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Abstract

The cornerstone of human civilization, agriculture is essential to socig aN@Rent, ncial
viability, and food security. However, for efficient management, iss @ | heaX@ variability

and climate change require sophisticated instruments. This study inf? eep neural networks
(DNNs) using a fuzzy layer to improve agricultural decision-makii"g@ain a novel way. The
imprecision and unpredictability inherent in agricultural data can posgge ci@enge for traditional
DNNs. In order to solve this, we include a fuzzy phase that yg ﬁes to convert crisp inputs
into sets of fuzzy values. By processing intricate correlatio e variables, this hybrid model
enhances the network's capacity to manage ambiguo Pta. Despite accuracy around
0.95, traditional DNNs perform well, but t Ouble handling the uncertainty in
agricultural data. With an accuracy of 0.6 tio eural Networks (CNNs) marginally
surpass DNNs, especially when it come? forecasting and pesticide recommendation.
Nevertheless, with an accuracy of 0.97, the D model with a fuzzy layer performs best overall.
Our model performs exceptionally well for préS@sting crop categories, forecasting yields, and

suggesting fertilizers and pesticid en inputs like type of crop, rainfall, and area are used. The
fuzzy-integrated DNN perfor better than conventional DNNs along with different
machine learning models, vl an y of 0.97. Fuzzy rules also improve interpretability,
making it easier for fagas agricultural specialists to comprehend the reasoning behind
suggestions. This apy g ul tool for improving crop cultivation and input use since it

By, resilience, and transparency.

Keywoyds: icultUN\@QCrop yields Prediction, Deep neural networks, Fuzzy layer.

ential for social progress, economic stability, and global food security. However,
difficulties that affect the yield of crops and resource management, such as climate
Il degradation, and environmental variability. In order to overcome these obstacles and
e decision-making procedures, modern agriculture is depending more and more on cutting
edge technologies. Because neural networks with deep learning (DNNS) can learn intricate patterns
from vast datasets, they have demonstrated extraordinary success across a wide range of fields.
DNNs are utilized in agriculture to do tasks including resource optimization, yield prediction, and
crop classification. The intrinsic ambiguity and inaccuracy in agricultural data frequently cause
traditional DNNs to perform less well than they should, despite their potential. This can result in




decreased reliability. This work proposes to integrate fuzzy layers within DNN architecture to
improve the interpretability and robustness of DNNs in applications related to agriculture. Fuzzy
logic can enhance the features of DNNs by offering a more sophisticated representation of the
input data. Fuzzy logic is well-known for its ability to handle ambiguity and imprecise information.
The network is capable of processing confusing and noisy data more efficiently thanks to the fuzzy
layer's use of a set of fuzzy rules as well as membership functions to convert crisp inputs into sets
of fuzzy values. The suggested fuzzy-integrated DNN seeks to increase the precision 3
dependability of predictions pertaining to crop kinds, yield estimations, fertilizer specificat
and pesticide recommendations by fusing the computational capacity of DNNs with the @i\
management skills of fuzzy logic. In addition to improving the model's performance
approach includes an interpretability component that increases the decision-ggk
transparency for farmers and agricultural professionals. With the usges hybr el
forecasts about crop types, yield estimates, fertilizer recomry ﬁ 5, pesticides
L)

recommendations should become more accurate and dependable. the coMputational
capacity of DNNs with the ambiguity management of fuzzy lod proves the model's
performance and interpretability, increasing transparency for farmers algnOWQaith other agricultural
experts. Similar methods have been investigated in a numbe a& including hybrid feature
selection algorithms optimized for crop production predicti deep neuro-fuzzy networks
based on Sine Cosine Butterfly Optimization with gr isegie prediction [22]. By adding
fuzzy layers to DNNSs, this study expands ongasavi nts and improves agricultural

’ the experimental setup, go over how
to add a fuzzy layer to DNNs, and sho es of t&sts conducted on several agricultural
datasets.

