a sophisticated convolutional neural network adept at both object detection and instance segmentation, which
rocesses the image to detect and delineate distinct objects, outputting a series of refined feature maps.

he next process involves extraction of detailed features using the DenseNetl01 architecture, a densely connected
convolutional network well-known for its efficient handling of features through fewer parameters and enhanced feature
reuse across its 101 layers. This extracted information is crucial for the next phase.
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Fig 2. lllustration of the flow process of the proposed classification model

he classification stage employs a convolutional recurrent neural network (CRNN) that incorporates both convolutional
layers for processing spatial features and LSTM (long short-term memory) units for handling sequential data, allowing it
to effectively classify regions within the image.



Finally, the results of this classification are systematically evaluated through a series of performance metrics, including
accuracy, recall, ROC (receiver operating characteristic) curve analysis, and precision.

A. Dataset

The proposed work utilizes the High-Resolution SAR Images Dataset (HRSID), which is specifically designe
for advancing the technology of vessel detection and segmentation in SAR imagery. This dataset is publicly available an

shown below.

Fig 3. lllustration of sample images fro ataset

B. Preprocessing

itical enhancements to improve image quality by reducing

Preprocessing SAR imagery for vessel detection invo
re images for accurate feature extraction and classification

noise and enhancing contrast. These steps are essential to
by deep learning models. Median filtering is employed to red
noise can obscure important features and egmentation and classification tasks more challenging. Mathematically,

the filter could be formulated as

I (Xy) edian(l +HLY-1IYH)) 1)

In Equation (1)

I_(x,y)"=CDF_(x,y) (I_(x.y) )X(L-1) )
Equation (2),

I_(x,y) - Enhanced pixel value

I_(x,y) — Original pixel

L — Intensity levels

CDF_(x,y) — Cumulative Distribution Function of intensities centered around (X,y)



AHE divides the image into several tiles. Histograms are computed for each tile and used to redistribute the lightness
values. This method is better suited for local contrast enhancement and reduces the noise amplification typical with global
histogram equalization. AHE is especially effective for images with local shadowing or variable brightness, which are
common in maritime scenarios captured in SAR imagery. It enhances the local contrast without affecting the global
contrast, making it easier to detect vessels against varying backgrounds. The above-mentioned preprocessing steps prepay
the SAR imagery effectively, ensuring that subsequent deep learning models can perform optimally. These steps
foundational for achieving high accuracy in vessel detection and classification from SAR images.

C. Segmentation

Segmentation is a crucial step in the vessel detection process, where the goal is to accurately distinguish betwee
and non-vessel areas within the SAR imagery. For this purpose, the Mask R-CNN framework has been e
its proficiency in generating high-quality instance segmentation maps. This section details the implemen
CNN for vessel segmentation, adhering closely to the methods described in the "implementation™ docume

and exact object localization (in this case, vessels) are both made possible by this duz
both convolutional neural networks (CNNs) for feature extraction and a Region P

the image and proposes areas where objects might exist, and the second stage classi
boundaries while simultaneously generating a mask at the pixel level for each instance/

the objects and refines their

eature feature Feature
Map Map Map

Ul tion of Mask R-CNN model for segmentation

The pre-processed SAR imal p used to train the Mask R-CNN model contain annotations for vessels of different
sizes and type aClaabel and bounding box, the training dataset contains annotated instances that have
e exact vessels. Mask R-CNN generates a segmentation mask that defines the vessel's
s. Similar in size to the Rol, this mask is a binary image where ones denote the item and

g to improve the accuracy of both the mask predictions and the bounding box identifications.
the classification loss, L_box to be the loss associated with the bounding box, L_mask the mask

L=L_cls+L_mask+L_box+L_mask 3)

Mask R-CNN for vessel segmentation allows for the precise segmentation of vessels in complex maritime
nvironments, handling overlapping vessels and various vessel orientations effectively. Additionally, the pixel-level
segmentation capability of Mask R-CNN ensures that the features extracted in subsequent steps are highly accurate, which
crucial for the effective classification of vessels. This implementation of Mask R-CNN for vessel detection in SAR
imagery marks a significant step forward in the use of advanced deep learning techniques for maritime surveillance. The
model's ability to provide detailed segmentation results helps in improving the overall accuracy of the vessel detection
system, ensuring robust performance across different maritime conditions.




