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Abstract – The cornerstone of human civilization, agriculture is essential to social advancement, financial viability, and 

food security. However, for efficient management, issues like soil health variability and climate change require 

sophisticated instruments. This study integrates deep neural networks (DNNs) using a fuzzy layer to improve agricultural 

decision-making in a novel way. The imprecision and unpredictability inherent in agricultural data can pose a challenge 

for traditional DNNs. In order to solve this, we include a fuzzy phase that uses fuzzy rules to convert crisp inputs into sets 

of fuzzy values. By processing intricate correlations between variables, this hybrid model enhances the network's capacity 

to manage ambiguous and noisy data. Despite accuracy around 0.95, traditional DNNs perform well, but they frequently 

have trouble handling the uncertainty in agricultural data. With an accuracy of 0.96, Convolutional Neural Networks 

(CNNs) marginally surpass DNNs, especially when it comes to yield forecasting and pesticide recommendation. 

Nevertheless, with an accuracy of 0.97, the DNN model with a fuzzy layer performs best overall. Our model performs 

exceptionally well for predicting crop categories, forecasting yields, and suggesting fertilizers and pesticides when inputs 

like type of crop, rainfall, and area are used. The fuzzy-integrated DNN performs noticeably better than conventional DNNs 

along with different machine learning models, with an accuracy of 0.97. Fuzzy rules also improve interpretability, making 

it easier for farmers and agricultural specialists to comprehend the reasoning behind suggestions. This approach is a useful 

tool for improving crop cultivation and input use since it offers higher prediction accuracy, resilience, and transparency. 

 

Keywords – Agriculture, Crop Yields Prediction, Deep Neural Networks, Fuzzy Layer. 

 

I. INTRODUCTION 

Agriculture is essential for social progress, economic stability, and global food security. However, it faces many difficulties 

that affect the yield of crops and resource management, such as climate change, soil degradation, and environmental 

variability. In order to overcome these obstacles and improve decision-making procedures, modern agriculture is depending 

more and more on cutting edge technologies. Because neural networks with deep learning (DNNs) can learn intricate 

patterns from vast datasets, they have demonstrated extraordinary success across a wide range of fields. DNNs are utilized 

in agriculture to do tasks including resource optimization, yield prediction, and crop classification. The intrinsic ambiguity 

and inaccuracy in agricultural data frequently cause traditional DNNs to perform less well than they should, despite their 

potential. This can result in decreased reliability. This work proposes to integrate fuzzy layers within DNN architecture to 

improve the interpretability and robustness of DNNs in applications related to agriculture. Fuzzy logic can enhance the 

features of DNNs by offering a more sophisticated representation of the input data. Fuzzy logic is well-known for its ability 

to handle ambiguity and imprecise information. The network is capable of processing confusing and noisy data more 

efficiently thanks to the fuzzy layer's use of a set of fuzzy rules as well as membership functions to convert crisp inputs 

into sets of fuzzy values. The suggested fuzzy-integrated DNN seeks to increase the precision and dependability of 

predictions pertaining to crop kinds, yield estimations, fertilizer specifications, and pesticide recommendations by fusing 

the computational capacity of DNNs with the ambiguity management skills of fuzzy logic. In addition to improving the 

model's performance, this hybrid approach includes an interpretability component that increases the decision-making 

process' transparency for farmers and agricultural professionals. With the use of this hybrid model, forecasts about crop 

types, yield estimates, fertilizer recommendations, and pesticides recommendations should become more accurate and 

dependable. Combining the computational capacity of DNNs with the ambiguity management of fuzzy logic improves the 
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model's performance and interpretability, increasing transparency for farmers along with other agricultural experts. Similar 

methods have been investigated in a number of papers, including hybrid feature selection algorithms optimized for crop 

production prediction [21] and deep neuro-fuzzy networks based on Sine Cosine Butterfly Optimization with grape leaf 

disease prediction [22]. By adding fuzzy layers to DNNs, this study expands on previous developments and improves 

agricultural prediction accuracy and decision-making. Here, we describe the experimental setup, go over how to add a 

fuzzy layer to DNNs, and show the outcomes of tests conducted on several agricultural datasets. 

