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Abstract - Maritime surveillance remains a critical component of national security and environmental monitoring thereby 

necessitating the continuous advancement of vessel detection technologies. Traditional methods often struggle with the 

challenges posed by Synthetic Aperture Radar (SAR) imagery, particularly in detecting small or partially obscured vessels 

within complex marine environments. This paper introduces a novel approach that significantly enhances the accuracy and 

efficiency of maritime vessel detection by utilizing advanced deep learning techniques. Utilizing the High-Resolution SAR 

Images Dataset (HRSID), the proposed method incorporates a sophisticated preprocessing phase that combines Median 

Filtering for noise reduction and Adaptive Histogram Equalization for contrast enhancement. The novelty in proposed 

work methodology is a state-of-the-art segmentation process using Mask-RCNN which is well-known for its efficiency in 

distinguishing objects from cluttered backgrounds, which is quite crucial in marine settings. This is further complemented 

by the innovative use of DenseNet101 for robust feature extraction, capturing complex vessel characteristics often missed 

by conventional models. A Convolutional Recurrent Neural Network (CRNN) is then employed for the classification of 

vessels, integrating spatial and temporal data to enhance detection accuracy. The proposed approach not only fills the 

existing gap in real-time and reliable small vessel detection but also sets new benchmarks in computational efficiency 

which is a critical factor for real-time applications. Experimental results demonstrate significant improvements over 

existing methods in both accuracy and processing speed, promising a substantial impact on the operational capabilities of 

maritime surveillance systems. 

 

Keywords - Synthetic Aperture Radar (SAR) Imagery, Deep Learning in Maritime Surveillance, Mask-RCNN for Object 

Segmentation, DenseNet101 Feature Extraction, Convolutional Recurrent Neural Network (CRNN), Adaptive Histogram 

Equalization.  

 

I. INTRODUCTION 

In the field of maritime surveillance, the ability to accurately detect and classify vessels from Synthetic Aperture Radar 

(SAR) imagery is a critical component for ensuring maritime safety, security, and efficient navigation [1, 2]. SAR systems 

provide high-resolution images that are essential for identifying vessels in various weather conditions, day or night. 

However, the complex nature of marine environments, coupled with the challenges posed by SAR imagery, such as speckle 

noise and variable imaging conditions, makes vessel detection a challenging task. A typical SAR imagery depicting vessels 

on-and-offshore is depicted in Fig 1. Recent advancements in image processing and machine learning have opened new 

avenues for enhancing vessel detection techniques. In spite of these technological advancements, the detection of small, 

partially obscured, or closely positioned vessels remains a significant challenge. Traditional methods often fall short in 

handling the high noise levels and the dynamic range of pixel intensities found in SAR images. Moreover, the increasing 

volume of data from modern SAR sensors demands algorithms that are not only accurate but also computationally efficient 

to enable real-time processing. 
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Fig 1. Illustration of SAR Imagery of Vessels Anchored at Port. 

 

Several research works [3 - 7] have addressed these challenges by exploring various deep learning architectures, which 

have shown promise in many image recognition tasks due to their ability to learn complex patterns and features directly 

from the data. Among these, convolutional neural networks (CNNs) stand out for their effectiveness in spatial data analysis. 

However, the unique characteristics of SAR images require adaptations to these models or the development of hybrid 

models that can better capture the spatial and temporal features relevant to maritime scenarios. Neural networks are also 

used in a variety of applications [8] 

This paper introduces a novel Integrated Deep Learning Framework Utilizing Multi-Architecture Neural Synthesis, 

which utilizes the strengths of multiple neural network architectures, including Mask-RCNN for segmentation, 

DenseNet101 for feature extraction, and Convolutional Recurrent Neural Networks (CRNN) for classification. This multi-

architecture approach is designed to enhance both the accuracy and the computational efficiency of vessel detection 

systems. Mask-RCNN provides precise segmentation capabilities that are crucial for accurate vessel isolation from 

complex maritime backgrounds. DenseNet101 is utilized for its efficiency in feature extraction, capturing essential details 

from SAR images that are critical for classification. Lastly, CRNN combines convolutional and recurrent layers to 

effectively handle the sequential and spatial dependencies in image data, thus improving classification outcomes. This 

paper aims address the research gap by targeting the specific challenges of SAR image processing for vessel detection, 

particularly focusing on small and obscured vessel identification in cluttered maritime scenes. By integrating advanced 

preprocessing methods with sophisticated feature extraction and classification techniques, our approach sets a new 

benchmark for SAR-based maritime surveillance systems. Through detailed experimental analysis, this research work 

demonstrates the superior performance of the proposed framework over existing methods, contributing significantly to the 

fields of remote sensing and maritime surveillance. 

 

II. LITERATURE REVIEW 

A novel CNN is proposed by Zhao et al. [9] for vessel identification in synthetic aperture radar (SAR) images. To improve 

feature extraction, CVGG-Net combines phase and amplitude information from complex-valued SAR data with an entirely 

novel complex max-pooling technique called Complex Area Max-Pooling. The network's architecture is based on the VGG 

method, modified to handle complex-valued data through complex convolutional blocks, batch normalization, and 

activation functions tailored for the complex domain. Experimental evaluation on two SAR datasets showed that CVGG-

Net outperforms traditional real-valued convolutional networks. The superior performance is depending on the effective 

use of complex data characteristics and the network's ability to maintain the integrity of complex information throughout 

the layers. Merits of the work include the innovative approach to complex data handling in neural networks and the 

demonstrated effectiveness of complex max-pooling. Demerits may include the potential complexity and computational 

demands of the network, given the need for specialized operations to process complex data. Moreover, while the network 

shows improved performance, the gains in accuracy may require validation in broader real-world applications to establish 

its practical benefits beyond the datasets used. 

