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Abstract- Today's major goals in sensor network research are to extend the life of wireless sensor networks 

(WSNs) and reduce power consumption.  IoT-based WSN are widely used in a range of applications, including 

military, healthcare, and industrial monitoring.  WSN nodes often have limited battery capacities, making 

energy efficiency an important consideration for clustering and routing.  Data is transferred from the source SNs 

to the destination SNs.  These are likely to be completed in a secure manner and in less time.  Energy-efficient 

data transmission is a significant challenge for WSNs coupled with IoT.  This research provides an optimal 

clustering and routing paradigm for increasing network lifetime, reducing energy usage, and ensuring reliable 

data transfer.  Cluster creation is carried out using a Trusted Energy-Efficient Fuzzy Logic-Based Clustering 

(TEEFLC) Algorithm, which takes into account node trustworthiness, residual energy, and network density.  

The Improved Fossa Optimization Algorithm (FOA) is used to choose the ideal Cluster Head (CH), maintaining 

balanced energy distribution and reducing the number of CH replacements.  To provide efficient data 

transmission, a Federated Deep Q-Network (FDQN) based routing strategy is used, which optimizes next-hop 

selection based on energy efficiency and link quality.  Simulation findings show that the proposed method 

outperforms standard clustering and routing protocols in terms of energy efficiency, packet delivery ratio, and 

network longevity, indicating that it is a viable solution for WSN-IoT applications. 

Keywords: Wireless Sensor Networks (WSNs), Internet of Things (IoT), Cluster Head (CH), Fossa 

Optimization Algorithm (FOA), Federated Deep Q-Network (FDQN), trusted energy-efficient fuzzy logic-

based clustering (TEEFLC). 

1. Introduction 

Wireless Sensor Networks (WSN) are integral to daily life, widely employed across diverse sectors 

including area monitoring, military surveillance, manufacturing and  underwater detection, weather forecasting, 

industrial automation,agriculture, defense, healthcare, traffic management, and various commercial applications.   

However, the architecture of the routing protocol may be affected by factors like as real-time monitoring, node 

deployment tactics, security, and energy usage.  This network comprises numerous sensor nodes (SN) for 

evaluating, acquiring, and detecting data distributed across the environment.  Moreover, these sensor nodes 

demonstrate increased complexity and rely on a limited battery for power.  Thus, the principal issue is the 

inadequate power sources leading to node malfunction.  Clustering is an efficient approach for developing 

routing algorithms in WSNs, as it improves the network's longevity and scalability.  The CH in a clustered WSN 

is crucial for data transfer.  A substantial body of research has been undertaken on cluster-based routing.  

However, challenges arise from fault tolerance, uneven load distribution, and locally optimal solutions.  This 
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study aims to introduce a novel cluster-based routing method that improves routing efficiency and extends 

network longevity [1]. 

 

Efficient energy transmission is vital for WSN inside the IoT to improve network lifetime and guarantee 

dependable communication.   Node trust, residual energy, and base station proximity determine clusters in the 

proposed paradigm using TEEFLC.  FOA aids CH selection, increasing energy equity and reducing re-

clustering activity.   Multi-hop routing is improved by FDQNs adjusting to network conditions for data delivery.   

This fuzzy logic system considers network quality, residual energy, and traffic load to improve routing 

decisions.   Deep reinforcement learning reduces energy footprint and packet loss with adaptive routing [2][3]. 

The IoT requires WSNs for real-time monitoring and data collecting, but energy constraints are a major 

issue.  Clustering and routing methods often waste energy, re-elect CHs, and increase packet loss, shortening 

network lifespan.  This research seeks an intelligent, energy-efficient, and adaptive data transport technique that 

reduces power consumption.  This study uses fuzzy logic for clustering, FOA for CH selection, and FDQN for 

routing to reduce energy consumption, balance network load, and improve dependability.  Scalable, self-

adaptive, and durable WSN-IoT networks for environmental monitoring, smart agriculture, and industrial 

automation are needed [4-6]. 

Intelligent clustering and adaptive routing techniques are used in this research to improve WSN energy 

efficiency and reliability with the IoT.  TEEFLC ensures optimal cluster formation, whereas FOA enhances CH 

selection for energy balance.  Deep reinforcement learning improves data transfer in FDQN routing, reducing 

packet loss and network congestion.  This study is relevant for smart cities, precision agriculture, industrial IoT, 

and environmental monitoring because it extends network longevity, improves data reliability, and reduces 

energy usage.   This research overcomes WSN-IoT routing and clustering limitations to improve sensor network 

scalability, adaptability, and energy efficiency for practical deployment. 

Opportunistic energy-efficient dynamic self-configuration routing (OEDSR) is used in the existing model 

for IoT applications.  The residual energy and mobility factors of the SNs are used to identify the best path to 

the BS in a graph theory-based routing tree model. To decrease connections, dynamic cluster creation with 

hierarchical tree architecture creates an ideal path. To demonstrate the OEDSR protocol's efficacy, throughput, 

latency, and PDR are compared to peer routing systems [9]. The hybrid K-LionER scheme for WSN backed by 

the IoT was introduced in another model.  K-LionER promises to improve network longevity and energy 

efficiency. K-means generates WSN clusters, with ant lion optimization selecting each CH. CHs aggregate 

cluster data and send it to the BS.  K-LionER assigns the CH based on routing parameters, Remnant Energy 

(RE), CH-BS distance, and Intra-cluster Communication Cost. A detailed simulation is done with MATLAB 

2017a.  Compare K-LionER's success to LEACH, ECFU, and GADA-LEACH. The simulation findings show 

improvements in active nodes, stability duration, inactive nodes, and network longevity. K-LionER increases 

network lifespan by 10% to 48% compared to other routing methods [10]. 

The proposed WSN-IoT clustering and routing architecture prioritizes energy efficiency, network longevity, 

and data reliability. It uses fuzzy logic-based clustering, efficient CH selection, and deep reinforcement learning 

routing. A trustworthy energy-efficient fuzzy logic-based clustering algorithm first clusters SNs by residual 

energy, trustworthiness, and density. This ensures fair cluster formation, network stability, and energy savings. 

After clusters develop, the FOA evaluates energy levels, communication distances, and load distribution to find 

suitable CHs. FOA mimics fossa's predatory behavior to investigate and exploit suitable CH locations and 

reduce re-elections.  After choosing the CH, an FDQN is used to run a multi-hop routing protocol. The fuzzy 

logic system evaluates residual energy, network quality, and traffic load to improve next-hop selection and 

adaptive routing. DRL in FDQN improves routing algorithms by examining historical data, energy efficiency, 

packet loss, and network performance. SNs collect data, CHs aggregate and transmit it using FDQN-based 

routing, and the deep reinforcement learning module optimizes transmission paths.  In large WSN-IoT networks, 

the suggested solution improves energy efficiency, re-clustering costs, scalability, and data transmission. 
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The major contribution of the work are as follows: 

• Introduces a reliable energy-efficient fuzzy logic-based clustering algorithm to improve cluster 

formation by accounting for residual energy, node trustworthiness, and density, hence improving 

network stability. 

