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Abstract

—

The Intelligent Infrastructure Monitorj

Artificial Intelligence (Al) and the Inter @

Management (DM). To predict future disast8 e system uses a Multi-Tiered Model (MTM) to

[IM a data-driven approach that uses

s (lo enhance civil engineering Disaster

integrate real-time data from 10T sensors, such@ stress, vibration, temperature, humidity, and

corrosion levels. The Temporal p nvolutional Network Model (TGCNM) processes this
data to capture spatial and te a engincies across structural components, enabling proactive

. The TGCNM outperforms baseline models by a significant

the probability of disasters caused by nature continues to increase and as vital
InfraStructure continues to fail, civil engineering professionals have come to understand the vital
significance of cutting-edge predictive monitoring [1-2]. The infrastructure maintenance
approaches frequently ignore unavoidable hazards, resulting in disastrous failures and implications
[3]. Novel advances in Artificial Intelligence (Al) and the Internet of Things (IoT) have enabled it

to monitor and evaluate infrastructure scenarios in real-time while simultaneously [4-6]. Data on



stress, vibration, temperature, humidity, and corrosion, among additional key parameters, can be
collected via 10T sensor networks connected to buildings. Al can subsequently employ this data to
predict when infrastructure will deteriorate [7-8]. This work employs a proactive model to enhance
Disaster Management (DM) and infrastructure adaptability, significantly developing predictive
maintenance [9-10].

The primary disadvantage of civil engineering persists in its inability to monitor relj

monitoring purposes in the past [17-19].

odels effectively identify differences
over time, they frequently fall short rega mplexSpatial relationships found in massive
infrastructures. Although Graph Convolution®@letworks (GCN) are helpful for spatial modeling,
they cannot handle time-dependent s discretel¥[20].

While the Spatial-Tempo onvolutional Network (ST-GCN) can address spatial
and temporal features, it migllt have e with long-term temporal relationships [21]. This is

because it enhances thg f predictions. Attention-based Temporal Graph Convolutional

easier to select features, but they can make simulations difficult
without g predictions are more accurate [22]. This work must develop an
impro ing spatial and temporal dependencies to overcome these drawbacks and
make gCc pctions for infrastructure resilience applications.

measuring Building Sectors (BS) is the primary objective of this paper's
nitoring system, which will do this by monitoring the temporal dynamics and real-
spatial dependencies among BS. This study has developed a model to address the
shortcomings of modern methods in predictive DM, applying a model that combines Al and loT
for constant monitoring. The investigation revolves around developing a Temporal Graph
Convolutional Network (T-GCN) that can continuously integrate infrastructure data points to

provide accurate and timely predictions regarding the integrity of the infrastructure [23].




A multi-tiered Intelligent Infrastructure Monitoring System (IIMS) that employs loT
sensors for monitoring environmental variables like corrosion, stress, and vibration in real-time
procedures is an element of the study objective [24]. Implementing Edge Computing (EC) to
process these data flows reduces delay and enhances real-time decision-making. The key

objectives of this research involve implementing the T-GCN on the buildings to recognize their

processing. Graph-
khe T-GCN to predict

infrastructure health metrics in various settings accurately. Th resw model is essential to the

based spatial analysis and recurrent neural networks (RNN) are used

system's predictive performance.

Firstly, below are the key objectives of this study:

(a) The objective is to develop an 1IMS i& 5 0 loT and has the potential for perpetual
data collection and real-time infr3
(b) This study will deploy the T-GCN to ¥

required the following data

onditiolY monitoring.
Qrm accurate spatial-temporal analysis. This proof

ccurately ®Pedict the adaptability of infrastructures under

various environmental faqgbr nctioning states.
(c) The research aims teg@dmpar utcomes of the T-GCN to other models to determine
a

whether the developments in prediction accuracy and computational

re
performance.
(d) I d the performance of the model, it is essential to execute a

meteNgensitivity analysis. This study should confirm the accuracy and efficiency
jzatNgy of the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root

ared Error (RMSE) performance metrics.