Mishra et al. [10] proposed deep CNN utilizingVGG16 architecture for classifying vessel images. It employs a transfer 

learning strategy by using CNN techniques that have already been trained and are subsequently modified for the 

classification of particular vessel types. To improve the method's capacity to generalize from the training set of data, this 

approach incorporates data augmentation. Merits of this work include the high accuracy achieved, which indicates the 

method's effectiveness in handling complex image classification tasks. The use of transfer learning also allows for more 

efficient training by adapting a pre-existing method trained on a large dataset. However, demerits include the potential for 

overfitting, as indicated by the initial high training accuracy versus lower validation accuracy. While methods like Dropout 
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and Early Stopping were used to mitigate this, the risk remains, especially when adapting to new or more diverse datasets 

that were not represented in the training phase. Additionally, the dependency on pre-trained methods may limit the 

adaptability of the approach to drastically different types of images or classification tasks without gradual re-training or 

modification. 

In order to improve the classification of vessels in SAR images, Zhang et al. [11] develop HOG-ShipCLSNet, a new 

deep learning network that fuses Histogram of Oriented Gradients (HOG) features. The classification accuracy is greatly 

enhanced by this network through the use of four essential mechanisms: multiscale classification, global self-attention, 

completely connected balancing, and HOG feature fusion. Although the excerpt fails to specify exact numerical numbers 

for accuracy gains, it is demonstrated that the method outperforms both classic customized feature methods and current 

CNN-based methods when tested on two available SAR ship datasets. The primary merit of HOG-ShipCLSNet lies in its 

innovative integration of traditional HOG features with advanced neural network architectures, potentially offering a robust 

approach to feature representation and classification. This approach effectively captures and utilizes both local and abstract 

features, enhancing the method's ability to generalize across different SAR images. However, the complexity of the method 

and the integration of multiple mechanisms could potentially increase computational costs and training time, representing 

challenges for real-time applications. The effectiveness of the method in operational environments or across diverse 

datasets also remains to be validated, as the performance gains are primarily demonstrated in controlled experiments. 

In order to overcome the drawbacks of current algorithms for SAR ship detection, which mostly depend on geographical 

feature information, Li et al. [12] introduces a new multidimensional domain deep learning network specifically designed 

for SAR ship recognition. Especially in difficult conditions with multiscale and rotational ship targets, this network 

improves detection efficiency by utilizing both spatial-domain and frequency-domain data. To improve detection accuracy, 

the network uses a fusion network to combine data obtained by a Feature Pyramid Network (FPN) for spatial feature 

extraction and a polar Fourier transform for features that are rotation-invariant. When examined on the SAR Ship Detection 

Dataset (SSDD), the approach outperformed more conventional methods based on convolutional neural networks (CNNs), 

particularly when faced with difficult situations such as multiscale and rotational objects. The merits of this approach 

include its innovative integration of multidimensional domain features and its effectiveness in complex scenarios. 

However, the increased computational complexity and potential overfitting due to the advanced method architecture could 

be considered as demerits, especially in real-time application scenarios where computational efficiency is complex.  

In their research, Dechesne et al. [13] presents a deep learning method that can detect, classify, and estimate the length 

of ships using Sentinel-1 SAR data. In order to create training datasets gradually, the method decreases the synergy between 

Sentinel-1 data and the Automatic Identification System (AIS). The neural network architecture comprises a joint 

convolutional network that feeds into three separate networks for each specific task. This method not only detects ships 

but also classifies them into categories such as Cargo, Tanker, Fishing, and Passenger, and estimates their lengths. During 

the evaluation, the network achieved satisfactory results with precise classification and length estimation. The merits of 

the work include its innovative multi-task approach that effectively handles different aspects of ship analysis in SAR 

images, potentially improving both the efficiency and accuracy over traditional methods that depends on manual 

interpretation. However, the demerits might include the complexity of training such a multi-task network and the need for 

extensive labeled data to train the method effectively. 

A deep learning method named FishNet is designed by Guan et al. [14], specifically designed for classifying fishing 

vessels in SAR images. To improve feature extraction and use, FishNet incorporates novel modules. In order to handle 

class imbalance effectively, the approach also uses an adaptive loss function. One of FishNet's main strengths is that it can 

handle the tough components of SAR image analysis (the small size and minor interclass differences among fishing vessels) 

quite well. For thorough feature extraction and strong classification performance, it is necessary to combine various deep 

learning methods. However, the method's complexity and the intensive computational resources required could be seen as 

demerits, potentially limiting its use in real-time applications or on platforms with limited processing power. The method's 

performance also heavily depends on the availability of high-quality, labelled training data, which can be challenging to 

obtain for SAR images of fishing vessels.  

Using a combination of image processing techniques and acnn , Bereta et al. [15] discusses a vessel detection system 

that integrates satellite optical imagery with Automatic Identification System (AIS) data. The system is designed to identify 

vessels, particularly those that might have their AIS transponders switched off. It utilizes a multistage data-centric 

workflow involving the preprocessing of multispectral Sentinel-2 data and the application of CNN for the classification of 

extracted features. The experimental evaluation of this framework indicates an impressive accuracy exceeding 95%. The 

merits of this work include the integration of different data types and methodologies to improve maritime situational 

awareness, the high accuracy of vessel detection, and the automation of the data processing pipeline.  

Addressing the loss of spatial information typical in deep convolutional neural networks, Xu et al. [16] introduces a 

novel Multi-Scale Convolutional Neural Network (MS-CNN) for classifying ships in SAR images. By integrating multi-

scale features to enhance feature expression, the MS-CNN demonstrated an improvement in classification accuracy. 