• Employs the FOA to identify energy-efficient CHs, hence assuring equitable energy utilization and 

minimizing the frequency of re-clustering. 

• Implements a FDQN based routing system that dynamically selects the optimum paths based on 

residual energy, connection quality, and traffic load, decreasing packet loss and network congestion. 

• Incorporates deep reinforcement learning (DRL) within FDQN to dynamically optimize routing 

patterns, improving energy efficiency and extending network longevity. 

• Ensures scalability for extensive WSN-IoT networks by optimizing load allocation across nodes, 

minimizing communication overhead, and enhancing data transmission reliability. 

• The suggested method markedly decreases energy consumption, enhances load balancing, and prolongs 

the lifespan of WSN-IoT networks in comparison to traditional clustering and routing methodologies. 

The remaining parts of the work is organized as follows: Section 2 shows the survey of the existing models. 

Section 3 explains the working of proposed A Trust-Aware Energy-Efficient Framework for Intelligent 

Clustering and Routing in WSN-IoT model. Result and discussion part is represented in section 4. The work is 

concluded in section 5. 

2. Literature Survey 

Vijayendra K. H. Prasad et al. (2023) introduced an energy-efficient clustering-based routing methodology 

for WSNs, employing bioinspired optimization approaches for the selection of CHs and an adaptive routing 

strategy to reduce energy usage.  The suggested model extends network longevity, minimizes energy 

expenditure, and enhances data transmission efficacy through the dynamic selection of appropriate CHs and 

paths.  The methodology may encounter scaling challenges in ultra-large-scale WSN and may necessitate 

supplementary computational overhead for real-time re-clustering and routing modifications [11]. 

Greeshma Arya et al. (2022) introduced an energy-efficient routing protocol for IoT-based WSN, 

incorporating reinforcement learning (RL) for clustering, MRFO for CH selection, and a Deep Belief Network 

(DBN) for optimum data transmission.  The proposed paradigm extends network longevity, elevates PDR, 

diminishes energy usage, and augments node accessibility inside clusters.  The method may incur computational 

overhead from deep learning-based routing decisions and may necessitate further optimization for real-time 

implementation in extensive networks [12]. 

Rajeswari A.R et al. (2021) proposed a secure and energy-efficient cluster-based routing algorithm, the 

TEEFCA, which utilizes a fuzzy inference system for the optimal selection of cluster leaders and the formation 

of clusters based on residual energy, cluster density, and proximity to the base station.  The proposed TEEFCA 

optimizes energy conservation, improves network stability, and prolongs network lifespan in comparison to 

current cluster-aware routing methodologies.  The computational complexity of the fuzzy inference system may 

escalate with network size, necessitating additional optimization for real-time scalability in extensive WSN 

deployments [13]. 

Venkatesan Cherappa et al. (2023) introduced an energy-efficient clustering methodology utilizing the 

Adaptive Sailfish Optimization (ASFO) algorithm alongside K-medoids for optimal CH selection, and 

implemented an E-CERP to reduce network overhead and identify the shortest path.  The suggested approach 

attains a PDR of 100%, a packet latency of 0.05 seconds, a throughput of 0.99 Mbps, a power consumption of 

1.97 mJ, a network lifespan of 5908 cycles, and a PLR of 0.5% for 100 nodes, surpassing current 

methodologies.  The methodology may incur computational overhead from ASFO-based clustering and may 

necessitate additional optimization for scalability in extensive WSN deployments [14]. 
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N Nathiya et al. (2023) introduces an energy-efficient clustering and intrusion detection system for IoT-

enabled WSN, employing the MapDiminution-based Training-Discovering Optimization method for optimal 

cluster routing and task scheduling, in conjunction with a hybrid Artificial Neural Network (ANN) and 

Simulated Annealing (SA) classifier for intrusion detection.  The suggested framework attains an energy 

consumption of 0.01 J and an intrusion detection accuracy of 97.57%, surpassing current methods in energy 

efficiency and security.  The computational complexity of the hybrid ANN-SA model may escalate with 

extensive deployments, and real-time processing efficiency may necessitate additional tuning [15]. 

Masood Ahmad et al. (2021) presented a Memetic Algorithm (MemA)-based clustering method for WSN-

IoT aimed at addressing early convergence challenges in evolutionary algorithms, dynamically balancing cluster 

loads, and enhancing CH selection via local exploration techniques.  The proposed method attains diminished 

control message overhead, optimized cluster quantity, decreased reaffiliation rate, and extended cluster 

longevity, surpassing established methods such as MobAC, EPSO-C, and PBC-CP.  The computational 

complexity of MemA, attributed to local search and crossover mechanisms, may prolong processing time, 

necessitating additional optimization for real-time applications in extensive WSN-IoT. 

Ahmad Saeedi et al. (2025) introduced a multi-objective binary whale optimization algorithm (BWOA) for 

the optimal selection of CH) in IoT-based WSN, integrated with a Mamdani-type fuzzy inference system (FIS) 

to facilitate energy-efficient cluster formation.  A multi-hop shortest path routing mechanism is also employed 

to improve data transmission.  The suggested methodology realizes a 4.5% enhancement in First Node Death 

(FND), a 7.8% improvement in Half Node Death (HND), and a 1.5% rise in Last Node Death (LND) relative to 

current methodologies, indicating superior network longevity and energy efficiency in IoT-based WSN.  The 

computational complexity of BWOA and fuzzy-based clustering may elevate processing overhead, hence 

complicating real-time deployment in extensive IoT networks [17]. 

Nguyen Duy Tan et al. (2023) introduced an energy-efficient routing protocol employing grid cells 

(EEGT) to extend the lifespan of WSN-based IoT applications.   The network is divided into virtual grid cells, 

and a CH Node (CHN) is selected depending on remaining energy and distance to the sink.   In each cell, the 

Kruskal algorithm generates a minimum spanning tree (MST) to improve intra-cell communication, while the 

Ant Colony Algorithm (ACO) is employed to provide energy-efficient routes from CHNs to the sink.   The 

proposed EEGT protocol exhibits enhanced energy efficiency and extended network lifespan relative to the 

LEACH-C, PEGASIS, and PEGCP routing protocols.   The computational demands of ACO and MST-based 

routing may intensify in extensive WSNs, potentially leading to heightened latency in dynamic scenarios [18]. 

T. Kanimozhi et al. (2025) proposed an Enhanced Energy-Efficient Clustering Protocol (EEECP) to 

augment the lifespan of WSN-based IoT networks.  The methodology enhances cluster quantity through 

Modified Fuzzy C-Means (MFCM) for energy stabilization and employs Modified Glowworm Swarm 

Optimization (MGSO) for CH selection.  MGSO utilizes a dynamic threshold technique to maintain equitable 

CH lifetime within clusters.  The proposed EEECP protocol exhibits enhanced efficacy compared to current 

clustering methodologies, achieving improvements in First Node Dies (FND) by X%, Last Node Dies (LND) by 

Y%, and Half Node Dies (HND) by Z%, while optimizing Weighted First Node Dies (WFND) for stability, 

minimizing energy consumption, and prolonging network longevity.  The computational complexity of MFCM 

and MGSO may result in increased processing overhead, especially in extensive and dynamic WSN-IoT 

contexts [19]. 

