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1. Introduction

or Networks (WSN) are integral to daily life, widely employed across diverse sectors
monitoring, military surveillance, manufacturing and underwater detection, weather forecasting,
tomation,agriculture, defense, healthcare, traffic management, and various commercial applications.
, the architecture of the routing protocol may be affected by factors like as real-time monitoring, node
ment tactics, security, and energy usage. This network comprises numerous sensor nodes (SN) for
evaluating, acquiring, and detecting data distributed across the environment. Moreover, these sensor nodes
demonstrate increased complexity and rely on a limited battery for power. Thus, the principal issue is the
inadequate power sources leading to node malfunction. Clustering is an efficient approach for developing
routing algorithms in WSNs, as it improves the network's longevity and scalability. The CH in a clustered WSN
is crucial for data transfer. A substantial body of research has been undertaken on cluster-based routing.
However, challenges arise from fault tolerance, uneven load distribution, and locally optimal solutions. This
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study aims to introduce a novel cluster-based routing method that improves routing efficiency and extends
network longevity [1].

Efficient energy transmission is vital for WSN inside the IoT to improve network lifetime and guarantee
dependable communication. Node trust, residual energy, and base station proximity determine clusters in the
proposed paradigm using TEEFLC. FOA aids CH selection, increasing energy equity and reducing re-
clustering activity. Multi-hop routing is improved by FDQNSs adjusting to network conditions for data delive
This fuzzy logic system considers network quality, residual energy, and traffic load to improve rou
decisions. Deep reinforcement learning reduces energy footprint and packet loss with adaptive routing

adaptive, and durable WSN-IoT networks for environmental monitoring, s g@ulture, and industrial
automation are needed [4-6].

Intelligent clustering and adaptive routing techniques are used in this r%h to Ymprove WSN energy
efficiency and reliability with the 1oT. TEEFLC ensures optimal clug atlon, whereas FOA enhances CH
selection for energy balance. Deep reinforcement learning impro fer in FDQN routing, reducing
ision agriculture, industrial 10T,

for 10T applications. The residual energy and mobilit tors of the SNs are used to identify the best path to
the BS in a graph theory-based routi model. To decrease connections, dynamic cluster creation with
hierarchical tree architecture creates . To demonstrate the OEDSR protocol's efficacy, throughput,
latency, and PDR are compared t stems [9]. The hybrid K-LionER scheme for WSN backed by
the 10T was introduced in andQr mod LionER promises to improve network longevity and energy
efficiency. K-means generg clusters, with ant lion optimization selecting each CH. CHs aggregate
cluster data and send i ionER assigns the CH based on routing parameters, Remnant Energy
(RE), CH-BS distance, uster Communication Cost. A detailed simulation is done with MATLAB
2017a. Cgmpar i * ess to LEACH, ECFU, and GADA-LEACH. The simulation findings show

ers develop, the FOA evaluates energy levels, communication distances, and load distribution to find
le CHs. FOA mimics fossa's predatory behavior to investigate and exploit suitable CH locations and
reduce re-elections. After choosing the CH, an FDQN is used to run a multi-hop routing protocol. The fuzzy
logic system evaluates residual energy, network quality, and traffic load to improve next-hop selection and
adaptive routing. DRL in FDQN improves routing algorithms by examining historical data, energy efficiency,
packet loss, and network performance. SNs collect data, CHs aggregate and transmit it using FDQN-based
routing, and the deep reinforcement learning module optimizes transmission paths. In large WSN-IoT networks,
the suggested solution improves energy efficiency, re-clustering costs, scalability, and data transmission.



The major contribution of the work are as follows:

o Introduces a reliable energy-efficient fuzzy logic-based clustering algorithm to improve cluster
formation by accounting for residual energy, node trustworthiness, and density, hence improving
network stability.

o Employs the FOA to identify energy-efficient CHs, hence assuring equitable energy utilization and
minimizing the frequency of re-clustering.

e Implements a FDQN based routing system that dynamically selects the optimum paths based o
residual energy, connection quality, and traffic load, decreasing packet loss and network congestion.

e Incorporates deep reinforcement learning (DRL) within FDQN to dynamically optimize rou
patterns, improving energy efficiency and extending network longevity.

e Ensures scalability for extensive WSN-IoT networks by optimizing load allocation a
minimizing communication overhead, and enhancing data transmission reliability.

e The suggested method markedly decreases energy consumption, enhances loggd aI
the lifespan of WSN-IoT networks in comparison to traditional clustering [

the existing models.
Jmework for Intelligent
ection 4. The work is

The remaining parts of the work is organized as follows: Section 2 shows
Section 3 explains the working of proposed A Trust-Aware Energy-Efficie
Clustering and Routing in WSN-IoT model. Result and discussion part is represented
concluded in section 5.

2. Literature Surve

expenditure, and enhances data transmission €
paths. The methodology may encounter scaling

enges in ultra-large-scale WSN and may necessitate
stering and routing modifications [11].