n

re te outline of the article: Section Il lays out the recommended 1IMS, separated data

tion, analysis, and storage functions of each layer. In Section Ill, the researchers determine
the basics of the T-GCN and how it integrates into the 1IMS. The researcher also found out about
its spatial-temporal modeling features. Section 4 provides details of the experiment, including
dataset information, baseline models, evaluation metrics, and hyperparameter settings. The results

and analysis will be presented in Section 5. This section will compare how well T-GCN predicts




with standard models, check the effect of spatial and temporal layers, and rate the model's
sensitivity. This article reaches its conclusion in Section 6.
2. Proposed Architecture

The primary objective of the envisaged IIMS is to permit real-time decision-making by
building conditions, vibration levels, and environmental variables such as temperature and

humidity. A practical application of electrical power, this model triggers sensors selectively,

adaptability, particularly within remote and ggnry

This Multi-Tiered Model (MTM) is 8 *
elements:
e intent o

1. Sensor Interface Layer: F onitoring building parameters such as stress,

vibration, and environmerggl es, a network of intelligent sensors that are embedded
within the building'

Data Processigg it" Q@ tool that performs edge processing, including a Raspberry Pi

redictive Analytics: To assess the building design strength of a building
possible hazards, a central server that hosts complex neural network models
t bewMmstalled.
Ugl Interface on Mobile Device: A mobile application for smartphones that keeps users
up to date in real-time on the condition of the building and presents ideas that can be
adopted.
5. Cloud Gateway and Server: A secure cloud-based setting for storing data for extended

time, significant analytics, and combining DM on a larger scale.
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Figure 1: Proposed 10T Model (
The initial layer of the architecture is known as the Sen ce Layer, and it contains a
network of integrated smart sensors that actively colle g i@ormation. This data usually

involves stress levels, vibrations, and factors rg een ent. This layer communicates

real-time data from the buildings to the ng pughQluetooth Low Energy (BLE) and Low
Power Wide Area Network (LPWAN).

assumes responsibility for the preprocessing a

device, including the Arduino Portenta H7,

filtering of the data collected by the sensors

within the Data Processing Uni device has been provided with wireless communication
features, which make it possi nicate with a central server by any of the following
types of networks: Wi-Fi, and AN. This third layer, the 10T Server with Predictive

Analytics, collects daj

a cloud environ

ey data across several parameters, enhancing the accuracy of monitoring tasks.

immediate data collection and predictive analysis across an array of buildings, this

| condition of the building.
This work aims to develop a framework that can detect and monitor building designs located
remotely in real-time. This model will assist with approaches to durability and predictive

maintenance.




. Stress Sensor: New load sensors based on Micro-Electro-Mechanical-Systems (MEMS)
provide decades of durability and accurate estimation of stress distribution across important
building parts. This work was decided on these sensors because they perform accurately,
are affordable, and are suitable for low-power device protocols like Bluetooth Low Energy
(BLE), so we can keep track of things all day without connecting them. Their adaptabilit
to environmental variations reduces the probability of inaccurate readings.

. Vibration Sensor: Applying the ADXL1002 high-sensitivity MEMS acceleratiogsse

data from vibration may be collected and remotely transmitted. The type ol

selected because the device is simple to install, portable, and has g

ent that the Sensirion SHT40 measures
 building design integrity of materials such as
steel and concrete. Monitoring enviroNg@ental variables that could impact building design
integrity is optimal by lowagoise signal®rocessing and amplifying processes, which
provide high precision.

. Corrosion Sensor: ultr @ sound corrosion sensors maintain track of the level of

e

S ¢ maintenance DSS is made feasible by sending data from the sensor

corrosion, parti cessible steel buildings. These sensors may determine the layer

thickness of d detect corrosion or degradation in early phases using ultrasonic

over an 12C connection.
ui eonardo, and Arduino Portenta H7, have been released for use with the Arduino
migdcontroller chips. The Portenta H7, selected for this particular system, is suitable for
processing real-time data from multiple sensors due to its robust processing speed and dual-
core microcontrollers. This device is suitable with 5G, Wi-Fi, and LPWAN manufacturing
communication protocols and features a range of input/output (1/0) based DSS, including
analog and electronic inputs. Considering an emphasis on excellent performance edge

computing, the Portenta H7 can preprocess data locally and significantly reduce delay,




developing differentiates as opposed to previous versions. As the primary controller of the
monitoring system, the Portenta H7 interfaces seamlessly with various sensors and serves
as a bridge between the sensors and the loT. This open-source microcontroller is
programmable using the Arduino IDE and is critical in integrating real-time sensor data
into the more significant 10T infrastructure for predictive DM.

