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Abstract - The timely and precise identification of traffic signs is essential for maintaining the effectiveness and safety of 

contemporary roads, particularly in light of the increasing number of self-driving cars. Conventional image processing 

methods have faced challenges because to the intricate and fluctuating variables present in real-world settings, including 

various signage, erratic weather, and inconsistent illumination. This study utilizes recent breakthroughs in deep learning, 

particularly the YOLOv8 (You Only Look Once version 8) model, to tackle these difficulties. YOLOv8 incorporates 

cutting-edge neural network architectural advancements, such as an anchor-free detection methodology, adaptive spatial 

feature pooling, and dynamic neural configurations. In order to further increase detection efficiency and accuracy, this 

study presents two innovative models, YOLOv8-DH and YOLOv8-TDHSA. These models make use of improvements 

such decoupled heads and transformer-based self-attention mechanisms. Experimental results indicate that the suggested 

models substantially surpass current deep learning models, attaining enhanced performance across multiple measures, 

including accuracy, recall, F-score, and mean average precision (mAP). This research enhances traffic sign detecting 

technology, facilitating the development of safer and more intelligent transportation systems. 

 

Keywords – Object Detection, Traffic Sign, YOLO, Image Processing, Computer Vision, Attention Mechanism.  

 

I. INTRODUCTION 

The quick identification of traffic signs is crucial for both human drivers and autonomous vehicles to navigate current 

streets. Modern intelligent transportation systems depend much on traffic sign detection to improve road safety, efficiency, 

and general traffic management [1]. Traffic signs guarantee the safety and effective movement of cars on the road since 

they help to guide, warn, and control drivers. The capacity to accurately and efficiently identify traffic indicators has gotten 

progressively vital as a result of the swift advancement of autonomous driving technologies. However, this endeavor 

presents multiple challenges, including the existence of diverse sign types, colors, and sizes, the presence of unpredictable 

weather conditions, and the irregularity of lighting conditions.  

Because traditional image processing techniques rely on handcrafted characteristics and are sensitive to environmental 

changes, they have not been very successful in handling this complexity. However, deep learning has completely changed 

the industry by making it possible to quickly, accurately, and scalable detect things in real-time circumstances. This is 

especially true with the introduction of object recognition algorithms like YOLO (You Only Look Once). Methods for 

target identification, such as Faster RCNN, YOLO, and FCOS, have gained widespread utilization in traffic sign detection 

owing to the swift advancement of deep learning technology [2]. The most recent addition of the YOLO family, YOLOv8, 
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incorporates state-of-the-art developments in neural network architecture, including enhanced backbone networks and 

dynamic neural topologies that change depending on the intricacy of the input data. It offers a number of improvements, 

such as better design, quicker inference times, and increased precision, which makes it the best option for traffic sign 

identification.  

In the end, utilizing cutting-edge deep learning models for traffic sign identification, such as YOLOv8, is a step toward 

a future that is safer, more effective, and technologically integrated. These developments will have a significant impact on 

how cities and transportation systems develop, influencing how people move about and interact in our increasingly linked 

world. The following are our suggested methodology's main contributions: 

• We introduced two novel models, YOLOv8-DH and YOLOv8-TDHSA, designed for precise traffic sign 

identification. 

• We implemented a detached head design to enhance object categorization and localization operations. 

• This research study incorporates a small object detection layer to improve the identification of small and distant 

traffic signs. 

• To improve detection robustness, we added transformer-based self-attention methods to the YOLOv8 framework. 

• We carried out extensive tests showing our suggested models' enhanced performance in various traffic situations. 

 

II. LITERATURE REVIEW 

Since traffic signs are essential for maintaining road safety and enabling autonomous driving, traffic sign identification has 

drawn a lot of interest in the fields of computer vision and intelligent transportation systems research. The majority of early 

traffic sign detection efforts used conventional image processing methods including edge detection, color segmentation, 

and template matching [3].  