In this work, we explain the experimental setup, discuss the process of incorporating a fuzzy layer within DNNs, and 

provide testing results on multiple agricultural datasets. The results show notable gains in prediction robustness and 

accuracy, underscoring the integrated approach's potential to revolutionize farming practices and promote sustainable 

farming. Fig 1 describes the fuzzy layer integrated with deep neural network for crop classification, yield, fertilizer and 

pesticides. 

 

 
Fig 1. Fuzzy Integrated with Deep Neural Network. 

 

II. RELATED WORK 

The aim of conducting a literature survey is to offer a comprehensive outline of the existing knowledge, research, and 

advancements pertaining to a specific subject. This process aids researchers in pinpointing gaps in the current 

understanding, tracing the evolution of ideas chronologically, and guiding their research endeavors and methodologies. 

This constitutes a fundamental aspect of agricultural research. Within the domain of agricultural yield prognosis 

investigation, various significant objectives are intended to be achieved through this exhaustive examination of earlier 

studies, methodologies, and findings. Firstly, the literature study creates the contextual background by defining the current 

state of understanding in the field of agricultural output forecasting. It explores the many elements and variables that affect 

agricultural output.  Furthermore, the literature review plays a pivotal role in highlighting deficiencies, limitations, and 

challenges in the existing body of research. By critically assessing prior methodologies and outcomes, researchers can 

pinpoint areas necessitating further advancements. This method propels agricultural science forward and furnishes insights 

for developing more dependable prediction models. 

The study introduced a Deep Neuro-Fuzzy Classifier (DNFC) featuring a collaborative structure designed to address 

classification issues [1]. An assessment of the DNFC was conducted alongside the ANFIS and DNN classifiers, revealing 

that the ANFIS classifier's efficacy diminished with larger input sizes. Conversely, the performance of the proposed model 

exhibited comparable or marginally superior accuracy in comparison to the DNN classifier. In order to improve the 

predictability and interpretability of the prediction models—particularly for agricultural applications—this research 

focuses on integrating fuzzy residual with neural networks [2]. 

Oreno et al. [9] classify soybean crops using fuzzy logic-enhanced extreme learning machines (ELMs), where fuzzy 

logic improves the handling of uncertainty in hyperspectral data. Findings show this approach enhances crop yield 

projections by accounting for environmental variability, making predictions more robust in agricultural contexts. Zhang et 

al. [10] implement fuzzy logic within three-channel convolutional neural networks (CNNs) for identifying vegetable leaf 

diseases. This integration achieves precise disease classification, enabling effective crop management and facilitating 

reliable production forecasting. The study finds improved accuracy in disease detection, crucial for optimizing agricultural 

yield. 

Elavarasan and Vincent [11] address the ambiguity in agricultural data by combining deep learning models with fuzzy 

logic to predict crop yields more accurately. Findings suggest this hybrid approach yields better predictive accuracy, 

essential for resource allocation and long-term planning in agriculture. Nevavuori et al. [12] use CNNs with fuzzy logic to 

analyze agricultural datasets, boosting crop yield prediction accuracy. The study demonstrates that integrating fuzzy logic 

with CNNs increases prediction reliability, which is particularly beneficial for planning in fluctuating agricultural 

environments. Talpur et al. [13] examine Deep Neuro-Fuzzy Systems (DNFS) applications in diverse industries like 

robotics, healthcare, and finance, identifying challenges such as model complexity and resource demands. The study 

predicts future improvements in interpretability and integration with reinforcement learning, emphasizing the need for bias 

and privacy considerations.  

Huang et al. [14] propose a Recursive Learning-based Optimal Decision Fusion System (RLODFS) using the Wang-