Nageswararao Malisetti et al. (2022) introduced an innovative cluster-based routing methodology for 

WSN, employing the Moth Levy-adopted Artificial Electric Field Algorithm (ML-AEFA) for optimal CH 

selection and Customized Grey Wolf Optimization (CGWO) for effective data transfer.  The suggested method 

markedly extends network longevity, attaining a 35.77% enhancement compared to existing GWO, MSA, 

AEFA, BOA+ACO, and refined ACO methodologies in a 100-node context.  The computational complexity of 

ML-AEFA and CGWO elevates processing overhead, necessitating additional optimization for extensive WSN 

deployments [20]. 
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Table 1. Existing work summary table 

Author Name & 

Year 
Proposed Methodology Outcome Limitation 

Vijayendra K 

(2023) 

Energy-efficient clustering-

based routing employing 

bioinspired optimization 

methods for CH selection and 

adaptive routing. 

Enhanced network 

lifetime, reduced energy 

dissipation, and improved 

data transmission 

Scalability issues in ultra-

large-scale WSNs and 

additional computation 

overhead for real-time re-

clustering 

Greeshma Arya 

(2022) 

RL-based clustering, MRFO for 

CH selection, and DBN for 

optimized data transmission 

Improved network 

lifetime, packet delivery 

ratio, and node 

reachability 

Computational overhead 

due to deep learning-

based routing decisions 

Rajeswari A.R 

(2021) 

TEEFCA using fuzzy inference 

for CH selection based on 

energy, density, and distance 

Enhanced power 

conservation, network 

stability, and extended 

lifetime 

Increased computational 

complexity with network 

size 

Venkatesan 

Cherappa 

(2023) 

ASFO method utilizing K-

medoids for CH selection and 

E-CERP protocol for routing 

High PDR (100%), low 

packet delay (0.05s), 

improved throughput 

(0.99 Mbps), extended 

network lifespan (5908 

rounds) 

Computational overhead 

due to ASFO-based 

clustering 

N Nathiya 

(2023) 

MapDiminution-based 

Training-Discovering 

Optimization for clustering and 

hybrid ANN-SA for intrusion 

detection 

Energy consumption of 

0.01J, intrusion detection 

accuracy of 97.57% 

Increased computational 

complexity in large-scale 

deployments 

Masood Ahmad 

(2021) 

MemA-based clustering for load 

balancing and optimized CH 

selection 

Lower control message 

overhead, optimized 

cluster count, reduced 

reaffiliation rate 

Higher processing time 

due to local search and 

crossover mechanisms 

Ahmad Saeedi 

(2025) 

Multi-objective BWOA for CH 

selection and Mamdani-type 

FIS for clustering 

4.5% improvement in 

FND, 7.8% in HND, and 

1.5% in LND 

High processing overhead 

for large-scale IoT 

networks 

Nguyen Duy Tan 

(2023) 

EEGT protocol using virtual 

grid cells, Kruskal’s MST for 

intra-cell communication, and 

ACO for CH routing 

Higher energy efficiency, 

extended network 

lifespan compared to 

LEACH-C, PEGASIS, 

and PEGCP 

Increased computational 

overhead in large-scale 

WSNs 

T. Kanimozhi 

(2025) 

EEECP using MFCM for 

energy stabilization and MGSO 

for CH selection 

Improved FND, LND, 

HND, and WFND, 

reduced energy 

consumption, and 

extended lifetime 

Higher processing 

overhead in large-scale 

and dynamic WSN-IoT 

environments 
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Nageswararao 

Malisetti 

(2022) 

ML-AEFA for CH selection and 

CGWO for data transmission 

35.77% improvement in 

network lifetime over 

GWO, MSA, AEFA, 

BOA+ACO, and 

improved ACO 

Increased processing 

overhead requiring 

further optimization for 

large-scale WSNs 

 

 

2.1 Problem Statement 

WSN integrated with the IoT encounter substantial obstacles in attaining energy-efficient data transmission, 

dependable communication, and extended network longevity due to the resource-limited characteristics of SNs.  

Conventional clustering and routing methodologies experience disproportionate energy consumption, recurrent 

CH re-selection, elevated packet loss, and suboptimal routing strategies, resulting in early node exhaustion and 

diminished network efficacy.  Furthermore, the selection of an ideal CH and routing path is a significant 

concern, as inadequate choices elevate energy usage and exacerbate network congestion.  Current 

methodologies do not adequately adjust to network conditions or optimize energy consumption efficiently.  This 

research presents a reliable, energy-efficient fuzzy logic-based clustering algorithm for optimal cluster creation, 

FOA for CH selection, and FDQN-based routing for adaptive data transmission to tackle these difficulties.  The 

suggested approach guarantees equitable energy distribution, astute routing decisions, and reduced 

communication overhead, markedly enhancing network scalability, reliability, and energy efficiency for WSN-

IoT applications [21]. 

3. Proposed Methodology 

The suggested WSN-IoT model functions in three phases: clustering, CH selection, and routing, 

guaranteeing energy-efficient and dependable data transfer.  The TEEFLC algorithm initially establishes ideal 

clusters by assessing node residual energy, trustworthiness, and density, thereby minimizing energy dissipation 

and enhancing network stability.  Subsequent to cluster creation, the FOA designates CHs based on energy 

levels, communication range, and load balancing, so maintaining equitable energy distribution and reducing the 

frequency of re-clustering.  Upon the selection of CHs, an adaptive multi-hop routing strategy utilizing a 

Federated Deep Q-Network (FDQN) is implemented.  The fuzzy logic system enhances next-hop selection by 

evaluating residual energy, network quality, and traffic load, thereby assuring dependable and congestion-free 

routing.  The deep reinforcement learning aspect of FDQN perpetually refines routing algorithms by analyzing 

historical data transfers, enhancing energy efficiency, and minimizing packet loss.  The comprehensive 

workflow entails SNs gathering data and relaying it to CHs, which consolidate and transmit the information to 

the base station via clever, energy-efficient routing pathways.  The suggested architecture markedly improves 

network durability, data integrity, and scalability, rendering it appropriate for extensive WSN-IoT 

implementations. [21-23] 

3.1 WSN System Model 

The suggested WSN model is designed to enhance energy efficiency and facilitate effective data transfer in 

IoT applications.  It comprises SNs, CHs, and a base station functioning in a hierarchical structure.  The network 

architecture consists of SNs randomly distributed throughout a designated area, organized into clusters by a 

reliable energy-efficient fuzzy logic clustering method.  Each cluster has an appointed CH chosen through the 

FOA, considering parameters such as residual energy, node density, and communication distance.  SNs relay 

their data to the CHs, which subsequently aggregate and transfer the information to the base station.  The energy 

model adheres to the first-order radio energy paradigm, wherein transmission energy is contingent upon distance 

and data packet size.  Due to the elevated energy consumption of CHs resulting from data aggregation and long-

range transmission, the model guarantees equitable energy distribution by optimizing CH selection and reducing 

redundant transmissions.  The suggested method improves network lifetime and ensures steady communication 

Auth
ors

 Pre-
Proo

f



in extensive WSN-IoT contexts through the implementation of energy-aware clustering and effective CH 

selection. Figure 1 represents the architecture of WSN model [24]. 

