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conditions at an early stage. Data augmentation techniques were employed to incregg
diverse data pattern within the dataset. The study applied ResNet50, InceptionV3)
models, leading to the development of a weighted and average ensemble model. The s
the International Skin Imaging Collaboration (ISIC) dataset. The proposed ensemble
performance, achieving 98.5% accuracy, 97.50% Kappa, 97.67% MCC (Matthews C Iat
F1 score. The model outperformed existing state-of-the-art models in derrpais
valuable support to dermatologists and medical specialists in early diseag
proposed model offers high accuracy with lower computational cogp
classification of skin-related diseases.

was trained and tested using
gdel demonstrated superior
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it a serious threat. This particular type of
formation of malignancies. Melanoma a
carcinoma and basal cell carcinoma
melanoma and non-melanoma skin

grows when skin cells proliferate out of control, which results in the
oma are the two primary types of skin cancers. Squamous cell
t prevalent non-melanoma tumours. The primary cause of both

young adulthood, the more sig osure. Our daily lives expose us to a variety of contaminants and hazardous
substances that might affect i the largest organ in the body. The skin is the body’s outer organ that covers
it and carries out several €s ions, including temperature regulation, organ protection, sweating out toxins to
detOX|fy the b y, f fnd organ protection. Environmental elements such as carcinogenic chemicals, the
ory agents are known to contribute to skin problems and cancers. Skin cancer has been
sing exposure to human-made pollutants and UV radiation. Scientists have found that a
variety of e contaminants create reactive oxygen species (ROS), which can lead to oxidative stress, genetic
in our body’s redox system. Though skin-related diseases are common, they can be difficult to

roundings, including wool, particular foods, soaps, pet hair, and foods. These elements have the
the immune system and cause symptoms, including discomfort, redness, and itching. Skin problems can
ny age or gender. However, skin diseases continue because of problems with healthcare systems and a lack
deal with these issues. It might be difficult to identify different types of skin cancer accurately, so specialists
ledge in this field are needed [1]. The worrying findings around skin cancer under- score the importance of
revention and the need to take preventative measures. Common methods for diagnosing skin cancer include physical
inspection, noninvasive dermoscopic, and biopsy of any concerning lesions. After the biopsy procedure, the malignant status
f the sample was determined by microscopic analysis. If the biopsy confirms that cancer is present, further tests may be
done to determine its exact type and extent. Depending on the type and stage of cancer, skin cancer treatment options may
include surgery, radiation therapy, chemotherapy, immunotherapy, or other methods. The primary treatment option for early-
stage skin cancer is surgical removal of the malignant lesion, which is frequently beneficial in treating the condition.
Chemotherapy, immunotherapy, and radiation therapy are used to treat cancer that has spread to other anatomical areas, as
well as metastatic cutaneous cancer [2].
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Image processing is essential for accurately identifying medical images since it can extract important information that helps
with the process. The process has multiple interrelated steps, which begin with improving the image quality using methods
such as edge improvement, contrast enhancement, color correction, and lighting correction. Region growth, thresholding,
and active contour modelling are some of the approaches used by image segmentation algorithms to split an image int
regions of interest. Expert dermatologists obtain 50% to 60% accuracy rates in manual examinations [3], which indica
that more dependable techniques are required. Noise in dermoscopic images, such as hair, air bubbles, and other artefac
in addition to lighting effects, can make skin cancer identification more challenging. It is essential to design an Al syste
which capable of autonomously identifying skin cancer from dermoscopic images. Pre-processing is essential for develgads
a system that removes artefacts like hair and increases image quality. Scientists have created many pre-processing
such as image inpainting, to match the values of nearby hair pixels. These methods are based on morphological op
and contrast enhancement. The ABCD rule and the seven-point checklist are two common tools used to identify fe
dermoscopic images. The ABCD rule considers four factors: the skin lesion diameter, color change, borde
asymmetry.