In order to overcome these restrictions, machine learning approaches were investigated, including Support Vector 

Machines (SVMs) and Decision Trees, which provide superior generalization by means of feature extraction techniques 

such as histograms of oriented gradients. For example, [4] presented a technique based on edge recognition and color 

segmentation, which performed satisfactorily in controlled settings but failed in many real-world scenarios, including dim 

light, occlusions, and deformations. Similarly, for traffic sign detection, [5] employed features taken from histograms of 

oriented gradients (HOG) to train a support vector machine (SVM) classifier for traffic sign detection. Even with improved 

generality, these approaches remained constrained by their reliance on feature engineering and their incapacity to adjust to 

a wide range of intricate and varied real-world situations. 

Traffic sign detection underwent a revolution with the advent of deep learning, specifically convolutional neural 

networks (CNNs). This was made possible by the ability to automatically extract features from large datasets, which greatly 

improved detection performance, as demonstrated by [6] and [7]. By using deep CNNs to automatically learn features 

directly from data [8] showed off their potential for traffic sign recognition, outperforming more conventional methods in 

terms of accuracy. Their research served as a basis for later deep learning models, which greatly enhanced the performance 

of detection and recognition. In [9] demonstrated one of the first effective uses of deep learning for traffic sign recognition, 

utilizing a multi-column deep neural network (MCDNN) to attain cutting-edge outcomes on the GTSRB dataset. Through 

their work, they were able to significantly outperform traditional methods in learning robust features directly from raw 

pixel data using deep learning models. Fast R-CNN [10] and Faster R-CNN [11] incorporated quicker region proposal 

algorithms and end-to--end training to address this, but they still unable achieve the required speed for real-time traffic 

sign detection. 

However, the YOLO series of models, pioneered by [12], achieved a notable advancement in real-time object detection 

including traffic sign detection by conceptualizing it as a regression problem. YOLO's unique design allowed the prediction 

of bounding boxes and class probabilities concurrently in a single forward pass, hence combining great speed and accuracy. 

Successive versions of YOLO, such as YOLOv2 [13], YOLOv3 [14], and YOLOv4 [15], further extended the usefulness 

of YOLO models to encompass a broader variety of objects and settings, rendering them highly suitable for detecting traffic 

signs in real-time. Newer iterations of the YOLO series, like YOLOv5, YOLOv6, and YOLOv7, have improved 

performance even more with novelties like auto-learning bounding boxes, mosaic data augmentation, and sophisticated 

activation functions. For example, Junfan Wang et al. used YOLOv5, which combines an enhanced data augmentation 

strategy with a scalable architecture, leading to better traffic sign detection performance on a variety of datasets [16]. Using 

YOLOv6 in conjunction with an upgraded Logistic Regression classifier [17] sought to improve traffic sign identification 

in real-time. For the purpose of precisely identifying traffic signs [18] utilized YOLOv7 due to its enhanced ability to detect 

small objects.  

The most recent iteration of the YOLO series, YOLOv8 offers a number of architectural improvements that make it 

especially suitable for traffic sign recognition. In order to provide more flexible and accurate traffic sign detection under a 

variety of conditions, it introduces an anchor-free detection strategy, an adaptive spatial feature pooling backbone network, 

and more. Because YOLOv8's anchor-free architecture eliminates computational overhead and streamlines the detection 

process, it operates faster and more effectively in real-time applications. 
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III. MATERIALS AND METHODS 

Dataset Description 

The dataset has 4696 instances of photos depicting traffic signs. It is divided into three parts: training, testing, and 

validation. The training set consists of 71% of the total data, whereas the testing set contains 13% and the validation set 

has 16%. The dataset consists of fifteen unique classes, which encompass several types of traffic lights ('Green Light', 'Red 

Light'), speed limits ('Speed Limit 10', 'Speed Limit 100', 'Speed Limit 110', 'Speed Limit 120', 'Speed Limit 20', 'Speed 

Limit 30', 'Speed Limit 40', 'Speed Limit 50', 'Speed Limit 60', 'Speed Limit 70', 'Speed Limit 80', 'Speed Limit 90'), and a 

"Stop" sign. It is ideal for a number of uses, including autonomous car navigation, where precise traffic sign identification 

is necessary for making decisions in real time and adhering to traffic laws. Its ability to provide a representative and varied 

sample of actual traffic signs makes it useful for undertaking thorough road network analyses, optimizing smart city 

infrastructure, and improving road safety training programs. This varied set of criteria offers a complete foundation for the 

creation and evaluation of consistent traffic sign detection systems. Fig 1 shows the sample of the dataset. 

