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Abstract – The rapid increase in population density has posed significant challenges to medical sciences in the auto-

detection of various diseases. Intelligent systems play a crucial role in assisting medical professionals with early disease 

detection and providing consistent treatment, ultimately reducing mortality rates. Skin-related diseases, particularly those 

that can become severe if not detected early, require timely identification to expedite diagnosis and improve patient 

outcomes. This paper proposes a transfer learning-based ensemble deep learning model for diagnosing dermatological 

conditions at an early stage. Data augmentation techniques were employed to increase the number of samples and create a 

diverse data pattern within the dataset. The study applied ResNet50, InceptionV3, and DenseNet121 transfer learning 

models, leading to the development of a weighted and average ensemble model. The system was trained and tested using 

the International Skin Imaging Collaboration (ISIC) dataset. The proposed ensemble model demonstrated superior 

performance, achieving 98.5% accuracy, 97.50% Kappa, 97.67% MCC (Matthews Correlation Coefficient), and 98.50% 

F1 score. The model outperformed existing state-of-the-art models in dermatological disease classification and provides 

valuable support to dermatologists and medical specialists in early disease detection. Compared to previous research, the 

proposed model offers high accuracy with lower computational complexity, addressing a significant challenge in the 

classification of skin-related diseases. 
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I. INTRODUCTION 

Skin cancer is a leading health concern globally, ranking as the second most common reason for death after heart disease. It 

is currently the 19th most typical cancer worldwide, with a concerning increase in incidences, and its rising incidence makes 

it a serious threat. This particular type of cancer grows when skin cells proliferate out of control, which results in the 

formation of malignancies. Melanoma and non-melanoma are the two primary types of skin cancers. Squamous cell 

carcinoma and basal cell carcinoma are the two most prevalent non-melanoma tumours. The primary cause of both 

melanoma and non-melanoma skin cancer is exposure to too much specific light, such as tanning beds or the sun’s ultraviolet 

rays. Sunburn is associated with melanoma risk regardless of age: the more sunburned during childhood, adolescence, or 

young adulthood, the more significant the exposure. Our daily lives expose us to a variety of contaminants and hazardous 

substances that might affect our skin, which is the largest organ in the body. The skin is the body’s outer organ that covers 

it and carries out several essential functions, including temperature regulation, organ protection, sweating out toxins to 

detoxify the body, fluid preservation, and organ protection. Environmental elements such as carcinogenic chemicals, the 

sun’s UV radiation, and inflammatory agents are known to contribute to skin problems and cancers. Skin cancer has been 

growing worldwide due to increasing exposure to human-made pollutants and UV radiation. Scientists have found that a 

variety of environmental contaminants create reactive oxygen species (ROS), which can lead to oxidative stress, genetic 

damage, and abnormalities in our body’s redox system. Though skin-related diseases are common, they can be difficult to 

diagnose and treat and have a big influence on a person’s health. These conditions are directly related to an individual’s 

general health and surroundings, including wool, particular foods, soaps, pet hair, and foods. These elements have the 

potential to activate the immune system and cause symptoms, including discomfort, redness, and itching. Skin problems can 

affect people of any age or gender. However, skin diseases continue because of problems with healthcare systems and a lack 

of resources to deal with these issues. It might be difficult to identify different types of skin cancer accurately, so specialists 

with knowledge in this field are needed [1]. The worrying findings around skin cancer under- score the importance of 

prevention and the need to take preventative measures. Common methods for diagnosing skin cancer include physical 
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inspection, noninvasive dermoscopic, and biopsy of any concerning lesions. After the biopsy procedure, the malignant status 

of the sample was determined by microscopic analysis. If the biopsy confirms that cancer is present, further tests may be 

done to determine its exact type and extent. Depending on the type and stage of cancer, skin cancer treatment options may 

include surgery, radiation therapy, chemotherapy, immunotherapy, or other methods. The primary treatment option for early-

stage skin cancer is surgical removal of the malignant lesion, which is frequently beneficial in treating the condition. 

Chemotherapy, immunotherapy, and radiation therapy are used to treat cancer that has spread to other anatomical areas, as 

well as metastatic cutaneous cancer [2].  

Image processing is essential for accurately identifying medical images since it can extract important information that 

helps with the process. The process has multiple interrelated steps, which begin with improving the image quality using 

methods such as edge improvement, contrast enhancement, color correction, and lighting correction. Region growth, 

thresholding, and active contour modelling are some of the approaches used by image segmentation algorithms to split an 

image into regions of interest. Expert dermatologists obtain 50% to 60% accuracy rates in manual examinations [3], which 

indicates that more dependable techniques are required. Noise in dermoscopic images, such as hair, air bubbles, and other 

artefacts, in addition to lighting effects, can make skin cancer identification more challenging. It is essential to design an AI 

system which capable of autonomously identifying skin cancer from dermoscopic images. Pre-processing is essential for 

developing a system that removes artefacts like hair and increases image quality. Scientists have created many pre-processing 

methods, such as image inpainting, to match the values of nearby hair pixels. These methods are based on morphological 

operations and contrast enhancement. The ABCD rule and the seven-point checklist are two common tools used to identify 

features in dermoscopic images. The ABCD rule considers four factors: the skin lesion diameter, color change, border 

framework, and asymmetry.  