Mendel algorithm. The study highlights the system’s interpretability, low complexity, and high precision, demonstrating 

effective performance across multiple datasets. RLODFS-S3 and RLODFS-S2 are especially noted for their efficiency and 

generalization, making the approach promising for large-scale applications. Prabhu and Selvashankari [15] investigate 

predictive analytics for clinical decision-making to enhance patient care, especially in scenarios where binary logic is 

insufficient. Findings indicate that incorporating adaptive data analysis improves decision-making flexibility, benefiting 

complex clinical environments. 
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Pratama et al. [16] introduce a self-organized deep fuzzy neural network (DEVFNN), which adapts by adding or 

removing fuzzy rules based on their relevance. This dynamic system excels in accuracy and interpretability, making it 

highly suitable for applications with shifting data patterns. The study shows DEVFNN’s advantage in large datasets, with 

superior precision and generalization over conventional fuzzy neural networks. Li et al. [17] present Fuzzy-ViT, a deep 

neuro-fuzzy system that uses transformers for visual generalization across domains, incorporating fuzzy logic to address 

data ambiguity. The findings reveal improved generalization and interpretability in visual tasks, marking Fuzzy-ViT as a 

significant advance for applications requiring domain adaptation. Wang et al. [18] examine the vulnerability of deep neuro-

fuzzy systems to adversarial attacks, proposing a framework that combines fuzzy logic with adversarial training. Results 

show enhanced robustness and preserved accuracy even under hostile conditions, providing a foundation for more secure 

neuro-fuzzy applications. 

Talpur et al. [19] propose an evolutionary optimization technique for deep neuro-fuzzy classifiers, optimizing both 

fuzzy rules and network parameters. Findings indicate this method outperforms traditional optimization strategies, 

particularly in challenging, large-dataset classification tasks, resulting in higher interpretability and improved accuracy. 

Hu et al. [20] develop a possibilistic fuzzy clustering system with a cascade deep learning framework, utilizing neuro-fuzzy 

nodes to handle large-scale, high-dimensional data. Experimental results highlight the system’s superior precision, 

interpretability, and scalability, marking it as a valuable tool for complex clustering tasks across diverse datasets. Each of 

these studies highlights the potential of integrating fuzzy logic with machine learning or deep learning systems, 

emphasizing accuracy, interpretability, and adaptability in various fields.  

The main contribution of this research is to overcome the difficulties caused by weather fluctuation, degradation of soil, 

and data ambiguity in agriculture, an advanced deep neuro-fuzzy model for crop production prediction was developed. The 

intrinsic imprecision of agricultural data presents a challenge for conventional deep neural networks (DNNs), 

notwithstanding their superiority in pattern identification. By managing ambiguity and enhancing interpretability, fuzzy 

logic can improve these models. This work attempts to fill the research gap by addressing the dearth of models that integrate 

transparency and accuracy for more trustworthy precision agriculture decision-making. 

 

III. PROPOSED MODEL 

To enhance a improve a deep neural network's capacity to handle imprecise and unpredictable agricultural data; a fuzzy 

layer is incorporated into the network during this modeling phase. The dense as well as dropout layers of the neural network 

process the fuzzy layer's converted fuzzy values, which are obtained by applying membership functions on crisp inputs. 

The finished model makes predictions for things like agricultural production, fertilizer needs, and pesticide use. By 

combining the advantage of deep learning with fuzzy logic, this method offers a reliable solution for agricultural forecasts. 

Fig 2 represents the proposed model of DNN with fuzzy layer. 

 

 
Fig 2. Proposed DNN with Fuzzy layer. 

 

Data Preprocessing 

In data preprocessing, label encoding is an important step where categorical variables are transformed to numerical format 

[3]. This is required because the majority of machine learning algorithms and neural networks need numerical input. For 

instance, in an agricultural the data set, you might have a category called "The crop Type," that have values like "Wheat," 
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"Corn," "Rice," etc. The method of label encoding converts these category values into numerical labels for the model to 

process. The output of this transformation is a numerical array which the model can handle with ease. This approach is 

simple, but it makes the assumption that categories have an ordinal relationship, which may not always hold true. 

Nonetheless, this ordinal assumption usually does not provide a big problem for neural networks. Table 1 demonstrates 

the label encoding. 

Table 1. Label Encoding 

Label  Name of the crop  

0  Ground Nut 

1  Coffee 

2  Jute 

3  Coconut  

4  Black gram 

5  Cotton  

6  Adzuki Beans 

7  Chickpea 

8  Kidney Beans  

9  Lentil  

10  Moth Beans  

 

DNN with Fuzzy Layer 

The act of converting precise numerical numbers into fuzzy values is known as "fuzzification." [4] This is especially helpful 

when managing imprecision and ambiguity in data. Fuzzification makes rainfall amounts deeper when used in conjunction 

with rainfall information for agricultural forecasts. 