 

 
Fig 1. Sample Dataset 
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Preprocessing Video Data for Detection 

Several important actions are taken during preprocessing video data for traffic sign detection to equip the data for model 

training or inference. First, extract individual frames It from the video V with T frames by sampling every k-th frame, 

resulting in frames It·k. Each extracted frame is then resized to a uniform dimension (W,H) using a resizing function R, so 

that: 

 

 ) (1) 

 

After resizing, normalize the pixel values of the frame by dividing them by 255, transforming the frame , 

where: 

 

  (2) 

 

If necessary, convert the frame to grayscale using a color space conversion function, such as: 

 

 = rgb2gray( ) (3) 

 

For data augmentation, apply transformations like rotation, flipping, and scaling. For instance, a rotation by angle θ 

results in: 

 

 ) (4) 

 

Horizontal flipping gives: 

 

 ) (5) 

 

Adjust bounding box coordinates (xmin, ymin, xmax, ymax) according to the resized dimensions using scaling factors for 

width and height. For frames requiring temporal data, prepare sequences of frames, such as: 

 

  (6) 

 

where n is the sequence length. 

Optionally, compute optical flow F between frames to track motion, where: 

 

 F(x,y) = OpticalFlow(It·k,I(t+1)·k) (7) 

 

Finally, split the processed frames into training, validation, and test sets to ensure a balanced and effective dataset for 

model evaluation. 

 

Proposed Model 

The YOLOv8s improvements employed by the models put forward in this paper are described in this section. Both of the 

suggested models, YOLOv8-DH and YOLOv8-TDHSA, use the decoupled head (DH) enhancement, but only YOLOv8-

TDHSA uses the other two improvements. In June 2017, the Google team suggested the transformer concept [19]. It has 

demonstrated significant potential in image processing. The transformer enables the model to parallelize training and fully 

leverage the global information of training data. RNNs, a sequential architecture is eliminated and employs a self-attention 

mechanism instead. The self-attention shown in Fig 2 is the fundamental calculation of the transformer model. The regular 

attention mechanism determines the weighted average of the input data based on the attention distribution by first 

calculating the attention distribution on all of the input data. The input features are mapped by self-attention to three new 

representational spaces: Query (X), Key (Y), and Value (Z). After calculating the correlation among X and Y, the values 

are normalized, and the distance between them is increased to improve attention using the SoftMax function. The attention 

value is calculated by adding the weight coefficient and V. By mapping the characteristics to three spatial representations, 

the self-attention mechanism helps to avoid issues that arise when a single space is assigned to all features. For instance, 

there won't be a distinction between the correlation of X2 and X1 and X1 and X2 and X2, if X1 and X2 are utilized directly 

to compute the correlation. In this scenario, the attention mechanism's expression capacity will deteriorate. The changes 

between X1 and Y2 and X2 and Y1 can also be reflected if K is added to the original data correlation calculation. This can 

improve the attention mechanism's expression capacity. 
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Fig 2. Architecture of Transformer Based Attention-Mechanism. 

 

It can’t be suitable to employ X or Y because the attention weight obtained is the input of the next phase; consequently, 

the third space, Z, is introduced [20]. Using a weighted total, finally, the attention value is gained. The transformer model 

would, however, demand much more computation, that may increase the training time. When the image components move 

to the final network layer, the feature dimension is at its smallest. At this point, adding the transformer would have the least 

impact on the model's training. Consequently, the transformer is only included to the last layer of the neck of the proposed 

YOLOv8-TDHSA model and substitutes for the CBS at the final of the original YOLOv8 models. On the other hand, the 

transformer model would demand a significant rise in processing capability, hence increasing the training expenses. 