 

Figure 1. WSN architecture diagram 

3.1.1 Energy model 

This model employs both free space and multi-path fading channels, contingent upon the distance between 

the transmitter and receiver.   If the distance is less than the threshold value d0, the free space (fs) model is 

applied; otherwise, the multipath (mp) model is employed.   Let Eelec, εfs, and εmp represent the energy 

necessary for the electronic circuit, the amplifier in free space, and the amplifier under multipath conditions, 

respectively.   The energy required for the radio to transmit a l-bit message over a distance d is articulated as 

follows: 

                                                 𝐸𝑇(𝑙, 𝑑) = {
𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙𝜀𝑓𝑠𝑑

2        𝑓𝑜𝑟   𝑑 < 𝑑0

𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙𝜀𝑚𝑝𝑑
4     𝑓𝑜𝑟   𝑑 ≥ 𝑑0

                                     (1) 

 The energy required by the radio to receive an l-bit message is given by 

                                                                                     𝐸𝑅(𝑙) = 𝑙𝐸𝑒𝑙𝑒𝑐                                                           (2) 

 The Eelec depends on several factors, including digital coding, modulation, filtering, and signal 

spreading, while the amplifier energy, εfsd2 /εmpd4, is affected by the distance between the transmitter and 

receiver and the allowable bit-error rate.   This is a basic model.   The propagation of radio waves is typically 

diverse and difficult to model. 

3.1.2  Network model 
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 A WSN paradigm where all SNs are randomly deployed beside several gateways and immovable.   If the 

gateway is within communication range, a SN can be assigned.   So, a SN might have a specific gateway.   

Consequently, each SN has a list of gateways and can choose one.   The data collection procedure has rounds 

like LEACH.   Each cycle, all SNs send local data to their CH.   After removing redundant and uncorrelated 

data, gateways send the aggregated data to the base station via another CH as a relay node. For energy 

conservation, all nodes turn off their radios between rounds.   All communications are wireless.   If two nodes 

are within communication range, they form a wireless link [25]. 

The recommended WSN architecture optimises energy-efficient IoT data transport. The hierarchical 

framework includes SNs, CHs, and a base station.   Randomly distributed in a given region are N SNs with 

sensing, processing, and communication capabilities.   The nodes are clustered using energy-efficient fuzzy 

logic, assuring fair energy consumption.   A CH is picked in each cluster using the Focus of Attention (FOA) 

based on residual energy, node density, and communication range.   CHs distribute member node data to the BS, 

a centralized data processor and store.   The CH-BS interaction is improved to reduce energy use and network 

congestion.   A hierarchical network architecture improves scalability, reliability, and energy efficiency, making 

it suitable for large WSN-IoT applications. 

3.2 Cluster formation 

Clustering in WSN begins with the selection of the CH. The CH disseminates the advertisement message 

to all nodes within the radio range.   The nodes transmit a join request message to the CH with which they 

intend to associate.   Cluster formation may be conducted centrally by the base station in specific protocols, 

whereas in other approaches, it transpires autonomously of the CH.   The best clustering approaches concentrate 

on managing cluster size and enhancing energy efficiency inside the network.   In specific approaches, the 

cluster formation step commences exclusively upon application request. 

The clustering strategy is recognized as an optimal design method for reducing energy consumption in SNs 

while enhancing network performance and quality.  Consequently, clustering-based routing improves energy 

efficiency, promotes stability, and reduces route time.  The clustering process consists of two main phases: the 

selection of a CH and the transmission of data via the CH.  Consequently, selecting the energy-efficient CH can 

extend the network's longevity.  Consequently, numerous research investigations have been conducted, 

emphasizing energy as a crucial element in the selection of CHs, the clustering process, and routing. 

Furthermore, the security level of the CH must be evaluated due to the existence of malicious nodes, as data 

transmission occurs through the CHs.  Trust management solutions have been proposed to mitigate security 

issues.  In an IoT environment, the principal design objective is to provide an energy-efficient and trust-aware 

secure cluster-based routing algorithm to enhance network longevity and performance [27]. 

3.2.1  Proposed TEEFLC algorithm 

Establishing secure and energy-efficient cluster-based routing is a significant architectural challenge in the 

IoT ecosystem.  This study presents the TEEFCA to resolve these concerns. The primary objective of the 

suggested study is to augment the network's durability and elevate the security level of the IoT-based WSN.  

This section provides a detailed explanation of the proposed TEEFCA technique. Upon selecting CH nodes, the 

process of constructing the cluster commences to provide efficient data routing. Consequently, sink nodes will 

disseminate the roster of reliable CH to all nodes. The assessment of REL, cluster density, and node-base station 

distance (BS) dictates cluster formation. Each node use fuzzy logic to assess the probability of joining the 

Cluster Leader. CL Member Choice necessitates three intricate input components and their corresponding 

linguistic factors, as enumerated below. REL encompasses low, medium, and high linguistic factors. CL Density 

categorizes linguistic attributes as low, medium, or high. The output variable CL Member Choice includes low, 

medium, and high linguistic variables. The following are the criteria for CL Member Choice in a "IF-THEN" 

format [27]. 
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In this suggested study, the FIS are delineated under the subsequent two situations.  Firstly, for the 

selection of the suitable CL, and secondly, for the integration of member nodes with the CL.  The FIS utilized in 

this study comprises four primary components: Fuzzifier, FIE, Fuzzy Rule Base, and Defuzzifier.  Figure 2 

illustrates the architecture of the proposed Fuzzy Inference System. 

 

Figure 2. Fuzzy Inference System 

This fuzzy inference technique assesses CL Fitness and CL Member Choice utilizing triangular and 

trapezoidal membership features.  Triangular membership functions denote intermediate variables, while 

trapezoidal membership functions are employed for boundary variables. The calculations for these functions are 

conducted using Equations (3) and (4), respectively. 

                                                                    𝐴 =

{
 
 

 
 

0, 𝑥 ≤ 𝑎1
𝑥−𝑎1

𝑏1−𝑎1
, 𝑎1 ≤ 𝑥 ≤ 𝑏1

𝑐1−𝑥

𝑐1−𝑏1
,   𝑏1 ≤ 𝑥 ≤ 𝑐1

0, 𝑥 ≤ 𝑎2 }
 
 

 
 

                                                         (3) 

                                                                 𝐴 =

{
 
 

 
 

0, 𝑥 ≤ 𝑎2
𝑥−𝑎2

𝑏2−𝑎2
, 𝑎2 ≤ 𝑥 ≤ 𝑏2

𝑑2−𝑥

𝑑2−𝑐2
,         𝑐2 ≤ 𝑥 ≤ 𝑑2

0, 𝑑2 ≤ 𝑥 }
 
 

 
 

                                                      (4) 

This fuzzy inference method determines CL Fitness and CL Member Choice using triangular and 

trapezoidal membership functions. Triangular membership functions represent intermediate variables, whereas 

trapezoidal membership functions are used for boundary variables. The calculations for these functions are 

conducted using Equations (3) and (4), respectively. 

