
Journal Pre-proof 

Advancing Health Diagnostics: AI-Powered CVD-REF 
Framework for Precise and Early Risk Assessment 

Vishnu Priyan S, Vijayalakshmi N, Suresh G and Rajesh K 

DOI: 10.53759/7669/jmc202505098 

Reference: JMC202505098 

Journal: Journal of Machine and Computing. 

Received 15 October 2024 

Revised form 30 January 2025 

Accepted 25 March 2025 

Please cite this article as: Vishnu Priyan S, Vijayalakshmi N, Suresh G and Rajesh K, “Advancing 

Health Diagnostics: AI-Powered CVD-REF Framework for Precise and Early Risk Assessment”, 

Journal of Machine and Computing. (2025). Doi: https:// doi.org/10.53759/7669/jmc202505098.  

This PDF file contains an article that has undergone certain improvements after acceptance. These 

enhancements include the addition of a cover page, metadata, and formatting changes aimed at 

enhancing readability. However, it is important to note that this version is not considered the final 

authoritative version of the article. 

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting, 

typesetting, and comprehensive review. These processes are implemented to ensure the article's final 

form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's 

content to readers. 

Please be aware that throughout the production process, it is possible that errors or discrepancies may 

be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal 

remain in effect. 

© 2025 Published by AnaPub Publications. 



 
 

Advancing Health Diagnostics: AI-Powered CVD-REF 

Framework for Precise and Early Risk Assessment 

1S. Vishnu Priyan*, 2N. Vijayalakshmi, 3G. Suresh, 4K. Rajesh 

1 Department of Biomedical Engineering, Kings Engineering College, Chennai, India 
2Department of computer science and applications, SRMIST, Ramapuram campus, Chennai, India 

3Department of Artificial Intelligence and Machine Learning, Panimalar Engineering College, Chennai, India 
4Department of electronics and communication engineering, SSM institute of engineering and technology, India 

 

 

rsv.priyan@gmail.com, vijayaln@srmist.edu.in, drsureshkec@gmail.com, rajeshece@ssmiet.ac.in 

 

*Corresponding Author:  S. Vishnu Priyan 

Abstract 

Deprivation of Critical Care systems are a major cause of fatality worldwide, highlighting it’s need for 

saving human lives. This study proposes a novel hybrid ensemble model, which integrates Random Forests, 

Gradient Boosting Machines (GBM), and Neural Networks to enhance the predictive accuracy diagnostics. The 

methodology combines data pre-processing, feature selection, and ensemble learning, ensuring robust and reliable 

predictions. Comprehensive data pre-processing includes K-Nearest Neighbours (KNN) imputation for missing 

values, Z-Score normalization for scaling, and Polynomial Feature Generation for non-linear feature interactions. 

Feature selection performed using Recursive Feature Elimination (RFE) and Mutual Information relevant variable 

retention. The proposed model produces 98.55% accuracy, very surpassing nine baseline models, that includes 

XGBoost, Random Forests, and Neural Networks. Additional metrics such as precision (97.80%), recall (98.12%), 

F1-Score (98.00%), and ROC-AUC (99.12%) further validate the model's robustness. This framework not only 

demonstrates superior accuracy but also ensures computational efficiency, making it viable for deployment in 

real-world healthcare settings. 

Keywords: Early Detection, AI-powered framework, Ensemble Learning, Random Forests, Gradient Boosting 

Machines, Neural Networks, Machine Learning, Predictive Model, Feature Selection 

1. Introduction 

Cardiovascular disease (CVD) is the world's most significant cause of mortality which includes 

conditions affecting the heart and blood vessels [1]. These include coronary artery disease, heart failure, 

arrhythmias, stroke, and other conditions that often stem from risk factors such as hypertension, elevated 

cholesterol levels, obesity, smoking, and diabetes. Symptoms of CVD are chest pain or pressure, shortness of 

breath, fatigue, palpitations and swelling of the hands and feet [2]. Lifestyle changes, medications including beta-

blockers and statins and finally angioplasty or bypass operations are the common treatments. It is conventional 

knowledge that evaluating multiple indicators such as involvement in regular vigorous aerobic activities, taking 

balanced low-calorie meals, and even providing maximum coverage to prevent health ailments through 

examination all can considerably help in lowering the risk of CVD so that it does not affect a large number of 

people. Even though diagnosis and management of the disease have improved, the burden caused by the disease 

remains high in the global level [3] [4]. 

CVDs are diseases that affects heart and blood vessels dependent on the type of heart condition [5] [6]. 

Some of the well-known risks factors include hypertension, high levels of cholesterol, increased weight, smoking, 

diabetes, and no exercise. Management includes use of medications and dietary and lifestyle changes; medication: 

antihypertensive agents, antianginal drugs, statins, anticoagulants; physical therapies and interventions: 

angioplasty, bypass surgery, valve repair. Technological developments including wearable devices for heart 

monitoring, and devices used in minimal invasive methods have enhanced the diagnosis and effectiveness in 

dealing with the conditions [7] [8]. A basic strategy of controlling CVD is to prevent the risk factors through 

routine activities like exercise, good nutrition and regular medical check-up. 

One of the key challenges during the early stages is the absence of symptoms, which often delays 

diagnosis and treatment. Modern diagnostic techniques and treatments are unavailable or are very rare in low 

resource setting therefore resulting in inequality in patient’s prognosis [9] [10]. Most therapies like operations and 

prolonged drugs use are expensive, stressing patient’s pockets as well as the healthcare facilities. The modification 
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of the non-traditional risk factors such as poor eating habits, inadequate physical activity, smoking are still difficult 

to curb because they have several social and behavioural determinants. Further, current diagnostic and treatment 

models do not fully capture the differential genetic risk, ethnic or gender risk profiles hence providing less than 

optimal care to specific patients [11] [12]. These disadvantages point as to why everyone should have access to 

quality health care, better diagnostic methods and optimal form of prevention. Figure 1 shows the types of 

cardiovascular disease. 

 

Figure 1. Coronary Heart Disease types 
 

Deep learning models are playing a key role in improving the possibilities of diagnostics and the 

management of CVDs through efficient analysis of medical information and prognosis of prognosis and treatment 

[13] [14]. And for statistical data obtained from medical imaging like echocardiograms or angiograms the structure 

analysis that is identified by CNNs The RNNs are used for time-series data such as ECGs that is used in identify 

an arrhythmia or an abnormal heart rate. Another function of deep learning algorithms is to determine individual’s 

probability of CVDs based on HL, PHR, AMA, and genomic information with subsequent development of patient-

specific strategy. Due to being capable of displaying great promise by automating diagnostics, increasing 

accuracy, and detecting new signals that a human specialist may miss in some cases, while improving outcomes 

and decreasing healthcare costs, these models have used intensively. 