The detection and classification of skin cancer have benefited greatly in recent years by applying the techniques of deep 

learning (DL) and machine learning (ML) [4]. Algorithms such as decision trees, support vector machines (SVMs), and DL 

are essential to dermatology because they can analyze large amounts of data that include images of the skin. After all 

necessary steps have been completed, ML and DL models are used to classify the final output accurately. These methods 

work together to provide an accurate and trustworthy cancer classification. ML and DL techniques are superior to older 

methods in a number of ways when it comes to the detection and classification of skin cancer. Although the majority of the 

work was exceptional in accuracy, there are some overfitting issues, and the model might be working well for particular 

classes. We are making an effort to fill those gaps. As skin cancer becomes more common worldwide, research is 

concentrated on enhancing the early diagnosis of skin diseases. This drives our goal of providing medical professionals with 

better tools so they can diagnose patients earlier and possibly save lives. The pressing need to increase diagnostic accuracy 

especially in the case of skin cancer, where early diagnosis greatly enhances patient outcomes motivates this research. The 

study’s principal contribution is as follows: 

• We have designed an Ensemble Deep-Learning model to classify skin cancer. 

• We employed data augmentation techniques to enhance the dataset size and improve generalization, robustness to 

variability, balance classes, and reduction of annotation. 

• We executed several experiments, including operating different combinations of base learners, which improved the 

overall accuracy. 

• We discovered that skin cancer classification could be efficiently performed by ensemble learning and transfer 

learning models. 

• We fine-tuned the transfer learning models as base learners. 

• Our proposed model not only enhances accuracy but also significantly streamlines computational processes, paving 

the way for seamless deployment. 

This paper has been organized into multiple sections. First, we will review the existing methods for identifying skin 

cancer in Section II. Then, in Section III, we will provide an overview of our methodological statement. In Section IV, we 

briefly discuss the experimental setup for our model implementation. The experimental results of the models we have 

employed will be presented in Section V. Ultimately, we will showcase our research findings in Section VI 

 

II. LITERATURE REVIEW 

Over the years, a number of researchers have conducted numerous studies to improve the efficacy in the field of classifying 

skin cancer. Here are a few noteworthy and current works on this particular area of skin cancer research. 

Naeem et al. [5] proposed SNC Net, A novel technique to automatically identify eight different forms of skin cancer 

from dermoscopic images. They combined DL models and handcrafted (HC) feature extraction to improve classification 

accuracy. SNC Net, which was trained on the ISIC 2019 dataset, achieved an accuracy of 97.81%, precision of 98.31%, 

recall of 97.89%, and F1 score of 98.10%, outperforming four baseline models and six state-of-the-art (SOTA) classifiers. 

Monica et al. [6] presented an automated framework to improve the early detection of Melanoma Skin Cancer (MSC) by 

handling challenges in analyzing dermoscopic images. They incorporated normalization techniques, precise segmentation 

employing mask-faster RCNN, and feature extraction with pre-trained CNN models. The modified GRU model, combining 

swish-ReLU activation, performed exceptional accuracies of 99.95% and 99.98% on ISIC 2020 and HAM 10000 datasets, 

respectively, outperforming conventional methods. 
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Campos et al. [7] proposed a unique treatment approach for non-melanoma skin cancer (NMSC) employing a variety of 

photothermal and chemotherapeutic techniques. MoS2 nanoparticles are used as a photothermal agent, and these 

nanoparticles are synthesized utilizing a liquid-phase exfoliation and intercalation technique with polyvinylpyrrolidone 

(PVP), performing in an average particle size of 165 ± 170 nm after ultrasonication treatment. Experimental outcomes 

confirmed that MoS2 nanosheets efficiently convert near-infrared (NIR) light into heat, acquiring temperatures of 52°C. 

MoS2 (125 μg/mL) and Tegafur (50 μg/mL) therapeutic dosages were combined and adjusted into a Carbopol hydrogel. 

Metabolic activity tests on normal human fibroblasts (HFF-1 cells) showed that they did not drop below the 70% toxicity 

threshold. However, metabolic activity dramatically dropped in skin cancer cells A-431. Notably, the integrated MoS2 + 

Tegafur hydrogels lead to a 1.9-fold reduction in A-431 cancer cell metabolic activity 72 hours after irradiation 

corresponding to MoS2 alone. 

Rahman et al. [2] presented an optimized DCNN-based model for accurately classifying skin cancer as melanoma or 

non- melanoma employing dermoscopic images. Adding more data and an additional basic layer to the NASNet architecture 

to manage inconsistent and partial data is where the uniqueness lies. The proposed approach produced encouraging outcomes 

with a dataset of 2637 skin image captures. Precision, sensitivity, specificity, F1-score, and area under the ROC curve were 

examples of evaluation measures. After optimization, the Adam optimizer generated 85.62% and 83.98% accuracy for the 

NASNet Mobile and NASNet Large models, respectively. Naeem et al. [8] introduced DVFNet, a DL-based approach for 

detecting skin cancer from dermoscopy images. DVFNet coalesced VGG19 architecture and Histogram of Oriented 

Gradients (HOG) for discriminative feature extraction, improving accuracy. Pre-processing with anisotropic diffusion 

enhanced image quality, while SMOTE Tomek addresses imbalanced image classes. Damaged skin cell locations can be 

identified with the use of segmentation, and using HOG and VGG19 features, a feature vector map is generated. CNN 

classification gained 98.32% accuracy on the ISIC 2019 dataset and ANOVAstatistical test validated model accuracy. 

