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Abstract

The usage of autonomous greenhouses has become essential in meeting s dénds of the world's expanding
population. Finding the right optimization strategy to sustain growt!
with greenhouse production. Addressing this issue effectively reguifii
data-driven insights, and innovative management practices. Th
quality while minimizing input costs and environmciisial
implemented using reinforcement learning algori
due to the time-consuming nature of the real-
these issues by combining the SAC and Q learni
the worst-case inefficient samples, a discrete rand

The a@cd optimizations, which are often
Assues with sample efficiency and robustness
fore, the goal of this research is to solve
s to create an ensemble method. To properly optimize
ation and dropout module is included. The problem of
sample efficiency and resilience is treated as a Misma arkov Decision Optimisation problem. The suggested
model outperforms the current methods in handling the "@ustness and sample efficiency issues, according to an
experimental evaluation. Additionally, provement increased production and maximized net profit.

—

Keywords: Mismatch Markov d tion problem (MMDP), Discrete Randomization, Dropout,
Ensembled Q and SAC Reinforgcfifent algorith @ EQSACRL)

1. Introduction

s predicted to rise to 9.7 billion by 2050 [1], having reached 8.0 billion in
Acipated that this figure will peak in the 2080s. The need for food will rise by 56%,

, climate change, and restrictions on arable land, the amount of agricultural land is
sult, it is crucial to use technical breakthroughs to meet the world's expanding demand for
ased farming has become increasingly popular in recent years. Greenhouse-based agricultural
one invention that addresses crop production from a scientific standpoint in terms of yield and
IS greenhouse-based agricultural production is powered by autonomous operations in terms of
and control.

h the assistance of the greenhouse, vegetable production as well as the land required to get the yield are
very low [4]. Thus, spatial efficiency is great with greenhouse-based agricultural production. However, one of the
common concerns with greenhouse-based agricultural production is the amount of emissions. India produced its
national climate agreement [5] after the Paris Agreement [6] in 2015, which aims for more than 40% reduction of
greenhouse gas emissions by 2030 and more than 90% reduction by 2050. The Indian greenhouses account for an
average emission of 2.3 tCO2e per capita annually, which gives an alarming indication that the Indian greenhouse
emissions are increasing, and this necessitates the need to optimize greenhouse agriculture. Thus, the need for
current greenhouse agriculture is to increase food production with less energy and emissions.In addition to
improving the nation's ecology, optimized greenhouse production can have a positive financial impact on



individual farmers. Energy sources account for more than 20% of overall earnings, and by 2021, their price will
have increased by 200%. Therefore, having the best greenhouse possible is also essential to increasing individual
turnover.

Considering the problem of energy accountability, the net profit for an individual can be increased only with
better climate controllers inside the greenhouse, and there are several efforts in the literature for the optimization
of climate controllers in the greenhouse. More recently, the usage of artificial intelligence techniques and
algorithms for the optimization of greenhouses has become common. Wageningen University & Research is
organizing its 4th Autonomous Greenhouse Challenge (AGC) based on the results obtained for other crops like
lettuce and cherry tomatoes. Based on the excellent results, outperforming humans was observed when the lettu
crops were grown virtually and physically using fully autonomous algorithms. The approaches adopted by vari
researchers for the virtual growing of greenhouse plants are based on model predictive control and relnforce
Iearnlng [7, 8]. For the optlmlzatlon of the tomato plants varlous control experiments are performed asg

disease detection [11] weed detection [14], stress detection [15], harvesting [13], countln
significant progress has been made in other detections, plant production control holg
not providing an optimum temperature, light, and other factors in the greenhouse
by various researchers, like the one mentioned in [18]. There is continuous ing
the reinforcement algorithms, which has shown a significant increment in crop pr8
problem arises when the optimized algorithms are used in real-time. There ar€
associated with the adoption of these reinforcement algorithms in real-time, and the

effj

well as net profit. The
ain practical difficulties
gs follows:

cy is the most frequent issue
world. Because of the current

e Due to its potential to harm machines and wipe out crops, sa
encountered when trying to train a reinforcement algorith
sampling efficiency, simulations resort to reinforcement ta

exists between the simulation and the
more efficient, this gap is closed. J

lished by exposing the agent to higher performance, which
ting state is taken into consideration because it is an expensive
endeavour to construct a more
environments.