There are disadvantage related to the integration of deep learning in CVD management. The models 

depend markedly on large, accurate and diverse data for training; however, such data may be very hard to come 

by, particularly when required for other demographics than the baseline dominant population [15]. The 

discrepancies in training data results in unequal diagnostic accuracy between the genders or any other 

demographic group. Training and deployment present some problems including high computational and energy 

demands. In addition, depending on the deep learning enabled tools and ignoring the human intervention may 

cause wrong diagnosis or overlooking of important disease. Early diagnosis of CVD is crucial in mitigating risks, 

improving survival rates, and reducing healthcare costs. Traditional models often struggle with achieving a 

balance between accuracy and computational efficiency. 
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1.1 Problem Statement: 

Cardiovascular diseases (CVD) often progress silently until severe complications arise. Current 

diagnostic methods face significant challenges, including: 

• Limited access to advanced diagnostic tools in under-resourced healthcare settings. 

• High economic burden associated with long-term treatments and interventions. 

• Lack of personalized models addressing genetic, gender, or ethnic-specific risks. 

• Persistent difficulties in mitigating lifestyle-related risk factors such as malnutrition and physical 

inactiveness. 

Existing machine learning approaches are often constrained by biases, computational inefficiencies, and 

suboptimal feature representation. There is a pressing need for a comprehensive solution capable of integrating 

clinical, demographic, and lifestyle variables to predict CVD risks effectively. The proposed CVD-REF 

framework is designed to bridge these gaps, offering a robust and adaptable. To address these limitations, this 

study introduces the CVD-Robust Ensemble Framework (CVD-REF), an innovative AI-powered solution that 

integrates multiple ML algorithms into a single ensemble framework. By leveraging diverse strengths of Random 

Forests, GBM, and Neural Networks, the proposed model demonstrates unparalleled accuracy and robustness in 

detecting CVD. This paper outlines the methodology, evaluates the model against nine existing approaches, and 

highlights the potential of AI in transforming cardiovascular healthcare. 

1.2 Contribution of the research work: 

• Innovative Predictive Framework:  Introduction of the CVD-Robust Ensemble Framework (CVD-REF), 

which integrates Random Forests, Gradient Boosting Machines (GBM), and Neural Networks using a 

stacking approach to enhance predictive capacity for cardiovascular diseases (CVD). 

• Feature Selection and Optimization: The study employs Recursive Feature Elimination (RFE) and 

Mutual Information techniques to retain the most relevant predictors, reducing computational overhead 

while improving predictive performance. 

• Holistic Design: The proposed framework effectively addresses overfitting and bias reduction, offering 

robust detection of CVD across diverse datasets while capturing complex, non-linear relationships 

between clinical and lifestyle factors. 

• Scalable and Real-World Focused: The framework is computationally efficient and designed for 

implementation making that everyone has fair access to early diagnostic tools in a variety of healthcare 

settings, particularly those with limited resources. 

• Comprehensive Evaluation: Thoroughly validated across multiple benchmarks, the framework better 

capabilities compared to existing methods, ensuring its relevance in clinical scenarios. 

The rest of this paper is planned as follows: Section 2 provides a summary of related studies in CVD 

detection, highlighting the existing models in CVD diagnostics. Section 3 specifics the proposed methodology 

that includes pre-processing of data, selection of features, model development, and the implementation of the 

CVD-Robust Ensemble Framework (CVD-REF). Section 4 describes the results and discussion, comparing the 

proposed model with nine existing approaches across various evaluation metrics. Finally, the Conclusion and 

Future Scope section summarizes the findings, emphasizes the framework's impact, and outlines potential areas 

for further research. 

2. Related Works 

 Globally, CVDs are a common cause of death through presenting a danger to the mass population. Early 

diagnosis is important since failure to do so results in adverse effects on the patients’ survival rates. Some of the 

major risk factors include – age, sex, cholesterol, glucose or sugar levels and rate of heartbeat. However, the fact 

that care coordination requires so many variables and that there is usually a large amount of data to process is 

inviable for the healthcare professionals to analyse all the related aspects of a certain patient [16]. In response to 

this, the authors of the study put forward a new model that blends deep learning and feature augmentation to assess 

a patient’s risk level of CVD. The method that they developed has higher performance than the previous models, 

with a precision rate of 90% as compared to 4.4% of the current state-of-art. This advancement came at the right 

time because CVDs have become so common, and it may save so many lives because the risk-assessment will not 

only be more accurate but also more reliable. 

The global prevalence of CVDs brings into a sharp focus; the necessity for improvement on the current 

methods of identifying CVDs. Prior work has contributed to this research area but rarely considers potential 
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problems, such as a data set skewed in favour of one category, which can cause omitted variable bias in prediction 

of a case within such a group. The aim of this current study is to fix early diagnosis of coronary diseases, more to 

myocardial infarction using machine learning [17]. Closely relating to the issue of data imbalance, the comparison 

of seven common classifiers is furthermore discussed, that includes KNN too Among them, for identification 

XGBoost it demonstrates the highest results, including accuracy, which is 98.50%, precision – 99.14%, recall – 

98.29% and F1 – 98.71%. These results, therefore, call for post-processing of deep learning algorithms to improve 

diagnostic performance. It presents useful information in enhancing the prediction models in myocardial 

infarction, enhancing the approaches to identifying the disease at an early stage and opens a promising possibility 

of solving the effectual issues evoked by CVDs. 

Heart is an essential component of the human body and improper functioning of the heart may lead to 

more health issues. CAD is a blood supply disease of the heart muscle, due to atherosclerosis slowly narrowing 

the coronary arteries and preventing adequate blood flow. Though life style modifications and pharmacological 

interventions can ameliorate or prevent CAD, risk long-term risk assessment is essential. Different models to 

predict the risk of CAD presented and implemented using SMOTE method data and their performances are 

analysed by identifying the accuracy, precision, recall and AUC [18]. These results indicate the future 

developments in machine learning as they can improve CAD risk prediction and provide beneficial instruments 

for initial diagnoses and other forms of prevention. 