 

Fuzzy Membership Functions 

The mapping of each crisp input value to an appropriate degree of membership within a fuzzy collection is defined by 

membership functions [5]. We can build membership functions for rainfall that fall into different categories, such "Low," 

"Medium," "High," and "Very High." 

 

Low Rainfall 

As rainfall 𝑥x rises between 0 to 500 mm, this function falls linearly from one to zero. 

 

 𝐿𝑜𝑤(𝑥) = max (0,min (1,
500−𝑥

500
)) (1) 

 

Moderate Rainfall 

As rainfall (𝑥 x) rises as 300 to 700 mm, this function grows linearly between 0 to 1 and then drops gradually into 0 as 

rainfall (𝑥 x) rises between 700 to 1100 mm. 

 

 𝑀𝑒𝑑𝑖𝑢𝑚(𝑥) = max (0,min (
𝑥−300

400
 ,

1100−𝑥

400
)) (2) 

 

High Rainfall 

As rainfall 𝑥x rises between 800 to 1300 mm, this function grows linearly between 0 to 1 and then declines progressively 

back to 0 until rainfall 𝑥x rises between 1300 to 1800 mm. 

 

 𝐻𝑖𝑔ℎ(𝑥) = max 0 (,min (
𝑥−800

500
,
1800−𝑥

500
)) (3) 

 

Very High Rainfall 

As rainfall 𝑥x rises between 1500 to 2000 mm, this value increases linearly between 0 to 1. 

 

 𝑉𝑒𝑟𝑦𝐻𝑖𝑔ℎ(𝑥) = max ((0,min (1,
𝑥−1500

500
)) (4) 

 

Fuzzy Rules 

In a fuzzy system, fuzzy rules specify the correlations between the input and output variables. Usually, historical data or 

expert knowledge is used to create these guidelines. If it rains, we may have the following regulations: 

Rule 1: There is a greater demand for irrigation when rainfall is minimal. 

Rule 2: There is a medium need for irrigation if the rainfall is also medium. 

Rule 3: There is less need for irrigation when rainfall is heavy. 
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Rule 4: There is relatively little requirement for irrigation when rainfall is quite high [6]. 

 

 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 = max(𝐻𝑖𝑔ℎ × 𝜇𝐿𝑜𝑤(𝑥),𝑀𝑒𝑑𝑖𝑢𝑚 × 𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑥), 𝐿𝑜𝑤 × 𝜇𝐻𝑖𝑔ℎ(𝑥)) (5) 

 

Fuzzification and label encoding are crucial preprocessing techniques that get the data ready for the machine learning 

models. Categorical variables are transformed into numerical values using label encoding, which allows the model to work 

with these features. By employing membership functions to convert clear numerical values into sets of fuzzy values, a 

process known as "fuzzification," the model is better equipped to manage data uncertainties. By using these methods, we 

make sure that the input data is formatted appropriately so that accurate and reliable deep neural network model may be 

trained. These values are computed by the Fuzzy Layer class and concatenated with any additional input features.  

In this architecture, the primary calculations and transformations are performed by the hidden layers. We employ 

Dropout layers for regularization and use dense layers with ReLU activation functions [23]. Dense Layer 1: This is a fully 

connected layer with ReLU activation and a predetermined number of neurons. To prevent overfitting, Dropout Layer 1 

randomly sets a portion of the input values to zero during training. Dense Layer 2: This is another fully connected layer 

with ReLU activation, followed by Dropout Layer 2, which provides additional regularization. The final predictions are 

generated by the output layer, which uses a dense layer with a softmax [7, 8] activation function to output probabilities for 

each class. For optimization, we use the Adam optimizer along with sparse categorical cross-entropy for multi-class 

classification tasks. The pseudocode of proposed fuzzy based DNN is follows. 