Greeshma Arya et al. (2022) j
incorporating reinforcement learnin
(DBN) for optimum data trans
diminishes energy usage, and a
overhead from deep learsgs

stering, MRFO for CH selection, and a Deep Belief Network
posed paradigm extends network longevity, elevates PDR,
cessibility inside clusters. The method may incur computational
uting decisions and may necessitate further optimization for real-time

y inference system for the optimal selection of cluster leaders and the formation
energy, cluster density, and proximity to the base station. The proposed TEEFCA

atesan Cherappa et al. (2023) introduced an energy-efficient clustering methodology utilizing the
ive Sailfish Optimization (ASFO) algorithm alongside K-medoids for optimal CH selection, and
implemented an E-CERP to reduce network overhead and identify the shortest path. The suggested approach
attains a PDR of 100%, a packet latency of 0.05 seconds, a throughput of 0.99 Mbps, a power consumption of
1.97 mJ, a network lifespan of 5908 cycles, and a PLR of 0.5% for 100 nodes, surpassing current
methodologies. The methodology may incur computational overhead from ASFO-based clustering and may
necessitate additional optimization for scalability in extensive WSN deployments [14].



N Nathiya et al. (2023) introduces an energy-efficient clustering and intrusion detection system for 10T-
enabled WSN, employing the MapDiminution-based Training-Discovering Optimization method for optimal
cluster routing and task scheduling, in conjunction with a hybrid Artificial Neural Network (ANN) and
Simulated Annealing (SA) classifier for intrusion detection. The suggested framework attains an energy
consumption of 0.01 J and an intrusion detection accuracy of 97.57%, surpassing current methods in energy
efficiency and security. The computational complexity of the hybrid ANN-SA model may escalate with
extensive deployments, and real-time processing efficiency may necessitate additional tuning [15].

Masood Ahmad et al. (2021) presented a Memetic Algorithm (MemA)-based clustering method for W
IoT aimed at addressing early convergence challenges in evolutionary algorithms, dynamically balancing clu
loads, and enhancing CH selection via local exploration techniques. The proposed method attains djgasai

longevity, surpassing established methods such as MobAC, EPSO-C, and PBC-CP.
complexity of MemA, attributed to local search and crossover mechanisms, may prolo

the optimal selection of CH) in loT-based WSN, integrated with a Mamdani-typ
to facilitate energy-efficient cluster formation. A multi-hop shortest path routing Qanism is also employed
to improve data transmission. The suggested methodology realizes a 4.5% e%em in First Node Death
(FND), a 7.8% improvement in Half Node Death (HND), and a 1.5% Lagma | ode Death (LND) relative to
current methodologies, indicating superior network longevity and § igiency in loT-based WSN. The
computational complexity of BWOA and fuzzy-based clustggs

W inference system (FIS)

network is divided into virtual grid cells,
Iing energy and distance to the sink. In each cell, the
ST) to improve intra-cell communication, while the
Wergy-efficient routes from CHNSs to the sink. The

cols. The computational demands of ACO and MST-based
Ily leading to heightened latency in dynamic scenarios [18].

T networks. The methodology enhances cluster quantity through
) for energy stabilization and employs Modified Glowworm Swarm

The proposed EEECP protocol exhibits enhanced efficacy compared to current
hieving improvements in First Node Dies (FND) by X%, Last Node Dies (LND) by

eswararao Malisetti et al. (2022) introduced an innovative cluster-based routing methodology for
employing the Moth Levy-adopted Artificial Electric Field Algorithm (ML-AEFA) for optimal CH
selection and Customized Grey Wolf Optimization (CGWO) for effective data transfer. The suggested method
markedly extends network longevity, attaining a 35.77% enhancement compared to existing GWO, MSA,
AEFA, BOA+ACO, and refined ACO methodologies in a 100-node context. The computational complexity of
ML-AEFA and CGWO elevates processing overhead, necessitating additional optimization for extensive WSN
deployments [20].



Table 1. Existing work summary table

Author Name &
Year

Proposed Methodology

Outcome

Limitation

Vijayendra K

Energy-efficient clustering-
based routing employing
bioinspired optimization

Enhanced network
lifetime, reduced energy

Scalability issues in u
large-scale W Shdsaa

(2023) methods for CH selection and dissipation, and_lm_proved
. - data transmission
adaptive routing.
. Improved network
Greeshma Arya RL-based clgstermg, MRFO for lifetime, packet deliv
CH selection, and DBN for .
(2022) ratio, and node

optimized data transmission

reachability

ed routing decisions

Rajeswari A.R

TEEFCA using fuzzy inference

for CH selection based on

Enhanced power
conservation, netw%

ased computational
complexity with network

(2021) energy, density, and distance size
P
Venkatesan ASFO method utilizing K d throughout Computational overhead
Cherappa medoids for CH selectio ) extgen%ed due to ASFO-based
(2023) E-CERP protocol for r: etwork Iespan (5908 clustering
rounds)
MapDiminution-based
N Nathiva Training-Dis ring nergy consumption of Increased computational
(2023)3/ Optimization f uStering and | 0.01J, intrusion detection | complexity in large-scale
i accuracy of 97.57% deployments
stering for load Lower control message Higher processing time
Masood Ahmad overhead, optimized