Machine learning (ML) in healthcare settings have increased because of the capacity to identify 

relationships within large information sets, and help avoid erroneous diagnoses. This work aims at training an ML 

model to analyse CVDs and equally help minimize fatalities caused by the diseases [19]. To improve the 

classification accuracy the work applies k-modes clustering algorithm with Huang initialization. Algorithms 

including DT, RF, MP, and XGB tuned using GridSearchCV on Kaggle data envelope of 70,000 samples. Data 

split 80:20 and cross validation used. In terms of the best result, MP scored 87.28 % (88.47 % with the cross-

validation) and XGB was 87.02 % (86.97 % with cross-validation). All models showed a high level of AUC and 

ranged from 0.94 through 0.95. As for the algorithms, MP combined with cross-validation demonstrated higher 

accuracy and, therefore it reveals a significant potential in case of CVDs prediction, 87.28%. 

CVD acts as a primary cause of death; increased prevalence rates present a difficult question for the 

diagnosis of the condition before catastrophic events occur. It is striking to acknowledge that there is a plenty of 

heart disease data, which collected in healthcare resources including hospitals and clinics, but they do not use 

these data frequently to find important patterns. ML provides a solution by converting medical data into achievable 

knowledge enhancing the growth of a decision support system (DSS) that is self-acquiring [20]. Primary aim of 

this research is to diagnose heart diseases efficiently using a deep learning model that built based on Keras with 

density neuron network. In experiments, the model trained with the configurations of 3 to 9 hidden layers; each 

of the hidden layers comprises 100 neurons, and the ReLU activation function is used. Census datasets are 

investigated utilizing single and combination models, assessed by metrics such as sensitivity, specificity, 

accuracy, and F-measure. The results reveal that the new deep learning framework works better than single models 

and the ensemble technique with better diagnostic accuracy and reliability on all data sets. 

3. Methodology 

The proposed method for early finding of CVD focuses on leveraging advanced machine learning 

techniques to ensure high accuracy and reliability. The process begins with comprehensive data preprocessing, 

and Feature selection conducted using RFE and Mutual Information to retain only the most significant predictors, 

reducing noise and improving computational efficiency. The core of the methodology is the development of the 

CVD-Robust Ensemble Framework (CVD-REF), which combines Random Forests, GBM, and Neural Networks. 

Each algorithm addresses specific challenges: Random Forests reduce variance, GBM minimizes bias, and Neural 

Networks capture complex non-linear relationships. These models are trained independently and then combined 

using stacking, where a meta-model optimally integrates their predictions to enhance overall performance. 

3.1 Dataset Collection 

The CV Disease Dataset, which sourced from Kaggle, provides rich data for modelling and analysis on 

CVD [21]. This dataset includes over one hundred thousand instances containing eleven clinical and lifestyle 

features along with a binary target factor for the existence of CVD in the patient. Its feature richness and variety 

offer a perfect foundation for developing the machine learning models needed to detect precursors of CVDs 

timely. The dataset encompasses a broad register of variables crucial for developing cardiovascular risks. These 

features include basic demographic data, for example, age and gender, which gives the one-and-a-half million 

trend in CVDs among different populations. It includes one clinical parameter including blood pressure, systolic 
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and diastolic, cholesterol and glucose level which are clinical parameters that are specifically measured because 

they are directly associated with the health of heart. Besides, the sample data include lifestyle variables which 

portrays strong relationship with cardiovascular health outcome. While the dependent variable, CVD is 

categorical, where “1” symbolizes the existence of CVD and “0” represents the nonexistence of CVD. This simple 

division is beneficial for the binary classification problem because it eliminates a need to adjust the measure when 

transitioning between training and testing phases of a model. Another strength that can derived from the size and 

nature of this dataset is enormous. It has indeed a large database of entries with seven thousand, five hundred 

entries; enough to allow model calibration and assurance of validity across diverse populations. The use of both 

clinical and lifestyle parameters permit consistent quantization of CVD, thus dealing with purely health-related 

factors as well as behavioural characteristics. Besides, there is almost no preprocessing because it is easy to 

determine when a new feature begins and what values it takes in the given context. 

3.2 Data Preprocessing  

 Data pre-processing is therefore an important initial step in training decision engines for predictive 

analytics. It brings quality, consistency and compatibility of the data to feed the machine learning algorithms.  

3.2.1. Handling Missing Values: K-Nearest Neighbours (KNN) Imputation 

 Data that is not available is sometimes approximated from other data that may also be incomplete due to 

errors that may have been made during data collection. K- Nearest Neighbours (KNN) Imputation technique 

employed in order to overcome this issue. This method compares a data set to find out the nearest neighbour to a 

given instance with the missing values and then fill up the missing values by using the mean or mode of these 

neighbours. For instance, if cholesterol values are missing in the data set, KNN fills in these values with values 

resembling that of other patients as seen by age, BMI, or glucose. This approach does not compromise the data 

and prevents the interference of the researcher. KNN assigns the weights to k nearest neighbours for imputing the 

missing values while taking average of these weights. If 𝑥𝑚 is the missing value for instance 𝑖, it is calculated as: 

𝑥𝑚 =
∑ 𝑤𝑗 ⋅ 𝑥𝑗

𝑘
𝑗=1

∑ 𝑤𝑗
𝑘
𝑗=1

                                                 (1) 

 Where 𝑥𝑗 are the known values of the 𝑘 nearest neighbours, and 𝑤𝑗 =
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖,𝑗)
 is the weight based on 

the inverse of the distance between instance 𝑖 and neighbour 𝑗.  

3.2.2. Data Normalization/Scaling: Z-Score Normalization 

 Feature scales are important because machine learning algorithms are also influenced and models which 

use distance as their basis like Random Forrest and Neural Networks included. For that purpose, Z-Score 

Normalization used in order to scale continuous features on the same scale. This technique involves normalizing 

the data such that for each feature, the values scaled by subtracting the mean and then dividing by the standard 

deviation to give equal standard deviations of one.  For instance, the normalised systolic blood pressure values 

mean values added with the purpose of contributing their proportion of the model instead of dominated by features 

with large scales. The Z-score normalization for a feature 𝑥 is calculated as: 

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
                                           (2) 

 Where 𝑥𝑖 is the original value, 𝜇 is the mean of the feature, and 𝜎 is the standard deviation of the feature. 

This transform 𝑥 such that it has a mean of 0 and a standard deviation of 1. 