In this work, we explain the experi al setup, d®tuss the process of incorporating a fuzzy layer
within DNNs, and provide testi on multiple agricultural datasets. The results show
notable gains in prediction d accuracy, underscoring the integrated approach's
potential to revolutionize fa gpr s and promote sustainable farming. Figure 1. describes
the fuzzy layer integr itN\@ep neural network for crop classification, yield, fertilizer and
pesticides.

Fuzzy layer with
Deep Neural Output
network

Fuzzification

Figure 1. Fuzzy integrated with deep neural network.

The aim of conducting a literature survey is to offer a comprehensive outline of the existing
knowledge, research, and advancements pertaining to a specific subject. This process aids
researchers in pinpointing gaps in the current understanding, tracing the evolution of ideas
chronologically, and guiding their research endeavors and methodologies. This constitutes a
fundamental aspect of agricultural research. Within the domain of agricultural yield prognosis
investigation, various significant objectives are intended to be achieved through this exhaustive




examination of earlier studies, methodologies, and findings. Firstly, the literature study creates the
contextual background by defining the current state of understanding in the field of agricultural
output forecasting. It explores the many elements and variables that affect agricultural output.
Furthermore, the literature review plays a pivotal role in highlighting deficiencies, limitations, and
challenges in the existing body of research. By critically assessing prior methodologies and
outcomes, researchers can pinpoint areas necessitating further advancements. This method propels
agricultural science forward and furnishes insights for developing more dependable predicg
models.

designed to address classification issues [1]. An assessment of the DNFC was condyc
the ANFIS and DNN classifiers, revealing that the ANFIS classifier's efficac

larger input sizes. Conversely, the performance of the proposed mo
marginally superior accuracy in comparison to the DNN classifg
predictability and interpretability of the prediction models—pa
applications—this research focuses on integrating fuzzy residual with ne8

jte mparable or
er to Yprove the
rIy for agricultural
networks [2].

Oreno et al. [9] classify soybean crops using fuzzy logic- extreme learning machines
(ELMs), where fuzzy logic improves the handling of uncg hyperspectral data. Findings
show this approach enhances crop yield projections ingdor environmental variability,
making predictions more robust in agricultur, ) get al. [10] implement fuzzy logic
within three-channel convolutional ne Ns) for identifying vegetable leaf
diseases. This integration achieves prowg@ae g#ease classification, enabling effective crop
management and facilitating reliable product™g forecasting. The study finds improved accuracy
in disease detection, crucial for optimizing agrictgpiral yield.

Elavarasan and Vincent [11] @dr e ambiguity in agricultural data by combining deep
learning models with fuzzy |@@ic reg@t crop yields more accurately. Findings suggest this
hybrid approach yields bette dict ccuracy, essential for resource allocation and long-term

’ USRet al. [12] use CNNs with fuzzy logic to analyze agricultural
ediction accuracy. The study demonstrates that integrating fuzzy

diverse industries like robotics, healthcare, and finance, identifying
model complexity and resource demands. The study predicts future
interpretability and integration with reinforcement learning, emphasizing the
nd privacy considerations.

et al. [14] propose a Recursive Learning-based Optimal Decision Fusion System
FS) using the Wang-Mendel algorithm. The study highlights the system’s interpretability,
low complexity, and high precision, demonstrating effective performance across multiple datasets.
RLODFS-S3 and RLODFS-S2 are especially noted for their efficiency and generalization, making
the approach promising for large-scale applications. Prabhu and Selvashankari [15] investigate
predictive analytics for clinical decision-making to enhance patient care, especially in scenarios




where binary logic is insufficient. Findings indicate that incorporating adaptive data analysis
improves decision-making flexibility, benefiting complex clinical environments.