>

The detection and classification of skin cancer have benefited greatly in recent years by agplyin
learning (DL) and machine learning (ML) [4]. Algorithms such as decision trees, suppor,
are essential to dermatology because they can analyze large amounts of data that j
necessary steps have been completed, ML and DL models are used to classify the y
work together to provide an accurate and trustworthy cancer classification. ML and [ |ques are superior to older
methods in a number of ways when it comes to the detection and classification of skin carga Although the majority of the
work was exceptional in accuracy, there are some overfitting issues, and the moth ox@orking well for particular

tec deep
s (SVMs), and DL
skin. After all
hese methods

classes. We are making an effort to fill those gaps. As skin cancer becomes common worldwide, research is
pf providing medical professionals with
better tools so they can diagnose patients earlier and possibly save lives. ) need to increase diagnostic accuracy
especially in the case of skin cancer, where early diagnosis greatly e il tcomes motivates this research. The
study’s principal contribution is as follows:

o We have designed an Ensemble Deep-Learrnis

o We employed data augmentation technique the datas€t size and improve generalization, robustness to
variability, balance classes, and reduction of al

o We executed several experiments, including operS@g dlfferent combinations of base learners, which improved the
overall accuracy.

e We discovered that skin cancer cl ation could be efficiently performed by ensemble learning and transfer
learning models.

o We fine-tuned the transfer le

e Our proposed model not on hances cy but also significantly streamlines computational processes, paving
the way for seamless deploy

This paper has been organiz
in Section I1. Then in Secti

ipleections. First, we will review the existing methods for identifying skin cancer
Il provide an overview of our methodological statement. In Section IV, we briefly
odel implementation. The experimental results of the models we have employed
ately, we will showcase our research findings in Section VI

Il. LITERATURE REVIEW

OvagRe years mber of researchers have conducted numerous studies to improve the efficacy in the field of classifying
skin c . e are a few noteworthy and current works on this particular area of skin cancer research.

I. [5] proposed SNC Net, A novel technique to automatically identify eight different forms of skin cancer from
rmoscOpic images. They combined DL models and handcrafted (HC) feature extraction to improve classification accuracy.
SNC Net, which was trained on the ISIC 2019 dataset, achieved an accuracy of 97.81%, precision of 98.31%, recall of
7.89%, and F1 score of 98.10%, outperforming four baseline models and six state-of-the-art (SOTA) classifiers. Monica et
I. [6] presented an automated framework to improve the early detection of Melanoma Skin Cancer (MSC) by handling
challenges in analyzing dermoscopic images. They incorporated normalization techniques, precise segmentation employing
mask-faster RCNN, and feature extraction with pre-trained CNN models. The modified GRU model, combining swish-
ReLU activation, performed exceptional accuracies of 99.95% and 99.98% on ISIC 2020 and HAM 10000 datasets,
respectively, outperforming conventional methods.



Campos et al. [7] proposed a unique treatment approach for non-melanoma skin cancer (NMSC) employing a variety of
photothermal and chemotherapeutic techniques. MoS2 nanoparticles are used as a photothermal agent, and these
nanoparticles are synthesized utilizing a liquid-phase exfoliation and intercalation technique with polyvinylpyrrolidone
(PVP), performing in an average particle size of 165 + 170 nm after ultrasonication treatment. Experimental outcome
confirmed that MoS2 nanosheets efficiently convert near-infrared (NIR) light into heat, acquiring temperatures of 52°
MoS2 (125 pg/mL) and Tegafur (50 pg/mL) therapeutic dosages were combined and adjusted into a Carbopol hydrog
Metabolic activity tests on normal human fibroblasts (HFF-1 cells) showed that they did not drop below the 70% toxicity
threshold. However, metabolic activity dramatically dropped in skin cancer cells A-431. Notably, the integrated MoS
Tegafur hydrogels lead to a 1.9-fold reduction in A-431 cancer cell metabolic activity 72 hours after irr3
corresponding to MoS2 alone.

Rahman et al. [2] presented an optimized DCNN-based model for accurately classifying skin cancer as

melanoma employing dermoscopic images. Adding more data and an additional basic layer to the NASN¢g e to

manage inconsistent and partial data is where the uniqueness lies. The proposed approach produced bmes
with a dataset of 2637 skin image captures. Precision, sensitivity, specificity, F1-score, and 3 e were
examples of evaluation measures. After optimization, the Adam optimizer generated 854 Qo accuracy for the
NASNet Mobile and NASNet Large models, respectively. Naeem et al. [8] introducg h d approach for
detecting skin cancer from dermoscopy images. DVFNet coalesced VGG19 ar(Wgs Histog®im of Oriented

Gradients (HOG) for discriminative feature extraction, improving accuracy. Pre-prQ
enhanced image quality, while SMOTE Tomek addresses imbalanced image classes. Da
identified with the use of segmentation, and using HOG and VGG19 features, a few

¥ with anisotropic diffusion
aed skin cell locations can be

classification gained 98.32% accuracy on the ISIC 2019 dataset and ANOV Astatisti st valilated model accuracy.