 

3.2.3. Encoding Categorical Variables: One-Hot Encoding 

Categorical variables need to encode in order to input to machine-learning-based algorithms. One-Hot 

Encoding used in transforming of categorical features into the corresponding numerical form. For instance, 

imagine that the data set contains the “Smoking Status” attribute, which in turn can have values like “Never”, 

“Former”, or “Current”: one-hot encoding results in the creation of three binary features. This approach eliminates 

ordinal features of label encoding and compatibility with algorithms that consider the existing relations between 

features. For a categorical variable with 𝑛 unique categories, One-Hot Encoding creates 𝑛 binary columns: 
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𝑜𝑖𝑗 = {
1       𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑗
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  

                       (3) 

 Where 𝑜𝑖𝑗  is the encoded value for instance 𝑖 and category 𝑗. Figure 2 shows the Proposed Model 

 

Figure 2. Proposed Model 

3.2.4. Outlier Detection and Removal: Z-Score Thresholding 

When there are extreme values present in the dataset, they can hamper the function of the model and 

result in incorrect estimations. In Z-Score Thresholding, the extreme values are located and then eliminated. The 

Z-score brings out how many standard deviations a particular data point is either above or below the mean. Values 

that lie outside a specified range of Z-score, often 3 or -3, deemed outliers eliminating or handled. For example, 

the cholesterol levels prominently higher than population average may detected and corrected in order to enhance 

model stability. An outlier 𝑥𝑖 is identified if its Z-score satisfies the condition: 
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|𝑧𝑖| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                               (4) 

3.2.5. Feature Engineering and Transformation: Polynomial Feature Generation 

Feature engineering usually helps to increase the predictive capabilities of a dataset since new 

information effectively points at existing correlations. Polynomial Feature Generation is a form of creating 

interaction terms or polynomial of these features. For instance, quadratic or interaction terms like (Age × BMI) 

or (Cholesterol²) can created to capture non-linear trends in the data. This method helps to optimize the disclosed 

model and strengthens its capacity for realistic patterns detection and providing high predicting precision. 

Polynomial feature generation for degree 𝑑 involves generating terms of the form: 

𝑥𝑛𝑒𝑤,𝑖 = ∏ 𝑥
𝑗

𝑝𝑗

𝑛

𝑗=1

                                   (5) 

 Where 𝑥𝑖 are the original features and 𝑝𝑗 are the powers (with ∑ 𝑝𝑗 ≤ 𝑑𝑛
𝑗=1 ) 

3.3 Feature Selection Using Recursive Feature Elimination (RFE) and Mutual Information 

 Feature selection step that deals with choosing the most informative predictors accurately. Feature 

selection , not only makes the computational process faster due to least features, but also the quality of the model 

learnt is better when compared to the fully-fledged model as the unnecessary features are removed. The two most 

commonly applied feature selection methods are RFE and Mutual Information, with strengths to select informative 

features. RFE is a subset of feature selection that employs a backward selection method that removes every feature 

one at a time, and each removal results in reduced performance of the model. It starts with set N that contains all 

features and means constantly going through the features, gradually discarding the weakest feature at a time until 

the defined number of features obtained. A linear model or classifier like Random Forest or SVM needed to assess 

a component value of each feature in each round. In each step, the model provides weight or score to the features 

depending on the importance of the feature in the prediction. First, the feature with the least weight or rank at all 

in the model excluded, and the model trained based on the remaining features. This process repeated until we 

achieve an ideal subset of features obtained. 

1. Model Training: Train a model 𝑀 on the dataset 𝐷 = {𝑋, 𝑦}, where 𝑋 is the feature matrix, and 𝑦 

is the target variable. 

𝑀(𝑋) → 𝑦̂                                    (6) 

2. Feature Importance: Calculate feature importance 𝐼(𝑓𝑖) for each feature 𝑓𝑖 in 𝑋. This could be 

derived from: 

 

• Coefficients in linear models: 𝐼(𝑓𝑖) = |𝛽𝑖|, where 𝛽𝑖 is the weight of 𝑓𝑖. 

• Importance scores in tree-based models. 

 

3. Feature Elimination: Identify the feature with the lowest importance: 

𝑓𝑚𝑖𝑛 = arg min
𝑓𝑖

𝐼(𝑓𝑖)                      (7) 

  Remove 𝑓𝑚𝑖𝑛 from 𝑋, creating a reduced dataset 𝑋′. 

4. Iteration: repeat steps 1-3 until the desired number of features 𝑘 remains: 

𝑋′ → 𝑋𝑘                                                (8) 

  Where |𝑋𝑘| = 𝑘 

It involves using the mutual information formula to find out the association between each feature and the 

target variable. It measures the degree of association between two variables – in fact; it measures the reduction in 

uncertainty about one given the other. The value in the mutual information shows that features with a high degree 

of dependency on the target variable considered more valuable. Mutual Information (MI) quantifies the 

dependency between a feature 𝑋𝑖 and the target 𝑦. The MI between 𝑋𝑖 and 𝑦 is defined as: 
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𝐼(𝑋𝑖; 𝑦) = ∑ ∑ 𝑃(𝑥, 𝑦′)

𝑦′∈𝑦

log (
𝑃(𝑥, 𝑦′

𝑃(𝑥)𝑃(𝑦′)
)

𝑥∈𝑋

                     (9) 

 where 𝑃(𝑥, 𝑦′) is the joint probability distribution of 𝑋𝑖 and 𝑦, and 𝑃(𝑥) and 𝑃(𝑦′) are the marginal 

probability distributions of 𝑋𝑖 and 𝑦 respectively. 