Pratama et al. [16] introduce a self-organized deep fuzzy neural network (DEVFNN), which
adapts by adding or removing fuzzy rules based on their relevance. This dynamic system excels in
accuracy and interpretability, making it highly suitable for applications with shifting data patterns.
The study shows DEVFNN’s advantage in large datasets, with superior precision agg
generalization over conventional fuzzy neural networks. Li et al. [17] present Fuzzy-ViT, a §
neuro-fuzzy system that uses transformers for visual generalization across domains, incorpord

training. Results show enhanced robustness and preserved accuracy.
providing a foundation for more secure neuro-fuzzy applications.

Talpur et al. [19] propose an evolutionary optimization techni
classifiers, optimizing both fuzzy rules and network paramg
outperforms traditional optimization strategies, parti

deep neuro-fuzzy
dings indicate this method
challenging, large-dataset

develop a possibilistic fuzzy clustering systegg p learning framework, utilizing
neuro-fuzzy nodes to handle large-scale, h i
system’s superior precision, interpretabi
complex clustering tasks across diverse datas®
integrating fuzzy logic with machine learning O
interpretability, and adaptability i ous fields.

scalability, marking it as a valuable tool for
Each of these studies highlights the potential of
eep learning systems, emphasizing accuracy,

The main contribution of
fluctuation, degradation of s
model for crop producg
presents a challengd
superioritgin i

archals to overcome the difficulties caused by weather
nd ambiguity in agriculture, an advanced deep neuro-fuzzy
was developed. The intrinsic imprecision of agricultural data
entional deep neural networks (DNNs), notwithstanding their
ftion. By managing ambiguity and enhancing interpretability, fuzzy

PR SED MODEL

0e e a improve a deep neural network's capacity to handle imprecise and unpredictable
tural data; a fuzzy layer is incorporated into the network during this modeling phase. The
dense as well as dropout layers of the neural network process the fuzzy layer's converted fuzzy
values, which are obtained by applying membership functions on crisp inputs. The finished model
makes predictions for things like agricultural production, fertilizer needs, and pesticide use. By
combining the advantage of deep learning with fuzzy logic, this method offers a reliable solution

for agricultural forecasts. Figure 2. represents the proposed model of DNN with fuzzy layer.
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A. DATA PREPROCESSING

In data preprocessing, label encoding is portant step where categorical variables are
transformed to numerical format. This is re d because the majority of machine learning
algorithms and neural networks nee t. For instance, in an agricultural the data set,
you might have a category called Type," that have values like "Wheat," "Corn," "Rice,"
etc. The method of label encg these category values into numerical labels for the
sformation is a numerical array which the model can
simple, but it makes the assumption that categories have an
not always hold true. Nonetheless, this ordinal assumption usually

for neural networks. Table 1 demonstrates the label encoding.

ordinal relationship,
does not provid i




Table 1. Label encoding

Label Name of the crop
Ground Nut
Coffee

Jute

Coconut

Black gram
Cotton
Adzuki Beans
Chickpea
Kidney Beans
Lentil

Moth Beans
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B. DNN with Fuzzy Layer ,

The act of converting precise numerical numbers intoggz uefis known as "fuzzification."
This is especially helpful when managing impagisio’Qkd a in data. Fuzzification makes
rainfall amounts deeper when used in ¢ rainfall information for agricultural
forecasts.

Fuzzy Membership Functions: The mapping ch crisp input value to an appropriate degree of
membership within a fuzzy collection is defi by membership functions. We can build
membership functions for rainfgf th Il into different categories, such "Low," "Medium,"
"High," and "Very High."

Low Rainfall: As rainf between 0 to 500 mm, this function falls linearly from one to
zero.
. 500—x
0, min (1, =00 ) ) 1)
Moder ai . As rainfall (x x) rises as 300 to 700 mm, this function grows linearly between
0to drOWs gradually into O as rainfall (x x) rises between 700 to 1100 mm.

()

Medium(x) = max (O, min( x=300 1100-x ))

400 ’ 400

ainfall: As rainfall xx rises between 800 to 1300 mm, this function grows linearly between
0 to 1 and then declines progressively back to 0 until rainfall xx rises between 1300 to 1800 mm.