Moving the image features to the final layer of the network results in the feature dimension at its minimum. Right present, 

addition of the transformer would have the least impact on model training. Thus, in addition to substituting the CBS at the 

last layer of the original YOLOv8s model, the transformer in the suggested YOLOv8-TDHSA model is added to the last 

layer of its neck [21]. It is suggested that the decoupled head in object detection enhance YOLO's performance by isolating 

the duties of positioning and object recognition. Class prediction and bounding box localization are handled by different 

branches in the decoupled head, in contrast to the original YOLO head, which integrates both tasks into a single feature 

map. To minimize dimensionality, the feature map in the decoupled head is first processed through a 1×1 convolution 

layer, then two parallel 3×3 convolution layers. The number of categories in the dataset is reflected in the output dimension 

of one branch, which makes predictions about the object category. For instance, after using a Sigmoid activation function 

and a convolution operation, the channel dimension in the dataset with 16 categories increases to 16. Another branch that 

controls whether the object box is background or foreground reduces the channel dimension to one. By predicting the 

bounding box coordinates (x, y, w, h), a third branch lowers the channel dimension to 4. These outputs are combined to 

create a feature map with 20×50 dimensions. 

The decoupling procedure reduces feature loss and improves accuracy despite the additional complexity, even if it first 

increases the number of parameters, which slows down training. Mathematically, the decoupled head operation may be 

expressed as follows if 𝐹 is the feature map: 

 

 𝐹𝑜𝑢𝑡𝑝𝑢𝑡  = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹𝑐𝑙𝑎𝑠𝑠 , 𝐹𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

, 𝐹𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) (8) 

 

Where 𝐹𝑐𝑙𝑎𝑠𝑠 ∈ 𝑅20∗20∗45     

𝐹𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

∈ 𝑅20∗20∗1     

𝐹𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ∈ 𝑅20∗20∗4    concatenated into  𝐹𝑜𝑢𝑡𝑝𝑢𝑡 ∈ 𝑅20∗20∗50    

To improve object identification efficiency, the YOLOv8-DH model that has been suggested replaces the original 

YOLOv8s head with three decoupled heads: D1, D2, and D3.  The architecture is shown in Fig 3. 
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Fig 3. Architecture of Head D1 used by the Proposed Model. 

 

The size of the traffic signs varies in the captured photos due to changes in distance between the shooting apparatus and 

the item, which affects the detection accuracy to some extent [16]. YOLOv8s fixes this by means of PANet. The initial 

model produced feature maps with dimensions of 80 x 80 x 255, 40 x 40 x 255, and 20 x 20 x 255 for an input image with 

a resolution of 640 × 640 pixels. These sizes indicate distinct feature extraction scales. Now, in that sequence, the produced 

detection box includes grid sizes of 8 × 8, 16 x 16, and 32 x 32 pixels. Still, when the collection comprises many objects 

smaller than 8 x 8 pixels, the small object detection than it, is not performing good. Additionally, the feature pyramid 

emphasizes the extraction and optimization of the essential elements. The loss of some top-level characteristics in the 

network will lower the accuracy of object detection. Another structure is added to the PANet of YOLOv8s to improve the 

detection of small objects in order to maintain the constant input image size. Stated differently, the feature map keeps 

expanding since layer 17 employs convolution and upsampling processes on it. 

 

 
Fig 4. Proposed Model Architecture. 

 

In the backbone at layer 20, the 160 × 160-pixel feature map from layer 19 is combined with the feature map from layer 

2, which helps to reduce feature loss during transmission between layers. A dedicated detection layer is added to the 

network to improve the detection of small objects. In order to make up for the loss of characteristics in the lower layers 

and increase detection accuracy, this layer mixes features from the higher and lower levels. A branch, denoted by a solid 

red line in Fig 6, links layer 2 to layer 19, resulting in the addition of a fourth output with dimensions of 160 × 160 × 128. 

Upon detaching the head, the feature size shrinks to 160 × 160 × 50. Following head decoupling, the smallest feature size 

is 160 × 160 × 50, enabling a minimum detection box size of 4 × 4 pixels, hence improving the network's capability to 

identify small objects. Fig 4 shows the suggested architecture for the model. Table 1 provides the parameters of the 

proposed model along with their values. 

 

Table 1. Parameters and Values of Proposed Model 

Parameter Values 

Iteration 100 

BS 68 

ILR 0.0001 

Dropout 0.25 

Optimizer Adam 

Weight decay WD 0.0005 

Iou threshold 0.5 

Scheduler CosineAnnealingLR 
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Here: 

• Iteration = epoch 

• BS = batch size 

• ILR = initial learning rate  

• WR = Weight decay 

 

IV. EXPERIMENTAL SETUP AND EVALUATION 

Experimental Setup 

The testing involved a Windows 10 PC running an Intel Core i7-10700 CPU and a GeForce RTX 3090 GPU with 24 GB 

of video memory. The DL framework utilized for model fitting was PyTorch 1.8.1; CUDA 11.1 was used to speed training. 