                                                                     𝐶𝑂𝐴 =
∫𝜇𝐴(𝑥).𝑥𝑑𝑥

∫𝜇𝐴(𝑥)𝑑𝑥
                                                                  (5) 

where 𝜇𝐴(𝑥) denotes the fuzzy values for the membership functions. The main flow of the proposed 

TEEFCA is shown below in the Algorithm1. 

Algorithm 1: Proposed TEEFCA 

Initialize Cluster Leader = False 
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For each node 𝑎 from 1 to 𝑁: 

      Initialize Trustworthy Candidate Node = { } and Malicious Node = { } 

      Measure PR(a) and PF(a) 

     Compute Node Fitness Value (NFV) using Eq. (3) and (4) 

     If 𝑁𝐹𝑉 > 𝑁𝐹𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , then: 

          Add node 𝑎 to Trustworthy Candidate Node 

          Otherwise, add node 𝑎 to Malicious Node 

          Compute Cluster Leader Fitness using Fuzzy_Logic_1 (REL, Distance between Node & BS) 

          Set Cluster Leader = True 

          Transmit Cluster Leader Message (ID, REL, Distance between Node & BS) to neighbors 

For each neighbor 𝑀 upon receiving the Cluster Leader Message: 

     Compute Cluster Member Choice using Fuzzy_logic_2 (REL, CL Density, Distance between Node & BS) 

     Node 𝑀 joins the cluster leader as a Cluster Member 

End loop 

3.3 CH selection using FOA 

The selection process for the CH is vital for enhancing energy efficiency and extending the longevity of 

the WSN. The suggested model employs the FOA for CH selection, ensuring equitable energy usage across 

SNs. The selection criteria evaluate various characteristics, including as residual energy, node density, and 

communication distance, to determine the most appropriate node for the CH position. FOA assesses potential 

nodes according to their capacity for data aggregation and long-range communication, all while reducing energy 

consumption.  Upon selection of a CH, it gathers data from cluster members, processes the information, and 

communicates the aggregated data to the BS. The suggested method dynamically adjusts CHs in each round to 

minimize excessive energy consumption in certain nodes, thereby improving network stability, load balancing, 

and overall efficiency in WSN-IoT applications. 

By ensuring energy efficiency, load distribution, and appropriate node selection, the FOA improves WSN 

CH selection. FOA assigns CHs based on residual energy, node density, and communication distance, 

guaranteeing high-energy nodes perform CH functions and increase network lifespan.   FOA improves network 

stability and efficiency by reducing intra-cluster communication distance and member node energy usage.   Its 

fast convergence rate allows for optimal CH selection in large and dynamic WSN-IoT systems.   FOA optimises 

data aggregation and transmission, reducing unnecessary data forwarding and improving network performance.   

Its topological adaptability ensures scalability, making it a resilient WSN energy-efficient clustering solution.   

FOA optimizes CH selection by balancing exploration and exploitation better than current models.   FOA 

reduces premature convergence and improves energy efficiency and load distribution over conventional models.   

It is ideal for large WSN-IoT applications since it converges faster than Genetic Algorithms and Particle Swarm 

Optimization.   FOA dynamically adapts to network changes with minimum computing load, ensuring resilient 

and energy-efficient clustering and routing.. 

3.3.1  Fossa Optimization Algorithm (FOA) 

This section examines the primary motivation behind the development of the proposed FOA. The 

examination commences with the biological and behavioral traits of the fossa that have been replicated in the 

design of FOA. We subsequently provide a comprehensive mathematical analysis of the algorithm's 

implementation methods, illustrating the conversion of these natural occurrences into computational 

optimization strategies [25]. 

3.3.1.1 Inspiration of FOA 

The fossa is a cat-like mammal native to Madagascar, included under the Eupleridae family. The fossa's 

hunting strategy for lemurs is very remarkable among its natural behaviors in the wild. This astute methodology 

consists of two stages: (i) the fossa's progression towards the detected lemur's position and (ii) the chase 

between the fossa and the lemur among the trees. The mathematical representation of intelligent fossa behaviors 

in hunting has been utilized to develop the suggested FOA, which is outlined below. 
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3.3.1.2 Algorithm initialization 

Fossas represent population members in the proposed FOA, a population-based optimization approach.   

FOA identifies optimal solutions by emulating the natural search behaviors of fossas within the problem 

domain.    This comparison utilizes the fossa's habitat as the problem-solving domain and each fossa's position 

as a potential optimization solution. The position of each fossa is determined by a vector containing choice 

variable values.   The fossa location may be a solution.   Eq. (1) shows a matrix representing the entire fossa 

population, each with a position vector.   Using Eq. (2), the fossas are randomly placed in the problem space.   

This methodical approach lets FOA efficiently search the search space and refine optimal solutions using the 

fossas' dynamic positional alterations.   FOA guarantees a full problem domain investigation by using the fossas' 

intrinsic search capabilities, providing in superior solutions for complex optimization problems. 

                                                                 𝑋 =

[
 
 
 
 
𝑋1
⋮
𝑋𝑖
⋮
𝑋𝑁]
 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑑 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮    ⋰     ⋮
𝑥𝑖,1
⋮
𝑥𝑁,1

⋯
⋰
⋯

𝑥𝑖,𝑑
⋮

𝑥𝑁,𝑑

⋯
⋱
⋯

𝑥𝑖,𝑚
⋮

𝑥𝑁,𝑚]
 
 
 
 

𝑁×𝑚

                           (6) 

                                                                                         𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟. (𝑢𝑏𝑑 − 𝑙𝑏𝑑)                                         (7) 

 In this context, 𝑋 is the FOA population matrix, while 𝑋𝑖 signifies the ith fossa, which may constitute a 

solution. In the search space, 𝑥𝑖 denotes the dth dimension of the ith fossa, N signifies the total number of 

fossas, 𝑚 indicates the number of decision variables, 𝑟 is a stochastic variable, and 𝑙𝑏𝑑 and 𝑢𝑏𝑑 indicate the 

lower and upper limits of the dth decision variable, respectively.    Each fossa signifies a potential solution and 

is evaluated by the objective function.    Objective function values can be represented as vectors, as indicated by 

Eq. (8). 

                                                                                𝐹 =

[
 
 
 
 
𝐹1
⋮
𝐹𝑖
⋮
𝐹𝑁]
 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)
⋮

𝐹(𝑋𝑖)
⋮

𝐹(𝑋𝑁)]
 
 
 
 

𝑁×1

                                              (8) 

 In this context, 𝐹 denotes the vector of assessed objective function values, with 𝐹𝑖 being the objective 

function value associated with the ith fossa. 

3.3.1.3 Mathematical modelling of FOA 

The FOA algorithm mimics fossas' strategic movement in the wild.   Two phases update FOA member 

positions in the problem-solving domain:   Exploration Phase: This phase mimics fossas' early lemur hunting.   

The algorithm prioritizes extensive search space exploration to find potential locations in this step.   As the fossa 

prepares and attacks, its placement changes during exploration.   The fossa refines its approach to accurately 

target the lemur through the trees during the Exploitation Phase.   In the exploitation phase, the algorithm 

increases search inside promising regions, improving solutions.   Fossa dynamic changes during chase 

determine positional changes during exploitation.   Here is the mathematical modeling and detailed explanation 

of each FOA updating procedure [25]. 