Specifically, the experiments conducted on the OpenSARShip dataset showed that MS-CNN increased the classification 

accuracy by 4.81% compared to a benchmark network. The main merit of this approach is its ability to capture detailed 

spatial and semantic information simultaneously, making it highly effective for SAR ship classification. However, a 
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potential demerit could be the complexity and computational demands of managing multi-scale data inputs, which might 

affect performance and scalability in real-time applications.  

Using a Grid Convolutional Neural Network (G-CNN), Zhang et al. [17] presents a method for rapidly identifying ships 

in SAR images. This technique uses depthwise separable convolutions to improve detection performance while maintaining 

accuracy relatively constant. Validation was done on RadarSat-1 and Gaofen-3 SAR images, and the experimental 

evaluation was carried out on an open SAR Ship Detection Dataset (SSDD). Under identical hardware settings, G-CNN 

outperformed state-of-the-art approaches in terms of detection speed without reducing accuracy. When it comes to 

applications like real-time marine disaster response and military strategy, G-CNN really shines because of how fast it can 

detect ships.  

Mukherjee et al. [18] utilized Faster R-CNN model to detect ships from satellite images, utilizing deep learning 

techniques. The model was enhanced through various data augmentation techniques such as Gaussian filtering, edge 

detection, horizontal flipping, random cropping, and color modifications, along with Affine transformations. These 

methods helped to train the method effectively, achieving high accuracy rates of 98.16% on validation data and 97.33% on 

test data. The model used Adam Optimizer and binary cross-entropy as the loss function across 50 training epochs. The 

merits of this study include the comprehensive approach to enhancing model accuracy through feature engineering and 

robust data augmentation. However, demerits may include the heavy computational demand due to the complex 

preprocessing and the need for extensive training data to achieve such high accuracy, which may not generalize well across 

different scenarios or datasets with less preprocessing. 

To classify land and sea pixels, Tajima et al. [19] presented a shoreline detection method using satellite Synthetic 

Aperture Radar (SAR) imagery, which utilizes an artificial neural network (NN), thereby defining the shoreline as the 

boundary between these classes. The NN employs a feedforward architecture, using a novel input layer strategy that 

enhances pixel classification by considering both local and broader spatial variations in pixel intensity. This approach is 

particularly designed to be robust against typical challenges in SAR imagery, such as speckle noise and variable 

backscattering properties of sandy and gravel beaches. The study demonstrates high classification accuracies, generally 

exceeding 95%, and shoreline extraction with root mean square errors typically less than 15 meters. These results suggest 

significant potential for operational use, especially given the method's calibration-free approach and adaptability to 

shorelines of various configurations. Merits of this technique include its high accuracy, low computational cost, and 

robustness across different shoreline profiles and conditions. However, the method's performance can be affected by 

extreme environmental conditions such as very smooth or rough sea states, which can lead to misclassifications. 

Furthermore, while the method is designed to minimize dependency on specific shoreline orientations or conditions, its 

effectiveness in highly variable coastal environments may still be an area requiring further validation. 

Using a combination of morphological processing and a deep learning neural network method, [20] present M-DLNN, 

a new vessel detection and classification algorithm that aims to enhance the detection and classification of vessels from 

optical satellite images. Incorporating morphological features for vessel segmentation and detection and using a deep 

learning neural network for vessel classification are all parts of the process.  The evaluation of the algorithm's performance 

is presented with metrics such as accuracy, precision, and classification rates. Specifically, the algorithm achieved a notable 

accuracy of 94.89%, a precision rate that significantly reduces false positives, and an improved running time of 6.54 

seconds compared to other traditional methods.  Merits of this approach include its high accuracy and precision in vessel 

detection under various climatic conditions, and its efficiency in processing due to the integration of morphological 

processing with deep learning techniques. However, demerits might include potential challenges in handling very diverse 

or low-quality images where morphological traits are not distinctly observable, and the computational demand of deep 

learning methods, which might require significant computational resources for training and inference. 

Sharifzadeh et al. [21] presents a hybrid deep learning approach for ship classification in SAR images, integrating a 

multi-layer perceptron and CNN to form a CNN-MLP classifier. This innovative method utilizes the strengths of both 

networks to enhance classification accuracy under varied conditions. The hybrid system uses CNN to process raw SAR 

data to exploit its ability to automatically extract and learn features directly from the images. Performance evaluation 

reveals significant improvements with this hybrid approach. For example, the CNN-MLP achieves a precision of 93.19% 

and an accuracy of 92%, outperforming CNN or MLP methods. Merits of this method include its high classification 

accuracy and the effective fusion of deep learning with traditional texture analysis, providing robustness against the 

complex demerits common in SAR images. However, a demerit could include the increased computational complexity and 

potential overfitting due to the complexity of the method, especially when training on very diverse datasets.  

A deep learning approach for ship detection using satellite imagery is introduced by Stofa et al. [22], specifically 

focusing on the effectiveness of the DenseNet architecture. This approach was tested on the Kaggle Ships dataset, 

comprising 4,200 images, achieving a high accuracy rate of over 99.75% using the Adam optimizer with a learning rate of 

0.0001. The technique involves fine-tuning three hyperparameters: optimizer selection, batch size, and learning rate to 

optimize performance. The merits are ability to accurately detect ships in harbour areas, which is complex for maritime 

security. Merits of this approach include the high accuracy rate and the adaptability of the DenseNet architecture to the 

specific task of ship detection, which benefits from DenseNet's capability for feature retention through its deep, densely 

connected layers. However, the demerits could include the potential need for large amounts of computational resources 

due to the complexity of the DenseNet architecture and the dependence on a large and varied dataset to maintain 
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performance across different operational environments. Furthermore, while the system achieves high accuracy, the 

specifics of its performance under varying conditions like weather changes and different satellite imaging settings were not 

discussed, which could affect its practical deployment in real-world scenarios. DenseNet features are highly useful in 

various applications, including image segmentation and predictive modelling [23]. 