 

 
 

Pseudocode for proposed fuzzy based DNN.  

begin crop_yield_prediction_algorithm 

    // Step 1: data preparation 

    dataset = loaddataset() 

    encoded_dataset = encodecategoricalvariables(dataset) 

    fuzzified_dataset = fuzzifyvalues(encoded_dataset) 

    x_train, y_test = splitdataset(fuzzified_dataset) 

    // Step 2: build hybrid framework 

    input_layer = defineinputlayer(x_train) 

    fuzzy_layer = calculatefuzzymembershipvalues(input_layer) 

    dense_layer_1 = createdenselayer(64, activation='relu', dropout=0.5) 

    dense_layer_2 = createdenselayer(32, activation='relu', dropout=0.5) 

     crop_output = createoutputlayer(activation='softmax') 

    yield_output = createoutputlayer(activation='linear') 

    fertilizer_output = createoutputlayer(activation='softmax') 

    pesticide_output = createoutputlayer(activation='softmax') 

    // Step 3: model assembly 

    model = assemblemodel(input_layer, fuzzy_layer, dense_layer_1, dense_layer_2, crop_output, 

yield_output, fertilizer_output, pesticide_output) 

    set_loss_function(model, loss='sparse_categorical_crossentropy') 

    accuracy_metric = calculateaccuracy(model) 

    // Step 4: training 

    fit_model(model, x_train, batch_size, epochs) 

    validation_split = monitorperformanceduringtraining(model) 

    // Step 5: evaluation 

    y_pred = evaluatemodel(model, y_test) 

    accuracy, loss = evaluatemetrics(y_pred, y_test) 

    // Step 6: model assessment 

    f1_score, precision, recall = calculateclassificationmetrics(y_pred, y_test) 

    mse = calculateregressionmetrics(y_pred, y_test) 

    // Step 7: confusion matrix 

    confusion_matrix = createconfusionmatrix(y_pred, y_test) 

    display_confusionmatrix(confusion_matrix) 

end crop_yield_prediction_algorithm 
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This proposed technique ensures a methodical approach to forecasting appropriate crops, yields, fertilizers, and 

pesticides by offering a thorough framework for assessing the accuracy of the deep learning model integrate with fuzzy 

layer. 

 

IV. EXPERIMENTAL SETUP 

Dataset Description 

Dataset is collected from Kaggle repository. This dataset includes agricultural statistics from 1997 to 2020 for several crops 

grown in different Indian states. Important information about crop yield prediction is provided by the dataset, which 

includes crop kinds, crop years, harvesting seasons, states, and cultivated areas, produced quantities, rainfall per year, 

fertilizer and pesticide usage, and computed yields. Table 2 shows the dataset. 

 

Table 2. Dataset 

Crop 
Crop 

Year 
Season State Area Production 

Annual 

Rainfall 
Fertilizer Pesticide Yield 

Arecanut 1997 
Whole 

Year 
Assam 73814 56708 2051.4 7024878.4 22882.34 0.796087 

Arhar/Tur 1997 Kharif Assam 6637 4685 2051.4 631643.29 2057.47 0.710435 

Castor seed 1997 Kharif Assam 796 22 2051.4 75755.32 246.76 0.238333 

Coconut 1997 
Whole 

Year 
Assam 19656 126905000 2051.4 1870661.5 6093.36 5238.052 

Cotton(lint) 1997 Kharif Assam 1739 794 2051.4 165500.63 539.09 0.420909 

Dry chillies 1997 
Whole 

Year 
Assam 13587 9073 2051.4 1293074.8 4211.97 0.643636 

Gram 1997 Rabi Assam 2979 1507 2051.4 283511.43 923.49 0.465455 

Jute 1997 Kharif Assam 94520 904095 2051.4 8995468.4 29301.2 9.919565 

Linseed 1997 Rabi Assam 10098 5158 2051.4 961026.66 3130.38 0.461364 

 

Data Analysis 

Fig 3 illustrates agricultural yield across various states, with each state represented by a distinct color and labeled in the 

legend on the right. The Y-axis shows yield values, reaching up to approximately 1.6 million units, while the X-axis groups 

these values under the "States" region. Each colored bar represents the yield of a specific state, allowing for easy visual 

comparison. A tooltip appears on hover, providing details such as the state's name, region, and exact yield value (e.g., 

"West Bengal" with a yield of 291.898k), enhancing interpretability by offering precise data at a glance. 

 

 
Fig 3. State Versus Yield of Various Crops. 