A0EMP operating condition is favored because it requires less time and money
| requirements. As a result, this work primarily addresses the gap between

is limited fatare grown in greenhouses. The tomato plant was chosen for adoption because of
its raphd gro read distribution around the world. In light of these issues, the research sought to
provi he following queries to solve the issues raised:

theTeinforcement learning algorithm provide better robustness than the existing methods?
Do have an option to make the reinforcement learning algorithm robust both in the training and
ation conditions?
at is the contribution of the reinforcement algorithm to getting a better yield?
For the identification of answers to these questions, a greenhouse simulation environment is used, and
some of the novel contributions of this work include:
With the assistance of the gymnasium interface for reinforcement learning, a parametrized greenhouse
simulator is created.
We exhibit how the implementation of our ensemble model with randomization and dropout can handle
the worst-case performance.
e We show how robustness and sample efficiency problems for worst-case performance can be improved
using randomization and dropout.




The rest of the paper is structured as follows: Section 2 gives the relevant background about growing tomatoes
in a greenhouse, greenhouse control, reinforcement learning, and related works. Section 3 briefs the architecture
of the greenhouse simulative environment and the optimization method algorithms for better yield. Section 4 gives
an idea of the implementation, important findings, and result discussion. Finally, Section 5 discusses the key
findings and gives directions for future research.

2. Related works

This section provides an overview of the literature. The purpose of this study is to learn about the la
advancements in automated greenhouse operations, the relevant history of tomatoes grown in greenhg
the latest reinforcement algorithms used to optimize greenhouse operations.

Because of the increased need for food items during these years, greenhouse-based productio

involvement for switching on and off the valve positions of the light, tempera
approaches used the PID and fuzzy mechanisms for controlling these valves autonORgsly. Along with this, the
outside weather also plays a pivotal role while performing the optimization of the grec\ga

cloudy weather requires artificial lighting. For performing these operations au%

in artificial intelligence techniques [22, 23] have played a major rolg 2
greenhouse control. The first perspective is utilizing digital twins W ;

When deciding which optimal values should be set for the hj 0, tf

ecent advancements
aches are used to apply Al to
imulation environment [25-26].
b twining is helpful. The twins
is feasible. The expense of this
testing is negligible since the parametric variables g greeniotse are sent straight into the virtual
greenhouse. Since several situations have been vg sible to find an appropriate model that can
manage the yield in addition to cost.

As discussed in Section 1, the problems faced rying to use RL algorithms for optimizing greenhouse
control come in the form of sample efficiency and stness, and in this section, we will review the various
approaches used for handling these RL algorithm pro’Sg@s. Model-based approaches are commonly used to
handle the sample efficiency proble mentloned n [28-31]. These methods have made significant
improvements in dealing with sampli . However, these works are not robust enough because of their
effect on the control policy while h-dimensional tasks. Due to the larger variation between the
simulator and the real-world e mance is affected. Thus, to address the concern with control
policy uncertainties, they are |nt

are generated using the sgg

Another popular stra ing the sample efficiency and robustness problem is the use of ensemble
bd with the joining of more than one model since, in our method, we are going

mbled policies. SEERL aims for the selection of better policies, and that is obtained
ing of the policies. For a converged policy, an increment in the learning rate is done, for which
ned, and from that, a selection of optimized policies is obtained. Since our strategy is also
ing, this is different from the SEERL because we expect the ensembling to produce a better

pect the policy to be well-adapted to the new environment. Another approach using the Q-ensemble
RISE [33] can better explore the environment. Traditional RL algorithms like Soft Actor-Critic [34]
Soft Q-Learning [35] are used in the literature for the policy optimization of the autonomous greenhouse. After
standing the state of the art of reinforcement learning in an autonomous greenhouse, it is important to
improve the robustness of the greenhouse. Though our primary objective is not to implement a new RL algorithm,
this work does not concentrate on building the implementation; instead, the focus is on understanding the
effectiveness of these algorithms in solving the problem of sample efficiency and robustness. We followed these
ideas and incorporated a dropout and randomization module to achieve robustness.