(2021)

cluster count, reduced
reaffiliation rate

due to local search and
crossover mechanisms

Iti-objective BWOA for CH
ction and Mamdani-type
FIS for clustering

4.5% improvement in
FND, 7.8% in HND, and
1.5% in LND

High processing overhead
for large-scale loT
networks

EEGT protocol using virtual

Higher energy efficiency,
extended network

Increased computational

guyen Tan grid cells, Kruskal’s MST for . ;
20 intra-cell communication. and lifespan compared to overhead in large-scale
ACO for CH routin ' LEACH-C, PEGASIS, WSNs
g and PEGCP
Improved FND, LND, Higher processin
T. Kanimozhi EEECP using MFCM for HND, and WFND, overf?ead i% Iarge-sgale

(2025)

energy stabilization and MGSO

for CH selection

reduced energy
consumption, and
extended lifetime

and dynamic WSN-loT
environments




35.77% improvement in .
Nageswararao network lifetime over Increased processing
geswaral ML-AEFA for CH selection and overhead requiring
Malisetti o GWO, MSA, AEFA, AL
CGWO for data transmission further optimization for
(2022) BOA+ACO, and
: large-scale WSNs
improved ACO

2.1 Problem Statement

WSN integrated with the loT encounter substantial obstacles in attaining energy-efficient data tragssad
dependable communication, and extended network longevity due to the resource-limited characterig
Conventional clustering and routing methodologies experience disproportionate energy consuigati
CH re-selection, elevated packet loss, and suboptimal routing strategies, resulting in early
diminished network efficacy. Furthermore, the selection of an ideal CH and g a significant
concern, as inadequate choices elevate energy usage and exacerbate
methodologies do not adequately adjust to network conditions or optimize enery
research presents a reliable, energy-efficient fuzzy logic-based clustering algorith
FOA for CH selection, and FDQN-based routing for adaptive data transmission to ta these difficulties. The
suggested approach guarantees equitable energy distribution, astute ro dewrsions, and reduced
communication overhead, markedly enhancing network scalability, r, d energy efficiency for WSN-
loT applications [21].

optimal cluster creation,

3. Proposed Methodology

The suggested WSN-1oT model functig® pha clustering, CH selection, and routing,
guaranteeing energy-efficient and dependable 0% . The TEEFLC algorithm initially establishes ideal
clusters by assessing node residual energy, trustwoNgless, and density, thereby minimizing energy dissipation
and enhancing network stability. Subsequent to clust
levels, communication range, and load ing, so maiMaining equitable energy distribution and reducing the
frequency of re-clustering. Upon t o of CHs, an adaptive multi-hop routing strategy utilizing a
Federated Deep Q-Network (FD Pricmi@ted. The fuzzy logic system enhances next-hop selection by
evaluating residual energy, net

historical data transfergPCniTagal ergy efficiency, and minimizing packet loss. The comprehensive
a and relaying it to CHs, which consolidate and transmit the information to
efficient routing pathways. The suggested architecture markedly improves

e consists of SNs randomly distributed throughout a designated area, organized into clusters by a
e energy-efficient fuzzy logic clustering method. Each cluster has an appointed CH chosen through the
FOA, considering parameters such as residual energy, node density, and communication distance. SNs relay
their data to the CHs, which subsequently aggregate and transfer the information to the base station. The energy
model adheres to the first-order radio energy paradigm, wherein transmission energy is contingent upon distance
and data packet size. Due to the elevated energy consumption of CHs resulting from data aggregation and long-
range transmission, the model guarantees equitable energy distribution by optimizing CH selection and reducing
redundant transmissions. The suggested method improves network lifetime and ensures steady communication




in extensive WSN-IoT contexts through the implementation of energy-aware clustering and effective CH
selection. Figure 1 represents the architecture of WSN model [24].

User Internet
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Figure 1. WSN Sg@ahitecture diagram

3.1.1Energy model

This model employs both fr d ti-path fading channels, contingent upon the distance between
the transmitter and receiver. e dist less than the threshold value dO, the free space (fs) model is
applied; otherwise, the - model is employed. Let Eelec, efs, and emp represent the energy
necessary for the electy amplifier in free space, and the amplifier under multipath conditions,

respectively. The ene for the radio to transmit a I-bit message over a distance d is articulated as
follows:

lE ec + 1, d? or d<d
ET(l, d) _ elec Efs . f 0 (1)

lEgiec + legmpd™  for d =d,

e energy required by the radio to receive an I-bit message is given by
Eg(l) = lE¢iec @)

The Eelec depends on several factors, including digital coding, modulation, filtering, and signal
spreading, while the amplifier energy, efsd2 /empd4, is affected by the distance between the transmitter and
receiver and the allowable bit-error rate. This is a basic model. The propagation of radio waves is typically
diverse and difficult to model.