 

Fig 4 gives the relationship between annual rainfall and agricultural yield. Each point represents a data sample with 

annual rainfall on the x-axis and yield on the y-axis. The majority of the yield values cluster around rainfall amounts 

between 500 and 3000 millimeters. Within this range, yields vary significantly, reaching up to around 20,000 units. This 
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indicates that certain levels of rainfall might support higher yields, though there isn’t a clear linear or proportional 

relationship between rainfall and yield, as higher rainfall does not consistently correspond to increased yield. Additionally, 

a large concentration of data points lies near the bottom of the graph, suggesting low yields despite varying rainfall. This 

pattern could imply that factors other than rainfall significantly impact yield, as high rainfall alone does not guarantee high 

productivity. For rainfall above 3000 millimeters, there is a noticeable decline in yield values, with very few high-yield 

instances. This may suggest that extremely high rainfall could have adverse effects on yield, possibly due to issues like 

waterlogging or nutrient leaching, emphasizing the complex interplay between rainfall and crop productivity. 

 

 
Fig 4. Annual Rainfall versus Yield. 

 

Understanding agricultural yield distribution, identifying outliers, and displaying the median and variance of the yield 

information are all made easier with the help of the box plot in Fig 4. It clearly illustrates how a skewed distribution results 

from a few crops having extraordinarily large yields, while the majority of crops possess low to moderate yields. For 

agricultural evaluation, decision-making, and the identification of crops that could require additional research because of 

their high yield performance, this data can be extremely important. Fig 5 shows crop vs. yield. Fig 6 displays the values of 

season and yield values. 

 

 
Fig 5. Crop vs. Yield. 
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Coconut and Tapioca have notably higher yields compared to other crops, with Coconut achieving the highest yield, 

significantly standing out from the rest. Other crops such as Banana, Sweet Potato, and Onion also show moderately high 

yields, though they are considerably lower than Coconut and Tapioca. A large number of crops, including Maize, Turmeric, 

Barley, Sunflower, and Dry Chillies, exhibit more consistent yields that fall within a lower range. Towards the right of the 

graph, crops such as Sesamum, Other Grains, and Moong have the lowest yields, indicating that these crops might be less 

productive compared to others. The yield differences across crops are substantial, with a few high-yielding crops 

dominating the upper end, while the majority of crops cluster around lower yield values. This spread suggests that certain 

crops are significantly more productive, likely due to factors like growing conditions, agricultural practices, or crop 

characteristics. 

 

 
Fig 6. Season vs. Yield. 

 

In order to better understand fluctuations in crop yields and make informed agricultural decisions, Fig 6 portrays the 

variance of crop yields across various seasons, illustrating the central tendency, variation, and any outliers. illustrates the 

variation in crop yields across different seasons. The "Whole Year" category shows a significantly broader distribution of 

yields, with multiple outliers reaching much higher values than any other season. In contrast, the yields during individual 

seasons like Kharif, Rabi, Autumn, Summer, and Winter are much more consistent, with very little variation and few 

extreme values. This suggests that crops grown across the entire year tend to have more diverse outcomes, whereas seasonal 

yields remain relatively stable with lower overall yield levels. 

 

Evaluation Measures 

For crop yield prediction, the evaluation metrics discussed can be used to assess the performance of a predictive model. 

Here’s how each metric applies: 

 

Accuracy 

Accuracy measures the proportion of correct predictions out of the total predictions made. It is calculated as: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 (6) 

 

A high accuracy score indicates that the model can generally make correct predictions about crop yields. However, 

accuracy alone may not be sufficient if the data is imbalanced (e.g., where certain yield levels are much more common 

than others). 

 

Precision 

Precision focuses on the proportion of positive predictions that are truly positive. It is calculated as: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)
× 100 (7) 
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Precision is crucial in crop yield prediction when false positives are costly, meaning the model should ideally avoid 

predicting high yield when it’s actually low. High precision indicates that when the model predicts a positive outcome 

(e.g., high yield), it is often correct. 

 

Recall (Sensitivity) 

Recall measures the ability of the model to correctly identify all positive cases. It is calculated as: 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
× 100 (8) 

 

Recall is essential in yield prediction when missing positive cases is more critical. For instance, if it’s crucial to identify 

high-yield situations, then a high recall ensures that most high-yield predictions are correctly identified. 