Steps: 

1. Calculate 𝐼(𝑋𝑖; 𝑦) for all features 𝑋𝑖 in 𝑋. 

2. Rank features based on their MI scores. 

3. Select the top 𝑘 features with the highest 𝐼(𝑋𝑖; 𝑦) 

While RFE is specific to modelling methodology and chooses features according to how statistically they are 

dependent on the target variable, mutual information does not possess such a restriction. It is especially useful in 

datasets with curvilinear relationships because it does not presuppose any distribution of the form of relationship 

between the variables. Indeed, with reference to the CVD data set, mutual information may reveal high 

dependency of glucose and the existence of the disease even when the dependency is non-linear. It established 

that both RFE together with mutual information could in fact be an effective method of feature selection. In the 

initial level, features that show no mutual information with the class can eliminated to free more computing power 

for RFE. After that, RFE can further reduce the selection by determining which features are most important to a 

selected predictive model. To combine RFE and mutual information: 

1. Use MI to preselect a subset 𝑋𝑀𝐼  of features: 

𝑋𝑀𝐼 = {𝑋𝑖: 𝐼(𝑋𝑖; 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}                    (10) 

2. Apply RFE on 𝑋𝑀𝐼  to further refine the feature set: 

𝑋𝑘 = 𝑅𝐹𝐸(𝑋𝑀𝐼 , 𝑦, 𝑘)                                    (11) 

3.4 Model Development: Ensemble Model Selection 

 CVD detection requires precise predictions, leading to the creation of a highly scalable and accurate 

ensemble model. The CVD-Robust Ensemble Framework (CVD-REF) combines the strengths of three distinct 

algorithms: Random Forest, Gradient Boosting Machine (GBM) and a Neural Network (NN). This strategy is 

efficient since it combines the strengths of each algorithm applied in the ensemble while providing a single 

comprehensive model for the diverse patterns and relationships in the data set. Random Forests are the 

fundamental components of the framework because they solve the problem of high variance from the prediction. 

Similarly to the previous ensemble model, namely Bagging (Bootstrap Aggregation), Random Forest constructs 

multiple decision trees with different samples of observations and their results are averaged (by regression). This 

decreases overfitting thereby guaranteeing that the model performs well on unseen data. Given the dataset derived 

from the CVD, Random Forests perform optimally when confronted with noisy and correlated features like 

systolic and diastolic blood pressure when rated alongside other variables such as cholesterol and glucose level. 

This supports the stability and reliability of the whole ensemble as compared to working in isolation. Ensemble 

learning means that Random Forests combine the results of several decision trees. For a input 𝑋, the output of the 

Random Forest model is: 

𝑦̂𝑅𝐹 =
1

𝑇
∑ 𝑓𝑡(𝑋)

𝑇

𝑡=1

                                          (12) 

 Where 𝑇 is the total number of decision trees, 𝑓𝑡(𝑋) is the prediction from the 𝑡-th tree, and 𝑦̂𝑅𝐹 is the 

averaged output (for regression) or the majority vote (for classification). To enhance the variance reducing 

capability of random forest, GBMs used to manage bias. GBM grows decision trees one at a time and each tree 

learnt from the residuals of the previous tree. The given iterative process helps to find patterns and interactions in 

the data that may be unnoticed by other models. For instance, GBM can differentiate the detailed connection 

between age and gender and clinical features such as glucose levels and cholesterol levels in patients. This makes 

the ensemble to have great entry captured by the diagram and the CVD dataset details hence improving the chances 

of the model’s predictive accuracy. In Gradient Boosting, tree structures built one after the other and each new 

tree built based on the residuals of the preceding tree. For a given input 𝑋, the output of the GBM model is: 
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𝑦̂𝐺𝐵𝑀 = ∑ 𝜂 ⋅ 𝑓𝑚(𝑋)

𝑀

𝑚=1

                                        (13) 

 Where 𝑀 is the number of trees, 𝑓𝑚(𝑋) is the prediction from the 𝑚-th tree, 𝜂 is the learning rate (step 

size), and 𝑦̂𝐺𝐵𝑀 is the cumulative prediction. Each tree 𝑓𝑚(𝑋) minimizes the loss function 𝐿, defined as: 

𝑓𝑚(𝑋) = arg min
𝑓

∑ 𝐿(𝑦𝑖 , 𝑦̂𝑚−1(𝑋𝑖) + 𝑓(𝑋𝑖))

𝑁

𝑖=1

                   (14) 

 Where 𝑦𝑖  is the true target, and 𝑦̂𝑚−1(𝑋𝑖) is the prediction from the previous iteration. Neural Networks 

included into the framework in order to perform complex and non-linear dependence between variables. Their 

flexibility in modelling such complex patterns make them useful in datasets smaller than the CVD dataset where 

the nature of dependence among features may not be linear or tree like. For example, using the Neural Network, 

one can estimate interaction effects between BMI, age, level of physical activity and cardiovascular risk, and the 

like. Other optimization strategies such as dropout in an attempt to overcome over fitting and batch normalization 

in an attempt to overcome fluctuation in training has applied. It guarantees that the Neural Network plays its role 

in the ensemble and does not overpower the other models, leading to fluctuations in the performance of the whole 

system. In Neural Network the output is calculated in various layers; For an input 𝑋, the final prediction is: 

𝑦̂𝑁𝑁 = 𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑊(𝐿)𝑓(𝐿−1) … 𝑓(𝑙)(𝑊(𝑙)𝑋 + 𝑏(𝑙)) + 𝑏(𝐿))                       (15) 

 Where 𝑊(𝑙) and 𝑏(𝑙) are the weights and biases for layer 𝐿, 𝑓(𝑙) is the activation function for layer 𝑙, 𝐿 is 

the number of layers, and 𝑦̂𝑁𝑁 is the Neural Network’s prediction. The final predictions from Random Forests, 

GBM, and the Neural Network were collected using stacking, which is a sophisticated ensemble learning 

methodology. Stacking uses a meta-model, which can be a simpler model such as Logistic Regression or a lesser 

network than applied in base models. Every base model makes prediction on a validation dataset, which then used 

to train the meta-model. The meta-model acquires an ability to select proper coefficients for the outputs of the 

individual models, thus providing the best general approximation. Stacking takes advantage of the differences in 

the strengths of the base models, and by applying it in the CVD-REF framework, promising results achieved. 

Whereas, Random Forest models offer stability, in GBM, errors minimized for prediction, and the Neural Network 

captures the manifold relationship, the meta-model integrates all such outputs in a single final and accurate 

prediction. The complete framework can be summarized as: 

𝑦̂𝐶𝑉𝐷−𝑅𝐸𝐹 = 𝑔 (
1

𝑇
∑ 𝑓𝑡(𝑋),

𝑇

𝑡=1

∑ 𝜂 ⋅ 𝑓𝑚(𝑋),

𝑀

𝑚=1

𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑊(𝐿)𝑓(𝐿−1) … 𝑓(𝑙)(𝑊(𝑙)𝑋 + 𝑏(𝑙)) + 𝑏(𝐿)))        (16) 

 For CVD prediction, the CVD-Robust Ensemble Framework (CVD-REF) has several advantages. 