Pseudocode for Vessel Segmentation using Mask R-CNN

Input: Preprocess Images

Output: Segmented Images

I[x, y] : Input preprocessed image matrix at pixel coordinates (x, y)
W : Pre-trained weights for Mask R-CNN
R[x, y] : Region Proposals from RPN
MIK, a, b] :Mask for k-th proposal at pixel coordinates (a, b)
C[k] : Class scores for k-th proposal
B[k, (x1, y1, x2, y2)] : Bounding box for k-th proposal
D: List for storing final detections
| = load_image(image)
R = generate_region_proposals(l)
for k from 1 to length(R): ,
region = I[R[K, (x1, y1, X2, y2)]]
C[K], B[K] = classify_and_adjust_bbox(region)
M[K] = generate_mask(region)
if C[K] > detection_threshold:
refine_bbox(B[k])
refine_mask(MI[K], B[K])
D.append((C[k], B[K], M[K]))
for each detection in D:

class_score, bbox, mask = detectio

print("Bounding box

display(magk)

AR imagery used for vessel detection and hence used in proposed approach.DenseNet101 is depicted in
t is part of the Dense Convolutional Network (DenseNet) family that connects each layer to every other layer in
a feed-forward fashion. For SAR images, where the detection and classification of objects depend heavily on the clarity
nd detail of the features, DenseNet101 provides several advantages.
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Fig 5. Hlustration of DenseNet101 model for segmentation

In DenseNet101, each layer receives additional inputs from all preceding layers and passes its own feature-map
subsequent layers. This dense connectivity pattern promotes feature reuse throughout the network, whicjg i
learning detailed features from SAR images with minimal loss of information through the layers.
architectures that sum the outputs of previous layers, DenseNet101 concatenates outputs. This metl
from earlier in the network, enhancing the network’s ability to learn varied and complex features
different types of vessels. Due to its dense connectivity, DenseNet101 requires fewer g
with similar depth, making it more efficient to train. This efficiency is crucial whep
images.

The segmented images (masks) from the Mask R-CNN are resized and normalized to maNgthe input size requirements of
DenseNet101. Each masked region corresponding to a vessel is input into Denseljet1 %o extract feature vectors.
DenseNet101 processes each input image through its layers, culminating in feat%ctor [or each image. This vector
captures the essential characteristics of the vessel, such as shape, text ther relevant maritime features. The
extracted feature vectors are crucial inputs for the subsequent classificati ere each vector is used to determine
, We ensure that our vessel detection

Input: Segmented Images

Output: Feature Extracted List

M[k, a, b] :Mask for k-th detected v

V(K] : Extracted vessel ima for feature extraction
Fk] : Feature vectorg

for k from 1 tolengt

nt("Fe¥ature extraction complete for all vessels.")

E. Classification



Following the feature extraction stage, the next critical step in the proposed vessel detection process is the classification of
vessels using the extracted features. In this study, we utilize a Convolutional Recurrent Neural Network (CRNN) to classify
the vessels based on the features provided by DenseNet101. As shown in Figure 6, CRNN combines the capabilities of
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to utilize both spatial and temporal
feature dependencies, which is particularly beneficial for images where context and sequence matter. In the proposed wor
while the temporal component is less emphasized, the recurrent layer's ability to handle sequences helps in classifyi
images that have been segmented and feature-encoded sequentially in the pipeline.

Region 1
INPUT  [](8 §_
oll8 rJ: O l.I: 5
°|  llls 5 S 5
100 100 100
> CONV1 | — =N
binsT I
—>
histone
Region 3
, S
high 1 5
%) o
OUTPUT
low o
DENSE2 Region 2
20 nodes
Fig 6,1 CRNN model for Classification

Initially, the feature vectors extrac y Den 1 are passed through additional convolutional layers if needed to
refine the features further before classI@gtion. This step ensures that the spatial hierarchy of features is well-represented.
Following the convolutional J## feag@es are fed into recurrent layers, typically LSTM (Long Short-Term Memory)
units, which are adept at m ences. In this context, the sequence refers to the series of feature vectors from
consecutive frames or j at are analysed for classification. The final layer in the CRNN is a fully connected
Its. It categorizes each input feature vector into vessel classes based on the learned
features, ssel types such as cargo ships, fishing boats, or naval vessels. The feature vectors F[k]
generated 101 ar”the inputs to the CRNN. Each vector is treated as an independent input to the network,
assuming n ndencies unless the imagery sequence dictates otherwise. The CRNN is trained using a dataset

nction, which is standard for multi-class classification tasks. Accuracy, precision, and recall are
ate the performance of the vessel classification, ensuring that the CRNN correctly identifies and

tem, as it determines the type and possibly the activity of vessels within a monitored maritime area,
g to surveillance, traffic management, and regulatory enforcement.