The input images were shrunk to 640 × 640 pixels to help processing. The learning rate for the trials was tuned to a 

beginning value of 0.01 and a final learning rate of 0. to guarantee gradual convergence throughout model training. Table 

2 displays the comparison model's size and number of parameters. 

 

Table 2. Computational Complexity of All Models 

Model Space information Parameter details 

Faster R-CNN 360 27.76 

YOLOV5 22.4 1.76 

DETECTRON2 29.45 17.6 

YOLOV8-TDSHA 23.6 15.87 

 

Evaluation Metrics  

Precision 

Precision measures how accurate the model's positive predictions are. It is computed using: 

 

 Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

 

Recall 

Recall estimates the model's capacity to properly identify all relevant examples, or, in this case, all genuine problems. It is 

calculated by: 

 

 Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

 

F-score 

The mean of precision and recall is the F-score (also known as the F1-score), which delivers a balanced assessment that 

accounts for both false positives and false negatives. This is computed by: 

 

 F-score = 2 *  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

 

mAP 

The mean AP value over all object classes is called the mean average precision, or mAP. It is computed as follows. It is 

calculated as: 

  

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 

 (12) 

 

Outcomes of the Models 

Table 3. Precision, Recall, F-Score and Map Values of All Models 

Model Precision Recall F-score mAP 

Faster R-CNN 78.89 77.43 78.30 79.4 

YOLOV5 81.54 82.32 82.19 81.65 

DETECTRON2 87.86 87.43 86.60 86.51 

YOLOV8-TDSHA 97.52 98.76 98.49 99.03 
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We used precision, recall, F1-score, and mAP as our primary performance metrics and drew confidence curves for each 

to see how these metrics changed when we increased or decreased the confidence thresholds. These visual assessments 

offer insightful analyses of the model's behavior at various confidence levels, assisting us in identifying the model's 

advantages and possible shortcomings. Here, we explore these evaluations' outcomes in further detail and discuss their 

implications for model performance. 

Table 3 offers a thorough comparison for four well-known deep learning models evaluated for traffic sign detection 

includes Faster R-CNN, YOLOv5, Detectron2, and YOLOv8-TDSHA. The results show that YOLOv8-TDSHA's 

exceptional efficiency and accuracy in traffic sign detection greatly exceed those of the other models across all measures. 

Precision estimates among all the model's positive predictions the percentage of actual positive detections. A higher 

accuracy score denotes less false positives, so the model is more accurate in precisely spotting real traffic signs without 

misreading non-sign objects as signs. At 97.52%, YOLOv8-TDSHA boasts the best accuracy among all other models by a 

rather margin. With the lowest number of false positives indicated by this great accuracy, YOLOv8-TDSHA is the most 

dependable model for exact traffic sign detection. With an accuracy of 87.86%, which is much higher than YOLOv5 

(81.54%) and Faster R-CNN (78.89%), Detectron2 also performs really well. Faster R-CNN's rather lower precision 

indicates that it is more likely to produce erroneous detections, thereby lowering its general dependability for this purpose. 

Although better than Faster R-CNN, YOLOv5 still lags behind YOLOv8-TDSHA and Detectron2, suggesting space for 

development in lowering false positive rates. 

Recall represents the model's capacity to accurately identify all pertinent instances (true positives) of traffic signs within 

the dataset. An elevated recall value signifies that the model overlooks fewer genuine instances, hence guaranteeing 

thorough identification. YOLOv8-TDSHA once more achieves the greatest recall of 98.76%, illustrating its exceptional 

proficiency in identifying nearly all traffic signs within the dataset. The elevated recall, coupled with its high precision, 

signifies that YOLOv8-TDSHA is both comprehensive in detection and precise in its predictions. Detectron2 exhibits a 

recall of 87.43%, which, while considerably lower than that of YOLOv8-TDSHA, remains commendable, indicating it 

identifies a substantial proportion of true positives, though not as thoroughly. YOLOv5 attains a recall of 82.32%, whilst 