 

F-Measure 

The F-Measure (or F1 Score) is the harmonic mean of precision and recall, providing a balanced measure when both metrics 

are important. It is calculated as, 

 

 F1Score =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 2 (9) 

 

V. RESULTS AND DISCUSSION 

Crop and fertilizer forecasting is done using agriculture datasets. Accuracy and the measured values are calculated. Data 

on statistical measurements are presented together with an explanation of the confusion matrix. 

 

Performance Metrics 

An enhanced understanding of the prediction results is provided by the assessment metrics, which comprise of recall, 

accuracy, precision, F1 score, and Confusion matrix. Table 3 shows the Performance values of crop, yield, pesticides and 

fertilizer such as precision, recall and F1-score. 

 

Table 3. Performance of Proposed Fuzzy Based DNN for Crop Yield Prediction 

Category Precision Recall F1-Score 

Crop 0.97 0.96 0.97 

Yield 0.99 0.99 0.99 

Pesticides 0.98 0.97 0.98 

Fertilizer 0.98 0.98 0.98 

Macro Avg 0.98 0.98 0.98 

Weighted Avg | 0.98 0.98 0.98 

 

Table 4 displays the comparison of Performance metrics of Proposed DNN with Fuzzy values with Conventional 

algorithms. Fig 7 shows the comparison of performance metrics of the different models—CNN, DNN, and a DNN 

enhanced with fuzzy logic—across four prediction categories: Crop, Yield, Pesticides, and Fertilizer, using metrics of 

Precision, Recall, and F1-Score. CNN model performs well, achieving high Precision, Recall, and F1-Score, particularly 

excelling in the Yield and Pesticides categories with values up to 0.98. 

 

Table 4. Comparison Of Performance Metrics 

Models Category Precision Recall F1-Score 

DNN 

Crop 0.95 0.94 0.94 

Yield 0.97 0.96 0.96 

Pesticides 0.96 0.95 0.95 

Fertilizer 0.96 0.95 0.95 

CNN 

Crop 0.96 0.95 0.96 

Yield 0.98 0.98 0.98 

Pesticides 0.97 0.96 0.97 

Fertilizer 0.97 0.96 0.97 

Proposed DNN with Fuzzy 

Crop 0.97 0.96 0.97 

Yield 0.99 0.98 0.98 

Pesticides 0.98 0.97 0.98 

Fertilizer 0.98 0.98 0.98 
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The consistent performance across all categories suggests CNN’s suitability for tasks requiring fine-grained predictions, 

such as differentiating between various agricultural needs. DNN model shows strong results, with scores generally ranging 

from 0.94 to 0.96 across categories. It achieves its highest scores in Yield prediction, but overall, it performs slightly below 

CNN and the DNN with fuzzy logic, indicating that it may lack the complexity needed for more nuanced agricultural 

predictions. The proposed DNN with fuzzy logic surpasses both CNN and standard DNN, with scores reaching 0.99 in the 

Yield category and 0.98 in Pesticides and Fertilizer. This model’s high Precision, Recall, and F1-Score indicate that the 

integration of fuzzy logic enhances its ability to capture subtle distinctions, making it the most effective option for precise 

and comprehensive agricultural predictions. 

 

   
Fig 7. Comparison of Performance Metrics of Proposed Model with Other Models. 

 

Fig 8 visualize the heatmap for different models of precision, recall and F1 score values for three models (CNN, DNN, 

and DNN with Fuzzy) across three categories: Crop, Insecticide Category, and Yield. Each metric is displayed as a 

heatmap, allowing for easy comparison between models and categories. Higher values, shown in darker colors, represent 

better performance, with the heatmaps’ color gradient from light blue to dark red indicating the range of performance from 

lower to higher values. In the Precision heatmap, all models show strong precision scores across categories, with DNN 

with Fuzzy performing best overall, particularly in the Yield category (0.99). The Recall heatmap shows that DNN with 

Fuzzy also generally performs best, especially in the Insecticide Category (0.98), though CNN scores slightly lower for 

Crop and Yield. The F1-Score heatmap, which combines Precision and Recall, confirms that DNN with Fuzzy has the best 

performance, achieving top scores in all categories, reflecting a balance of high precision and recall. This suggests that 

adding fuzzy logic to the DNN model enhances its robustness and reliability across different prediction categories. 