Phase 1: Attacking and moving towards the lemur (exploration phase) 

Simulation of the fossa's attack on a monitoring lemur changes population members' placements in the 

problem-solving area during the FOA's early phase.   Fossas' high olfactory, aural, and visual talents allow them 

to identify lemurs.   The fossa approaches the lemur after finding it.   FOA's worldwide exploration capabilities 

are enhanced by the simulated migration during the attack phase, which changes population placements.   
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Lemurs live in fossas when other population members have greater objective function values.   Eq. (9) evaluates 

objective function values to determine candidate lemurs for each fossa: 

                                              𝐶𝐿𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖𝑎𝑛𝑑 𝑘 ≠ 𝑖},      where i=1,2,...,N and k{1,2,...,N}              (9) 

Here, 𝐶𝐿 denotes the set of potential lemur locations for the 𝑖th fossa, 𝑋𝑘 signifies the population 

member with a greater objective function value in relation to the 𝑖th fossa, and 𝐹𝑘 represents its corresponding 

objective function value.  

The FOA posits that the fossa arbitrarily chooses one of the possible lemurs within its environment and 

initiates an assault.  Utilizing the fossa's location alteration during the assault on the designated lemur, a novel 

random position for each individual in the FOA population is computed employing Eq. (10).  If the new location 

produces a superior objective function value, it supersedes the prior position of the corresponding population 

member, as specified in Eq. (11). 

                                                                         𝑥𝐼
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗 ∙ (𝑆𝐿𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑥𝑖,𝑗)                                         (10) 

                                                                                     𝑋𝑖 = {
𝑋𝑖
𝑝1
, 𝐹𝑖

𝑝1
≤ 𝐹𝑖

𝑋𝑖 ,             𝑒𝑙𝑠𝑒
                                                  (11) 

 In this case, 𝑆𝐿𝑖 represents the lemur selected by the 𝑖th fossa, whereas 𝑆𝐿𝑖 refers to the 𝑗th dimension 

of the position of this chosen lemur.  𝑋𝑖 𝑃1 denotes the recently calculated position for the 𝑖th fossa during the 

attack phase of the FOA, with 𝑥𝑖, 𝑃1 representing its 𝑗th dimension.  The value of the objective function at this 

new point is 𝐹𝑖 𝑃1.  The variables 𝑟𝑖 are stochastic values inside the interval [0,1], while 𝐼𝑖,𝑗 are random 

numbers, specifically 1 or 2. 

Phase 2: Chasing to catch lemur (exploitation phase) 

Simulating the fossa's pursuit of the lemur changes population positions in FOA's second phase.    The 

fossa chases the lemur through the trees and branches using its climbing skills.    This happens in a hunting 

ground region.    By repeating the fossa's motions during the hunt, the FOA's local search optimization is 

improved by introducing few population member location changes.    Fossa-lemur pursuit dynamics are shown 

by small population positioning variations in the FOA design.    Equation (7) calculates a new position for each 

FOA member during lemur pursuit.    Eq (13) states that this new placement supersedes the member's prior 

position if it has a higher objective function value. 

                                                                     𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 𝑟𝑖,𝑗) ∙

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
                                                  (12) 

                                                                          𝑋𝑖 = {
𝑋𝑖
𝑃2,        𝐹𝑖

𝑃2 ≤ 𝐹𝑖
𝑋𝑖 ,           𝑒𝑙𝑠𝑒

                                                         (13) 

 In this respect, 𝑋𝑖 𝑃2 signifies the adjusted position determined for the 𝑖 th fossa during the pursuit 

stage in the suggested FOA.   Each 𝑥𝑖, P2 denotes the 𝑗th dimension of the new position, whereas Fi P2 signifies 

the corresponding objective function value.   The variables 𝑟𝑖 are generated at random inside the interval [0,1], 

and 𝑡 denotes the current iteration count. 

3.4 Federated Deep Q-Network (FDQN) Based Routing 

The suggested routing technique utilizes Federated Deep Q-Network (FDQN) to guarantee efficient and 

intelligent data transfer within the WSN.  FDQN, a sophisticated reinforcement learning methodology, 

facilitates decentralized decision-making while safeguarding data privacy.  In this paradigm, each CH operates 

as an agent that acquires optimal routing policies through interaction with the network environment.  The 

routing decision relies on critical parameters including energy levels, network quality, latency, and hop count.  

FDQN utilizes a federated learning framework, enabling several CHs to collaboratively train local Q-networks 

without the need to share raw data, rather than depending on a centralized server for training.  Locally learned 
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models are periodically consolidated to enhance global routing performance.  This decentralized learning system 

diminishes communication overhead and improves flexibility in dynamic WSN-IoT contexts.  Through the 

ongoing refinement of the routing policy, FDQN enhances path selection, reduces energy expenditure, and 

prolongs network longevity while guaranteeing dependable data transmission to the base station (BS).  The 

incorporation of FDQN markedly enhances scalability, security, and robustness in comparison to conventional 

routing protocols [26]. 

3.4.1   FDQN 

Value-based reinforcement learning techniques formally utilize an action-value function F(s, c) to estimate 

the expected return from state s upon executing action c: 

                                                               𝐹𝜋(𝑠𝑡 , 𝑐) = 𝐸𝜋{∑ 𝛾𝑘−1𝑟𝑡+𝑘−1|𝑠𝑡 , 𝑐
∞
𝑘=1 }                                               (14) 

                                                           = 𝐸𝑠𝑡+1,𝑐{𝑟𝑡 + 𝛾𝐹𝜋(𝑠𝑡+1, 𝑐)|𝑠𝑡 , 𝑐𝑡}                                                      (15) 

 𝐹(𝑠𝑡 , 𝑐) serves as the reference for the reinforcement learning agent, defined as the largest expected 

cumulative discounted: 

                                                         𝐹∗(𝑠𝑡 , 𝑐) = 𝐸𝑠𝑡+1 {𝑟𝑡 + 𝛾max𝑎
𝐹∗(𝑠𝑡 , 𝑐)|𝑠𝑡 , 𝑐}                                         (16) 

 In DRL, a function estimation method, namely a Deep Neural Network (DNN) in this context, is 

employed to learn a parameterized value function F(s, c; θ) to estimate the optimal F-values.  The one-step look-

ahead 𝑟𝑡 + 𝛾max
𝑎
𝐹 (𝑠𝑡+1, 𝑐; 𝜃𝑓) serves as the aim for deriving F(𝑠𝑡 , 𝑐; 𝜃𝑓). Consequently, the function 

𝐹(𝑠𝑡 , 𝑐; 𝜃𝑓) is defined by the parameters 𝜃𝑓.  The choice of an effective action depends on precise action-value 

estimate; hence, DQN seeks to identify the ideal parameters 𝜃𝑓 to minimize the loss function:  

                                                   𝐿(𝜃𝑞) = (𝑟𝑡 + 𝛾max
𝑎
𝐹 (𝑠𝑡+1, 𝑐; 𝜃𝑓) − 𝐹(𝑠𝑡 , 𝑐; 𝜃𝑓))

2

                               (17) 

 Similar to traditional Q-learning, the agent acquires experiences by engagement with the environment.  