AlSadhan et al. [2] investigated the significance of four unified convolutional neural networks (YOLOv3, YOLOv4, 

YOLOv5, and YOLOv7) in classifying skin lesions for earlier and proper diagnosis of skin cancer. Each of the models was 

tested in terms of lesion localization, classification accuracy, and inference time using a benchmark dataset. Notably, 

YOLOv7 surpassed the other models with an IoU of 86.3%, mAP of 75.4%, F1-measure of 80%, and an inference time of 

0.32 seconds per image. Kousis et al. [10] addressed the continuing challenge of properly recognizing skin cancer from 

medical images, con- centrating on developing a mobile application employing a single DL model. Then, 11 CNN 

architectures were trained and tested on the HAM10000 dataset, using techniques such as data augmentation, transfer 

learning, and fine-tuning to embed imbalances and likenesses between lesions. DenseNet169 appeared as the top-performing 

model, performing an accuracy of 92.25%, recall of 93.59%, and F1-score of 93.27%. A light version of DenseNet169 was 

incorporated into a mobile application, permitting users to classify lesions as benign or malignant operating their device’s 

camera. Furthermore, based on UV radiation, skin phototype, and sunscreen use, the app offered information on safe sun 

exposure. 

Rajesh et al. [11] used the HAM10000 dataset to train Deep Convolutional Neural Networks (DCNNs), which were 

optimized from the successful ImageNet dataset for classifying seven different types of skin lesions. They concentrated on 

Inception V3 and DenseNet 201 architectures. Inception V3 achieved 85.94% accuracy, DenseNet 201 reached 87.42% 

accuracy, and an ensemble model incorporating both performed 85.94% accuracy. In the validation, DenseNet 201 

performed better in the test set with an accuracy rate of 87.42%, while Inception V3 just slightly surpassed DenseNet 201 

over 20 epochs. Sivakumar et al. [12] introduced an automated diagnostic model and web application for identifying 

Malignant Melanoma Cancer, discoursing the demand for more efficient and precise diagnostic mechanisms for skin 

diseases. They used a convolutional neural network (CNN) with ResNet50 for data collection, preprocessing, segmentation, 

feature extraction, and classification. Novel preprocessing processes and mixed hybrid pooling phases improved accuracy 

by eradicating noise and enhancing spectral image information. Performance analysis demonstrated the model performed 

with 94% accuracy and an F1-score of 93.9% on the ISIC dataset, presenting noteworthy advancement over traditional 

methods [9]. Furthermore, in comparison to current methods, the corresponding online application expedited diagnosis with 

accurate information, automating the categorization process and lowering the possibility of misdiagnosis. 

After the comprehensive research, we identified specific constraints connected to skin cancer – 

• The existing datasets have some drawbacks, such as an excess of tiny lesions, which make it challenging to train 

the algorithms due to limited diversity and high-class imbalance. 

• Although advancement has been made in the field, the datasets still need to be scaled up through comprehensive 

data augmentation and analysis of improved imaging data. 

• While algorithms have individual strengths, the challenge of optimization and generalization poses a considerable 

gap in their applicability. Furthermore, the computational complexity of the deep learning model is a major 

challenge. 

• Significant accuracy limits exist when extracting features from skin lesions, which creates an extensive gap in 

accuracy and reliability. 

• Despite progress, frameworks still need work to acquire high efficiency in terms of time and memory usage, 

contextual understanding, and trade-off between accuracy and speed. These gaps represent noteworthy limitations 

in the frameworks’ computational efficiency and scalability. 
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III. MATERIALS AND METHODS 

In this paper, we present a unique method for classifying skin image data employing an ensemble approach, as 

demonstrated in Fig 1. This method can be extended to enclose any group of models within an ensemble. The next sections 

go into further detail about our innovative approach. 

 

Base Learners 

The procedure of selecting base learners can vary depending on the difficulty at hand. Still, the primary objective is to 

choose the most appropriate models for the assigned problem. For our classification task, we opted for three distinctive 

pre-trained CNN models: ResNet50, InceptionV3, and DenseNet121 [21]. DenseNet-121 is a DenseNet variant that uses 

densely connected blocks to improve information flow throughout the network, making it suitable for tasks like image 

classification on the ImageNet dataset. DenseNet improves gradient flow and feature reuse by concatenating feature maps 

instead of summing them, in contrast to conventional feed-forward neural networks. Richer feature representations are 

fostered by this concatenation mechanism, which guarantees that each layer has direct access to the gradients from all 

previous layers. The model is composed of Dense Blocks, where the growth rate hyperparameter determines how many 

feature maps each layer within a block adds to the collective knowledge. Transition Blocks employ 1x1 convolutions, 2x2 

pooling layers, and batch normalization to enable downsampling and dimensionality reduction. DenseNet-121 divides the 

volume and feature maps in half after each Transition Block, but the volume inside a Dense Block stays constant [22]. A 

1x1 convolution shrinks the size of each feature map inside a Dense Layer, and a 3x3 convolution with the number of 

feature maps growing at a constant pace comes next. The volume of input and the output of these operations are then 

concatenated, thereby continuously improving the network's collective knowledge. To achieve state-of-the-art performance 

in image classification tasks, the DenseNet-121 model uses dense connectivity to leverage iteratively improve its 

representations. Microsoft Research created ResNet50, a deep convolutional neural network architecture that is well-known 

for its remarkable performance in image classification tasks, in 2015. It has 50 layers and adds residual connections so that 

deeper networks can be trained without worrying about vanishing gradient problems. Convolutional layers, identity blocks, 

convolutional blocks, and fully connected layers are the four primary parts of the architecture [23]. Convolution, batch 

normalization, and ReLU activation are the methods used by convolutional layers to extract features from input images. 