 

 
Fig 8. Performance Metrics for CNN, DNN and Proposed Model Based on Yield, Pesticides, Fertilizer and Crops. 
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Fig 9 shows Confusion matrix of proposed model DNN with fuzzy layer for crop, yield, pesticides and fertilizer 

prediction. Each matrix displays the true labels (Actual) on the y-axis and predicted labels on the x-axis, with cells 

representing the counts of correctly and incorrectly classified samples. For the Crop category, which has an accuracy of 

97%, the model correctly identified 3780 out of 3905 real crop samples, while 125 samples were misclassified. 

Additionally, 45 non-crop samples were incorrectly labeled as crops. This high accuracy reflects the model's strong 

capability to differentiate crop samples, though the misclassification of non-crop samples as crops indicates some room for 

improvement in distinguishing negative samples.  

In the Yield category, the model achieves a remarkable accuracy of 99%, indicating that almost all samples were 

classified correctly. Only a few samples, four in total, were incorrectly classified, with almost no false positives or false 

negatives. This accuracy implies the model’s robustness and reliability in identifying yield-related samples. For the 

Pesticides category, with an accuracy of 98%, the model correctly predicted 3820 samples while making 85 

misclassifications among real pesticide samples. Thirty-five non-pesticide samples were misclassified as pesticides, 

highlighting a minor issue in distinguishing non-pesticide samples. Finally, in the Fertilizer category, with an accuracy of 

96%, 3740 out of 3905 samples were accurately classified, with 165 samples misclassified, and 55 non-fertilizer samples 

incorrectly labeled as fertilizers. This slight decline in accuracy compared to the other categories suggests a challenge in 

correctly distinguishing fertilizer samples, potentially due to overlapping features with other categories. Overall, the 

matrices indicate strong performance across categories with minor areas for improvement. 

 

 
Fig 9. Confusion Matrix of Proposed Model. 

ROC Curve 

The receiver operating characteristic curve's x-axis is used to depict the False Alert Rate. It is calculated as the ratio of 

false positives to the sum of actual negatives and false positives. Plotted on the y-axis is the true-positive rate (TPR), also 

known as recall or sensitivity. It is calculated as the ratio of real positives to the total of incorrect negatives and actual 

positives. Fig 10 ROC curve of DNN with Fuzzy layer. ROC curve for four distinct groups is shown in the plot: "Crop," 

"Yield," "Pesticides," and "Fertilizer”. Every curve shows the degree to which the classifier separates the particular 

category from every other group put together.   
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Fig 10. ROC Curve of Proposed Model DNN with Fuzzy Layer. 

 

The ROC curve visualization for the different categories—Crop, Yield, Pesticides, and Fertilizer—demonstrates that 

the model achieves a balanced True Positive Rate (TPR) and False Positive Rate (FPR) across a wide range of threshold 

values. While the AUC (Area Under the Curve) values for each category are close to 0.50, this suggests that the model is 

unbiased and consistent across different categories. The proximity of the curves to the diagonal line indicates that the model 

treats positive and negative samples fairly and makes decisions in a balanced manner. This result can serve as a solid 

foundation for future improvements. Since the model's initial performance is neutral across categories, this provides an 

opportunity to explore enhancements, such as feature engineering, additional data collection, or alternative model 

architectures, which could push the ROC curves toward the top-left corner. With these enhancements, the model has 

potential to increase its discriminative power, building on this consistent baseline across categories. 

 

VI. CONCLUSION 

In this study, we assessed the performance of CNN, DNN, and DNN models integrated with Fuzzy Logic for agricultural 

classification tasks, including Crop, Yield, Fertilizer, and Pesticides. Our findings show that while the CNN model 

performed well, the DNN with Fuzzy Logic outperformed it across key metrics such as accuracy, recall, F1 score, and 

ROC curves. This suggests that incorporating fuzzy logic into neural networks can significantly enhance model 

effectiveness. The superior performance of the DNN with Fuzzy Logic model provides a strong foundation for further 

research and practical applications. By exploring additional improvements, we can enhance these models' accuracy, 

robustness, and practical value, ultimately contributing to more efficient and intelligent agricultural management solutions. 
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