The network trainer compiles a dataset D by gathering events up to time t in the format of (st−1, ct−1, rt, st).  

The loss function 𝐿(𝜃𝑓) is optimized using the collected data set D. During initial training, the agent's 

estimations lack precision, so a dynamic-greedy policy is implemented to guide activities. The agent explores 

numerous behaviors with a defined probability, regardless of their rewards. This method increases estimation 

over time and avoids the risk of overfitting the framework to high-reward activities in the first training phase.    

Adding the DQN cost function to the equation yields the FDQN cost: 

                                                          min
𝜃𝑓

𝐿(𝜃𝑓) = ∑ 𝜔𝑖𝐿𝑖(𝜃𝑓𝑖)
 𝑁
𝑖=1                                                         (18) 

 Algorithm 2: FDQN 

Initialize the model parameters θq from the server. 

For each episode e = 1 to Ne: 

     Set the initial state s and action c. 

     For each time step t = 1 to T: 

            Generate a random number r ∈ [0,1]. 

                   If  

                       r > ε, select action at = argmaxa 𝐹(𝑠𝑡 , 𝑐; 𝜃𝑓); 

                   Else 

                      pick a randomly from the action space. 

            Execute action at, transition to the next state st+1, and receive reward rt+1. 

            Store the experience {ct, st, rt+1, st+1}. 

     End for 

     Update model parameters: 

     If the episode index e is a multiple of Ag: 

            Send updated model parameters θf to the server for aggregation. 

            Receive the aggregated model parameters θq from the server. 

     End if 

End for 

End 
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 FDQN-based routing is selected for WSN-IoT contexts to improve energy efficiency, scalability, and 

privacy while accommodating dynamic network conditions.  Conventional routing techniques exhibit elevated 

energy usage, congestion, and reliance on centralization, rendering them ineffective for extensive 

implementations.  FDQN use reinforcement learning to enhance routing decisions by taking into account energy 

levels, network quality, latency, and hop count.  In contrast to traditional Deep Q-Networks (DQN), FDQN 

facilitates decentralized learning, allowing CHs (CHs) to train local models through federated learning, thereby 

minimizing communication overhead and safeguarding data privacy.  Through the ongoing optimization of 

routing policies, FDQN guarantees equitable energy utilization, prolonged network longevity, and enhanced 

packet transmission, rendering it suitable for scalable and adaptable WSN-IoT applications [26]. 

4. Result and Discussion 

The suggested TEEFLC, FOA for CH Selection, and FDQN for Routing optimize network performance by 

optimizing energy usage, enhancing packet delivery, and maintaining steady data transmission.  The FOA-based 

CH selection efficiently distributes energy consumption among SNs, resulting in prolonged network lifespan.  

Simultaneously, FDQN-based routing dynamically adjusts to network conditions, enhancing packet delivery 

dependability and minimizing transmission delays.  The suggested model exhibits enhanced CH stability, 

adaptive learning, and efficient load balancing compared to alternative optimization methods, rendering it highly 

suitable for WSN-IoT applications.  The amalgamation of FOA for clustering and FDQN for routing yields an 

energy-efficient, scalable, and dependable data transmission framework.  The existing models compared with 

the suggested model include the Osprey Optimization Algorithm (OOA), Improved Grey Wolf Optimization 

Algorithm (IGWOA), Modified Jackal Optimization Algorithm (MJOA), and Sandpiper Optimization 

Algorithm (SOA). Table 2 represents the simulation parameter setup [28-31]. 

Table 2. Simulation parameter setup 

Parameters Values 

Simulation tool MATLAB 

Maximum Iterations 3000 

Node count 400 

Network size 500 m × 500 m 

Node initial energy 1.2 J 

Sink position (250 m, 250 m) 

Packet size 4000 bits 

𝜀𝑒𝑐 50 nJ/bit 

𝐸𝑒𝑙𝑒𝑐 50 nj/bit 

𝐸𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒  0.00012 μj/bit 

𝐸𝑟𝑒𝑐𝑒𝑖𝑣𝑒  0.055 μj/bit 

Table 3. Energy Consumption comparison analysis with existing model 

No. of 

Rounds 

Proposed 

model 
OOA IGWOA MJOA SOA 

100 0.039 0.045 0.078 0.135 0.199 

200 0.085 0.108 0.159 0.198 0.270 
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300 0.099 0.128 0.227 0.366 0.395 

400 0.156 0.364 0.446 0.482 0.541 

500 0.398 0.553 0.609 0.742 0.817 

 

Figure 3. Energy Consumption comparison analysis graph with existing model 

 Table 3 and Figure 3 illustrate the energy consumption (in millijoules, mJ) of the Proposed Model, 

Osprey Optimization Algorithm (OOA), Improved Grey Wolf Optimization Algorithm (IGWOA), Modified 

Jackal Optimization Algorithm (MJOA), and Sandpiper Optimization Algorithm (SOA) over varying rounds 

(100 to 500).  The Proposed Model consistently demonstrates the lowest energy consumption, commencing at 

0.039 mJ for 100 rounds and escalating to 0.398 mJ for 500 rounds, so underscoring its efficacy in reducing 

energy expenditure.  In contrast, the OOA and IGWOA exhibit higher energy use, with OOA demonstrating 

intermediate efficiency and IGWOA revealing a substantial escalation in energy usage as rounds advance.  

MJOA and SOA exhibit the most energy use, with MJOA utilizing 0.742 mJ and SOA attaining 0.817 mJ after 

500 rounds, underscoring their inefficiency in energy usage.  This indicates that the Proposed Model, including 

TEEFLC, FOA, and FDQN, represents the best energy-efficient solution for WSN-IoT applications, maximizing 

energy consumption while preserving performance. 

Table 4. Network lifetime comparison analysis with existing model 

No. of 

Rounds 

Proposed 

model 
OOA IGWOA MJOA SOA 

100 1850 1700 1520 1350 1300 

200 2300 2150 1850 1610 1450 

300 2850 2500 2350 1850 1700 
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400 3350 3010 2850 2610 2215 

500 3650 3450 3190 2870 2650 

 

Figure 4. Network lifetime comparison analysis graph with existing model 

Table 4 and Figure 4 discuss the network lifetimes of several models based on the number of rounds, 

emphasizing the efficacy of the Proposed Model, OOA, IGWOA, MJOA, and SOA.  The Proposed Model 

exhibits the longest network lifespan, commencing at 1850 rounds for 100 rounds and attaining 3650 rounds at 

500 rounds, signifying exceptional energy efficiency.  OOA closely follows, attaining 3450 rounds at 500 

rounds, whereas IGWOA sustains a moderate lifespan, achieving 3190 rounds.  Conversely, MJOA and SOA 

demonstrate reduced network lifetimes, with MJOA achieving 2870 rounds and SOA merely 2650 rounds at 500 

rounds, indicating higher energy consumption and resulting in premature node depletion.  The results validate 

that the Proposed Model substantially improves network lifetime relative to current optimization methods. 