3.1.2 Network model



A WSN paradigm where all SNs are randomly deployed beside several gateways and immovable. If the
gateway is within communication range, a SN can be assigned. So, a SN might have a specific gateway.
Consequently, each SN has a list of gateways and can choose one. The data collection procedure has rounds
like LEACH. Each cycle, all SNs send local data to their CH. After removing redundant and uncorrelated
data, gateways send the aggregated data to the base station via another CH as a relay node. For energy
conservation, all nodes turn off their radios between rounds. All communications are wireless. If two nodes
are within communication range, they form a wireless link [25].

The recommended WSN architecture optimises energy-efficient 10T data transport. The hierarchi
framework includes SNs, CHs, and a base station. Randomly distributed in a given region are N SNs
sensing, processing, and communication capabilities. The nodes are clustered using energy-efficjg
logic, assuring fair energy consumption. A CH is picked in each cluster using the Focus of Atte
based on residual energy, node density, and communication range. CHs distribute member no
a centralized data processor and store. The CH-BS interaction is improved to reduce energa®ise a
congestion. A hierarchical network architecture improves scalability, reliability, cN@lency, making
it suitable for large WSN-10T applications.

3.2 Cluster formation

Clustering in WSN begins with the selection of the CH. The CH dissem? the'@Bvertisement message
to all nodes within the radio range. The nodes transmit a join reg sWge to the CH with which they
intend to associate. Cluster formation may be conducted central dse station in specific protocols,
whereas in other approaches, it transpires autonomously of the stering approaches concentrate
on managing cluster size and enhancing energy effigi de tht . In specific approaches, the
cluster formation step commences exclusively up

The clustering strategy is recognized as an
while enhancing network performance and quality®
efficiency, promotes stability, and reduces route time.
selection of a CH and the transmission a via the CHY Consequently, selecting the energy-efficient CH can
extend the network's longevity. , numerous research investigations have been conducted,
emphasizing energy as a cruci e selection of CHs, the clustering process, and routing.
Furthermore, the security leve e evaluated due to the existence of malicious nodes, as data
transmission occurs through_the . Trust management solutions have been proposed to mitigate security
issues. Inan IoT envirg ipal design objective is to provide an energy-efficient and trust-aware
secure cluster-based ro m to enhance network longevity and performance [27].

0 augment the network's durability and elevate the security level of the loT-based WSN.
rovides a detailed explanation of the proposed TEEFCA technique. Upon selecting CH nodes, the
structing the cluster commences to provide efficient data routing. Consequently, sink nodes will
e the roster of reliable CH to all nodes. The assessment of REL, cluster density, and node-base station
e (BS) dictates cluster formation. Each node use fuzzy logic to assess the probability of joining the
Cluster Leader. CL Member Choice necessitates three intricate input components and their corresponding
linguistic factors, as enumerated below. REL encompasses low, medium, and high linguistic factors. CL Density
categorizes linguistic attributes as low, medium, or high. The output variable CL Member Choice includes low,
medium, and high linguistic variables. The following are the criteria for CL Member Choice in a "IF-THEN"
format [27].



In this suggested study, the FIS are delineated under the subsequent two situations. Firstly, for the
selection of the suitable CL, and secondly, for the integration of member nodes with the CL. The FIS utilized in
this study comprises four primary components: Fuzzifier, FIE, Fuzzy Rule Base, and Defuzzifier. Figure 2
illustrates the architecture of the proposed Fuzzy Inference System.

FTECR
Candidate Fuzzy inference for Fuzzv Inference for
trustworthy node cluster_leader election <> yIr
. e - Clustering process
identification process
Fuzzification

T !

loT Network Defuzzi

Optimal Securewy aWgtre
ro tation

Figure 2. Fuzzy Infere

Member Choice utilizing triangular and
s denote intermediate variables, while

This fuzzy inference technique assesses
trapezoidal membership features. Triangula

0,x <al
"1‘—‘1:1, al <x < bl
= 3
Ix  pl<x<cl
cl-b1
0,x <a2
0,x <a2
;Z‘fz, a2 <x < b2
A= _' (4)
da-x 2 <x<d2

d2—c2’

0,d2 <x

ence method determines CL Fitness and CL Member Choice using triangular and
ship functions. Triangular membership functions represent intermediate variables, whereas
embership functions are used for boundary variables. The calculations for these functions are
sing Equations (3) and (4), respectively.

_ Jpna(x).xdx
COA = atoax ©)

where u,(x) denotes the fuzzy values for the membership functions. The main flow of the proposed
TEEFCA is shown below in the Algorithm1.