VIl.  EXPERIMENTAL RESULTS AND DISCUSSION

he proposed research work utilizes the High-Resolution SAR Images Dataset (HRSID), accessible at
https://github.com/chaozhong2010/HRSID. This comprehensive dataset is essential for advancing the analysis of ship
detection and segmentation within SAR imagery. It contains a total of 5,604 high-resolution images that includes 16,951
instances of ships. The images are characterized by a variety of resolutions, including 0.5m, 1m, and 3m, and exhibit range
of polarizations and diverse maritime environments from different oceanic and coastal regions. Inspired by the structure of



the Microsoft COCO datasets, the HRSID serves as an essential benchmark, allowing researchers to rigorously test and
refine their analytical methods in the context of detailed SAR image evaluation.

Pseudocode for Feature Extraction using DenseNet101
Input: Feature Vectors

Output: Classified Output

FIK] : Feature vectors for k-th vessel from DenseNet101
CIK] : Classification results for k-th vessel
CRNN : CRNN model initialized with pre-trained parameters
L : Loss function for training the CRNN
for k from 1 to length(F):
input_vector = preprocess_for CRNN(F[k])
C[k] = CRNN(input_vector)
for epoch in range(total_epochs):
for k in random.shuffle(range(length(F))): ,
prediction = CRNN(F[K])
true_label = get_true_label(F[k])
# Calculate loss and backpropagate
loss = L(prediction, true_label)
if epoch % validation_interval == 0:
accuracy, precision, recall = evaluate ance(CRNN, validation_data)

print(fEpoch {epoch}: Accuracyz , 'RRcision={precision}, Recall={recall}")

for k from 1 to length(C):

print(f'Vessel {k} classifi

ented using Python programming by utilizing a suite of libraries like scikit-learn,
, Seaborn, and scikit-image to effectively process and analyze data. As outlined in section

ol ly suited for this application where both image details and sequence patterns are crucial.

Performance evaluation metrics such as True Positives (TP), True Negatives (TN), False Positives (FP), False
egatives (FN), Accuracy, Precision, Recall, and Computation Time are systematically calculated to assess the efficacy
and reliability of the vessel detection system. These metrics are critical for validating the accuracy of the CRNN model
and ensuring its applicability in real-world maritime surveillance scenarios.

Table 1 is presented with the outcomes of intermediate stages for 3 sample images from the entire dataset.

Table 1. lllustration of Intermediate outcomes in proposed work



Source Image Segmented Feature Extracted

—~ oy

Figure 7 illustrates the confusion matrix for the classifiCXgQ of vessels into three categories such as Small, Medium, and
Large by using the advanced deep learning technique invo['g@ a Convolutional Recurrent Neural Network (CRNN).

Confusion Matrix

Small
Medium
Large -

[+}]
Predicted Class
Fig 7. Hlustration of Confusion Matrix Output (Training Phase)
he matrix shows the performance of the CRNN in predicting the correct vessel sizes based on the feature vectors extracted

using DenseNet101. The model correctly identified 1359 small vessels, with 51 instances where small vessels were
misclassified as medium and 1 instance as large. This indicates a high level of accuracy in detecting small vessels,
suggesting that the feature extraction and sequential processing capabilities of the CRNN are particularly effective at
capturing and classifying the nuanced features typical of smaller objects. For medium vessels, the model successfully




classified 1446 correctly, with 93 instances misclassified as small and 9 as large. The relatively lower misclassification
rates compared to the accurate predictions demonstrate the model's effectiveness in distinguishing medium-sized vessels
from others, which can often be challenging due to their intermediate feature scale. The classification of large vessels
shows an accuracy with 1105 correct predictions. Misclassifications included 4 instances predicted as small and 30 as
medium. This indicates that while the model is highly capable of identifying large vessels, there is a slight challenge i
differentiating between large and medium vessels, possibly due to overlapping features or similar scaling in the feat
vectors processed by the DenseNet101.

Precision-Recall Curve

Precision

0.5 ,
0.4 ] — small (AP=0.9848)

—— Medium (AP=0.9847)
0.3+ Large (AP=0.9971)

0.0

technique The curves depict the trade-off recision and recall for each class at various threshold levels, with the
area under the curve (AP) providing a me verall performance across all thresholds.

The precision for small ve remaingalig@Pacross almost all levels of recall until it sharply drops near the recall
of 1.0. This high precision indicates the CRNN model, combined with DenseNet101's robust feature extraction, is
particularly effective in accugge® small vessels with minimal false positives. The high AP value close to 1.0
underscores the model's effg this category. Similar to the small vessels, medium vessels also show a high level
of precision across mg ith a slight decrease as recall approaches 1.0. The near-identical AP value to that
. e model's consistent performance in distinguishing medium vessels accurately,
CRNN in handling feature vectors that characterize medium-sized objects. The precision-

the DenseNet101 architecture and effectively utilized by the CRNN for classification. The high
vessel categories with excellent recall performance illustrates the strength of combining DenseNet101

pllustrates the Receiver Operating Characteristic (ROC). The curves demonstrate the model's performance in
Iscriminating between the positive class and the negative class at various threshold settings.