The sensor data collected by the IIMS provides the foundation for computing key functj “

parameters that support evaluating BS durability and predicting potential failures.
Key Measurements Include: Q

a) Computation of Structural Stress and Load Distribution: Structural stresg¥o) d-
bearing components is estimated using data from strain and load seg es is typically
calculated using Hooke's Law, assuming linear elastic behavior, ¥

oc=F-¢€ )

where: ,

e ¢ = Stress in the material (Pa),
e E = Modulus of elasticity of the material (P
e ¢ = Strain, obtained from strain ga
Load distribution (F) is calculated bas¥

® force (F) exerted across cross-sectional areas

(A), providing insight into potential overloads

o=~ (2)

irregular stress concentrations, Eq. (2)

b) Measurement of Vibrati ymic Response: The BS's vibration response (a(t)) is

measured using acceleroMgers t0 Uetect shifts in dynamic behavior due to environmental

forces like wind, ic events.

The natural fre building design component can be calculated using the Eqg. (3):

3)

o f.Natural frequency (Hz),
o Stiffness of the building design (N/m),
m = Mass of the building design (kg).
Real-time vibration data a(t) from accelerometers can also detect unusual vibrations that may
indicate damage or deterioration, Eq. (4).
a(t) = A -sin 2nf,t + ¢) 4)

where:



e a(t) = Acceleration at time ¢,
e A = Amplitude of vibration,
e ¢ = Phase angle.
¢) Environmental Monitoring (Temperature and Humidity): Temperature (T") and humidity

(H) levels are key factors influencing material properties. Sensors record these valug

continuously to monitor potential impacts on building design materials. Material expansiq Q
contraction due to temperature can be estimated with the coefficient of thermal exp
as follows, Eq. (5)

AL=1Ly-a AT

where:

e AL = Change in length

e L, = Original length
e « = Coefficient of thermal expansion (°C™1) ,
e AT = Change in temperature

d) Corrosion and Material Degradatio a me rrosion progression (D) is

monitored through ultrasonic mea whitqyassess the thickness (7)) of steel

components over time.

The corrosion rate (R) can be estimated as Eq.

rR=4 (6)

lifespan of BS and determine when maintenance is required. Real-time
rts decisions on material preservation and repair timelines, enhancing building
against environmental impacts.

Model for DM and Structural Resilience

n this study, infrastructure resilience prediction aims to assess the BS condition of critical
infrastructure over a specified time using historical sensor data collected from various BS
components. Building condition data encompasses load stress, vibration, environmental conditions
(temperature, humidity), and corrosion levels. For illustration, this study uses load stress as an

example of building condition data in the experiment section.



Definition 1: Infrastructure Network §. The infrastructure is represented as an
undirected graph G = (V, &), modeling the structural relationships among components. Each
critical structural element is represented as a node, where V = {s,, s,, ..., )y} is the set of nodes,
with M as the total number of nodes. € represents the edges that define relationships (such as load
distribution or adjacency) between nodes. The adjacency matrix A € RM*M encodes thesg

connections with elements where A;; = 1 if nodes i and j are connected, and A;; = 0 other

~

| fea e q.,

Definition 2: Feature Matrix Xyq. The building condition data across the in
network is represented by a feature matrix X € RM*2 where Q denotes the numb

the length of the historical data sequence. X, € RM>J represents a specifjg

load stress) at time j for each node. Additional features could include ata, oxggronmental
metrics, or corrosion indicators.
The problem of predicting Spatial-Temporal BS can thus b lated as learning a
mapping function '¢’, which, based on the network topolo ature matrix X, predictions
the structural condition metrics over the following T ti
[Xe+1) o Xear] = ¢)(g' Xe-n, ---'Xt—lrxt))
where n is the length of the historical daig

3.1 T-GCN

The T-GCN is designed to capture spatia

own in Eq. (7):
(7)

and Qs the forecast horizon.