To enhance classification performance, Zhu et al. [24] introduces a novel ship classification architecture using SAR 

images, incorporating a sequence input method. The method employs a combination of CNN for feature extraction from 

individual frames and Long Short-Term Memory (LSTM) networks to process sequences of these frames, capturing 

temporal dependencies among consecutive images. This architecture is trained on the OpenSARShip dataset, achieving an 

impressive classification accuracy of 99.24% across six target classes, which indicates improvement over traditional 

methods that use single-image inputs. The principal merit of this approach is its high accuracy and innovative use of 

sequence data, which effectively utilizes the temporal information inherent in SAR image sequences, thus providing a more 

robust framework for ship classification under various conditions. However, the demerits include potentially increased 

computational requirements due to the complex nature of processing multiple image sequences and the need for large 

datasets to effectively train the LSTM component without overfitting. Additionally, the real-world applicability might be 

challenged by the variability in image quality and operational conditions not represented in the training dataset. 

 

III. RESEARCH GAP 

In spite of the considerable advancements in maritime surveillance technologies, existing methodologies for vessel 

detection in Synthetic Aperture Radar (SAR) imagery often struggle with several persistent challenges. These challenges 

include the detection of small vessels, particularly in high sea states or in the presence of close proximity maritime traffic, 

and the efficient processing of large volumes of data generated by modern SAR systems. Traditional algorithms typically 

rely on simpler image processing techniques, which may not adequately distinguish between vessels and sea clutter, 

especially under adverse conditions. Moreover, while recent applications of deep learning have shown improved results, 

there remains a significant gap in the integration of these technologies in a way that utilizes their complementary strengths. 

Most current systems use either convolutional neural networks (CNNs) for their strong spatial analysis capabilities or 

recurrent neural networks (RNNs) for their ability to process temporal sequence data. However, few systems effectively 

combine these approaches to handle the complexities of SAR images, which require both spatial and temporal data 

processing to accurately identify and classify dynamic maritime objects. 

 

IV. PROBLEM FORMULATION 

The main issue addressed in this research is directed on the development of an efficient and robust system for vessel 

detection in SAR imagery, which can overcome the limitations of existing methods in detecting small and partially 

obscured vessels under various environmental conditions. The complexities of SAR data, characterized by high levels of 

speckle noise and significant variation in backscatter from different surfaces, require a sophisticated approach that can 

adaptively distinguish vessels from complex backgrounds. 

To address these challenges, this study proposes a hybrid deep learning framework that combines the spatial 

discrimination power of convolutional layers and the sequence processing capabilities of recurrent layers. The specific 

objectives are to: 

1. Enhance the clarity and contrast of SAR images through advanced preprocessing techniques, making it easier to 

identify vessels. 

2. Achieve precise segmentation of vessels from highly cluttered maritime backgrounds using an improved Mask-

RCNN model. 

3. Extract robust features from segmented images using DenseNet101, which is renowned for its efficiency in 

learning important features without overfitting. 

4. Classify the features into vessel and non-vessel categories using a Convolutional Recurrent Neural Network, 

which integrates temporal and spatial data for improved accuracy. 

 

V. RESEARCH CONTRIBUTION 

Particularly in the area of SAR image processing and analysis for vessel recognition, this study provides a number of new 

features to marine surveillance. These are the contributions: 

• Development of an Integrated Deep Learning Framework: By synthesizing the capabilities of Mask-RCNN, 

DenseNet101, and CRNN into a single cohesive framework, this research addresses the gap in existing maritime 

surveillance systems that do not fully exploit the synergies of these advanced neural architectures. 

• The introduction of a combination of median filtering and adaptive histogram equalization specifically tailored 

for SAR images represents a significant enhancement over traditional preprocessing methods, which often fail to 

adequately suppress noise and enhance feature definition in such images. 

• The application of Mask-RCNN for segmentation and DenseNet101 for feature extraction sets new standards for 

accuracy in distinguishing vessels from complex maritime backgrounds. This methodology ensures that essential 

features are captured more effectively, significantly improving the reliability of subsequent classification stages. 
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• Utilizing a CRNN for classifying vessels incorporates both the spatial features extracted by CNN layers and the 

sequence analysis provided by RNN layers. The accuracy of vessel recognition and classification is enhanced by 

this dual method, which allows for a more advanced understanding of the temporal dynamics in SAR imagery. 

• The research includes a thorough evaluation of the proposed framework against established benchmarks, 

providing clear evidence of its superior performance in terms of metrics. 

 

VI. MATERIALS AND METHODS 

The proposed work utilized advanced deep learning models which are crucial for various stages for processing. The overall 

schematic of the proposed work is depicted din Fig 2. The illustration outlines an advanced image processing workflow 

designed for handling synthetic aperture radar (SAR) images through several stages of refinement and analysis. Initially, 

an input SAR image is preprocessed to mitigate common issues like noise and contrast variability; this involves the 

application of a median filter to reduce speckle noise, followed by adaptive histogram equalization to enhance image 

contrast, making features more distinct. Following preprocessing, the image enters a segmentation phase using a Mask R-

CNN model, a sophisticated convolutional neural network adept at both object detection and instance segmentation, which 

processes the image to detect and delineate distinct objects, outputting a series of refined feature maps. 

The next process involves extraction of detailed features using the DenseNet101 architecture, a densely connected 

convolutional network well-known for its efficient handling of features through fewer parameters and enhanced feature 

reuse across its 101 layers. This extracted information is crucial for the next phase.  

 

 
Fig 2. Illustration of The Flow Process of The Proposed Classification Model. 
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The classification stage employs a convolutional recurrent neural network (CRNN) that incorporates both convolutional 

layers for processing spatial features and LSTM (long short-term memory) units for handling sequential data, allowing it 

to effectively classify regions within the image. 