Receiver Operating Characteristic Curve
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Fig 9. Hlustration of ROC (Training Phase)

The ROC curve for small vessels shows excellent performance with an AUC close tfldica g a high true positive rate
ICkly rises to a high TPR at a very low

yinimal misclassifications. The curve
st AUC among the three categories.
Is from non-vessels, maintaining high
scent of the curve near the origin highlights its

for medium vessels shows an outstanding discriminative performal
This implies that the model is exceptionally effective at distiaguis

enables the model not only to extract rich and discrimina
features to classify different sizes of vessels with high accurs
deep learning models including the proposed gdvanced deep
classification tasks.

eatures from SAR images but also to effectively utilize these
Table 2 illustrates the comparative performance of various
arning (DL) model, highlighting its superiority in vessel

parative analysis of performance metrics

Accuracy Precision Recall
Ense TL Model [11] 87.25% 82.82% 86.31%
\ v2 [14] 90.05% 88.45% 90.11%
ster R- CNN [15] 85.41% 83.32% 89.65%
MLP 91.08% 94.91% 95.55%
v Proposed Advanced DL 95.34% 94.55% 98.35
he proposed advanced DL model achieves an accuracy of 95.34%, a precision of 94.55%, and a recall of 98.35%,

outperforming other noted techniques such as Yolov2, Faster R-CNN, and an Ensemble Transfer Learning model. This
exemplary performance underscores the effectiveness of the integration of DenseNet101 and CRNN in the proposed model,
demonstrating its ability to achieve higher reliability and efficiency in detecting and classifying vessels from SAR imagery.
The high recall rate particularly emphasizes the model's capability to identify true positive cases, making it a robust choice




for practical applications in maritime surveillance. Figure 10 illustrates the confusion matrix from the classification in the
testing phase. The model correctly identified 593 small vessels, with 24 misclassified as medium; 620 medium vessels,
with 53 misclassified as small and 7 as large; and 436 large vessels, with 21 misclassified as medium and 3 as small.
Overall, the matrix shows strong performance in correctly identifying vessel sizes, particularly for large vessels, though
some misclassifications indicate areas for refinement in distinguishing overlapping features. The high accuracy across &
categories underscores the effectiveness of the chosen deep learning techniques for maritime vessel classification.
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Fig 10. Hlustration of Confusion Matrix Ou tig Phase)

atio vessel sizes during the testing phase using an
daC lutional Recurrent Neural Network (CRNN).
with Area Under the Curve (AP) values of 0.9794 for Small,
gte that the model performs with high accuracy and reliability
tively distinguishing between small, medium, and large

Figure 11 illustrates the Precision-Recall curves for g
advanced deep learning technique that integrates D
The curves show high precision across almost all reca
0.974 for Medium, and 0.9905 for Large. These results irn
in classifying different vessel sizes under test conditions,
vessels with minimal false positives.
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Fig 11. llustration of Precision — Recall Analysis (Testing Phase)



Figure 12 illustrates the Receiver Operating Characteristic (ROC) curves for the classification of vessel sizes during the
testing phase using an advanced deep learning approach that integrates DenseNet101 with a Convolutional Recurrent
Neural Network (CRNN).

Receiver Operating Characteristic Curve
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Fig 12. Hlustration of ROC Analysis (T, e{

The ROC curves demonstrate excellent discriminatory ability with 1989 for Small, 0.9817 for Medium,
and 0.9952 for Large. These results reflect the model's high acc in distinguishing between different
vessel sizes under test conditions, highlighting its effectj i imizi se positives while maintaining high true

DenseNet101 and a Convolutional Recurrent Neural NetworKg®8RNN), in the detection and classification of vessels from
Synthetic Aperture Radar (SAR) imagery. rformance metrics, as demonstrated in Table 2, reveal that the proposed
model not only achieves superior accurac ut also performs well in precision (94.55%) and recall (98.35%),
olov2, Faster R-CNN, and Ensemble Transfer Learning models.
rectly identifying and classifying various vessel sizes under diverse
false positives and high sensitivity to true positives. The integration of
iled and comprehensive features from the SAR images, while the CRNN
ify the vessels accurately, capitalizing on both spatial and sequential data inherent

These results highlight the model's
and challenging conditions,
DenseNet101 enables the e

in SAR imager, Mological approach not only enhances the detection capabilities but also contributes
significantly t i iciency of maritime surveillance systems. The high recall rate further indicates the
model’s p nvironments, where high detection rates are critical for security and navigational safety.
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