3. Proposed System



This work considers the problem of autonomous greenhouse control as a mismatch Markov decision
optimization problem (MMDP). The concept of model mismatch is included in the Markov Decision Optimisation
problem because the agent needs to be evaluated in simulated and real environments. Using this, we can identify
the gap between the training and evaluation environments. This section gives the preliminaries and notations of
the considered problem and the approach to solving it.Notations and Preliminaries:

Markov Decision Process (MDP) is denoted by a tuple MDP = (S, A, P,r,v, p,) Where S denotes the state with
dimension § € R% and A denotes the action with dimension A € RY. The transitioning in S at state s to take
action a is represented as a transition probability P (s, a) denoting the state action pair. The reward function is
mapped to this state action pair with [0,1] as discount factor. Thus reward r: (s, a) € [0,1]. H denotes the episo
of interaction H = {1,2, ... ... ... H}. Suppose if the initial state s, then the state s € s, after taking the action
A. After the action is encountered the environment will change from s,, to s, and that is denoted as state s’
the probability P(s'|s, a). So, this means from the episode H it changes to H+1. Each state’s policy is a g¢
over action A and there exists a deterministic policy for the agent.

The reward is thus expected following the policy on the state and suppose if the state s € s
notated using the tern V7 (s). Thus, the reward V;; (s) with transition P and policy 7 is incSQAing th
1 as a expectation over the probabilistic transition function.

H

Vi (s) = expectation Z T(Sp/ s TT(Spr) |1Sh = 8 v vee e e e 28 .. (1)
h'=h
The goal is to find a policy 7’ such that ,

' = argmax; Vii(Sg) ce cee ce vee ven e ' )

Since our problem is to identify the gap betwegs
environment to be different at training and evaluatjg
as a mismatch MDP and hence the training i
(S, A, P*,r, H) for evaluation and MDP?® = (S, 2
are different so during the training time only P sai

latio eal environment, we expect the
rkov Decision process is modelled randomly
ansition is different denoted asMDP* =
or training. The assumption here is only the transition
are given to the agent and this state action pair generates
a sample (s, (s, a)). For the transfer of training to {™q@Rg a policy is defined that wanted both the environment
to be similar. Hence a constraint is added to definition 0 perturbation set. The constraint function C aims to
map P~ transition function to be locate (P®). Hence the perturbation is obtained by subtracting the P from
C(P) where P is the transition of trairjihg ) is the transition of evaluation and this is obtained using the
equation (3)

er(P = L 023 [T (< )

on the elements 0 and P* will be the neighbour values of P$

Where C(P)=[-1,1] so

Since we aim for thd
defined using the

obustnes
4

the policy should be considered for the worst-case environment and that is

V'H(s) =min (VF(S)) e vee e e (4)
The ist d the optimal policy 7' such that

' = argmax; V' (Sg) e e ver veecer en cveene wee . (5)
And earrimig is better when the policy 7’ satisfies the condition in equation (6)

Err(n')<0=21-(0,1) .. e e eee ve. . (6)

Th rning goal thus is the optimal policy for MDP? performs very poor for MDP* thus concluding a robust
mg for the evaluation stage.

Formulation:

We expect that the problem framed as MMDP needs to find a methodology that provides crop yield with less
cost in both real and simulated environments. Though several factors frame this optimization problem, only the
observable parameters are considered. Based on these, the formulations for the state space, action space, reward
function, and transition function are defined below:

3.1 State Space



The state here is a 4 variable tuple that holds different values that determine the growth of the tomato plant.
The variables that are considered are tabulated in Table I.