Finally, the results of this classification are systematically evaluated through a series of performance metrics, including 

accuracy, recall, ROC (receiver operating characteristic) curve analysis, and precision.  

 

Dataset 

The proposed work utilizes the High-Resolution SAR Images Dataset (HRSID), which is specifically designed for 

advancing the technology of vessel detection and segmentation in SAR imagery. This dataset is publicly available and can 

be accessed via its repository on GitHub. HRSID comprises a collection of 5,604 high-resolution SAR images, involving 

a total of 16,951 ship instances. These images are characterized by their diversity in terms of resolution, polarization, and 

varied maritime conditions, which include different sea areas and coastal ports. The dataset images are captured with 

resolutions ranging from 0.5m to 3m, providing a detailed view that is crucial for identifying small and complex objects 

such as vessels in complex maritime scenarios. Sample images from the dataset are depicted in Fig 3 shown below.  

 

 
Fig 3. Illustration of Sample Images from HRSID Dataset. 

 

Preprocessing 

Preprocessing SAR imagery for vessel detection involves critical enhancements to improve image quality by reducing 

noise and enhancing contrast. These steps are essential to prepare images for accurate feature extraction and classification 

by deep learning models. Median filtering is employed to reduce speckle noise, which is prevalent in SAR images. Speckle 

noise can obscure important features and make segmentation and classification tasks more challenging. Mathematically, 

the filter could be formulated as 

 

 I_(x,y)^'=median(I_(x-r:x+r,y-r:y+r)) (1) 

 

In Equation (1) 

(I_(x-r:x+r,y-r:y+r)) – Neighborhood of pixels 

I_(x,y)^' - new pixel value at position (x,y) 

The median filter is particularly useful for preserving edges while removing noise, as it does not blur the edges like 

average filtering might, making it ideal for detailed and texture-rich images like SAR. 

After noise reduction, Adaptive Histogram Equalization (AHE) is used to enhance the contrast of the images. This step 

is critical for improving the visibility of features, especially in images where the contrast between the vessels and the sea 

may be low. Mathematically it is formulated  

 

 I_(x,y)^'=CDF_(x,y) (I_(x,y) )X(L-1) (2) 

 

In Equation (2),  

I_(x,y)^' - Enhanced pixel value 

I_(x,y) – Original pixel 

L – Intensity levels 

CDF_(x,y) – Cumulative Distribution Function of intensities centered around (x,y) 

AHE divides the image into several tiles. Histograms are computed for each tile and used to redistribute the lightness 

values. This method is better suited for local contrast enhancement and reduces the noise amplification typical with global 

histogram equalization. AHE is especially effective for images with local shadowing or variable brightness, which are 

common in maritime scenarios captured in SAR imagery. It enhances the local contrast without affecting the global 

contrast, making it easier to detect vessels against varying backgrounds. The above-mentioned preprocessing steps prepare 

the SAR imagery effectively, ensuring that subsequent deep learning models can perform optimally. These steps are 

foundational for achieving high accuracy in vessel detection and classification from SAR images. 

 

Segmentation 

Segmentation is a crucial step in the vessel detection process, where the goal is to accurately distinguish between vessel 

and non-vessel areas within the SAR imagery. For this purpose, the Mask R-CNN framework has been employed due to 
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its proficiency in generating high-quality instance segmentation maps. This section details the implementation of Mask R-

CNN for vessel segmentation, adhering closely to the methods described in the "implementation" document. Mask R-CNN 

enhances Faster R-CNN's functionality. The R-CNN model is notably effective at object detection because it incorporates 

a branch that predicts segmentation masks for each ROI separately from the class labels. Accurate pixel-level segmentation 

and exact object localization (in this case, vessels) are both made possible by this dual method. Mask R-CNN integrates 

both convolutional neural networks (CNNs) for feature extraction and a Region Proposal Network (RPN) for generating 

object proposals. The architecture is depicted din Fig 4. It processes the input image in two stages: the first stage scans the 

image and proposes areas where objects might exist, and the second stage classifies the objects and refines their boundaries 

while simultaneously generating a mask at the pixel level for each instance. 

 

 
Fig 4. Illustration of Mask R-CNN Model for Segmentation. 

 

The pre-processed SAR images that were used to train the Mask R-CNN model contain annotations for vessels of 

different sizes and types. In addition to the class label and bounding box, the training dataset contains annotated instances 

that have a segmentation mask that specifies the exact vessels. Mask R-CNN generates a segmentation mask that defines 

the vessel's outlines for every object it detects. Similar in size to the RoI, this mask is a binary image where ones denote 

the item and zeros the background. The segmentation task in Mask R-CNN can be described by the loss function specified 

in Equation (3). It is used during training to improve the accuracy of both the mask predictions and the bounding box 

identifications. Considering L_cls to be the classification loss, L_box to be the loss associated with the bounding box, 

L_mask the mask loss, the overall loss function could be formulated as  

 

 L=L_cls+L_mask+L_box+L_mask (3) 

 

The use of Mask R-CNN for vessel segmentation allows for the precise segmentation of vessels in complex maritime 

environments, handling overlapping vessels and various vessel orientations effectively. Additionally, the pixel-level 

segmentation capability of Mask R-CNN ensures that the features extracted in subsequent steps are highly accurate, which 

is crucial for the effective classification of vessels. This implementation of Mask R-CNN for vessel detection in SAR 

imagery marks a significant step forward in the use of advanced deep learning techniques for maritime surveillance. The 

model's ability to provide detailed segmentation results helps in improving the overall accuracy of the vessel detection 

system, ensuring robust performance across different maritime conditions. 