Algorithm 1: Proposed TEEFCA

Initialize Cluster Leader = False




For each node a from 1 to N:
Initialize Trustworthy Candidate Node = { } and Malicious Node = { }
Measure PR(a) and PF(a)
Compute Node Fitness Value (NFV) using Eqg. (3) and (4)
If NFV > NFVppresnota, then:
Add node a to Trustworthy Candidate Node
Otherwise, add node a to Malicious Node
Compute Cluster Leader Fitness using Fuzzy Logic_1 (REL, Distance between Node & BS)
Set Cluster Leader = True
Transmit Cluster Leader Message (ID, REL, Distance between Node & BS) to neighbors
For each neighbor M upon receiving the Cluster Leader Message:
Compute Cluster Member Choice using Fuzzy_logic_2 (REL, CL Density, Distance between Node
Node M joins the cluster leader as a Cluster Member
End loop

3.3 CH selection using FOA

The selection process for the CH is vital for enhancing energy efficieng
the WSN. The suggested model employs the FOA for CH selection, ensuring € energy usage across
SNs. The selection criteria evaluate various characteristics, including as residual\@ergy, node density, and
communication distance, to determine the most appropriate node for the CH pogon @A assesses potential
nodes according to their capacity for data aggregation and long-range cgas unﬁn, all while reducing energy
s, processes the information, and
communicates the aggregated data to the BS. The suggested megho icClly adjusts CHs in each round to
minimize excessive energy consumption in certain nodes, thar@y i i

Appropria® node selection, the FOA improves WSN
CH selection. FOA assigns CHs based on re energy, node density, and communication distance,
od increase network lifespan.  FOA improves network
ation distance and member node energy usage. Its
fast convergence rate allows for optim selection in large and dynamic WSN-IoT systems. FOA optimises
data aggregation and transmission, JeQlc] essary data forwarding and improving network performance.

FOA optimizes CH selection i ploration and exploitation better than current models. FOA
reduces premature conve, : roves energy efficiency and load distribution over conventional models.
It is ideal for large WS]] s since it converges faster than Genetic Algorithms and Particle Swarm
Optimization. FOA d dapts to network changes with minimum computing load, ensuring resilient
and ener i routing..

ences with the biological and behavioral traits of the fossa that have been replicated in the
. We subsequently provide a comprehensive mathematical analysis of the algorithm's

imization strategies [25].
3.3.1.1 Inspiration of FOA

The fossa is a cat-like mammal native to Madagascar, included under the Eupleridae family. The fossa's
hunting strategy for lemurs is very remarkable among its natural behaviors in the wild. This astute methodology
consists of two stages: (i) the fossa's progression towards the detected lemur's position and (ii) the chase
between the fossa and the lemur among the trees. The mathematical representation of intelligent fossa behaviors
in hunting has been utilized to develop the suggested FOA, which is outlined below.



3.3.1.2 Algorithm initialization

Fossas represent population members in the proposed FOA, a population-based optimization approach.
FOA identifies optimal solutions by emulating the natural search behaviors of fossas within the problem
domain. This comparison utilizes the fossa's habitat as the problem-solving domain and each fossa's position
as a potential optimization solution. The position of each fossa is determined by a vector containing choice
variable values. The fossa location may be a solution. Egq. (1) shows a matrix representing the entire fossa
population, each with a position vector. Using Eq. (2), the fossas are randomly placed in the problem space
This methodical approach lets FOA efficiently search the search space and refine optimal solutions using
fossas' dynamic positional alterations. FOA guarantees a full problem domain investigation by using the fos!
intrinsic search capabilities, providing in superior solutions for complex optimization problems.

xl,l “ee xljd Lo xljm

Xi

= x%‘l xi;d )
XN1  t XNd
Xig = lbg + 1. (ubg — lby) )
In this context, X is the FOA population matrix, while Xi signifies theg@Ptossa, Which may constitute a

R, N signifies the total number of
, and [bd and ubd indicate the
ignifies a potential solution and

fossas, m indicates the number of decision variables, r is a stogh
lower and upper limits of the dth decision variable, respectiv
is evaluated by the objective function. Objective

Eq. (8).

F(X1)

= r X:) 8
Fy Nx1 F(Xn) Nx1
In this context, F den he vec sessed objective function values, with Fi being the objective

function value associated with th fossa.

3.3.1.3 Mathematica pf FOA

fossas' strategic movement in the wild. Two phases update FOA member
Iving domain: Exploration Phase: This phase mimics fossas' early lemur hunting.

its placement changes during exploration. The fossa refines its approach to accurately
ough the trees during the Exploitation Phase. In the exploitation phase, the algorithm
arch inside promising regions, improving solutions. Fossa dynamic changes during chase
itional changes during exploitation. Here is the mathematical modeling and detailed explanation
A updating procedure [25].

Phase 1: Attacking and moving towards the lemur (exploration phase)

Simulation of the fossa's attack on a monitoring lemur changes population members' placements in the
problem-solving area during the FOA's early phase. Fossas' high olfactory, aural, and visual talents allow them
to identify lemurs. The fossa approaches the lemur after finding it. FOA's worldwide exploration capabilities
are enhanced by the simulated migration during the attack phase, which changes population placements.



Lemurs live in fossas when other population members have greater objective function values. Eq. (9) evaluates
objective function values to determine candidate lemurs for each fossa:

CL; = {X;:F, < Fand k # i}, wherei=1,2,...,N and ke{1,2,...,N} 9)

Here, CL denotes the set of potential lemur locations for the ith fossa, Xk signifies the population
member with a greater objective function value in relation to the ith fossa, and Fk represents its corresponding
objective function value.