0d temporal dependencies in complex datasets,

making it highly suitable for inf, cure resilience prediction. The integration of GCN and

Recurrent Neural Networks s them to accurately represent structural changes'

sequential, time-dependent b jor arna the spatial connections among correlated building blocks.

sewring structural components and edges representing interactions

A graph of data with
" by the GCN feature of the T-GCN to exploit the infrastructure

between them i
networ : CN can understand its overall build concerning its spatial location by
applyin
nodesy

ncy matrix to collect data from all the nodes' interconnected neighborhoods’
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Figure 2: T-GCN Mode
Data in the temporal sequence is analyzed by th @ :

artion of the T-GCN, which

typically functions using GRU (or) LSTM cells. In mcQaag’e mathematical model could

select any patterns or trends, including the g® ocOQing building of stress or the impact of

external factors, that can identify hazards: 'se layers collectively, the T-GCN becomes an
effective tool for monitoring building conditior™gag real-time, and it helps in proactive maintenance
and durability testing via the use o iously colfected data for predicting a structural issue.

(i) Spatial Dependence Model N segment of the T-GCN analyzes spatial reliance by

een the physical network's different elements. The

h Gg=(,E), where every node v; € V matches complex

F etime 't’, the feature matrix X, € RM*? encompasses the features for all nodes, such
as s bration, and environmental factors, with Q as the number of features. The GCN layer

gregates the data from all nodes' neighbors, rendering it to the adjacency matrix, permitting
every node to integrate data about the structural environments of adjacent components.

The propagation rule for the GCN is defined as Eq. (8).

L1 1
H =0 (D *AD 72X, W, + by ) (8)



where:
e H, € RM*F is the matrix of node features after the GCN layer at time 't’,
e A = A +1is the adjacency matrix with added self-loops (where I is the identity matrix),
e D is the diagonal degree matrix of A, with D;; = ¥;A,;,
e W, is atrainable weight matrix for the GCN layer,

e b, is the bias term,

e ¢ isan activation function, typically ReLU.

1
This normalization process (multiplying by Dz ) ensures that feature c b m
connected nodes are scaled by their respective node degrees, which hi egree nodes
r, the

from disproportionately influencing their neighbors. By applying th del learns

the spatial dependencies between structural components, integrating ¢ tual information that
reflects the connectivity and dependencies within the infrastructure or®This spatial feature
extraction is crucial for accurately assessing the resilience ual components based on the
overall structural network.

(if) Temporal Dependence Modeling: Thg rov@gependence modeling in the T-GCN is

handled by the RNN component, which ¢ equertal patterns and trends in the structural
data over time. In the T-GCN, the tempora
modeled using GRU (or) LSTM units. These rec

about past states and identify tempf#ral rns essential for predicting future structural conditions.

¥nendencies of each node's feature sequence are

t layers allow the model to retain information

At each time step ¢ ogPut H, € RM*F which represents spatially processed

features for each node, j s input to the GRU. The GRU methods this temporal sequence

©)

(10)
¢+ T (UpZ,_y) + by) (11)
(12)

1; IS the reset gate, controlling the impact of the previous hidden state,
Z, IS the update gate, determining the balance between the previous hidden state Z,_, and
the current input,

Z, is the candidate's hidden state at time t,




e W,W,W,U,U,, and U, are trainable weight matrices,

e b,,b,, and b, are biased terms,

e ¢ and tanh are the sigmoid and hyperbolic tangent activation functions.

A GRU continually analyzes the spatially analyzed features at each time step, maintaining key

details from previous phases for storing data temporal relationships. By applying structurg

condition measures' temporal motion, the T-GCN makes it possible to predict impending struci
challenges by combining past data with recent advancements. Proactive DM and mgg
planning use this temporal Feature Extraction (FE) to assess the changing state of

(iii) Loss Function: The T-GCN has been trained to determine the strengflof

&

1 R
Lyvsg = ;2?:1 e — J’t)z ,

where:

g the

in
MSE loss function. To compute the MSE for a prediction radius o stepMgerform Eq.

(13).

(13)

e 1y, is the actual structural metric at the time ¢

e ¥, isthe predicted metric at time t,

e T is the forecast horizon.