 

Pseudocode for Vessel Segmentation using Mask R-CNN  

Input: Preprocess Images 

Output: Segmented Images 

I[x, y]  : Input preprocessed image matrix at pixel coordinates (x, y) 

W        : Pre-trained weights for Mask R-CNN 

R[x, y] : Region Proposals from RPN 

M[k, a, b] :Mask for k-th proposal at pixel coordinates (a, b) 

C[k]     : Class scores for k-th proposal 

B[k, (x1, y1, x2, y2)] : Bounding box for k-th proposal  

D: List for storing final detections 

    I = load_image(image) 

    R = generate_region_proposals(I) 

for k from 1 to length(R): 

region = I[R[k, (x1, y1, x2, y2)]] 

        C[k], B[k] = classify_and_adjust_bbox(region) 

M[k] = generate_mask(region) 
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        if C[k] > detection_threshold: 

            refine_bbox(B[k]) 

            refine_mask(M[k], B[k]) 

            D.append((C[k], B[k], M[k])) 

for each detection in D: 

    class_score, bbox, mask = detection 

    print("Detected class score:", class_score) 

print("Bounding box coordinates:", bbox) 

display(mask) 

 

Feature Extraction 

After the segmentation process where vessels are precisely isolated from the maritime background, the next critical step is 

the feature extraction. DenseNet101 architecture is particularly well-suited for capturing a rich set of features from complex 

images like SAR imagery used for vessel detection and hence used in proposed approach. DenseNet101 is depicted in Fig 

5. It is part of the Dense Convolutional Network (DenseNet) family that connects each layer to every other layer in a feed-

forward fashion. For SAR images, where the detection and classification of objects depend heavily on the clarity and detail 

of the features, DenseNet101 provides several advantages.  

  

 
Fig 5. Illustration of DenseNet101 Model for Segmentation. 

 

In DenseNet101, each layer receives additional inputs from all preceding layers and passes its own feature-maps to all 

subsequent layers. This dense connectivity pattern promotes feature reuse throughout the network, which is critical for 

learning detailed features from SAR images with minimal loss of information through the layers. Unlike traditional 

architectures that sum the outputs of previous layers, DenseNet101 concatenates outputs. This method preserves features 

from earlier in the network, enhancing the network’s ability to learn varied and complex features essential for recognizing 

different types of vessels. Due to its dense connectivity, DenseNet101 requires fewer parameters than traditional CNNs 

with similar depth, making it more efficient to train. This efficiency is crucial when dealing with large datasets of SAR 

images. 

The segmented images (masks) from the Mask R-CNN are resized and normalized to match the input size requirements 

of DenseNet101. Each masked region corresponding to a vessel is input into DenseNet101 to extract feature vectors. 

DenseNet101 processes each input image through its layers, culminating in a feature vector for each image. This vector 

captures the essential characteristics of the vessel, such as shape, texture, and other relevant maritime features. The 

extracted feature vectors are crucial inputs for the subsequent classification stage, where each vector is used to determine 

the type of vessel present in the image. By utilizing DenseNet101 for feature extraction, we ensure that our vessel detection 

system captures the most detailed and significant features from SAR images, which significantly enhances the accuracy 

and reliability of the classification results. This step is instrumental in building a robust model that can effectively 

differentiate between various vessel types and sizes under different conditions typical of maritime environments. 

 

Pseudocode for Feature Extraction using DenseNet101 

Input: Segmented Images 

Output: Feature Extracted List 

M[k, a, b]  :Mask for k-th detected vessel at pixel coordinates (a, b) 

V[k]           : Extracted vessel images ready for feature extraction 

F[k]            : Feature vectors for k-th vessel 

for k from 1 to length(M): 

    V[k] = crop_image(I, M[k]) 

    V_preprocessed[k] = preprocess_for_denseNet(V[k]) 

    F[k] = DenseNet101(V_preprocessed[k]) 

for k from 1 to length(F): 

    store_features(F[k]) 

print("Feature extraction complete for all vessels.") 
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Classification 

Following the feature extraction stage, the next critical step in the proposed vessel detection process is the classification of 

vessels using the extracted features. In this study, we utilize a Convolutional Recurrent Neural Network (CRNN) to classify 

the vessels based on the features provided by DenseNet101. As shown in Fig 6, CRNN combines the capabilities of 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to utilize both spatial and temporal 

feature dependencies, which is particularly beneficial for images where context and sequence matter. In the proposed work, 

while the temporal component is less emphasized, the recurrent layer's ability to handle sequences helps in classifying 

images that have been segmented and feature-encoded sequentially in the pipeline. 

 

 
Fig 6. Illustration of CRNN Model for Classification. 

 

Initially, the feature vectors extracted by DenseNet101 are passed through additional convolutional layers if needed to 

refine the features further before classification. This step ensures that the spatial hierarchy of features is well-represented. 

Following the convolutional layers, the features are fed into recurrent layers, typically LSTM (Long Short-Term Memory) 

units, which are adept at managing sequences. In this context, the sequence refers to the series of feature vectors from 

consecutive frames or image segments that are analysed for classification. The final layer in the CRNN is a fully connected 

layer that outputs the classification results. It categorizes each input feature vector into vessel classes based on the learned 

features, which may include vessel types such as cargo ships, fishing boats, or naval vessels. The feature vectors F[k] 

generated by DenseNet101 are the inputs to the CRNN. Each vector is treated as an independent input to the network, 

assuming no temporal dependencies unless the imagery sequence dictates otherwise. The CRNN is trained using a dataset 

of labelled vessel images processed through the same pipeline. The network is optimized for classification accuracy using 

a cross-entropy loss function, which is standard for multi-class classification tasks. Accuracy, precision, and recall are 

calculated to evaluate the performance of the vessel classification, ensuring that the CRNN correctly identifies and 

categorizes the vessels from the SAR images. This classification stage is crucial for the practical application of the vessel 

detection system, as it determines the type and possibly the activity of vessels within a monitored maritime area, 

contributing to surveillance, traffic management, and regulatory enforcement. 
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VII. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed research work utilizes the High-Resolution SAR Images Dataset (HRSID), accessible at 

https://github.com/chaozhong2010/HRSID. This comprehensive dataset is essential for advancing the analysis of ship 

detection and segmentation within SAR imagery. It contains a total of 5,604 high-resolution images that includes 16,951 

instances of ships. The images are characterized by a variety of resolutions, including 0.5m, 1m, and 3m, and exhibit range 

of polarizations and diverse maritime environments from different oceanic and coastal regions. Inspired by the structure of 

the Microsoft COCO datasets, the HRSID serves as an essential benchmark, allowing researchers to rigorously test and 

refine their analytical methods in the context of detailed SAR image evaluation.  