AlSadhan et al. [9] investigated the significance of four unified conv ral networks (YOLOvV3, YOLOvV4,

skin cancer. Each of the models was

aset, using techniques such as data augmentation, transfer
Detween lesions. DenseNet169 appeared as the top-performing
model, performing an accuracy of 92.25%, recall of 93.59%, %@l F1-score of 93.27%. A light version of DenseNet169 was
incorporated into a mobile application, permjiigms users to clasSify lesions as benign or malignant operating their device’s
i ototype, and sunscreen use, the app offered information on safe sun

learning, and fine-tuning to embed imbalances and likenes?

exposure.

Rajesh et al. [11] used the HAM1 data train Deep Convolutional Neural Networks (DCNNs), which were
optimized from the successful Lismas aset for classifying seven different types of skin lesions. They concentrated on
Inception V3 and DenseNe cis. Inception V3 achieved 85.94% accuracy, DenseNet 201 reached 87.42%
accuracy, and an ensemble irgrporating both performed 85.94% accuracy. In the validation, DenseNet 201
performed better in t ficcuracy rate of 87.42%, while Inception V3 just slightly surpassed DenseNet 201
over 20 epoc i ] introduced an automated diagnostic model and web application for identifying
Malignant iscoursing the demand for more efficient and precise diagnostic mechanisms for skin
diseases. nvolut®nal neural network (CNN) with ResNet50 for data collection, preprocessing, segmentation,
feature extr sification. Novel preprocessing processes and mixed hybrid pooling phases improved accuracy
by eradi <@ nhancing spectral image information. Performance analysis demonstrated the model performed
with 94% an F1-score of 93.9% on the ISIC dataset, presenting noteworthy advancement over traditional
ore, in comparison to current methods, the corresponding online application expedited diagnosis with

omprehensive research, we identified specific constraints connected to skin cancer —

The existing datasets have some drawbacks, such as an excess of tiny lesions, which make it challenging to train

the algorithms due to limited diversity and high-class imbalance.

e Although advancement has been made in the field, the datasets still need to be scaled up through comprehensive
data augmentation and analysis of improved imaging data.

o  While algorithms have individual strengths, the challenge of optimization and generalization poses a considerable

gap in their applicability. Furthermore, the computational complexity of the deep learning model is a major

challenge.



o Significant accuracy limits exist when extracting features from skin lesions, which creates an extensive gap in
accuracy and reliability.

e Despite progress, frameworks still need work to acquire high efficiency in terms of time and memory usage,
contextual understanding, and trade-off between accuracy and speed. These gaps represent noteworthy limitations
in the frameworks’ computational efficiency and scalability.

. MATERIALS AND METHODS
In this paper, we present a unique method for classifying skin image data employing an ensemble appro

demonstrated in Figure 1. This method can be extended to enclose any group of models within an ensemble. T
sections go into further detail about our innovative approach.

3.1 Base Learners

The procedure of selecting base learners can vary depending on the difficulty at hand. Still, i ve is
to choose the most appropriate models for the assigned problem. For our classification tgg stinctive

classification on the ImageNet dataset. DenseNet improves gradient flow and feature P concatenating feature maps
feature representations are
fostered by this concatenation mechanism, which guarantees that each layer has diregac to the gradients from all
previous layers. The model is composed of Dense Blocks, where the growth rparameter determines how many
feature maps each layer within a block adds to the collective knowledge. Z#® Blocks employ 1x1 convolutions, 2x2
pooling layers, and batch normalization to enable downsampling and di gyralit@meduction. DenseNet-121 divides the
volume and feature maps in half after each Transition Block, but insi Dense Block stays constant. A 1x1
convolution shrinks the size of each feature map inside a a onvolution with the number of feature
maps growing at a constant pace comes next. The volug output of these operations are then concatenated,
thereby continuously improving the network's col
classification tasks, the DenseNet-121 model uses d ectivity to leverage iteratively improve its representations.
Microsoft Research created ResNet50, a deep convolSgRoal neural network architecture that is well-known for its
remarkable performance in image classification tasks, in 20 has 50 layers and adds residual connections so that deeper
networks can be trained without worrying t vanishing Qradient problems. Convolutional layers, identity blocks,
convolutional blocks, and fully connect e the four primary parts of the architecture. Convolution, batch
normalization, and ReL U activation a sed by convolutional layers to extract features from input images.
Max pooling is then used to reduc s. Convolutional neural network (CNN) architecture InceptionV3,
which is optimized for image classi ajor advancement over the Inception model, which is its predecessor.
" racy and computational efficiency is its main objective.