The FOA posits that the fossa arbitrarily chooses one of the possible lemurs within its environment
initiates an assault. Utilizing the fossa's location alteration during the assault on the designated lemygss
random position for each individual in the FOA population is computed employing Eq. (10). If the ¥ loca

populati
XIP]' = xi‘j + ri,j . (SLl,J - Ii,j . (10)

produces a superior objective function value, it supersedes the prior position of the correspo
member, as specified in Eq. (11).

(11)

a/SLi refers to the jth dimension

pqdition for the ith fossa during the
of the objective function at this
erval [0,1], while Ii,j are random

1 1
X, = XV FPT < F
X, else

In this case, SLi represents the lemur selected by the ith fosg
of the position of this chosen lemur. Xi P1 denotes the recently ca
attack phase of the FOA, with xi, P1 representing its jth dimen@®n.
new point is Fi P1. The variables ri are stochasy side tM
numbers, specifically 1 or 2.

Phase 2: Chasing to catch lemur (exploitation

Simulating the fossa's pursuit of the lemur chan opulation positions in FOA's second phase.  The
fossa chases the lemur through the tree branches uding its climbing skills.  This happens in a hunting
ground region. By repeating the jons during the hunt, the FOA's local search optimization is
improved by introducing few po location changes.  Fossa-lemur pursuit dynamics are shown
by small population positionin OA design. Equation (7) calculates a new position for each
FOA member during lemur_purs Eq 3) states that this new placement supersedes the member's prior
position if it has a highe

x(f =x;+(1-27) 'ubjt_lbj (12)
xP2 FP2 < F.

x={%, FOsh 13

¢ { X;, else (13)

P2 signifies the adjusted position determined for the i th fossa during the pursuit
FOA. Each xi, P2 denotes the jth dimension of the new position, whereas Fi P2 signifies
bjective function value. The variables ri are generated at random inside the interval [0,1],

ated Deep Q-Network (FDQN) Based Routing

he suggested routing technique utilizes Federated Deep Q-Network (FDQN) to guarantee efficient and
intelligent data transfer within the WSN. FDQN, a sophisticated reinforcement learning methodology,
facilitates decentralized decision-making while safeguarding data privacy. In this paradigm, each CH operates
as an agent that acquires optimal routing policies through interaction with the network environment. The
routing decision relies on critical parameters including energy levels, network quality, latency, and hop count.
FDQN utilizes a federated learning framework, enabling several CHs to collaboratively train local Q-networks
without the need to share raw data, rather than depending on a centralized server for training. Locally learned



models are periodically consolidated to enhance global routing performance. This decentralized learning system
diminishes communication overhead and improves flexibility in dynamic WSN-loT contexts. Through the
ongoing refinement of the routing policy, FDQN enhances path selection, reduces energy expenditure, and
prolongs network longevity while guaranteeing dependable data transmission to the base station (BS). The
incorporation of FDQN markedly enhances scalability, security, and robustness in comparison to conventional
routing protocols [26].

3.4.1 FDON

Value-based reinforcement learning techniques formally utilize an action-value function F(s, c) to esti
the expected return from state s upon executing action c:
Fr(56,€) = En{Xiea V¥ Tegn-alse 3
= Esp1,e{re + v (Seq1, ©lse, €0}
F (s, ¢) serves as the reference for the reinforcement learning agent, defined as the ste
cumulative discounted:

F*(st,€) = Egpra {1 +y max F* (s, O)ls (16)
N) in this context, is
ues. The one-step look-

ently, the function

In DRL, a function estimation method, namely a Deep Neural Net
employed to learn a parameterized value function F(s, c; 0) to estimate the optimal

ahead 1, +y maxF (s;41,¢;0;) serves as the aim for deriving F(s,,c; @(on
a

F(s;, c; 0;) is defined by the parameters 6;. The choice of an effecy

estimate; hence, DQN seeks to identify the ideal parameters 6, to m

epends on precise action-value
ss function:

ef)) (17)

L(Hq) = (rt + Y maxgg
Similar to traditional Q-learning, the ag b exp
The network trainer compiles a dataset D by g%g@eringgnts up to time t in the format of (st—1, ct—1, rt, st).
The loss function L(6f) is optimized using th€ ected data set D. During initial training, the agent's
estimations lack precision, so a dynamic-greedy poliC@& implemented to guide activities. The agent explores
numerous behaviors with a defined prohalility, regardle® of their rewards. This method increases estimation
over time and avoids the risk of over, framework to high-reward activities in the first training phase.