 

Pseudocode for Feature Extraction using DenseNet101 

Input: Feature Vectors 

Output: Classified Output 

F[k]            : Feature vectors for k-th vessel from DenseNet101 

C[k]            : Classification results for k-th vessel 

CRNN        : CRNN model initialized with pre-trained parameters 

L                 : Loss function for training the CRNN  

for k from 1 to length(F): 

    input_vector = preprocess_for_CRNN(F[k]) 

    C[k] = CRNN(input_vector) 

for epoch in range(total_epochs): 

    for k in random.shuffle(range(length(F))): 

        prediction = CRNN(F[k]) 

        true_label = get_true_label(F[k]) 

        # Calculate loss and backpropagate 

        loss = L(prediction, true_label) 

    if epoch % validation_interval == 0: 

        accuracy, precision, recall = evaluate_performance(CRNN, validation_data) 

        print(f'Epoch {epoch}: Accuracy={accuracy}, Precision={precision}, Recall={recall}') 

for k from 1 to length(C): 

    print(f'Vessel {k} classified as {C[k]}') 

 

The proposed work has been implemented using Python programming by utilizing a suite of libraries like scikit-learn, 

numpy, pandas, scipy, prettytable, seaborn, and scikit-image to effectively process and analyze data. As outlined in section 

6, the preprocessing phase involves the application of a Median filter to reduce noise, followed by Adaptive Histogram 

Equalization to enhance image contrast. Subsequent stages involve segmentation of the images using Mask R-CNN, which 

provides a robust framework for identifying and delineating individual vessels within the SAR imagery. Following 

segmentation, DenseNet101 is utilized for its deep feature extraction capabilities, capturing complex details essential for 

accurate vessel classification. Classification tasks are handled by a Convolutional Recurrent Neural Network (CRNN), 

which integrates the spatial hierarchies learned by CNNs with the sequence processing strength of RNNs, making it 

exceptionally suited for this application where both image details and sequence patterns are crucial. 

Performance evaluation metrics such as True Positives (TP), True Negatives (TN), False Positives (FP), False Negatives 

(FN), Accuracy, Precision, Recall, and Computation Time are systematically calculated to assess the efficacy and reliability 

of the vessel detection system. These metrics are critical for validating the accuracy of the CRNN model and ensuring its 

applicability in real-world maritime surveillance scenarios.  

Table 1 is presented with the outcomes of intermediate stages for 3 sample images from the entire dataset.  

 

Table 1. Illustration of Intermediate Outcomes in Proposed Work 

Source Image Segmented Feature Extracted 
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Fig 7 illustrates the confusion matrix for the classification of vessels into three categories such as Small, Medium, and 

Large by using the advanced deep learning technique involving a Convolutional Recurrent Neural Network (CRNN).  

 

 
Fig 7. Illustration of Confusion Matrix Output (Training Phase). 

 

The matrix shows the performance of the CRNN in predicting the correct vessel sizes based on the feature vectors 

extracted using DenseNet101. The model correctly identified 1359 small vessels, with 51 instances where small vessels 

were misclassified as medium and 1 instance as large. This indicates a high level of accuracy in detecting small vessels, 

suggesting that the feature extraction and sequential processing capabilities of the CRNN are particularly effective at 

capturing and classifying the nuanced features typical of smaller objects. For medium vessels, the model successfully 

classified 1446 correctly, with 93 instances misclassified as small and 9 as large. The relatively lower misclassification 

rates compared to the accurate predictions demonstrate the model's effectiveness in distinguishing medium-sized vessels 

from others, which can often be challenging due to their intermediate feature scale. The classification of large vessels 

shows an accuracy with 1105 correct predictions. Misclassifications included 4 instances predicted as small and 30 as 

medium. This indicates that while the model is highly capable of identifying large vessels, there is a slight challenge in 

differentiating between large and medium vessels, possibly due to overlapping features or similar scaling in the feature 

vectors processed by the DenseNet101. 
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Fig 8. Illustration of Precision Recall Curve (Training Phase). 

 

Fig 8 illustrates the Precision-Recall curve for the classification of vessels utilizing the advanced deep learning 

technique The curves depict the trade-off between precision and recall for each class at various threshold levels, with the 

area under the curve (AP) providing a measure of the overall performance across all thresholds. 

The precision for small vessels remains high across almost all levels of recall until it sharply drops near the recall of 

1.0. This high precision indicates that the CRNN model, combined with DenseNet101's robust feature extraction, is 

particularly effective in accurately identifying small vessels with minimal false positives. The high AP value close to 1.0 

underscores the model's effectiveness in this category. Similar to the small vessels, medium vessels also show a high level 

of precision across most recall values, with a slight decrease as recall approaches 1.0. The near-identical AP value to that 

of the small vessels demonstrates the model's consistent performance in distinguishing medium vessels accurately, 

highlighting the efficacy of the CRNN in handling feature vectors that characterize medium-sized objects. The precision-

recall curve for large vessels shows an exceptional level of precision across all recall levels, maintaining close to perfect 

precision throughout. The AP score is notably higher than the other two categories, reflecting the model's superior 

capability in identifying large vessels. This suggests that the distinguishing features of large vessels are captured 

exceptionally well by the DenseNet101 architecture and effectively utilized by the CRNN for classification. The high 

precision across all vessel categories with excellent recall performance illustrates the strength of combining DenseNet101 

and CRNN in the classification system. 