ception modules™, which are essential parts that include max-pooling operations
izes (1x1, 3x3, and 5x5). The network can efficiently capture features at various
spatial scales | to this amalgamation. Furthermore, InceptionV3 employs a number of architectural
techniquesilesi number of parameters and computational overhead without sacrificing the quality of its
representati le, dimensionality reduction is achieved through the widespread use of 1x1 convolutions, which
reduces i plexity. Furthermore, huge convolutions are divided into smaller ones using methods like

After every model has been selected, each is trained independently on the dataset, and their corresponding accuracy
ercentages, which are accy recorded on a validation set. It is notable that during training, this validation set is not used.
he models learn the same underlying distribution differently due to their heterogeneous nature and use of multiple hyper-
parameters. These models are trained continuously until they reach convergence or until there is no further decrease in the
loss value. Subsequently, after training, the models undergo evaluation using a validation dataset, where their accuracies

are measured and recorded. These recorded accuracies are then employed to estimate the weight factor ax for every
respective model, utilizing Equations 1 and 2. Here, x varies from 1 to a, where ’a’ represents the entire number of models.



In Equation 2, we increment 1 to ax because '’ describes the accuracy of the least accurate model. It secures that the
weight ay for the least accurate model equals 1 by adding 1 when it is inserted into 1. The least accurate model might be
excluded if this adjustment was made because it would not have a substantial impact on the ensemble model’s final result.
These recorded accuracies are then used to calculate the weight factor ox for each respective model employing the following
equations:

a, = acc, —P+1,x=1 ....c.connn a 1

B =min ([acc,] %))

[ETRVILENY MALICGN

Weighted Sum

Y

Melanoma

erdlassification

1) Aggregating of Ensemble Model: Each model is used to make ictio gPut data after it has been trained. After
that, a SoftMax function is applied to these predictiog f the model for every input sample K, yielding

model, [My] _“ ., is multiplied by the correspondi® ation factOr, ax. Equation 3 is used to add the weighted

x =1’
Bemble model for a particular class. Algorithm 1 describes the
RXity of understanding and implementing. Figure 1 illustrates

accuracies when considering a specific m x stays constant, and Equation 3 is employed to specify the output for a
particular class. The equation for calculgti ble model’s output for a particular class Tk is:

Kp,ensemble = maxy_, (Zzil Ay X [Cg]k' x) 3)

presented weighted ensemble model. First of all, we partitioned our dataset into
t: training, validation, and testing. We load the initial portion, Let D = {(m1, n1), .

el to produce predictions on the validation dataset [V«] kil, wherek=1, 2, ..., g. Once trained,
d using these predictions, which are represented as My. We then compute a parameter 3 to help
eight factor for each model. Next, the predictions of every model are multiplied by this weight factor,

order to use this output for prediction, we first use the argmax function to find the class that the WEM has
or a particular sample. An alternative way to get the same result is to use a SoftMax function to determine the
class from the WEM’s output.

.3 Weighted Ensemble Model

The most popular and straightforward strategy is the model averaging ensemble method. This method uses an average
of the base learners’ output to determine the ensemble model’s final prediction. Merely averaging the ensemble models
enhances the generalization performance by reducing the variance among the models, which is a result of deep learning
architectures’ high variance and low bias. This is due to deep learning models’ propensity to overfit, which results in lower



validation accuracy and higher training accuracy. Deep learning models consequently struggle to generalize to new data.
By averaging the predictions from the various base learners, this is prevented. The variance between the models is
decreased by averaging the predictions, which results in accurate generalization performance.