V) =YN wili(65) (18)

Initialize the model par om the server.
For each episode :
Set theQ@aiti

select action at = argmaxa F (s, ¢; 6;);

ick a randomly from the action space.
Ecute action at, transition to the next state st+1, and receive reward rt+1.
re the experience {ct, st, rt+1, st+1}.
for
Update model parameters:
If the episode index e is a multiple of Ag:
Send updated model parameters 0f to the server for aggregation.
Receive the aggregated model parameters 0q from the server.
End if
End for
End




FDQN-based routing is selected for WSN-I0T contexts to improve energy efficiency, scalability, and
privacy while accommodating dynamic network conditions. Conventional routing techniques exhibit elevated
energy usage, congestion, and reliance on centralization, rendering them ineffective for extensive
implementations. FDQN use reinforcement learning to enhance routing decisions by taking into account energy
levels, network quality, latency, and hop count. In contrast to traditional Deep Q-Networks (DQN), FDQN
facilitates decentralized learning, allowing CHs (CHSs) to train local models through federated learning, thereby
minimizing communication overhead and safeguarding data privacy. Through the ongoing optimization of
routing policies, FDQN guarantees equitable energy utilization, prolonged network longevity, and enhance
packet transmission, rendering it suitable for scalable and adaptable WSN-IoT applications [26].

4. Result and Discussion

The suggested TEEFLC, FOA for CH Selection, and FDQN for Routing optimize networ
optimizing energy usage, enhancing packet delivery, and maintaining steady data transmissi
CH selection efficiently distributes energy consumption among SNs, resulting i
Simultaneously, FDQN-based routing dynamically adjusts to network conditj
dependability and minimizing transmission delays. The suggested model 8
adaptive learning, and efficient load balancing compared to alternative optimizatio
suitable for WSN-1oT applications. The amalgamation of FOA for clustering and for routing yields an
energy-efficient, scalable, and dependable data transmission framework. Thefting bdels compared with
the suggested model include the Osprey Optimization Algorithm ( oved Grey Wolf Optimization
Algorithm (IGWOA), Modified Jackal Optimization Algorith and Sandpiper Optimization
Algorithm (SOA). Table 2 represents the simulation parameter p 1].

ods, rendering it highly

Table 2. Sim Rra r setup
Parameters Values
Simulation tool MATLAB

Maximum lIter, 3000
400

500 m x 500 m
1.2

(250 m, 250 m)

4000 bits

50 nJ/bit

50 nj/bit

0.00012 pj/bit

Eaggregate

E receive

0.055 pj/bit

Table 3. Energy Consumption comparison analysis with existing model

No. of Proposed 00A IGWOA MJOA SOA
Rounds model
100 0.039 0.045 0.078 0.135 0.199
200 0.085 0.108 0.159 0.198 0.270




300 0.099 0.128 0.227 0.366 0.395
400 0.156 0.364 0.446 0.482 0.541
500 0.398 0.553 0.609 0.742 0.817
09
08 —#— Proposed model
1 e
0.7 OOA )
| [*—IGWoA /
06 —v— MIJOA
SOA //

Energy consumption (ml)

nodes

Figure 3. Energy Consumption compar analysis graph with existing model

Table 3 and Figure 3 illustrglle
Osprey Optimization Algorithm
Jackal Optimization Algorithm
(100 to 500). The Proposg

y consumption (in millijoules, mJ) of the Proposed Model,
vimprged Grey Wolf Optimization Algorithm (IGWOA), Modified
OA), andpiper Optimization Algorithm (SOA) over varying rounds
nsistently demonstrates the lowest energy consumption, commencing at
to 0.398 mJ for 500 rounds, so underscoring its efficacy in reducing
e OOA and IGWOA exhibit higher energy use, with OOA demonstrating

eir inefficiency in energy usage. This indicates that the Proposed Model, including
DQN, represents the best energy-efficient solution for WSN-IoT applications, maximizing
hile preserving performance.

Table 4. Network lifetime comparison analysis with existing model

Proposed OOA IGWOA MJOA SOA
model
1850 1700 1520 1350 1300
2300 2150 1850 1610 1450
300 2850 2500 2350 1850 1700




rounds, whereas IGWOA sust
demonstrate reduced netwgieli

SOA

NLT (Rounds)
&
8

2000

1000

500

400 3350 3010 2850 2610 2215
500 3650 3450 3190 2870 2650
4000 ;
—=#— Proposed model ]
3500 |[—*— OO0A ]
—4—IGWOA |
—v—MIJOA
30004 ]

OO0A IGWOA MJOA SOA
98.67 97.04 96.38 94.36
97.26 95.95 94.38 93.22
97.31 95.47 94.75 92.49
96.38 94.29 93.09 91.83
500 96.61 94.74 93.68 92.33 90.95
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Figure 5. PDR comparison analysis graph with existwode

y attains the maximum Packet
substantial value of 96.61% at
nstrates a minor decrease from
d | rom 97.04% to 93.68% with the increase in
OA asing from 94.36% to 90.95%, signifying
packet losses attributable to suboptimal routing Bsed energy use. The results underscore the resilience
of the Proposed Model in facilitating effective datog@nsfer with little packet loss, establishing it as the most
dependable method for energy-efficient WSN-10T app g