Max pooling is then used to reduce spatial dimensions. Convolutional neural network (CNN) architecture InceptionV3, 

which is optimized for image classification, is a major advancement over the Inception model, which is its predecessor. 

Finding a balance between classification accuracy and computational efficiency is its main objective. 

The core idea behind InceptionV3 is "Inception modules", which are essential parts that include max-pooling operations 

and convolutional filters with different sizes (1x1, 3x3, and 5x5). The network can efficiently capture features at various 

spatial scales in a single layer thanks to this amalgamation. Furthermore, InceptionV3 employs a number of architectural 

techniques designed to reduce the number of parameters and computational overhead without sacrificing the quality of its 

representation. For example, dimensionality reduction is achieved through the widespread use of 1x1 convolutions, which 

reduces computational complexity. Furthermore, huge convolutions are divided into smaller ones using methods like 

factorization, which reduces the number of parameters even more. These models are broadly acknowledged CNN 

architectures comprehended for their state-of-the-art performance. Each of these models includes exceptional structural 

properties, giving them different abilities to generalize the given allocation. 

 

Weighted Ensemble Model 

After every model has been selected, each is trained independently on the dataset, and their corresponding accuracy 

percentages, which are accx recorded on a validation set. It is notable that during training, this validation set is not used. 

The models learn the same underlying distribution differently due to their heterogeneous nature and use of multiple hyper-

parameters. These models are trained continuously until they reach convergence or until there is no further decrease in the 

loss value. Subsequently, after training, the models undergo evaluation using a validation dataset, where their accuracies 

are measured and recorded. These recorded accuracies are then employed to estimate the weight factor αx for every 

respective model, utilizing Equations (1) and (2). Here, x varies from 1 to a, where ’a’ represents the entire number of 

models. In Equation (2), we increment 1 to αx because ’β’ describes the accuracy of the least accurate model. It secures 

that the weight αx for the least accurate model equals 1 by adding 1 when it is inserted into 1. The least accurate model 

might be excluded if this adjustment was made because it would not have a substantial impact on the ensemble model’s 

final result. These recorded accuracies are then used to calculate the weight factor αx for each respective model employing 

the following equations: 

 

 𝑎𝑥  =  𝑎𝑐𝑐𝑥  – β + 1, x=1 …………... a  (1) 

 

 β = min ([𝑎𝑐𝑐𝑥] 
𝑎

𝑥 =1
)  (2) 
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Fig 1. Proposed Weighted Ensemble Model for Skin Cancer Classification. 

 

Aggregating of Ensemble Model 

Each model is used to make predictions for input data after it has been trained. After that, a SoftMax function is applied to 

these predictions, the output of the model for every input sample Kp yielding probability vectors denoted by Cg, where g is 

the number of classes, ranging from 1 to nc. After then, the output of each model, [Mx] 
𝑎

𝑥 =1
, is multiplied by the 

corresponding multiplication factor, αx. Equation (3) is used to add the weighted probability from each model to generate 

the output of the ensemble model for a particular class. Algorithm 1 describes the weighted ensemble model algorithm, 

which reduces the complexity of understanding and implementing. Fig 1 illustrates the diverse multiplying factors (αx) for 

each model, characterized by different colored lines that are specified by individual accuracies when considering a specific 

model, αx stays constant, and Equation (3) is employed to specify the output for a particular class. The equation for 

calculating the ensemble model’s output for a particular class Tk is: 

 

 OutputClass 𝐾𝑝,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝑚𝑎𝑥𝑥=1
𝑎  (∑ 𝑎𝑥  𝑥𝑛𝑐

𝑘=1  [𝐶𝑔]𝑘, 𝑥)  (3) 

 

Algorithm 1 delineates the steps for our presented weighted ensemble model. First of all, we partitioned our dataset into 

three distinct parts in order to prepare it: training, validation, and testing. We load the initial portion, Let D = {(m1, n1), . 

. ., (mh, nh)} where xk is the set of feature vectors and yi the connected labels, as the training dataset D. The residual amount 

is divided into two groups: the testing set T and the validation set V. The number of models, denoted by M (in our case, M 

= 3), we utilized every model to produce predictions on the validation dataset [Vk] 
𝑔

𝑘 =1
, where k = 1, 2, . . ., g. Once trained, 

each model makes predictions on the validation dataset V, producing predictions Vk for i= 1 to m. The accuracy of each 

model is then calculated using these predictions, which are represented as Mx. We then compute a parameter β to help 

determine αx the weight factor for each model. Next, the predictions of every model are multiplied by this weight factor, 

αx. After combining the weighted predictions from each model, the proposed weighted ensemble model (WEM) is 

generated. In order to use this output for prediction, we first use the argmax function to find the class that the WEM has 

predicted for a particular sample. An alternative way to get the same result is to use a SoftMax function to determine the 

class from the WEM’s output. 

 

Weighted Ensemble Model 

The most popular and straightforward strategy is the model averaging ensemble method. This method uses an average of 

the base learners’ output to determine the ensemble model’s final prediction. Merely averaging the ensemble models 

enhances the generalization performance by reducing the variance among the models, which is a result of deep learning 

architectures’ high variance and low bias. This is due to deep learning models’ propensity to overfit, which results in lower 

validation accuracy and higher training accuracy. Deep learning models consequently struggle to generalize to new data. 

By averaging the predictions from the various base learners, this is prevented. The variance between the models is 

decreased by averaging the predictions, which results in accurate generalization performance. 