Table I. State Space variables that makes a transition with the changes from action variables

Name min max
Planting days 0 365
Greenhouse temperature -25 90
Greenhouse carbon 400 1000
Greenhouse wind 0 25

3.2 Action Space

The action space variables are the ones like temperature, light, and CO2, and any chapges i val e
variables make changes with regard to the state variables. Table 11 presents the actigg g vaSgales.
Table I1. Action Space variables whose change affects thg @ ion
Name Minimum value M value
Temperature set point 10
Carbon-di-oxide set point 400 £
Light on time 0
Light off time 0

3.3 Reward Function

subtracting the cost of spending in terms of the labour
ith the total yield of the crop.

The reward function R is the net profit that is o
cost, resource consumption etc from the cost obtaine

3.4 Transition Function

The transition value is unknown angfne regilts are obtained based on the simulator results. This is basically a
function that interchanges the stat L wards.

4. Methodology

The overall architecturg
Figure 1, the green houg
the ensembled optimizg
method is basica

the greenhouse MMDP problem is presented in Figure 1. As shown in
d t is used for the training and evaluation. In the simulation environment
is evaluated with the setting of the action variables. Thus, the optimization
del learned from the greenhouse data. The robustness is measured by setting
nknown set of values.
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Figure 1. Overall architecture greenhouse control system

4.1 Simulator

Simulator plays an important role in solving the P optimization problem. The brief summary of the
simulation environment is presented in T I11. As mentifed in Table 11, the simulation is supplied with details
of the climate, weather, net profit, pla th and reward function.

Table 111. Overal
Model Name

s Jat are implemented as a part of the Simulation

unction

Climate Computing Green house State using the weather and action

variable input setting

tilation
Cco2

Weather Dataset Local Real weather data is considered for the optimization of
green house

Disease Factors that limit the growth of the plant
Extreme heat

Freezing

Netprofit and On and Off-Peak Consumption of the input components for the calculation of
Reward usage price profit




Under the simulation environment, the agent gets transformed to a new state based on the components of the
climate model and weather data through which the growth of the plant and the consumption details of the
greenhouse are computed which then collectively combined to form the new state and the new reward.

4.2 Discrete Randomization

Since the weather is updated hourly, but the climate and plant development data need to be changed every
minute, discrete randomization is introduced to the simulation. Discrete randomization is used inside the
simulation environment of the model to account for this, prevent differential equation mistakes, and minimize
action per episode. All it takes to do this is to simulate many time scales. The climate and plant models are update
fifteen times for a single step, requiring one hour and fifteen minutes for every step.

4.3 Ensembled Policy Optimization algorithm

Though the RL algorithms are meant to learn policies well, they face a problem in terms of t
reduction in training efficiency causes a less robust model because of the higher number of interact
environment. To alleviate this problem, an ensemble RL algorithm is proposed along with the drg@su
in algorithm 1. The simulator created resembles the actual tomato growth envi e d th
greenhouse dataset, the simulation can now generate samples for the entire growt samples are
fed as an input to the ensemble RL algorithm for optimizing the policies.

Using the greenhouse challenge data, the model is pretrained, and this datas
this data includes the greenhouse and growth parameters. For the data samples to b
real-world data, prior knowledge is used for adding restrictions such as the maxim
etc. The reason this algorithm is proposed is to improve its robustness and addre%
is its adaptability to work under varied scenarios. Utilising the idea g )
proposed using the Q-learning and actor critic methods. The reason t
problems of sample efficiency and robustness so that the algori
little tuning. Thus, using the ensemble approach, the uncertainy
thus increasing the growth of the plant as well.

d to as Data,.,; and
re realistic and resemble
of light, temperature,
sane inefficiency, which
[36], an ensemble approach is
ansemble approach is to avoid the
the new environment with very
se environment can be captured,

The fine-tuning here happens through the di

ember is a neural network that is probabilistic in nature and
ze it. The output of the probabilistic neural network is pg, oy
and the objective function of th

Now these data from completely new, and this is used for the fine-tuning, denoted as M =
......... . ry member is a neural network that is probabilistic in nature, and a

ethod, the simulator is trained to have an environment similar to the real environment. So the
safMples are the ones that are pretrained using the simulator environment and the derived subset
, at the training phase, policies aim to maximize the reward, irrespective of the environment. To

ence policy is given using equations (9) and (10).