Random Forests are insensitive towards distribution drifts, GBM gains better precision based on the difficult-to-

predict records and Neural Networks are appropriate for complicated non-linear patterns. Stacking ensures that 

the overall output combined and brings the best performance in each of the student models. This approach not 

only improves accuracy of predictive models but also makes them more resistant to overtraining and thus suited 

for practical clinical applications. The framework of CVD-REF combines the complementary advantages of many 

algorithms to provide an accurate and rapid solution for the early diagnosis of CVDs. 

Algorithm: CVD-Robust Ensemble Framework (CVD-REF) 

Input: Dataset 𝐷 = {𝑋, 𝑦} 

Output: Optimized model 𝑀 capable of predicting the presence of cardiovascular diseases (CVD). 

Data Preprocessing 

 For each instance with missing values 

  𝑥𝑚 =
∑ 𝑤𝑗⋅𝑥𝑗

𝑘
𝑗=1

∑ 𝑤𝑗
𝑘
𝑗=1

     // Apply KNN imputation 
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  𝑧𝑖 =
𝑥𝑖−𝜇

𝜎
        // Standardize continuous features 

  𝑜𝑖𝑗 = {
1       𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑗
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  

 // Convert categorical features 

  |𝑧𝑖| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑     // Remove outliers 

  𝑥𝑛𝑒𝑤,𝑖 = ∏ 𝑥
𝑗

𝑝𝑗𝑛
𝑗=1     // Generate polynomial features 

Feature Selection 

 For each feature 𝑋𝑖: 

  𝐼(𝑋𝑖; 𝑦) = ∑ ∑ 𝑃(𝑥, 𝑦′)𝑦′∈𝑦 log (
𝑃(𝑥,𝑦′

𝑃(𝑥)𝑃(𝑦′)
)𝑥∈𝑋  // Compute MI between features 

 Return features 

 𝑀(𝑋) → 𝑦̂        // Train a model 

 For each feature 𝑓𝑖 

  Calculate feature importance 𝐼(𝑓𝑖) 

  For linear models 

   𝐼(𝑓𝑖) = |𝛽𝑖| 

  For tree-based models 

   Use feature importance scores 

 𝑓_ min = arg min
𝑓𝑖

𝐼(𝑓𝑖)   // Remove the feature with the lowest importance 

 Repeat until 𝑘 features remain 

Model Development 

 𝑦̂𝑅𝐹 =
1

𝑇
∑ 𝑓𝑡(𝑋)𝑇

𝑡=1     // Train 𝑇 decision trees 

 𝑓𝑚(𝑋) = arg min
𝑓

∑ 𝐿(𝑦𝑖 , 𝑦̂𝑚−1(𝑋𝑖) + 𝑓(𝑋𝑖))𝑁
𝑖=1  // Sequentially train 𝑀 trees 

 𝑦̂𝐺𝐵𝑀 = ∑ 𝜂 ⋅ 𝑓𝑚(𝑋)𝑀
𝑚=1    // Combine predictions 

 𝑦̂𝑁𝑁 = 𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑊(𝐿)𝑓(𝐿−1) … 𝑓(𝑙)(𝑊(𝑙)𝑋 + 𝑏(𝑙)) + 𝑏(𝐿)) // Compute output through 𝐿 layers 

 Combine base models using stacking 

Model Evaluation 

 Split dataset into training and testing 

 Perform hyperparameter optimization 

Deployment 

 Export the trained ensemble model 

End Algorithm 
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3.5 Novelty of the Work 

The novelty of this work lies in the development of the CVD-Robust Ensemble Framework (CVD-REF), 

which combines the strengths of Random Forests, GBM, and Neural Networks into a unified ensemble model for 

early detection of CVD. Unlike traditional machine learning models or standard ensemble methods, the CVD-

REF framework addresses multiple challenges simultaneously, including overfitting, bias reduction, and the 

ability to capture non-linear relationships. By using stacking, the framework leverages a meta-model to optimally 

integrate predictions from the base models, resulting in balanced and reliable outputs across diverse datasets. A 

key advantage of the proposed model is its robustness and versatility. Random Forests provide stability and handle 

noisy or imbalanced data effectively, while GBM captures subtle patterns and corrects errors iteratively. Neural 

Networks further enhance the framework by modelling complex, non-linear interactions between variables, such 

as the interplay of demographic, clinical, and lifestyle factors. This integration ensures that the model performs 

well across diverse scenarios without being overly sensitive to any single type of relationship or data feature. 

4. Results and Discussions 

The proposed model was developed using PyCharm as the development environment, which offers 

robust tools for debugging and managing code during implementation. The system configuration for this 

implementation included Windows as the operating system and an Intel® Core™ i5-14400T processor with a 

20M Cache and a clock speed of up to 4.50 GHz. The system has been equipped with 4GB RAM which proves 

that model is capable of being run on basic hardware platforms successfully. This configuration demonstrates the 

computational advantages of the proposed framework, which allows it to implement in low resource settings. The 

approach to identifying the early signs of CVD involves data cleaning or data pre-processing in order to prepare 

the data for model training. These addressed using KNN Imputation where variables with missing values imputed 

based on the closeness of data points. This approach ensure that no unnecessary or unfair biases but all the data 

within the set is preserved. Continuously valued attributes normalized numerically by Z-Score normalization, 

ensuring all attributes are equally important for prediction and have an equal weight within the model, as the scale 

of the values is standardized. Categorical data encoded numerically using One-Hot Encoding to create samples 

with binary data applicable for input in machine learning algorithms. Experiments performed showed that such 

outliers have an effect on the model’s accuracy when detect and removed using Z-Score Thresholding. 

Furthermore, Polynomial Feature Generation used to improve the dataset by creating new features, which capture 

complexity relationships between them that makes the dataset more powerful in making predictions. Table 1 

depicts the parameters involved in simulation process. 

Table 1. Simulation Parameters 

Parameter Value/Details 

Dataset Cardiovascular Disease Dataset from Kaggle 

Optimization Algorithm Adam Optimizer 

Learning Rate 0.001 

Epochs 100 

Batch Size 32 

Dropout Rate 0.2 

Activation Function ReLU (Rectified Linear Unit) 

Development 

Environment 
PyCharm IDE, Windows OS, Intel® Core™ i5-14400T, 4GB RAM 

Hyperparameter Tuning Grid Search Auth
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Figure 3. Categorical Variable Distribution by Cardiovascular Disease 

Figure 3 shows the categorical variable distribution by cardiovascular disease. The feature selection 

process is the next critical step in the methodology. This involves identifying the variables that significantly impact 

the model’s performance, thereby reducing noise in the inputs and improving computational efficiencyBy 

combining these approaches, the pipeline ensures that only the most relevant and beneficial features are retained 

for the model. Figure 4 shows the correlation matrix. 