 

Algorithm 1 

Ensemble Model Input 

1. D = {(m1, n1), . . . , (mh, nh)}   ▷ Training dataset 

2. V = {(m1, n1), . . . , (mg, ng)}   ▷ Validation dataset 

3. T = {(m1, n1), . . . , (mu, nu)}    ▷ Testing dataset 

4. for x = 1 to m do                        ▷ Iterate over models 

5. Mx                                              ▷ xth model 

6. Classify data into nc classes 

7. end for = 0 
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Ensemble Model Output Calculation  

1. Output: Cg is a vector of probabilities, k = 1 . . . nc, OutputClassKp, M is a vector defining the output class of Kp 

employing model M. 

2. D, dataset; m, number of models; g, number of classes; nc, number of samples in Kp; Vk, input vector. 

3. for x = 1 to m do 

4. Train model Mx with dataset D. 

5. Calculate the class probabilities for Vk, k = 1 . . . g employing model Mx. 

6. [Cg]k,x = Mx(Vk). 

7. Calculate the output class of Vk for k = 1 to m using [Cg]k,x. 

8. OutputClassVk, Mx = max[Cg]k,x. 

9. Calculate the accuracy accx of model Mx on V employing  OutputClassVk, Mx(k=1) g against True-Label.  

10. end for  

11. Calculate parameter β = min([accx] 
𝑎

𝑥 =1
).  

12. for x = 1 to m do  

13. Estimate weight of model Mx: αx = (accx) − β + 1.  

14. end for  

15. Calculate the output of the proposed model for Kp, k = 1 . . . n.  

16. OutputClassKp, ensemble = max 
𝑎

𝑥 =1
=1 ∑ 𝑎𝑥  𝑥[(𝐶𝑔)]𝑘, 𝑥𝑛𝑐

𝑘=1 ).  

17. Calculate the accuracy accensemble utilizing OutputClassKp,ensemble    
𝑛

𝑘 =1
 against True-Label.  

════════════════════════════════════════════════════════════════════ 

 

Either the predicted probabilities of the classes are averaged using the SoftMax function, or the outputs of the base 

learners are directly averaged. In situations where the performance of the base learners is comparable, unweighted 

averaging makes sense. It is possible to improve overall performance because some learners may perform poorly overall 

but perform exceptionally well when classifying particular subclasses. The adaptive meta- learner should be able to 

combine the strengths of the base learners in an adaptive manner. Additionally, to illustrate the variance reduction through 

averaging, the variance of the ensemble prediction Var[prediction] can be calculated as: 

 

 Var[Prediction] = 
1

𝑁2  ∑ 𝑉𝑎𝑟 [𝑝𝑖]  +  ∑ ∑ 𝐶𝑜𝑣 [𝑝𝑖, 𝑝𝑗]𝑁
𝑗=1,𝑗,𝑗≠𝑖

𝑁
𝑖=1  𝑁

𝑖=1  
1

𝑁2  (4) 

 

where Var[pi] denotes the variance of the probability vector output by model i and Cov[p i, pj ] denotes the covariance 

between the probability vectors output by models i and j.The architecture of the average ensemble model is shown in Fig 

2. The hyperparameters and their values of the ensemble models are shown in Table 1. 

 

 
Fig 2. Average Ensemble Model for Skin Cancer Classification. 
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Table 1. Hyperparameters and Values 

Hyperparameters Value 

Base learners Transfer learning 

Batch size 128 

Epochs 15 

Input image 299*299 

Hidden activation Relu 

Output activation SoftMax 

Loss Categorical Cross entropy 

Optimizer Adam 

Trainable parameters 5022805 

 

IV. EXPERIMENTAL SETUP 

Implementation & Hardware Specifications 

We used hardware resources for our model, which included one Tesla K80 GPU with 2496 CUDA cores and 12 GB of 

GDDR5 VRAM. Significant processing power was made available by this GPU, which made training and inference 

procedures more effective. In addition to the GPU, our system included a 2.3 GHz Xeon CPU with 4 cores and 8 threads 

to facilitate the efficient completion of tasks involving computationally demanding tasks. We also made use of the 12 GB 

of RAM that was available to store and manipulate data for model training and assessment. In terms of storage, our system 

managed model files and datasets with 2 GB of disk space. A wide range of tools improved our model implementation in 

terms of software and libraries. We used numpy for effective numerical operations, scikit-learn for a variety of tasks, and 

TensorFlow as the deep learning framework, aided by the Keras high-level API for streamlined model development. Pandas 

also made preprocessing and data manipulation easier, which improved the productivity of our workflow. Together, these 

software elements enabled scalable and reliable performance during the development and implementation of our model. 

 

Dataset Description & Preprocessing 

The International Skin Imaging Collaboration (ISIC) dataset, which includes 2357 pictures of benign and malignant 

oncological conditions, was used in our study. Except for melanomas and moles, whose images are somewhat predominant, 

all images were sorted in accordance with the ISIC classification, and each subset was split into the same number of images. 

Actinic keratosis, basal cell carcinoma, dermatofibroma, melanoma, nevus, pigmented benign keratosis, seborrheic 

keratosis, squamous cell carcinoma, and vascular lesion are among the diseases included in the data set. Next, we divided 

the dataset into two categories: Melanoma and Benign. In Fig 3, the dataset sample is displayed. We have applied several 

preprocessing steps in our research. First of all, we have applied the data augmentation technique in our research to increase 

the data samples. One popular technique in computer vision tasks is data augmentation, which is creating new training 

examples by transforming existing data samples in different ways. There are two main goals for data augmentation. First 

of all, it artificially increases the size of the dataset, which is advantageous when working with small amounts of data. 