policyyqj = concave(||expectation(7rj(a|0)] — epectation(m;(a|0)]12] ... e cev vee e e (9)
policy; ;(0) = concave(l|expectati0n(nj(a|0)] — epectation(m;(a]0)[|2] ... ... cev ee ... (10)

The concave function used here is sigmoid, and the reason for considering this as sigmoid is because the model
need not worry about how different the policies are. Moreover, the distribution of trajectories is not cumulative,



and the training is carried out in parallel, hence the objective function defined in equation (8) gets modified to
include the ensembled members as shown in equation (11).

lossM¢i(di,,)=lossM¢'+ SPOLiCY i) v ven ven wee ven v (11)

Where § is the hyperparameter that capture the variation between the policies.As a result of the policy
divergence we have attained, policy learning proceeds smoothly in each model. Additionally, our strategy
incorporates a dropout mechanism to prevent significant performance fluctuation across the models. The dropout
discussed here, which draws influence from [37], seeks to exclude samples that offer an excessive reward to focus
exclusively on the lowest-performing examples. As a result, the model becomes more reliable and appropriate
use in actual environments by guaranteeing plant output even under the most adverse circumstances. Algorith
presents the overall optimization method used in this proposed system.

Algorithm 1: Robust Ensembled Reinforcement Learning Algorithm (Usual Reinforcement lez
instructions are not included here to highlight the difference between this approach and usual gl

Main function ()

Load original environment initialize hyperparameters, Data,..q; and policy @& {mq1, 8 . . ..
for Nepocn iterations do
Take action in the greenhouse using policymg,, mg,

Mask Data,.,; into

for Niyqir iterations do
Load the pretrained model and train on

Datasubset = {
Get the pretrained ensemble model = {My, Mg,
While t<T do

for every mg; € m do

lOSSM¢i = i (St » t+1 1001 (St @¢)) = Seaq | + 108 |0 (se, ae)

end for

end while

ICYmigj = concave(||expectation(7rj(a|0)] — epectation(m;(a|0)]|2]
ZOSSM¢i(div):lossM¢i+ 6p01icyn'i,n:j)

e e

ction dropout ()

Perform selection on model M with policy m, and get samples into batch B™e-M

Optimize policy mg inData,.q,;and Datag,pset

end main




As mentioned in algorithm 1, the new environment basically gets trained with new policy obtained from the
ensembled members thus improving the sample efficiency. The predictions for this ensemble model collection is
obtained by choosing a model with probability mentioned in equation (12)

P[M = My;|i~Pp ,i € {12 e e ece N} oo eee 12

Then every model in M interact with varied policies and generates more growth samples on which the usual
policy gradient approach is adopted for updating.

5. Results and Discussion

This section aims to give answers to the questions that were framed in Section 1.2, as below:

o Does the reinforcement learning algorithm provide better robustness than the existing methods?

e Do we have an option to make the reinforcement learning algorithm robust both in the t
evaluation conditions?

e What is the contribution of the reinforcement algorithm to getting a better yield?

e To answer these queries, the proposed system implementation details and the corre ding
analysed.

5.1. Dataset

The greenhouse challenge dataset includes the details of six independent gree . including the weather
data, indoor greenhouse climate, resource consumption parameters, quality details tomatoes, and analysis
data. Along with this, the price for the cost and net profit are also available. Base values, there are two
datasets Data,.q,and Datag, .. 0f tomato planting incorporated in the simulat&‘