High(x) = max 0 (, min (x—800 1800_x))

500 ’ 500

©)

Very High Rainfall: As rainfall xx rises between 1500 to 2000 mm, this value increases linearly
between 0 to 1.




Very High(x) = max( (0, min (1, x—1500)) (4)

500

Fuzzy Rules: In a fuzzy system, fuzzy rules specify the correlations between the input and output
variables. Usually, historical data or expert knowledge is used to create these guidelines. If it rains,
we may have the following regulations:

Rule 1: There is a greater demand for irrigation when rainfall is minimal.
Rule 2: There is a medium need for irrigation if the rainfall is also medium.

Rule 3: There is less need for irrigation when rainfall is heavy.

Rule 4: There is relatively little requirement for irrigation when rainfall is
) (5)

Fuzzification and label encoding are crucial preprocessing techniques Y@ get the data ready for
the machine learning models. Categorical variables are transformed igo N@&nerical values using
label encoding, which allows the model to work with these re& employing membership
functions to convert clear numerical values into sets alues, a process known as
"fuzzification," the model is better equipped to manage gta rtajities. By using these methods,
we make sure that the input data is formatted agaéaori SO curate and reliable deep neural
uted by the Fuzzy Layer class and

Rainfall = max (High X py o (x), Medium X tpeqivm (@

In this architecture, the primary calculations Qe transformations are performed by the hidden
layers. We employ Dropout layers fagregularizat®n and use dense layers with ReLU activation
functions. Dense Layer 1: Thi Ily connected layer with ReLU activation and a
predetermined number of neurgs’ t overfitting, Dropout Layer 1 randomly sets a portion
of the input values to zero . Dense Layer 2: This is another fully connected layer
with ReLU activation, ropout Layer 2, which provides additional regularization. The
final predictions are S by the output layer, which uses a dense layer with a softmax
activation funcg
optimizer arse categorical cross-entropy for multi-class classification tasks. The
uzzy based DNN is follows.




Pseudocode for proposed fuzzy based DNN.

begin crop_yield_prediction_algorithm

// Step 1: data preparation

dataset = loaddataset()

encoded_dataset = encodecategoricalvariables(dataset)

fuzzified_dataset = fuzzifyvalues(encoded_dataset)

X_train, y_test = splitdataset(fuzzified_dataset)

I/ Step 2: build hybrid framework

input_layer = defineinputlayer(x_train)

fuzzy_layer = calculatefuzzymembershipvalues(input_layer)

dense_layer_1 = createdenselayer(64, activation="relu’, dropout=0.5)

dense_layer_2 = createdenselayer(32, activation="relu’, dropout=0.5)

crop_output = createoutputlayer(activation="softmax’)

yield_output = createoutputlayer(activation="linear")

fertilizer_output = createoutputlayer(activation="softmax’)

pesticide_output = createoutputlayer(activation="softmax’)

I/ Step 3: model assembly

model = assemblemodel(input_layer, fuzzy layer, dense_layer 1, dense | 2, crop_output,
yield_output, fertilizer_output, pesticide_output)

set_loss_function(model, loss="sparse_categorical_crossentrop

accuracy_metric = calculateaccuracy(model)

I/ Step 4: training

fit_model(model, x_train, batch_size, epochs)

validation_split = monitorperformanceduring

I/ Step 5: evaluation

y_pred = evaluatemodel(model, y_test)

accuracy, loss = evaluatemetrics(y_pred, y |

I/ Step 6: model assessment

f1_score, precision, recall = calculateclassificatio

mse = calculateregressionmetrics d, y_test)

I/ Step 7: confusion matrix

confusion_matrix = createcq

display_confusionmatrix(cd
end crop_yield_predictiog

trics(y_pred, y_test)

fertilizers,gnd iCi ering a thorough framework for assessing the accuracy of the deep

DT iption

ollected from Kaggle repository. This dataset includes agricultural statistics from 1997
or several crops grown in different Indian states. Important information about crop yield
prediction is provided by the dataset, which includes crop kinds, crop years, harvesting seasons,
states, and cultivated areas, produced quantities, rainfall per year, fertilizer and pesticide usage,
and computed yields.