Faster R-CNN records the lowest recall at 77.43%. The relatively diminished recall of YOLOv5 and Faster R-CNN 

suggests an increased likelihood of overlooking certain traffic signs, which may be crucial in applications necessitating 

comprehensive detection. A high F-score signifies that the model is both accurate and thorough in its detections. YOLOv8-

TDSHA attains the maximum F-score of 98.49%, solidifying its position as the most efficient model in terms of accuracy 

and completeness. Detectron2 exhibits a commendable F-score of 86.60%; yet, it is considerably surpassed by YOLOv8-

TDSHA. YOLOv5, exhibiting an F-score of 82.19%, and Faster R-CNN, with a score of 78.30%, both demonstrate inferior 

performance, indicative of their diminished precision and recall metrics. 

The significant disparity in F-score between YOLOv8-TDSHA and the other models highlights the superiority of 

YOLOv8-TDSHA in sustaining elevated levels of both precision and recall, crucial for dependable traffic sign 

identification.Since it shows the average precision over intersection over union (IoU) thresholds and all classes combined, 

the mean average precision (mAP) is a crucial parameter for assessing object identification models. A model is resilient 

and trustworthy in multiple contexts if it performs well across a range of detection thresholds, as indicated by a higher 

mAP score. The remarkable mAP of 99.03% achieved by YOLOv8-TDSHA is far greater than that of the other models. 

This finding implies that YOLOv8-TDSHA performs exceptionally well in identifying and categorizing traffic signs under 

a variety of circumstances and object sizes. Detectron2, with a mean accuracy of 86.51%, is not as good as YOLOv8-

TDSHA, but it is still not that bad. While Faster R-CNN's mAP of 79.4% suggests greater resilience in a variety of detection 

settings, YOLOv5's mAP of 81.65% implies less robustness. YOLOv5 and Faster R-CNN's lower mAP scores imply that 

these models would have trouble with more difficult detection tasks, like identifying smaller or partially veiled signs. 

 

 
Fig 5. Precision Confidence Curve (Proposed Model). 
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Overall, YOLOv8-TDSHA exhibits enhanced performance across all assessment metrics: Precision, Recall, F-score, 

and mAP, in comparison to the other evaluated models. Its remarkable precision and recall indicate its efficacy in precisely 

recognizing real positives while avoiding false negatives, rendering it an optimal model for traffic sign detection when 

accuracy is critical. The exceptional F-score further corroborates its overall balanced performance, while the nearly 

flawless mAP underscores its robustness and flexibility across diverse detection settings. Conversely, although Detectron2 

has commendable performance, it is consistently surpassed by YOLOv8-TDSHA across all criteria. Despite their 

widespread usage, YOLOv5 and Faster R-CNN have worse performance across all metrics, suggesting they are inadequate 

for workloads requiring optimal accuracy and reliability. The findings significantly support the utilization of YOLOv8-

TDSHA as a state-of-the-art deep learning framework for effective and precise traffic sign detection, providing 

considerable benefits compared to current methods. 

 

 
Fig 6. Recall Confidence Curve (Proposed Model). 

 

The link between the precision and confidence threshold of the model is shown by the precision confidence curve. The 

precision confidence curve is shown in Fig 5. Beginning at a low confidence level of 0.0, the precision is approximately 

35%. This indicates that only 35% of the model's positive predictions are now accurate. The precision steadily improves 

as the confidence criterion rises, hitting 80% at a threshold of 0.5. This implies that the model generates more accurate 

positive predictions as it gets more selective, that is, only makes predictions when it is more confident. The precision 

continues to improve as the threshold increases, reaching 82% at a confidence threshold of 0.7. Eventually, as the threshold 

approaches higher levels (around 0.95 and beyond), the precision reaches near-perfect levels, even touching 100% in some 

cases. This indicates that, when the model is extremely confident about its predictions, it is almost always correct. The 

recall confidence curve helps us understand this trade-off between recall and precision. The recall confidence curve is 

shown in Fig 6. The recall-confidence curve illustrates the relationship between recall and confidence, or the percentage 

of true positives that the model properly detects. At the lowest confidence level (0.0), the recall is approximately 96% at 

the beginning. This implies that the model, independent of confidence, is initially detecting almost all positive cases. 