More diverse examples are available to models during training when the dataset size is increased, which improves 

performance and robustness, especially for deep learning models. Secondly, by adding noise and variability to the training 

set, data augmentation functions as a type of regularization. This helps avoid overfitting, a phenomenon in which models 

fail to learn generalizable patterns and instead memorize the training set. In order to guarantee that there is a sufficient 

balance between the classes in our dataset, data augmentation is also applied to it prior to training. When compared to a 

class with fewer training images, the one with more training images will be biased to obtain higher accuracy. The images 

were enhanced using an image data generator from Keras preprocessing integrated with TensorFlow. Table 2 lists the 

augmentation’s parameters. 

 

 
Fig 3. Sample of the Dataset. 
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Table 2. Augmentation Techniques of Training Images 

Process Name Value 

Rescale 1/255 

Rotation 10 

Width Shift 0.2 

Height Shift 0.2 

Shear 0.2 

Horizontal Flip True 

Vertical Flip True 

Fill Mode nearest 

 

Pixel Standardization 

Using the well-known Gaussian pixel-standardization method, proper data scaling is also guaranteed prior to feeding the 

training images into the model. Equation 5 describes this technique, which involves dividing the result by the standard 

deviation of the pixel values in a training image and subtracting the mean pixel value from each pixel. 

 

 X = 
𝑋 − 𝜇𝑝𝑖𝑥𝑒𝑙

𝜎𝑝𝑖𝑥𝑒𝑙
  (5) 

 

where X is the original variable, μpixel is the mean of the pixel values, and σpixel is the standard deviation of the pixel 

values. We used a tripartite data division strategy with training, testing, and validation datasets very carefully in our 

research. This approach is essential to guaranteeing our models’ generalizability, robustness, and dependability. To be 

more precise, we divided the dataset into 500 for validation and 500 for testing. This strategy has a complex justification. 

First off, model learning and parameter optimization are based on the training dataset. Our models can better identify 

underlying patterns and features and perform better in prediction when they are exposed to a wider variety of samples. To 

further strengthen the model’s ability to generalize to new data and reduce overfitting tendencies, the training dataset can 

be expanded. On the other hand, the 500-image testing dataset serves as a neutral benchmark for assessing the model’s 

performance. We are able to evaluate the extent to which our models generalize to new, unseen data by withholding these 

samples during training. This guarantees that the performance metrics acquired are not distorted by overfitting and are 

representative of the model’s actual efficacy. In addition, the validation dataset—which consists of an additional 

500images—is essential for optimizing model hyperparameters and guarding against data leaks. To effectively optimize 

our models without tainting the testing data, we can make iterative adjustments to the model configurations based on 

performance metrics on the validation set. Class-wise training, testing and validation samples are shown in Table 3. 

 

Table 3. Class-Wise Training, Testing and Validation Samples 

Evaluation Metrics Training Testing Validation 

Benign 2000 250 250 

Melanoma 2000 250 250 

 

Evaluation Parameters 

In the final phase of the suggested ensemble-based model, the aggregated prediction values for each class in each model 

are used to predict the lesions class. The accuracy of a model’s class prediction is used to assess classification performance. 

All of the widely used performance metrics—accuracy, precision, recall, f1-score, and AUC—are used in this evaluation 

to support the model’s high performance. These metrics are defined below. 

 

Precision 

Precision measures the accuracy of positive predictions. It is the ratio of true positive predictions to the total predicted 

positives. 

 

 Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (6) 

 

Recall (Sensitivity) 

Recall measures the proportion of actual positives that were correctly identified by the model. It is the ratio of true positive 

predictions to the total actual positives. 

 

 Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (7) 
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F-score (F1-score) 

The F-score is the harmonic mean of precision and recall. It balances both measures and provides a single score that 

considers both false positives and false negatives. 

 

 F 1-score = 
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (8) 

 

Accuracy 

Accuracy measures the overall correctness of the model. It is the ratio of correct predictions to the total number of 

predictions. 

 

 Accuracy = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  (9) 

 

Kappa (Cohen’s Kappa) 

Kappa statistic measures the agreement between the predicted and actual classifications while accounting for the possibility 

of the agreement occurring by chance. 

 

 K = 
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
  (10) 

 

where po is the relative observed agreement, and pe is the hypothetical probability of chance agreement. 

 

Matthews Correlation Coefficient (MCC) 

The MCC takes into account true and false positives and negatives and is generally regarded as a balanced measure that 

can be used even if the classes are of very different sizes. 

 

Confusion Matrix 

A confusion matrix is a table used to describe the performance of a classification model. It presents the actual and predicted 

classes in a tabular format, showing correct and incorrect predictions. 

 

Area Under the ROC Curve (AUC) 

AUC measures the area under the receiver operating characteristic (ROC) curve. It quantifies the model’s ability to 

discriminate between positive and negative classes across different thresholds. 

 

 AU C = ∫ 𝑇𝑃𝑅 (𝐹𝑃𝑅−1(𝑡))𝑑𝑡
1

0
  (11) 

 

Where TPR is the true positive rate, and FPR is the false positive rate. 

 

V. RESULTS AND DISCUSSION 

In this section, we will briefly explain our model’s outcomes on the given datasets and compare them with those of other 

models that used the same dataset. The performance of ResNet50, InceptionV3, and DenseNet121 on the ISIC dataset 

demonstrated variations in testing, training, and validation accuracy. 