Algorithm 1:

1.D={(m1,nl),...,(mh,nh)} > Training dataset

2.V={(m1,nl),...,(mg,ng)} D> Validation dataset

4.forx=1tomdo D> Iterate over models

5. Mx > xth model

6. Classify data into n. classes

7.end for =0

Ensemble Model Output Calculation:

1. Output: Cq is a vector of probabilities, k=1 . .. n¢, OutputClassKp, M is a vector defjzd e ut cla p
2. D, dataset; m, number of models; g, number of classes; nc, number of samples i vector.

3. forx=1tomdo

5. Calculate the class probabilities for Vi, k =1 ... g employing model My.

6. [Cqlk,x = Mx(Vi). ,

8. OutputClassVk, My = max[Cglk,x.

9. Calculate the accuracy accx of model Mx on V employing OutpuyftasS@it’ Mx(JF1) g against True-Label.
11. Calculate parameter B = min([accy] x‘i -

12. forx=1tomdo

Ensemble Model Input:

3. T={(m1,nl),...,(mu, nu)} [ Testing dataset

employing model M. w
4. Train model My with dataset D.

7. Calculate the output class of VK for k = 1 to m using [Cg]k,X.

10. end for

13. Estimate weight of model Mx: ox = (accx) — B + N

14. end for
15. Calculate the output of the proposed model for Kp, k = 1.
16. OutputClassKp, ensemble = max ¢ = a, x[(Cy)]kox).

17. Calculate the accuracy acCensemble Utilizj lassKp,ensemble kzl against True-Label.

veraged using the SoftMax function, or the outputs of the base learners
erformance of the base learners is comparable, unweighted averaging makes
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We used hardware reso g model, which included one Tesla K80 GPU with 2496 CUDA cores and 12 GB
of GDDR5 V@AM " sing power was made available by this GPU, which made training and inference

ibraries. We used numpy for effective numerical operations, scikit-learn for a variety of tasks, and
deep learning framework, aided by the Keras high-level API for streamlined model development. Pandas

.2 Dataset Description & Preprocessing

The International Skin Imaging Collaboration (ISIC) dataset, which includes 2357 pictures of benign and malignant
ncological conditions, was used in our study. Except for melanomas and moles, whose images are somewhat predominant,
all images were sorted in accordance with the ISIC classification, and each subset was split into the same number of images.
Actinic keratosis, basal cell carcinoma, dermatofibroma, melanoma, nevus, pigmented benign keratosis, seborrheic
keratosis, squamous cell carcinoma, and vascular lesion are among the diseases included in the data set. Next, we divided
the dataset into two categories: Melanoma and Benign. In Figure 3, the dataset sample is displayed. We have applied



several preprocessing steps in our research. First of all, we have applied the data augmentation technique in our research
to increase the data samples. One popular technique in computer vision tasks is data augmentation, which is creating new
training examples by transforming existing data samples in different ways. There are two main goals for data augmentation.
First of all, it artificially increases the size of the dataset, which is advantageous when working with small amounts of data.
More diverse examples are available to models during training when the dataset size is increased, which improv
performance and robustness, especially for deep learning models. Secondly, by adding noise and variability to the traini
set, data augmentation functions as a type of regularization. This helps avoid overfitting, a phenomenon in which model
fail to learn generalizable patterns and instead memorize the training set. In order to guarantee that there is a sufficien
balance between the classes in our dataset, data augmentation is also applied to it prior to training. When comparg
class with fewer training images, the one with more training images will be biased to obtain higher accuracy. The
were enhanced using an image data generator from Keras preprocessing integrated with TensorFlow. Table |1

augmentation’s parameters. O

Malignant

Benign

Process Name
Rescale
Rotation
Width Shift
Height Shift
Shear
Horizontal Flip True
Vertical Flip True
Fill Mode nearest

Pixel Standardi
prior to fe
by the stan

e well-known Gaussian pixel-standardization method, proper data scaling is also guaranteed
es into the model. Equation 5 describes this technique, which involves dividing the result
of the pixel values in a training image and subtracting the mean pixel value from each pixel.