Nevertheless, the recall gradually decreases as the confidence threshold rises. The recall drops to about 90% to 80% by the 

time the threshold hits 0.7. This decline in recall suggests that as the model grows more certain and picky in its predictions, 

it starts to overlook more positive examples, which raises the number of false negatives. This is a crucial factor to take into 

account since, although the model's accuracy increases with confidence, its capacity to capture all pertinent cases 

diminishes. This implies a trade-off between recall and precision, which is common in classification models, particularly 

when thresholds for confidence are changed. The recall dramatically decreases at the highest confidence levels, 

underscoring the model's growing tendency toward more cautious forecasts. It doesn't detect as many true positive cases 

even though it prevents false positives. Examining the F1-confidence curve helps us to see that the appropriate threshold 

often strikes a balance between achieving great accuracy and avoiding too much memory loss. By considering false 

positives and false negatives, the F1-score presents a reasonable evaluation of the accuracy of the model. It computed as 

the harmonic mean of recall and accuracy. The F1-confidence curve shows the link between precision and recall as well as 

the general model performance as the confidence threshold rises (Fig 7). The F1 score maintains its stability at reduced 

confidence thresholds, suggesting a good trade-off between recall and precision. The F1-score starts to drop at the 

confidence level of 0.79, indicating that the fall in recall is outweighing the improvement in precision. This is to be 

expected, given memory dramatically declines at increasing confidence thresholds but precision keeps getting better. 

According to the F1-confidence curve, the model operates most accurately overall at mid-range confidence levels, where 
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it successfully strikes a compromise between recall and precision. The F1-score decreases as the threshold rises, indicating 

that while the model is becoming more cautious and missing more positive examples, it is also generating extremely few 

errors when it does make predictions. A thorough grasp of the model's performance at various confidence levels is offered 

by the graphical assessments of precision, recall, and F1-score confidence curves. The model captures most positive 

examples (high recall) at lower confidence thresholds, but its precision is reduced. Precision gains when the confidence 

threshold rises, but memory suffers as a result, leading to an increase in false negatives. The F1-score curve aids in 

determining the ideal threshold, offering the highest overall performance, by maintaining the balance between precision 

and recall. These findings imply that although the model's precision works well at high confidence thresholds, it is crucial 

to select the right threshold in order to prevent an excessive number of false negatives. The model can be optimized for a 

variety of tasks by adjusting the confidence threshold in order to achieve a balance between capturing all relevant events 

and producing accurate predictions. 

 

 
Fig 7. The F1-Score Confidence Curve (Proposed Model). 

 

In Fig 8, the training metrics are displayed. Following the first training epochs on the training and validation datasets, 

the model shows a notable increase in performance measures. It declines rapidly, with the largest drop happening by the 

fifteenth epoch. The rate of loss reduction then decreases, reaching its lowest point in the 100th epoch. Moreover, precision 

and recall exhibit a sharp rise until the fifteenth epoch, at which point they begin to expand more slowly. Both recall and 

precision reach roughly 0.81 and 0.85 by the conclusion of training, respectively. Though with diminishing benefits as 

training goes on, these trends are similar across both datasets and show effective learning and model improvement. 

 

 
Fig 8. Training Metrics of the Proposed Model. 
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An essential tool for assessing a classification model's performance is the confusion matrix, which shows areas of 

confusion and offers information on how well the model distinguishes between different classes. Fig 9 shows the confusion 

matrix for the traffic sign detection model. The findings demonstrate that, despite some misunderstanding with "Red Light" 

and other categories, the model predicts "Green Light" accurately with a high confidence level of 0.80. The model's 

accuracy for speed limit signage varies somewhat for various speed restrictions, but it performs well with high confidence 

in areas like "Speed Limit 10" (0.94) and "Speed Limit 120" (0.98). For the "Stop" sign, the model performs exceptionally 

well, with a confidence level of 0.96. The lower values in the background category, however, show that the algorithm has 

difficulty differentiating pertinent traffic signs from background noise. Overall, the model performs well across a number 

of classes, but it also exhibits considerable misclassification and confusion, especially when it comes to comparable 

categories and background noise. 

 

 
Fig 9. The Proposed YOLOV8-TDSHA Classification Error Generation (Confusion Matrix). 