Table 2. Dataset

Crop Crop Year Season State | Area | Production | Annual Rainfall | Fertilizer | Pesticide
Arecanut 1997 Whole Year | Assam | 73814 56708 20514 7024878.4 | 22882.34
Arhar/Tur 1997 Kharif Assam | 6637 4685 20514 631643.29 | 2057.47

Castor seed 1997 Kharif Assam | 796 22 20514 75755.32 246.76

Coconut 1997 Whole Year | Assam | 19656 | 126905000 2051.4 1870661.5 | 6093.36

Cotton(lint) 1997 Kharif Assam | 1739 794 20514 165500.63
Dry chillies 1997 Whole Year | Assam | 13587 9073 20514 1293074.8
Gram 1997 Rabi Assam | 2979 1507 2051.4

Jute 1997 Kharif Assam | 94520 904095 2051.4 g . 1 . 9.919565
Linseed 1997 Rabi Assam | 10098 5158 2051.4 R 0.461364

B. Data Analysis

ﬁz represented by a distinct
ield values, reaching up to
s under the "States" region.

Figure 3 illustrates agricultural yield across various states, Wj
color and labeled in the legend on the right. The Y-axi
approximately 1.6 million units, while the X-axis gr t
Each colored bar represents the yield of a spg
tooltip appears on hover, providing detailg
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Figure 3. State versus Yield of various crops.

Figure 4 gives the relationship between annual rainfall and agricultural yield. Each point represents
a data sample with annual rainfall on the x-axis and yield on the y-axis. The majority of the yield



values cluster around rainfall amounts between 500 and 3000 millimeters. Within this range, yields
vary significantly, reaching up to around 20,000 units. This indicates that certain levels of rainfall
might support higher yields, though there isn’t a clear linear or proportional relationship between
rainfall and yield, as higher rainfall does not consistently correspond to increased yield.

Additionally, a large concentration of data points lies near the bottom of the graph, suggesting low

yields despite varying rainfall. This pattern could imply that factors other than rainfall significg
impact yield, as high rainfall alone does not guarantee high productivity. For rainfall abg
millimeters, there is a noticeable decline in yield values, with very few high-yield ing
may suggest that extremely high rainfall could have adverse effects on yield, posgl
like waterlogging or nutrient leaching, emphasizing the complex int t rainfall and

crop productivity.

Yield vs Annual Rainfall
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ield information are all made easier with the help of the box plot in Figure 4. It

ates how a skewed distribution results from a few crops having extraordinarily large

n-making, and the identification of crops that could require additional research because of
their high yield performance, this data can be extremely important.Figure 6 displays the values of

season and yield values.



Crops vs Yield
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Figure 5. Crop vsgKi

Coconut and Tapioca have notably highe pared

other crops, with Coconut achieving
the highest yield, significantly standing out the rest. Other crops such as Banana, Sweet

Potato, and Onion also show modegately high ds, though they are considerably lower than

Coconut and Tapioca. A large niinb rops, including Maize, Turmeric, Barley, Sunflower,
and Dry Chillies, exhibit mgl consi ields that fall within a lower range. Towards the right
of the graph, crops sucj oSMM, Other Grains, and Moong have the lowest yields, indicating

roductive compared to others. The yield differences across crops

$

gh-yielding crops dominating the upper end, while the majority of
r yield values. This spread suggests that certain crops are significantly

ely due to factors like growing conditions, agricultural practices, or crop




Yield Across Seasons

20000 4

15000 A

Yield

10000

CODSRBONRINO0ND CDEMENETO O O O

5000 A

O
0 G 8 o o 7=}

T T T T T T
Whole Year Kharif Rabi Autumn er Winter

Season ,

Figure 6. Season vs. Y]