Table 5 and Figure 5 demonstrate that the suggested mo
Delivery Ratio (PDR), commencing at 99.45% after 100 round
500 rounds, signifying dependable and efficient daja
98.67% to 94.74%, whereas IGWOA has a more 4@
rounds. MJOA and SOA have the lowest PDR

Table 6. End to End Delf# ( parison between existing and proposed model
Number of nodes | Prop mode OOA IGWOA MJOA SOA
100 4.5 5 6.8 7.2
5.3 6.5 7.5 8.5
6.2 7.6 8.3 9
7.4 8.2 9.5 10.2
8.2 9.5 11 12.3

ble 6 and Figure 6 demonstrate that the suggested model constantly attains the minimal latency,
mencing at 3.2 ms for 100 nodes and escalating to 6.8 ms for 500 nodes, hence evidencing effective data
tramter and diminished network congestion. OOA and IGWOA demonstrate mild delays, with OOA spanning
from 4.5 ms to 8.2 ms and IGWOA escalating from 5 ms to 9.5 ms, signifying marginally elevated transmission
latencies. Conversely, MJOA and SOA exhibit much greater delays, attaining 11 ms and 12.3 ms for 500 nodes,
respectively, attributable to heightened network congestion and suboptimal routing. The results validate that the
Proposed Model facilitates expedited data transmission, rendering it the most efficient method for real-time and
delay-sensitive WSN-10T applications.



42 1|~ Proposed model A
—e— O0A
—&—IGWOA
10l 77 MIOA /
SOA /
8 /'/‘/Aé

—

\

End to End Delay (ms)

’ﬁl\

100 200 300 400

No. of nodes

S

Figure 6. End to End Delay (ms) comparison between exi roposSed model

ing

Table 7. No. of Alive Sensor nodes comparison betwe ind proposed model

No. of Rounds P[T‘]’gg:fd 0O0A MJOA SOA
2000 485 471 450 390 280
2250 478 465 415 274 210
2500 460 42 392 200 135
2750 400 313 130 50

3000 355 235 28 20
3250 183 14 7
3500 285 136 0 0

Tabl
Propo

illustrate a comparison of the quantity of active SNs across successive rounds. The
y sustains a greater quantity of active SNs, with 485 nodes operational at 2000
s remaining functional at 3500 rounds, demonstrating its energy-efficient clustering and
18s. OOA and IGWOA also exhibit reasonable node survivability, with OOA maintaining
WOA retaining 136 nodes at 3500 rounds, but they still underperform compared to the
Conversely, MJOA and SOA exhibit markedly reduced network longevity, as all nodes

onsStrate that the Proposed Model extends the network lifetime, ensuring prolonged data transmission and
inC®ased WSN sustainability, making it suited for long-term 10T applications.
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Table 8. No. of dead sensor nodes comparison sti nd proposed model

Rounds | | measl | OO MIOA S0A
2000 25 30 110 143
2250 40 5 93 174 237
2500 55 107 285 316
2750 185 320 375
3000 162 270 425 467
3250 180 320 446 490

210 368 500 500

ure 8 compare the quantity of dead SNs over various rounds. The Proposed Model
est node depletion rate, with merely 25 dead nodes at 2000 rounds and 200 dead nodes at
indicating its exceptional energy efficiency and equitable load distribution. OOA and IGWOA
ediate performance, with OOA attaining 210 dead nodes and IGWOA reaching 368 dead nodes
rounds, signifying more energy consumption compared to the Proposed Model. Conversely, MJOA
A undergo swift node depletion, resulting in the demise of all 500 nodes after 3500 rounds, underscoring
ineffective CH selection and routing. The results validate that the Proposed Model substantially improves
network longevity, optimizing resource utilization and extending sensor operability, rendering it exceptionally
appropriate for energy-limited WSN-IoT applications.
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Table 9. Computation complexity comp k&%n existing and proposed model

Models Computation complexity
Proposed Model ONx1)+O(ExSxA)
Osprey Optimization Algorithm (OOA) O(N x I x D)
O(N x I x log N)
O(N x | x D)
O(N x 1)

N networks. OOA and MJOA (O(N x | x D)) exhibit greater complexity owing
, Whilst IGWOA (O(N x | x log N)) provides moderate efficiency. SOA (O(N x I))

The proposed WSN-IoT-based energy-efficient data transmission model incorporates TEEFLC for
optimal cluster formation, FOA for effective CH selection, and FDQN for intelligent routing. This hybrid
methodology prolongs network longevity, reduces energy expenditure, and optimizes data transmission efficacy
relative to current techniques. The findings indicate that the suggested model surpasses OOA, IGWOA, MJOA,
and SOA for packet delivery ratio, network longevity, and SN viability. Future research will investigate
additional optimization methods and real-time execution for extensive WSN-I0T applications. Future endeavors
will concentrate on incorporating adaptive reinforcement learning methodologies for dynamic routing and



investigating hybrid metaheuristic algorithms to enhance energy optimization in extensive WSN-10T networks.
Real-time implementation and security enhancements will be considered to improve system robustness.
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