X = X - ,u.pixel (5)
apixel

is thgibliginal variable, upixel is the mean of the pixel values, and opixel is the standard deviation of the pixel

d a tripartite data division strategy with training, testing, and validation datasets very carefully in our
his approach is essential to guaranteeing our models’ generalizability, robustness, and dependability. To be
ore precise, we divided the dataset into 500 for validation and 500 for testing. This strategy has a complex justification.
First off, model learning and parameter optimization are based on the training dataset. Our models can better identify
nderlying patterns and features and perform better in prediction when they are exposed to a wider variety of samples. To
further strengthen the model’s ability to generalize to new data and reduce overfitting tendencies, the training dataset can
be expanded. On the other hand, the 500-image testing dataset serves as a neutral benchmark for assessing the model’s
performance. We are able to evaluate the extent to which our models generalize to new, unseen data by withholding these
samples during training. This guarantees that the performance metrics acquired are not distorted by overfitting and are

wher



representative of the model’s actual efficacy. In addition, the validation dataset—which consists of an additional
500images—is essential for optimizing model hyperparameters and guarding against data leaks. To effectively optimize
our models without tainting the testing data, we can make iterative adjustments to the model configurations based on
performance metrics on the validation set. Class-wise training, testing and validation samples are shown in Table I1I.

TABLE I1l. CLASS-WISE TRAINING, TESTING AND VALIDATION SAMPLES

Evaluation Metrics Training Testing Validation
Benign 2000 250 250
Melanoma 2000 250 250

4.3 Evaluation Parameters

In the final phase of the suggested ensemble-based model, the aggregated prediction values f;
model are used to predict the lesions class. The accuracy of a model’s class prediction is used
performance. All of the widely used performance metrics—accuracy, precision, recall e,
this evaluation to support the model’s high performance. These metrics are defined b

* Precision: Precision measures the accuracy of positive predictions. It is the ratio 0 Ive predictions to the total
predicted positives.
.. True Positives ,
Precision = — —
True Positives + False Posi e
* Recall (Sensitivity): Recall measures the proportion of actual positiveg e gorrectly identified by the model. It is

the ratio of true positive predictions to the total actual positives.
Recall =

* F-score (F1-score): The F-score is the harmonic
single score that considers both false positives and fals8

F 1-score =

* Accuracy: Accuracy measures the overal @0rre s of the model. Itis the ratio of correct predictions to the total number
of predictions.

rue Positives + True Negatives
ccu -

Total Predictions

IstiC@Measures the agreement between the predicted and actual classifications while
lement occurring by chance.

* Kappa (Cohen’s Kappa);
accounting for the possibilit

Po — Pe
1-Pe

K=

where po is elat bserved agreement, and p. is the hypothetical probability of chance agreement.

tign"Coefficient (MCC): The MCC takes into account true and false positives and negatives and is
ed balanced measure that can be used even if the classes are of very different sizes.

ix: A confusion matrix is a table used to describe the performance of a classification model. It presents
redicted classes in a tabular format, showing correct and incorrect predictions.

der the ROC Curve (AUC): AUC measures the area under the receiver operating characteristic (ROC) curve.
It quantifies the model’s ability to discriminate between positive and negative classes across different thresholds.

AU C = [ TPR (FPR™'(t))dt

Where TPR is the true positive rate, and FPR is the false positive rate.



V. RESULTS AND DISCUSSION

In this section, we will briefly explain our model’s outcomes on the given datasets and compare them with those of other
models that used the same dataset. The performance of ResNet50, InceptionV3, and DenseNet121 on the ISIC dataset
demonstrated variations in testing, training, and validation accuracy.

5.1 Outcomes of Our Innovative Model Implementation

Initially, ResNet50 performed a testing accuracy of 85%, with training and validation accuracies both at 75%, an
this indicated some overfitting, as the model achieved better results and the training data than on unseen testing or valj
data. Overfitting occurs when a model comprehends to memorize the training data rather than generalize pattern;
on to, InceptionV3 performed better, with a testing accuracy of 92%, training accuracy of 96%, and validation acc

97%, and validation accuracy of 92%. In Table IV, we presented the proposed model
training, and validation accuracy.