Fig 9 illustrates the Receiver Operating Characteristic (ROC). The curves demonstrate the model's performance in 

discriminating between the positive class and the negative class at various threshold settings. 

 

 
Fig 9. Illustration of ROC (Training Phase). 
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The ROC curve for small vessels shows excellent performance with an AUC close to 1, indicating a high true positive 

rate (TPR) and a low false positive rate (FPR) across most threshold levels. The curve quickly rises to a high TPR at a very 

low FPR, suggesting that the model is highly effective at identifying small vessels with minimal misclassifications. The 

curve for medium vessels shows an outstanding discriminative performance with the highest AUC among the three 

categories. This implies that the model is exceptionally effective at distinguishing medium vessels from non-vessels, 

maintaining high sensitivity and specificity across various threshold levels. The steep ascent of the curve near the origin 

highlights its effectiveness in achieving a high TPR while maintaining a very low FPR. Similar to the medium vessels, the 

ROC curve for large vessels indicates superior performance with an AUC nearly perfect. The integration of DenseNet101 

and CRNN enables the model not only to extract rich and discriminative features from SAR images but also to effectively 

utilize these features to classify different sizes of vessels with high accuracy.  Table 2 illustrates the comparative 

performance of various deep learning models including the proposed advanced deep learning (DL) model, highlighting its 

superiority in vessel classification tasks. 

 

Table 2. Comparative Analysis of Performance Metrics 

Technique Accuracy Precision Recall 

Ensemble TL Model [11] 87.25% 82.82% 86.31% 

Yolov2 [14] 90.05% 88.45% 90.11% 

Faster R- CNN [15] 85.41% 83.32% 89.65% 

MLP  91.08% 94.91% 95.55% 

Proposed Advanced DL 95.34% 94.55% 98.35 

 

The proposed advanced DL model achieves an accuracy of 95.34%, a precision of 94.55%, and a recall of 98.35%, 

outperforming other noted techniques such as Yolov2, Faster R-CNN, and an Ensemble Transfer Learning model. This 

exemplary performance underscores the effectiveness of the integration of DenseNet101 and CRNN in the proposed model, 

demonstrating its ability to achieve higher reliability and efficiency in detecting and classifying vessels from SAR imagery. 

The high recall rate particularly emphasizes the model's capability to identify true positive cases, making it a robust choice 

for practical applications in maritime surveillance. Fig 10 illustrates the confusion matrix from the classification in the 

testing phase. The model correctly identified 593 small vessels, with 24 misclassified as medium; 620 medium vessels, 

with 53 misclassified as small and 7 as large; and 436 large vessels, with 21 misclassified as medium and 3 as small. 

Overall, the matrix shows strong performance in correctly identifying vessel sizes, particularly for large vessels, though 

some misclassifications indicate areas for refinement in distinguishing overlapping features. The high accuracy across all 

categories underscores the effectiveness of the chosen deep learning techniques for maritime vessel classification. 

 

 
Fig 10. Illustration of Confusion Matrix Output (Testing Phase). 

 

Fig 11 illustrates the Precision-Recall curves for the classification of vessel sizes during the testing phase using an 

advanced deep learning technique that integrates DenseNet101 and a Convolutional Recurrent Neural Network (CRNN). 

The curves show high precision across almost all recall levels with Area Under the Curve (AP) values of 0.9794 for Small, 

0.974 for Medium, and 0.9905 for Large. These results indicate that the model performs with high accuracy and reliability 

in classifying different vessel sizes under test conditions, effectively distinguishing between small, medium, and large 

vessels with minimal false positives. 
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Fig 11. Illustration of Precision – Recall Analysis (Testing Phase). 

 

Fig 12 illustrates the Receiver Operating Characteristic (ROC) curves for the classification of vessel sizes during the 

testing phase using an advanced deep learning approach that integrates DenseNet101 with a Convolutional Recurrent 

Neural Network (CRNN).  

 
Fig 12. Illustration of ROC Analysis (Testing Phase). 

 

The ROC curves demonstrate excellent discriminatory ability with AUC values of 0.989 for Small, 0.9817 for Medium, 

and 0.9952 for Large. These results reflect the model's high accuracy and reliability in distinguishing between different 

vessel sizes under test conditions, highlighting its effectiveness in minimizing false positives while maintaining high true 

positive rates across all categories. 

 

VIII. CONCLUSION 

 This research paper projects the effectiveness of the proposed advanced deep learning model, which integrates 

DenseNet101 and a Convolutional Recurrent Neural Network (CRNN), in the detection and classification of vessels from 

Synthetic Aperture Radar (SAR) imagery. The performance metrics, as demonstrated in Table 2, reveal that the proposed 

model not only achieves superior accuracy (95.34%) but also performs well in precision (94.55%) and recall (98.35%), 

significantly outperforming established models like Yolov2, Faster R-CNN, and Ensemble Transfer Learning models. 

These results highlight the model's robustness in correctly identifying and classifying various vessel sizes under diverse 

and challenging conditions, with minimal false positives and high sensitivity to true positives. The integration of 
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DenseNet101 enables the extraction of detailed and comprehensive features from the SAR images, while the CRNN 

effectively utilizes these features to classify the vessels accurately, capitalizing on both spatial and sequential data inherent 

in SAR imagery. This advanced methodological approach not only enhances the detection capabilities but also contributes 

significantly to the reliability and efficiency of maritime surveillance systems. The high recall rate further indicates the 

model’s potential in operational environments, where high detection rates are critical for security and navigational safety.  
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