In order to better understand fluctuations in crop yield e igbrmed agricultural decisions,

Figure 6 portrays the variance of crop yig oSS@arious seasons, illustrating the central

tendency, variation, and any outliers. i e varmtion in crop yields across different
seasons. The "Whole Year" category showSegignificantly broader distribution of yields, with
multiple outliers reaching much higher values thaWgany other season. In contrast, the yields during
individual seasons like Kharif, I, mn, Summer, and Winter are much more consistent,
with very little variation an extremegdpalues. This suggests that crops grown across the entire
year tend to have more giaersS@tcomes, whereas seasonal yields remain relatively stable with

lower overall yield lg

D. Ev jon asures

iction, the evaluation metrics discussed can be used to assess the performance
e model. Here’s how each metric applies:

> Accuracy measures the proportion of correct predictions out of the total predictions

It is calculated as:
Total Predictions
(6)

Accuracy = x 100

Number of Accurate Predictions

A high accuracy score indicates that the model can generally make correct predictions about crop
yields. However, accuracy alone may not be sufficient if the data is imbalanced (e.g., where
certain yield levels are much more common than others).



Precision: Precision focuses on the proportion of positive predictions that are truly positive. It is
calculated as:

True Positives (TP)
True Positives (TP)+False Positives (TP)

Precision = X 100 (7

Precision is crucial in crop yield prediction when false positives are costly, meaning the model
should ideally avoid predicting high yield when it’s actually low. High precision indicates that
when the model predicts a positive outcome (e.g., high yield), it is often correct.

Recall (Sensitivity): Recall measures the ability of the model to correctly identify all pggi

cases. It is calculated as:
*@ cal. FoMnstance,

€ most high-yield

True Positives (TP)
True Positives (TP)+False Negatives (FN)

Recall = x 100

Recall is essential in yield prediction when missing positive cases i
if it’s crucial to identify high-yield situations, then a high recall ensur

predictions are correctly identified.
F-Measure: The F-Measure (or F1 Score) is the harmonic {ision and recall, providing
a balanced measure when both metrics are important. It s e@as,

F1 Score = PrecisionXRecall (9)

Precision+Recall

V. Results and Discussion

Crop and fertilizer forecasting is done using S@&iculture datasets. Accuracy and the measured
values are calculated. Data on statigigmgl measurements are presented together with an explanation
of the confusion matrix.

A. Performance Metrics

An enhanced unders
comprise of recall, 3

 tigprediction results is provided by the assessment metrics, which
precision, F1 score, and Confusion matrix. Table 3 shows the

Performaxg@e Vv f eld, pesticides and fertilizer such as precision, recall and F1-score.
&erfo ance of proposed fuzzy based DNN for crop yield prediction
0 Category Precision Recall F1-Score
Crop 0.97 0.96 0.97
Yield 0.99 0.99 0.99
Pesticides 0.98 0.97 0.98
Fertilizer 0.98 0.98 0.98
Macro Avg 0.98 0.98 0.98




Weighted Avg | 0.98 0.98 0.98

Table 4 displays the comparison of Performance metrics of Proposed DNN with Fuzzy values
with Conventional algorithms. Figure 7. shows the comparison of performance metrics of the

different models—CNN, DNN, and a DNN enhanced with fuzzy logic—across four predictio

categories: Crop, Yield, Pesticides, and Fertilizer, using metrics of Precision, Recall, and F1
Score. CNN model performs well, achieving high Precision, Recall, and F1-Score, pa

excelling in the Yield and Pesticides categories with values up to 0.98.

Table 4. Comparison of Performance metrj

Models Category | Precision | Recall

Crop 0.95 o.9y .
Yield 0.96
DNN Pesticides 0.95
Fertilizer 0.95
0.96
0.98
CNN 0.97
0.97
Crop 0.97
Proposed DN ield 0.99 0.98 0.98
with Fu ides 0.98 0.97 0.98
ilizer 0.98 0.98 0.98

capture subtle distinctions, making it the most effective option for precise and comprehensive

agricultural predictions.