 

Outcomes of Our Innovative Model Implementation 

Initially, ResNet50 performed a testing accuracy of 85%, with training and validation accuracies both at 75%, and this 

indicated some overfitting, as the model achieved better results and the training data than on unseen testing or validation 

data. Overfitting occurs when a model comprehends to memorize the training data rather than generalize patterns. Move 

on to, InceptionV3 performed better, with a testing accuracy of 92%, training accuracy of 96%, and validation accuracy of 

82%. While the training accuracy was heightened, the testing and validation accuracies were relatively down, suggesting 

some degree of overfitting. Then, DenseNet121 stood out with increased accuracies across all sets: testing at 98%, training 

at 98%, and validation at 88%. This indicated that the model learns representations that generalize well to unseen data, 

underestimating overfitting. Finally, when evaluating ensembles, both weighted and average, they display enhanced testing 

accuracies corresponding to individual models. The weighted ensemble performed the most increased testing accuracy of 

98.5%, with training and validation accuracies also at 98.5% and 89%, respectively. The average ensemble, while not as 

higher as the weighted ensemble, still exceeded individual models with a testing accuracy of 94%, training accuracy of 

97%, and validation accuracy of 92%. In Table 4, we presented the proposed model’s performance in terms of testing, 

training, and validation accuracy. 
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Table 4. The Proposed Model’s Performance in Terms of Testing, Training, and Validation Accuracy 

Model Testing Accuracy Training Accuracy Validation Accuracy 

ResNet50 85% 75% 75% 

InceptionV3 92% 96% 82% 

DenseNet121 98% 98% 88% 

Weighted Ensemble 98.5% 98.5% 89% 

Average Ensemble 94% 97% 92% 

 

 
Fig 4. The Evaluation Metrics of The Models. 

 

The way that models were trained is the reason for differences in testing, training, and validation accuracy. To minimize 

the loss of the training data, the model modified its parameters during training. Nevertheless, if the model becomes very 

specialized to the training set and needs help to generalize to new data, this optimization may result in overfitting. A useful 

tool for fine-tuning hyperparameters and preventing overfitting during training was the validation set, which served as a 

stand-in for unavailable data. A model’s final capacity to generalize was evaluated by testing accuracy, which is determined 

on an entirely independent dataset. Although each model has strengths, DenseNet121 was the most reliable since it 

regularly achieved high accuracies on all sets. Ensembles, particularly the weighted ensemble, increased performance even 

further, proving that it is effective to integrate different models to enhance overall accuracy and reduce shortcomings. 

Among the models assessed, DenseNet121 identified both true positives and false positives with a score of 98%, which 

demonstrated its precision and recall. DenseNet121 exhibited consistent and dependable performance throughout the 

dataset, as evidenced by its 98% accuracy and F-score, which highlighted the balance between precision and recall. 

Comparatively, ResNet50 and InceptionV3 also performed well but less impressively than DenseNet121. InceptionV3 

showed slightly higher precision and recall than ResNet50, resulting in a slightly improved accuracy and F-score. However, 

the Weighted Ensemble model outperformed individual models, reaching a precision of 99% and a recall of 98.50%. This 

ensemble model combined the strengths of different architectures, resulting in enhanced overall performance. On the other 

hand, the Average Ensemble, while acting decently with a 94% accuracy, was marginally inferior to the Weighted 

Ensemble. It achieved a precision of 93.50% and a recall of 95%, suggesting that it may need to be more practical in 

capturing all appropriate instances as the Weighted Ensemble. In Fig 4, we showed the evaluation metrics of the models 

in terms of Precision, Recall, F-score and Accuracy. Although every model performs admirably, the Weighted Ensemble 

performs better than others, demonstrating the value of mixing several models for optimal results.  

In evaluating our ensemble models for the class imbalance dataset, we relied on two robust metrics: Kappa and MCC 

(Matthews Correlation Coefficient). These metrics present subtle insights into classification performance beyond un- 

complicated accuracy, which is crucial for understanding the effectiveness of our models. The Weighted Ensemble Model 

presented outstanding agreement between predicted and actual classes, which is evidenced by its high Kappa score of 

97.50%. Furthermore, its MCC value of 97.67% indicated the model’s powerful binary classification quality regarding the 
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intricacies of true and false positives and negatives, specifically relevant for imbalanced datasets. These metrics not only 

deliver an exhaustive evaluation of our proposed ensemble models but also enable informed comparisons between various 

approaches, assisting in the selection of the most useful solution for our specific problem domain. In the Table 5, we 

represented Kappa and MCC values for our two ensemble models. 

 

Table 5. Augmentation Techniques of Training Images 

Model Kappa MCC Value 

Weighted Ensemble Model 97.50% 97.67% 

Average Ensemble Model 93.19% 93.65% 

 

The comparison of our model with other existing work on ensemble models, which are trained on the same dataset, is 

shown in Table 6.  We are comparing our model with the other models that haven also used the same dataset. Our proposed 

model surpassed existing ensemble models by a considerable margin, boasting an outstanding accuracy of 98.50%. While 

the existing ensemble models demonstrated admirable accuracies ranging from 93% to 97.1%, our model surpassed them 

with a significant improvement. Moreover, our model performed this heightened accuracy while maintaining strong 

performance metrics across different evaluation criteria. In essence, the proposed model significantly improves predictive 

accuracy compared to specified ensemble methods, making it a convincing choice for applications demanding accurate and 

trustworthy predictions. 