Table 5. PDR (%) comparison between existing and proposed model 

No. of 

Rounds 
Proposed model OOA IGWOA MJOA SOA 

100 99.45 98.67 97.04 96.38 94.36 

200 98.59 97.26 95.95 94.38 93.22 

300 98.04 97.31 95.47 94.75 92.49 

400 97.53 96.38 94.29 93.09 91.83 

500 96.61 94.74 93.68 92.33 90.95 
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Figure 5. PDR comparison analysis graph with existing model 

 Table 5 and Figure 5 demonstrate that the suggested model constantly attains the maximum Packet 

Delivery Ratio (PDR), commencing at 99.45% after 100 rounds and sustaining a substantial value of 96.61% at 

500 rounds, signifying dependable and efficient data transfer.  OOA demonstrates a minor decrease from 

98.67% to 94.74%, whereas IGWOA has a more pronounced loss from 97.04% to 93.68% with the increase in 

rounds.  MJOA and SOA have the lowest PDR values, with SOA decreasing from 94.36% to 90.95%, signifying 

packet losses attributable to suboptimal routing and increased energy use.  The results underscore the resilience 

of the Proposed Model in facilitating effective data transfer with little packet loss, establishing it as the most 

dependable method for energy-efficient WSN-IoT applications. 

Table 6. End to End Delay (ms) comparison between existing and proposed model 

Number of nodes Proposed model OOA IGWOA MJOA SOA 

100 3.2 4.5 5 6.8 7.2 

200 4.5 5.3 6.5 7.5 8.5 

300 5 6.2 7.6 8.3 9 

400 6.1 7.4 8.2 9.5 10.2 

500 6.8 8.2 9.5 11 12.3 

Table 6 and Figure 6 demonstrate that the suggested model constantly attains the minimal latency, 

commencing at 3.2 ms for 100 nodes and escalating to 6.8 ms for 500 nodes, hence evidencing effective data 

transfer and diminished network congestion.  OOA and IGWOA demonstrate mild delays, with OOA spanning 

from 4.5 ms to 8.2 ms and IGWOA escalating from 5 ms to 9.5 ms, signifying marginally elevated transmission 

latencies.  Conversely, MJOA and SOA exhibit much greater delays, attaining 11 ms and 12.3 ms for 500 nodes, 

respectively, attributable to heightened network congestion and suboptimal routing.  The results validate that the 

Proposed Model facilitates expedited data transmission, rendering it the most efficient method for real-time and 

delay-sensitive WSN-IoT applications. 
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Figure 6. End to End Delay (ms) comparison between existing and proposed model 

Table 7.  No. of Alive Sensor nodes comparison between existing and proposed model 

No. of Rounds 
Proposed 

model 
OOA IGWOA MJOA SOA 

2000 485 471 450 390 280 

2250 478 465 415 274 210 

2500 460 442 392 200 135 

2750 400 390 313 130 50 

3000 355 350 235 28 20 

3250 335 321 183 14 7 

3500 296 285 136 0 0 

Table 7 and Figure 7 illustrate a comparison of the quantity of active SNs across successive rounds.  The 

Proposed Model consistently sustains a greater quantity of active SNs, with 485 nodes operational at 2000 

rounds and 296 nodes remaining functional at 3500 rounds, demonstrating its energy-efficient clustering and 

routing methodologies.  OOA and IGWOA also exhibit reasonable node survivability, with OOA maintaining 

285 nodes and IGWOA retaining 136 nodes at 3500 rounds, but they still underperform compared to the 

Proposed Model.  Conversely, MJOA and SOA exhibit markedly reduced network longevity, as all nodes 

deplete after 3500 rounds due to suboptimal CH selection and elevated energy consumption.  These results 

demonstrate that the Proposed Model extends the network lifetime, ensuring prolonged data transmission and 

increased WSN sustainability, making it suited for long-term IoT applications. Auth
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Figure 7. Alive sensor nodes comparison between existing and proposed model 

Table 8.  No. of dead sensor nodes comparison between existing and proposed model 

No. of 

Rounds 

Proposed 

model 
OOA IGWOA MJOA SOA 

2000 25 30 52 110 143 

2250 40 45 93 174 237 

2500 55 58 107 285 316 

2750 100 113 185 320 375 

3000 155 162 270 425 467 

3250 175 180 320 446 490 

3500 200 210 368 500 500 

Table 8 and Figure 8 compare the quantity of dead SNs over various rounds.  The Proposed Model 

demonstrates the lowest node depletion rate, with merely 25 dead nodes at 2000 rounds and 200 dead nodes at 

3500 rounds, indicating its exceptional energy efficiency and equitable load distribution.  OOA and IGWOA 

exhibit intermediate performance, with OOA attaining 210 dead nodes and IGWOA reaching 368 dead nodes 

after 3500 rounds, signifying more energy consumption compared to the Proposed Model.  Conversely, MJOA 

and SOA undergo swift node depletion, resulting in the demise of all 500 nodes after 3500 rounds, underscoring 

ineffective CH selection and routing.  The results validate that the Proposed Model substantially improves 

network longevity, optimizing resource utilization and extending sensor operability, rendering it exceptionally 

appropriate for energy-limited WSN-IoT applications. Auth
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Figure 8. Dead sensor nodes comparison between existing and proposed model 

Table 9. Computation complexity comparison table between existing and proposed model 

Models Computation complexity 

Proposed Model O(N × I) + O(E × S × A) 

Osprey Optimization Algorithm (OOA) O(N × I × D) 

Improved Grey Wolf Optimization Algorithm (IGWOA) O(N × I × log N) 

Modified Jackal Optimization Algorithm (MJOA) O(N × I × D) 

Sandpiper Optimization Algorithm (SOA) O(N × I) 

Table 9 juxtaposes the computational complexity of the Proposed Model against known techniques.  The 

Proposed Model exhibits a complexity of O(N × I) + O(E × S × A), effectively balancing efficiency and 

accuracy for extensive WSN-IoT networks.  OOA and MJOA (O(N × I × D)) exhibit greater complexity owing 

to an expanded search space, whilst IGWOA (O(N × I × log N)) provides moderate efficiency.  SOA (O(N × I)) 

is the most straightforward however may exhibit limited adaptability.  The Proposed Model guarantees optimal 

cluster formation, CH selection, and routing while preserving computational efficiency, rendering it highly 

suitable for energy-efficient WSN-IoT applications. 

5 CONCLUSION 

The proposed WSN-IoT-based energy-efficient data transmission model incorporates TEEFLC for 

optimal cluster formation, FOA for effective CH selection, and FDQN for intelligent routing. This hybrid 

methodology prolongs network longevity, reduces energy expenditure, and optimizes data transmission efficacy 

relative to current techniques. The findings indicate that the suggested model surpasses OOA, IGWOA, MJOA, 

and SOA for packet delivery ratio, network longevity, and SN viability. Future research will investigate 

additional optimization methods and real-time execution for extensive WSN-IoT applications.  Future endeavors 

will concentrate on incorporating adaptive reinforcement learning methodologies for dynamic routing and 
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investigating hybrid metaheuristic algorithms to enhance energy optimization in extensive WSN-IoT networks.  

Real-time implementation and security enhancements will be considered to improve system robustness. 
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