5.2. Performance Analysis of the Model

Analyzing the ensemble algorithm's impact in the greenh ucial to comprehend how the
reinforcement algorithm contributes to a higher yield_The ictio es with increasing learning. The
training curves and the model's efficiency with and -out mechanism are validated to comprehend
the ensemble model's learning efficiency. Two have been conducted: one with a sample
dropout of 0.6 and the other without the dropou : re 2, Figures 3, and Figures 4 demonstrate
the convergence capacity of the method. As was 7 variation was reduced with the help of the drop-out
mechanism. When this ensemble model is compared "ge baseline SAC and PPO algorithms, it is shown that the
ensemble model performs better than the baseline algorg@s. The ensemble model's lower variance indicates that

g is

it places more emphasis on the worst- scenarios. Better sample efficiency is the cause of this improved
performance, and as a result, even wig#Smal ple sizes, learning is improved. Thus, this satisfies our goal of
increasing sampling efficiency whj i raining examples.
fi 201. score: -181.78981364271218
o
0
-1000
1250 |
-1500
-1750

0 100 200 300 400 500

Figure 2. Learning curve showing the ensembled algorithm average score
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ction in the critic loss and the maximum reward, respectively,
confirming high-quality Q netw . As Figure 2 illustrates, learning has occurred more effectively
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Expected Return

0 50 k 100 k 150 k 200
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Figure 5. Comparative curve showcasing the rewards for the PPO, SAC, and ensemble learning



The solid lines show the mean of the trails with different seed values, and the shaded region denotes the standard
deviation of the plot. Green indicates the performance of SAC, orange indicates the performance of PPO, and blue
shows the ensemble algorithm.This performance analysis allows us to conclude that training performs better with
fewer samples, and a comparison with baseline algorithms demonstrates the robustness of this approach over the
state-of-the-art reinforcement algorithms, thereby providing an answer to question 1 under section 1.2.

5.3. Robustness Analysis

This study is done to understand the robustness of the proposed approach both at the training and testing ph
and thus giving justification to the question 2 under section 1.2. In the proposed system, dropout mechanis
the one added for ensuring the robustness. So the benefits of dropout is analyzed with different environment.
different environment is achieved with the inclusion of outside weather conditions. This is manually 4
parameters like outside solar radiation (Iglob), greenhouse humidity and temperature. Since these pgmete
have direct relationship to the growth of the plants these are set to represent the different environ d obser
the model’s behaviour. Since this setting up parameter takes up newer values that are not a pat, Rset
is considered to be a new environment and the parameters here are anomalous parg :
results are tabulated in Table 1V and Figure 6. The Table IV shows the crops weigig® i te under the
new environment.

Table V. Robustness Analysis with new environ

Parameter Crop Weight Crq Ation Rate
Without Dropout With drop Wd dropout | With Dropout
Air temperature (35,40) for 32.78 46.23 .32% 87.62%
maximum and (-2,10) for
minimum
Air Humidity (75) 39.63 81.32% 89.43%
Solar Radiation (null) 42.17 74.23% 86.21%

Based on the findings shown in Table 1V, the ense approach that incorporates the dropout has a higher

crop weight and retention rate. As a c ence, the sUggested model is sufficiently resilient to manage the
updated set of anomalous parameters.@nalysiaaas done on the net profit that resulted from setting the dropout
parameter p to various values, suc g Figure 6 presents the findings as a heatmap.

-2 0 2
Without Dropout With Dropout

Figure 6. Heat maps showing the robustness performance under varied environments with different
drop-out values
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the cost imposed to get this yield is slightly higher in the pr he main reason for this could be
because the reinforcement learning algorithms consig @R here is a direct relationship between
term and long-term optimization.

6. Conclusion

An ensembled reinforcement learning model is Yg@sented in this study to address sample efficiency and
robustness issues in tomato production under greenhoussganditions. Specifically, our approach learns the various
conditions using the greenhouse chall tomato dataSet, and even in brand-new situations, the policy is
optimized. The evaluation of the exp iacompleted and shown to address the questions posed in Section
1.2. Different experimental confi nstructed for each topic, and the outcomes are assessed to
demonstrate the robustness and gested approach in addressing the sample efficiency issue.The
results indicate that the yield-to- paratively lower, which paves the way for further advancements
in this area of study. Therciguaai ext effort, we want to enhance this algorithm's ability to generalize with a

assessed. The online R need to be evaluated in a real greenhouse, and their impact on training time
and cost hasto b
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