 

Figure 4. Correlation Matrix 

After data preparation, the CVD-Robust Ensemble Framework (CVD-REF) employed for the 

development of the predictive model. This framework combines three distinct algorithms: Random Forests, 

Gradient Boosting Machine (GBM), and a Neural Network. Random forests reduce variance since it first creates 
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several different decision trees on different random subsets of the data and then combines the results that produced. 

This guarantees stability and insensitivity to noise that present in the system. GBM concentrating on effectively 

handling the problem of bias and enhancing the error rate as the learning process proceeds through successive 

trees. It is worth underlining that the iterative nature of this approach helps us better capture such finer details and 

enhance the general performance of the constructed models. 

 

Figure 5. Age Distribution (Years) 

Figure 5 shows the age distribution over years. Neural Networks reduce the problem sophistication by 

not only estimating linear regression models, but also by taking into account interaction between variables and 

overall non-linearity of the phenomena under consideration such as age, BMI as well as cholesterol levels in this 

example. These models learned separately, and each of them utilized its capabilities in the learning process in 

order to create an ensemble. Staking used to combine the outputs of the three base models with each model being 

an advanced ensemble learning technique. In stacking, the predictions from the base models that are provided to 

a meta-model, where a meta-model finds a way to combine these predictions to achieve enhanced accuracy. The 

meta-model, which can be a minor algorithm such as a Logistic Regression or a small Neural Network, determines 

weights for each base model through their contribution to the performance of the ensemble. This process stitches 

together features from Random Forests, GBM, and the Neural Network while avoiding the weaknesses of each 

model to create a final forecast that is impeccable in both precision and stability. Figure 6 shows the cholesterol 

levels by CVD presence. 

Table 2. Performance Metrics Comparison on Various Model 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Logistic Regression [22] 85.23 83.45 84.67 84.55 

KNN [23] 87.45 85.67 86.78 86.56 

Support Vector Machine 

(SVM) [24] 
88.67 86.89 87.56 87.34 

Decision Tree [25] 84.12 82.34 83.12 82.78 

Random Forest [25] 91.34 89.78 90.45 90.12 

GBM [26] 92.15 90.56 91.23 91 

Neural Network [27] 90.87 88.12 89.45 88.78 

AdaBoost [28] 89.54 87.34 88.23 87.89 

XGBoost [29] 93.21 91.45 92.12 91.78 

Proposed Model (CVD-

REF) 
98.55 97.8 98.12 98 
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Figure 6. Cholesterol Levels by CVD Presence 

 

Figure 7. Performance Metrics Comparison of Various Models 

Table 2 and Figure 7 presents the performance statistics of various ML models including the proposed 

CVD-Robust Ensemble Framework (CVD-REF for CVD. Again, the basic models namely Logistic Regression 

and Decision Tree show comparable results with the accuracy of 85.23% and 84.12% respectively. Random 

Forest, GBM and Neural networks prove to be even better with accuracies of 91.34%, 92.15% and 90.87% 

respectively. GBM and XGBoost are distinct with XGBoost producing high testing accuracy of 93.21%, testing 

precision of 91.45% and a testing F1-score of 91.78% indicating its ability of handling pattern complexity in the 

data set. However, the proposed CVD-REF framework outperforms all traditional models with excellent accuracy 

of 98.55%, precision of 97.8%, recall of 98.12%, and F1-score of 98%. This significant improvement attributed 

to the ensemble method of Random Forest, GBM, and Neural Network as part of a stacking protocol. Due to the 

strengths of these models incorporated in the CVD-REF, it overcomes variations, bias and non-linearity of feature 

interaction in the best way. It represents a considerable advantage over standalone models as ensemble learning 

prognosticates the most suitable solution in complicated medical datasets for the early diagnosis of CVDs. These 

outcomes support the possibility of using CVD-REF for other practical clinical methods. 
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Table 3. Sensitivity and Specificity Comparison 

Model Sensitivity (%) Specificity (%) 

Logistic Regression 84.12 85.67 

K-Nearest Neighbors (KNN) 85.34 88.12 

Support Vector Machine (SVM) 86.78 89.45 

Decision Tree 83.45 84.34 

Random Forest 90.12 91.89 

GBM 91.56 92.34 

Neural Network 89.78 90.45 

AdaBoost 88.23 89.67 

XGBoost 92.78 93.45 

Proposed Model (CVD-REF) 98.34 98.78 

 

Figure 8. Sensitivity and Specificity Comparison 

Table 3 and Figure 8 shows the percentage of sensitivity and specificity of various models for CVDs 

which state about the accuracy of the models to identify actual positives and actual negatives. Logistic Regression 

and Decision Tree yields low sensitivity (84.12% and 83.45%) and specificity rates of (85.67 & 84.34%) are 

moderate. In Random Forest and GBM, the predicted results are of high accuracy with sensitivity rates of 90.12%, 

91.56 % and specificity rates of 91.89%, 92.34% respectively. XGBoost tops up these statistics with sensitivity 

of 92.78% and specificity of 93.45% in order to show that it can handle high order feature interactions 

appropriately. Yet, the CVD-Robust Ensemble Framework, which proposed by us for the classification of CVDs, 

delivers both sensitiveness of 98.34% and specificity of 98.78%. Such superior performance has shown to 

demonstrate its optimal achievement of a true positive rate relative to its true negative rate. The integration of 

Random Forest, GBM, and Neural Networks when using stacked ensemble in CVD-REF makes early and accurate 

detection of CVD possible. 
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Table 4. ROC-AUC Comparison 

Model ROC-AUC (%) 

Logistic Regression 88.34 

KNN 89.45 

Support Vector Machine (SVM) 90.12 

Decision Tree 87.34 

Random Forest 92.78 

GBM 93.45 

Neural Network 91.23 

AdaBoost 90.78 

XGBoost 94.23 

Proposed Model (CVD-REF) 99.12 

 

Figure 9. ROC-AUC Comparison 

The performance of each model shown in Table 4 and Figure 9 by calculating the ROC-AUC for 

distinguishing between positive and negative cases for CVD prediction. From the experimental results, Logistic 

Regression and Decision Tree achieved the ROC-AUC close to 88.34% and 87.34% respectively; therefore, both 

models are restrictions in complexity pattern. Higher-level algorithms such as Random Forest and Gradient 

Boosting of Machine (GBM) show superior performance with ROC-AUC of 92.78 % and 93.45% respectively. 