Model Testing Accuracy Validation Accuracy
ResNet50 85% 5%
InceptionV3 92% 82%
DenseNet121 98% 88%
Weighted Ensemble 98.5% 89%
Average Ensemble 94% 92%
- Pry 3l Recall F-score Accuracy
. . Weighted Average
InceptionV3 DenseNet121 l-nsfmtme u—n.e.emﬁ|e
93% 98% 99% 93.50%
91% 98% 98.50% 95%
92% 98% 98.50% 94%
92% 98% 98.50% 94%

Fig. 4. The evaluation metrics of the models

hat models were trained is the reason for differences in testing, training, and validation accuracy. To minimize
e loss Of the training data, the model modified its parameters during training. Nevertheless, if the model becomes very
specialized to the training set and needs help to generalize to new data, this optimization may result in overfitting. A useful
ool for fine-tuning hyperparameters and preventing overfitting during training was the validation set, which served as a
stand-in for unavailable data. A model’s final capacity to generalize was evaluated by testing accuracy, which is determined
on an entirely independent dataset. Although each model has strengths, DenseNet121 was the most reliable since it
regularly achieved high accuracies on all sets. Ensembles, particularly the weighted ensemble, increased performance even
further, proving that it is effective to integrate different models to enhance overall accuracy and reduce shortcomings.



Among the models assessed, DenseNet121 identified both true positives and false positives with a score of 98%, which
demonstrated its precision and recall. DenseNet121 exhibited consistent and dependable performance throughout the
dataset, as evidenced by its 98% accuracy and F-score, which highlighted the balance between precision and recall.
Comparatively, ResNet50 and InceptionV3 also performed well but less impressively than DenseNet121. InceptionV3
showed slightly higher precision and recall than ResNet50, resulting in a slightly improved accuracy and F-score. Howeve
the Weighted Ensemble model outperformed individual models, reaching a precision of 99% and a recall of 98.50%. T
ensemble model combined the strengths of different architectures, resulting in enhanced overall performance. On the othe
hand, the Average Ensemble, while acting decently with a 94% accuracy, was marginally inferior to the Weighte

capturing all appropriate instances as the Weighted Ensemble. In Figure 4, we showed the evaluation metrics of the
in terms of Precision, Recall, F-score and Accuracy. Although every model performs admirably, the Weighted E
performs better than others, demonstrating the value of mixing several models for optimal results.

In evaluating our ensemble models for the class imbalance dataset, we relied on two robust metrj

complicated accuracy, which is crucial for understanding the effectiveness of our model

presented outstanding agreement between predicted and actual classes, which is ey B i Kappa score of
Nt regarding the
@ects. These metrics not only

97.50%. Furthermore, its MCC value of 97.67% indicated the model’s powerful bir
intricacies of true and false positives and negatives, specifically relevant for imbalancs
deliver an exhaustive evaluation of our proposed ensemble models but also enable informg@&omparisons between various
approaches, assisting in the selection of the most useful solution for our specific pygle pmain. In the table V, we
represented Kappa and MCC values for our two ensemble models. ’

TABLE V. AUGMENTATION TECHNIQUES

Model Kappa
Weighted Ensemble Model 97.50%
Average Ensemble Model 93.19%

97.67%
93.65%

The comparison of our model with other existing wor ensemble models, which are trained on the same dataset, is
shown in Table VI. We are comparing our model with the of odels that haven also used the same dataset. Our proposed
model surpassed existing ensemble models b nsiderable Margin, boasting an outstanding accuracy of 98.50%. While
accuracies ranging from 93% to 97.1%, our model surpassed them
| performed this heightened accuracy while maintaining strong
performance metrics across differe aluation,critga. In essence, the proposed model significantly improves predictive
accuracy compared to specified ense metho0s, making it a convincing choice for applications demanding accurate and
trustworthy predictions.

TABLE VI. COMPAF @ ING MODELS WHICH APPLIED TO THE ISIC DATASET WITH OUR
PROPOSED ENSEMBLE MODEL

Referenc Model Accuracy
[13] Ensemble 93%
[14] Ensemble 97.1%
[15] Ensemble 95.76%
1 Ensemble 97% (ROC-AUC)
P ed M Ensemble 98.50%

y, we evaluated our proposed model against existing works that employed the ISIC dataset. We also evaluated
ur model’s performance on additional datasets to ensure it was robust and broadly applicable across various data sources.
This approach not only strengthens the validity of our results but also shows how our model can be used in situations
utside of the initial training dataset.