Comparison of Models by Precision, Recall, and F1-Score
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Figure 7. Comparison of performance metrics of pr, godel with other models.

0.0 -

of jsion, recall and F1 score values for
three models (CNN, DNN, and DNN wiNQ4?zy) across three categories: Crop, Insecticide
geatmap, allowing for easy comparison between

Insecticide 08), though CNN scores slightly lower for Crop and Yield. The F1-Score
heatma hic mbines Precision and Recall, confirms that DNN with Fuzzy has the best
yeving top scores in all categories, reflecting a balance of high precision and
uggests that adding fuzzy logic to the DNN model enhances its robustness and

cross different prediction categories.




Performance Metrics for Different Models and Categories
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Figure 9 shows Confusion matrix of proposed model DNN with

pesticides and fertilizer prediction. Each matrix displays th g(,:ctual) on the y-axis and
predicted labels on the x-axis, with cells representinggt ntg@of correctly and incorrectly
classified samples. For the Crop category, v acc of 97%, the model correctly
identified 3780 out of 3905 real crop samg g 05 s les were misclassified. Additionally,
45 non-crop samples were incorrectly labe g crops. This high accuracy reflects the model's
strong capability to differentiate crop samples, gh the misclassification of non-crop samples

as crops indicates some room for j ent in distinguishing negative samples.

In the Yield category, the el achj a remarkable accuracy of 99%, indicating that almost

all samples were classijg . Only a few samples, four in total, were incorrectly classified,

S

" #-related samples. For the Pesticides category, with an accuracy of

false negatives. This accuracy implies the model’s robustness and

predicted 3820 samples while making 85 misclassifications among real
irty-five non-pesticide samples were misclassified as pesticides, highlighting
istinguishing non-pesticide samples. Finally, in the Fertilizer category, with an
96%, 3740 out of 3905 samples were accurately classified, with 165 samples
ssified, and 55 non-fertilizer samples incorrectly labeled as fertilizers. This slight decline in
accuracy compared to the other categories suggests a challenge in correctly distinguishing fertilizer
samples, potentially due to overlapping features with other categories. Overall, the matrices

indicate strong performance across categories with minor areas for improvement.
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Figure 9. Confusi 0 osed Model

B. ROC Curve

The receiver operating characteristic curve's x= is used to depict the False Alert Rate. It is

calculated as the ratio of false poyg the sum of actual negatives and false positives. Plotted

Incorrect negatives and actual positives. Figure 10. ROC

C curve for four distinct groups is shown in the plot: "Crop,"”



ROC Curve for Different Categories
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Figure 10. ROC curve of Proposed model DNN with yer

The ROC curve visualization for the different categories—Crop, Yield, Fe yes, and Fertilizer—

demonstrates that the model achieves a balanced True Positi R) and False Positive Rate

(FPR) across a wide range of threshold values. While th
t

Under the Curve) values for

each category are close to 0.50, this suggestsgh mo biased and consistent across

different categories. The proximity of the je di al line indicates that the model treats

engineering, additional data c Iternative model architectures, which could push the

ROC curves toward the to co ith these enhancements, the model has potential to
increase its discrimin erN@lilding on this consistent baseline across categories.
V1. Conclatsio

the performance of CNN, DNN, and DNN models integrated with Fuzzy
| classification tasks, including Crop, Yield, Fertilizer, and Pesticides. Our
at while the CNN model performed well, the DNN with Fuzzy Logic
it across key metrics such as accuracy, recall, F1 score, and ROC curves. This
ts that incorporating fuzzy logic into neural networks can significantly enhance model
effectiveness. The superior performance of the DNN with Fuzzy Logic model provides a strong
foundation for further research and practical applications. By exploring additional improvements,
we can enhance these models' accuracy, robustness, and practical value, ultimately contributing to

more efficient and intelligent agricultural management solutions.
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