Neural, AdaBoost, and XGBoost have almost similar results with XGBoost coming out top with a 94.23% 

accuracy. The CVD-Robust Ensemble Framework (CVD-REF) proposed here performs best with a stunning 

ROC-AUC of 99.12% clearly indicating its stronger ability to handle nonlinear relationships and different 

distributions of data. Thus, Random Forest, GBM, and Neural Networks introduced in stacked ensemble help 

CVD-REF achieve the lowest bias and variance and improve classification. As such, the results of demonstrate 

its high viability and applicability to real-life clinical diagnostics of initial stages of CVDs. 
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Table 5. Training Time Comparison 

Model Training Time (Seconds) 

Logistic Regression 0.5 

KNN 1.2 

Support Vector Machine (SVM) 2.3 

Decision Tree 0.7 

Random Forest 3.4 

GBM 4.5 

Neural Network 5.6 

AdaBoost 4.2 

XGBoost 4.9 

Proposed Model (CVD-REF) 2.1 

Table 5 and Figure 10 compares the training time of each model in this study, which indicates their 

computer training time efficiency. Logistic Regression takes the least amount of time, 0.5 seconds because the 

model is simple and fast to compute as does decision tree which takes 0.7 seconds because it has fewer layers 

making computations faster. Finally, KNN, which uses distance metrics and Support Vector Machine (SVM), 

which uses hyperplane optimization, takes a slightly higher time of 1.2 and 2.3 seconds respectively. Random 

forest, GBM and XGBOOST models also took longer training times about 3.4 to 4.9 secs due to the creation of 

many decision trees. The training time of Neural Networks is longest of 5.6 seconds due to the complicated 

architecture of ANN. Notably, the proposed CVD-Robust Ensemble Framework (CVD-REF) makes use of 

multiple models but experiences a reasonable training time of 2.1 seconds. This efficiency proves the idea that the 

framework’s architecture built for performance and such an implementation can be valuable for real-life 

applications requiring both, accuracy and speed. 

 

Figure 10. Training Time Comparison 
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Table 6. Model Complexity (Number of Parameters) 

Model Number of Parameters 

Logistic Regression 12 

KNN N/A (Distance-based) 

Support Vector Machine (SVM) 500+ 

Decision Tree Varies (Depth-dependent) 

Random Forest 100,000+ 

GBM 120,000+ 

Neural Network 500,000+ 

AdaBoost 100,000+ 

XGBoost 150,000+ 

Proposed Model (CVD-REF) 350,000+ 

Table 6 presents the complexity of the models as analysed using the number of parameters required to 

train those models. A more straightforward approach like Logistic Regression, for instance, incorporates 12 

parameters max and is easy to understand but lacks flexibility. Machines like Support Vector Machine (SVM) 

involve 500+ parameter and the Decision Tree complexity depends on the depth required by the data. Random 

forest, GBM and AdaBoost control thousands (1000+) to tens of thousands (100000+) parameters; therefore they 

have the ability to learn complex patterns. Neural Networks, with 500,000+ parameters, provides the more 

flexibility in model assumptions but these requirements a significant amount of compute. The proposed CVD-

Robust Ensemble Framework (CVD-REF) reconstructs the model complexity and efficiency by having more than 

350,000 parameters and apply stacked ensembles for boosting high accuracy as well as ensuring a reasonable size 

for real-world applications. 

Table 7. Energy Efficiency (Training Energy Consumption) 

Model Energy Consumption (kWh) 

Logistic Regression 0.02 

KNN 0.05 

Support Vector Machine (SVM) 0.07 

Decision Tree 0.03 

Random Forest 0.2 

GBM 0.3 

Neural Network 0.5 

AdaBoost 0.25 

XGBoost 0.35 

Proposed Model (CVD-REF) 0.18 Auth
ors

 Pre-
Proo

f



 
 

 

Figure 11. Energy Efficiency Comparison (Training Energy Consumption) 

Table 7 and Figure 11 summarizes the energy efficiency of different models with the training energy in 

kilowatt-hours (kWh). Logistic Regression and Decision Tree are the basic models that involve nearly negligible 

energy consumption, 0.02kWh and 0.03kWh respectively because of lower complexity of calculations. KNN is 

slightly more energy hungry, taking 0.05 kWh because distance functions or similar are used in the algorithm, 

while SVM takes 0.07 kWh because of the optimization process involved. Random Forest, GBM and XGBoost 

models are about 0.2 and 0.35 kWh respectively, which are much higher, compared to linear models because of 

the construction of numerous trees and iterative learning. Neural Networks with a relatively high number of 

parameters and computational requirements take the highest 0.5 kWh. As for the power consumption which is one 

of the cores of the proposed CVD-REF, the estimated value was found to be 0.18 kWh but it must be noted that 

the structure of the framework is rather complex. The combination of energy efficiency and predictability makes 

CVD-REF applicable for real world, long-term use. After deployment, the model continuously monitored to 

ensure its performance remains consistent over time. As new data becomes available, the model updated through 

an adaptive learning framework, allowing it to account for changes in population demographics or clinical 

practices. This ensures that the predictive framework remains relevant and accurate, contributing to improved 

early detection of CVDs and better patient outcomes. Figure 12 shows the confusion matrix for proposed model. 

 

Figure 12. Confusion Matrix for Proposed Model 
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5. Conclusion and Future Work 

The proposed CVD-Robust Ensemble Framework (CVD-REF) achieved a breakthrough accuracy of 

98.55%, setting a new benchmark in the early detection of CVDs. Its robust performance across key metrics, 

including precision (97.80%), recall (98.12%), and ROC-AUC (99.12%), underscores its reliability and 

applicability in clinical environments. By integrating diverse strengths of Random Forests, GBM, and Neural 

Networks, the framework provides a balanced and highly accurate predictive model. Furthermore, the adoption 

of stacking ensures optimal aggregation of base models, enhancing performance without significant computational 

overhead. Despite its success, there is room for further enhancement. Future research is planned to concentrate on 

combining wearable technology's real-time health data with electronic health records to improve the model’s 

generalizability. Addressing the model's scalability for deployment in low-resource settings and reducing its 

energy consumption will also be key areas for future exploration. With advancements in AI and access to richer 

datasets, the CVD-REF framework has the potential to revolutionize preventive healthcare by enabling 

widespread early detection of CVDs. 
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