In comparing existing models that applied to other datasets, it’s crucial to consider the characteristics of the datasets they
were trained on, which are depicted in Table VII. The HAM10000 dataset is a famous benchmark in dermatology, including
a diverse range of skin lesion images. Models trained on this dataset, such as Efficient Nets and the Deep Learning-Based
model, presented solid performances, with accuracies surpassing 87.91%. However, the accuracy of the Deep Learning-



Based model slightly outperformed the Efficient Nets with 91% accuracy, demonstrating the effectiveness of its
architecture or training procedure. On the other hand, the Biomedical Datasets showed slightly lower accuracy compared
to HAM10000, exhibiting potential differences in image quality or diversity. However, at 87.42%, the performance is still
commendable. Deep-transfer learning provided an outstanding 98.61% accuracy on the PH2 dataset, which is renowned
for its high-quality images and precisely annotated lesions. This represented a considerable improvement in accuracy an
highlighted the effectiveness of employing transfer learning techniques on specialized datasets. Lastly, our proposed IS
Ensemble model demonstrated comparable performance to the PH2 dataset, performing an accuracy of 98.50%. Thi
suggested that the ensemble approach, likely leveraging various models or data sources, can effectively capture and classi
dermatological features. Although every dataset has its unique features and difficulties, models developed using eng
techniques and trained on datasets such as PH2 demonstrate encouraging results in pushing the bound
dermatological image categorization accuracy.

TABLE VII. COMPARING EXISTING MODELS WHICH APPLIED TO THE OTHER DATASET
PROPOSED ENSEMBLE MODEL

Reference Dataset Model

[17] HAM10000 Efficient Nets

[18] HAM10000 Deep Learning-Baseg

[19] Biomedical datasets Deep Learning-Based ] A42%
[20] ph2 dataset Deep Learning-Based 98.61%
Proposed Model ISIC Ensemble 50%

We carefully evaluated our weighted ensemble model’s performance quantitative analysis and graphical
evaluation. We were able to observe the model’s capacity to generals and obtain insights into its learning
dynamics by charting the training and validation accuracies ove In addition to giving us a thorough
understanding of the training procedure, this visualizatig i jer to SPOL any possible overfitting or underfitting.
The epoch-wise evolution of training and validation gg
graphical representation gives important insights i

providing a visual representation of the learning trajec
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Fig. 5. Epoc-wise Training and Validation Accuracy Curve (Weighted ensemble)

patterns of overfitting, underfitting, or ideal model behaviour by examining the convergence or divergence
curves, which helps us make decisions about the optimization and refinement of the model. Notably, our
semble model exhibited a remarkable AUC value of 0.98 in the classification of benign and melanoma skin cancer
classes. The ROC curves for these classes are shown in Figure 6, which
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Fig. 6. AUC value of weighted ensemble mod

highlights the model’s remarkable discriminatory ability. This outstanding demonstrat

ghlights how well our group
method works to distinguish between benign and malignant skin lesions. The confusioi )

of the proposed weighted
Il inCcurately and dependably

0 melanoma samples with extreme
khe model demonstrated exceptional
es. The model made some errors in

ensemble model is shown in Figure 7. Our suggested model performed remarkabl
classifying melanoma samples. The model successfully distinguished ea
precision, demonstrating its resilience in identifying cancerous lesions.
competence in classifying benign samples, correctly classifying 2
classifying the beginning class.

Benign

True Labels

Melanoma

Predicted Labels

Fig. 7. Confusion matrix (Ensemble model)

VII. CONCLUSION

cise prediction of melanoma can greatly reduce mortality rates and increase survival rates. Recent
in disease recognition, specifically in early skin cancer detection, have demonstrated promising results
-Learning models. Our work contributes to this rapidly developing field by presenting a novel Transfer
el with an Ensemble Deep-Learning model designed for the classification of skin cancer. Even though a
models have shown remarkable accuracy rates, issues like unbalanced datasets, a lack of data, and low image
quality still make optimal performance difficult to achieve. Our model seeks to tackle these issues by using augmentation
echniques and overall model robustness enhancement. The discoveries of our study provide useful insights into the
evelopment of more effective skin disease recognition models. Our Transfer Learning model with an Ensemble-Deep
Learning approach presents an optimistic solution to the challenges encountered in the field, aiming to enhance early
detection rates and eventually save lives. Future research should concentrate on extended data augmentation techniques,
analyze the benefit of hyperspectral images for richer data analysis, and work on improving model resilience and



adaptability to various scenarios. Resolving these problems can improve the detection of skin diseases, providing medical
personnel with better resources for accurate and early diagnosis and improving patient outcomes.
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