 

Fig 10 shows the suggested model's comparative performance against a number of cutting-edge techniques. The graphic 

displays important performance indicators for each model, including mean Average Precision (mAP), precision, f-

score, and recall. Compared to current techniques, the suggested model exhibits competitive results with noteworthy gains 

in all metrics. In the context of traffic sign identification, the figure highlights the usefulness of the proposed method and 

offers a clear comparison with the state-of-the-art models, highlighting both strengths and opportunities for improvement. 

 

 
Fig 10. Comparative Performance of All Applied Models in The Research. 
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Fig 11. Sample Output of The Proposed Model. 

 

Table 4. Comparative Performance Analysis of the Proposed Model and State-of-the-Art Methods 

Reference  Model Performance 

[22] YOLO mAP : 93.88 % 

[23] Ghost YOLO mAP : 92.71 % 

[24] TRD YOLO mAP : 86.3 % 

[25] TSR YOLO mAP : 92.77  % 

Proposed  YOLOV8-TDSHA mAP : 99.03  % 

 

Table 4 shows the evaluation of the Proposed Model's and State-of-the-Art Techniques' Comparative Performance 

explains in depth how several traffic sign detection methods compare in terms of mean Average Precision (mAP). The 

suggested YOLOv8-TDSHA model is shown in the table together with performance measurements from a number of 

cutting-edge techniques. With a mAP of 93.88%, the YOLO model demonstrates good detection abilities but still has room 

for improvement. Known for its lightweight design, the Ghost YOLO model records a mAP of 92.71%, which is marginally 

lower than YOLO but tailored for real-time performance with low computational overhead. With a mAP of 86.3%, the 

TRD YOLO model—which is optimized for minor traffic sign detection—reflects a compromise between processing 

efficiency and good performance. With a mAP of 92.77%, the TSR YOLO model—which was customized for Chinese 

traffic signs in complicated scenes—displays competitive performance that is comparable to that of YOLO and Ghost 

YOLO. On the other hand, the proposed YOLOv8-TDSHA model achieves an outstanding mAP of 99.03%, greatly 

outperforming these current approaches. This significant gain shows how the suggested model may be further developed 

to improve traffic sign detection efficiency and accuracy, making it a better option than other available traffic sign 

recognition technologies.  

The sample output of the suggested YOLOv8-TDSHA model is shown in Fig 11, demonstrating the model's efficacy 

in traffic sign detection. The picture demonstrates the enhanced performance and precision of the model by showcasing its 

ability to precisely identify and classify different traffic signs in a variety of settings. 
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V. CONCLUSION 

The study that is reported in this paper shows how well the suggested YOLOv8-DH and YOLOv8-TDHSA models 

perform in terms of enhancing traffic sign identification in practical settings. Our models outperform existing state-of-the-

art techniques in terms of accuracy and speed by utilizing the sophisticated architectural characteristics of YOLOv8 in 

conjunction with creative changes such as transformer-based self-attention mechanisms and decoupled heads. The 

experimental findings indicate a significant enhancement in precision, recall, F-score, and mAP, rendering these models 

exceptionally appropriate for real-time applications in autonomous driving and intelligent transportation systems. The 

YOLOv8-TDHSA model attains an impressive mAP of 99.03%, highlighting its efficacy across various detection 

environments. The findings indicate that integrating deep learning advancements like YOLOv8 and related improvements 

can markedly improve the safety and efficiency of contemporary transportation systems through enhanced accuracy and 

timeliness in traffic sign identification. 

Many future study subjects can be looked at to help us to expand on our work. Initially, extra model optimization might 

focus on reducing computational complexity to help deployment on edge devices with limited processing capability. 

Furthermore, broadening the models' training on a wider range of and more substantial datasets may enhance their resilience 

and capacity to adjust to various traffic situations worldwide. To improve these models' detection performance in harsh 

environments like dense fog or pouring rain, another interesting approach is to integrate them with additional sensors and 

data modalities like radar or LiDAR. Eventually, by using the recommended models in real-world autonomous automobile 

systems and always enhancing them in response to feedback from in-the-moment operations, even further advances in 

accuracy and dependability could be obtained. By enabling the development of increasingly sophisticated, real-time traffic 

sign detecting systems, these next studies will significantly help to contribute to the continued expansion of intelligent 

transportation and autonomous driving technologies. 
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