 

Table 6. Comparing Existing Models Which Applied to The ISIC Dataset with Our Proposed Ensemble Model 

Reference Model Accuracy 

[13] Ensemble 93% 

[14] Ensemble 97.1% 

[15] Ensemble 95.76% 

[16] Ensemble 97% (ROC-AUC) 

Proposed Model Ensemble 98.50% 

 

In our study, we evaluated our proposed model against existing works that employed the ISIC dataset. We also evaluated 

our model’s performance on additional datasets to ensure it was robust and broadly applicable across various data sources. 

This approach not only strengthens the validity of our results but also shows how our model can be used in situations 

outside of the initial training dataset.  

In comparing existing models that applied to other datasets, it’s crucial to consider the characteristics of the datasets 

they were trained on, which are depicted in Table 7. The HAM10000 dataset is a famous benchmark in dermatology, 

including a diverse range of skin lesion images. Models trained on this dataset, such as Efficient Nets and the Deep 

Learning-Based model, presented solid performances, with accuracies surpassing 87.91%. However, the accuracy of the 

Deep Learning- Based model slightly outperformed the Efficient Nets with 91% accuracy, demonstrating the effectiveness 

of its architecture or training procedure. On the other hand, the Biomedical Datasets showed slightly lower accuracy 

compared to HAM10000, exhibiting potential differences in image quality or diversity. However, at 87.42%, the 

performance is still commendable. Deep-transfer learning provided an outstanding 98.61% accuracy on the PH2 dataset, 

which is renowned for its high-quality images and precisely annotated lesions. This represented a considerable 

improvement in accuracy and highlighted the effectiveness of employing transfer learning techniques on specialized 

datasets. Lastly, our proposed ISIC Ensemble model demonstrated comparable performance to the PH2 dataset, performing 

an accuracy of 98.50%. This suggested that the ensemble approach, likely leveraging various models or data sources, can 

effectively capture and classify dermatological features. Although every dataset has its unique features and difficulties, 

models developed using ensemble techniques and trained on datasets such as PH2 demonstrate encouraging results in 

pushing the boundaries of dermatological image categorization accuracy. 

 

Table 7. Comparing Existing Models Which Applied to The Other Datasets with Our Proposed Ensemble Model 

Reference Dataset Model Accuracy 

[17] HAM10000 Efficient Nets 87.91% 

[18] HAM10000 Deep Learning-Based 91% 

[19] Biomedical datasets Deep Learning-Based 87.42% 

[20] ph2 dataset Deep Learning-Based 98.61% 

Proposed Model ISIC Ensemble 98.50% 

 

We carefully evaluated our weighted ensemble model’s performance using both quantitative analysis and graphical 

evaluation. We were able to observe the model’s capacity to generalize to new data and obtain insights into its learning 

dynamics by charting the training and validation accuracies over different epochs. In addition to giving us a thorough 

understanding of the training procedure, this visualization made it easier to spot any possible overfitting or underfitting. 
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The epoch-wise evolution of training and validation accuracy for our proposed model is elegantly shown in Fig 5. This 

graphical representation gives important insights into the model’s performance dynamics during training in addition to 

providing a visual representation of the learning trajectory. 

 

 
Fig 5. Epoc-wise Training and Validation Accuracy Curve (Weighted ensemble). 

 

We can identify patterns of overfitting, underfitting, or ideal model behaviour by examining the convergence or 

divergence of the two curves, which helps us make decisions about the optimization and refinement of the model. Notably, 

our ensemble model exhibited a remarkable AUC value of 0.98 in the classification of benign and melanoma skin cancer 

classes. The ROC curves for these classes are shown in Fig 6, which highlights the model’s remarkable discriminatory 

ability. This outstanding demonstration highlights how well our group method works to distinguish between benign and 

malignant skin lesions. The confusion matrix of the proposed weighted ensemble model is shown in Fig 7. Our suggested 

model performed remarkably well in accurately and dependably classifying melanoma samples. The model successfully 

distinguished each of the 250 melanoma samples with extreme precision, demonstrating its resilience in identifying 

cancerous lesions. Moreover, the model demonstrated exceptional competence in classifying benign samples, correctly 

classifying 240 out of 250 cases. The model made some errors in classifying the beginning class. 

 

 
Fig 6. AUC Value of Weighted Ensemble Model. 
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Fig 7. Confusion Matrix (Ensemble Model). 

 

VII. CONCLUSION 

Early detection and precise prediction of melanoma can greatly reduce mortality rates and increase survival rates. Recent 

improvements in skin disease recognition, specifically in early skin cancer detection, have demonstrated promising results 

with novel Deep-Learning models. Our work contributes to this rapidly developing field by presenting a novel Transfer 

learning model with an Ensemble Deep-Learning model designed for the classification of skin cancer. Even though a 

number of models have shown remarkable accuracy rates, issues like unbalanced datasets, a lack of data, and low image 

quality still make optimal performance difficult to achieve. Our model seeks to tackle these issues by using augmentation 

techniques and overall model robustness enhancement. The discoveries of our study provide useful insights into the 

development of more effective skin disease recognition models. Our Transfer Learning model with an Ensemble-Deep 

Learning approach presents an optimistic solution to the challenges encountered in the field, aiming to enhance early 

detection rates and eventually save lives. Future research should concentrate on extended data augmentation techniques, 

analyze the benefit of hyperspectral images for richer data analysis, and work on improving model resilience and 

adaptability to various scenarios. Resolving these problems can improve the detection of skin diseases, providing medical 

personnel with better resources for accurate and early diagnosis and improving patient outcomes. 
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