Reducing this loss is essential to maximi T-GCN model's durability prediction precision.
4. Experiment analysis
4.1 Data Description

A significant open-s

Monitoring (SHM), is uged i

e oetaset @r investigating building durability, Structural Health
current research. It was generated by the Los Alamos National
Laboratory (LANL). pature, and acceleration are essential variables collected in the
time serieg proyg
collectgd embedded in buildings that respond to multiple functioning and

environ al itions. This data contains valuable information for determining the durability

ain Measurements: Strain sensors attached to load-bearing elements to monitor stress
distribution were employed to collect the data.

o Acceleration Data: The data was collected using accelerometers to measure vibration and
behavior under various loading conditions.

e Temperature Data: Thermal sensors have been employed to monitor the material to find

out how variations in temperature impact the quality of the material being monitored.



A time-series model appropriate for spatial-temporal modelling can be attained by regular
measurement logging of each sensor. Because of how this dataset is organized, the T-GCN can
identify the spatial connections between several building elements and variations in that building's
condition as time progresses. By implementing this data, the research study tests the T-GCN's
prediction accuracy in predicting probable building problems.

4.2 Metrics
Researchers apply three standard regression metrics—MSE, MAE, and RMSE—tQa\a

data are from predictions for the future.
1. MSE: MSE computes the average squared variance betwee
data (y,), fining more important errors more severely, Eq. (14).
1 A
MSE = T t=1 e = J)? (14)
where:

e T is the total time steps in the test

e y.and y, represent the real angép
2 MAE: MAE measures the average 8

providing an easy signal of prediction a
1 A
MAE = ;Z?ﬂ lye — Pl

MAE is less complex tg@lgniticantgirors than MSE, making it cooperative in rendering

acy, Eq. (15).
(15)

general prediction accurg

(16)

e me prediction error,

arameter and Training

Several hyperparameters require being optimized for the T-GCN to predict building
durability accurately. The learning rate, batch size, number of training sessions, and number of
GCN and GRU layers are key hyperparameters. These hyperparameters were selected and tuned
using grid search to identify the optimal configuration for minimizing prediction error on the

validation set.




The training was performed using backpropagation with the Adam optimizer, which
combines adaptive learning rates and momentum, enhancing convergence efficiency. The MSE
loss function was used to minimize the discrepancy between predicted and actual values of
structural health metrics. The model was trained for 200 epochs with early stopping based on

validation loss to prevent overfitting.

Table 1: Hyperparameter for training ‘

Hyperparameter Description m
GCN Layers Number of graph convolution layers Nt
GRU Units Number of units in the GRU layer 64
Learning Rate The initial learning rate for an optimiz 0.001
Batch Size Number of samples per training batch 32
Training Epochs Total number of training epoch 200
Early Stopping Patience for stopping traininge 10

4.4 Hardware and Software Configurati

The model training and evaluatio Onducted on a machine with an Intel Core i7

&/

processor, 16 GB RAM, and an NVIDIA G

endencies 1n large datasets. Python and PyTorch were

080 GPU to support efficient computation of

graph convolutions and temporal

or the application environment. The model's efficacy
the Deep Graph Library (DGL) addressed graph-based

implemented to build models

was demonstrated using M

~

talveeu analytical model for predicting time series data; it considers

data structures, and N das were used for the manipulation of data and planning.

4.5 Baseline Models

ning time but cannot account for spatial connections.

RNN that captures long-term temporal dependencies in sequential data.
ough LSTM handles time-series data effectively, it does not account for spatial
degendencies between nodes.

GCN: A Deep Learning (DL) that captures spatial dependencies in graph-structured data.
While GCNs spatial relationships, it lacks temporal modeling capabilities when used

independently.




(d) ST-GCN: Combines GCN for spatial modeling with temporal convolutional layers. It
captures spatial and temporal dependencies but may have limitations in capturing complex
temporal sequences compared to RNN.

(e) Attention-based Temporal Graph Neural Network (A3T-GCN): By applying graph
convolution and attention mechanisms to capture spatial and temporal dependencies. This
model is known for focusing on key features in the sequence but may add computati m

complexity.

5. Result Analysis
5.1 Predictive Accuracy of T-GCN vs. Baseline Models

(0.92), and
A3T-GCN closely
lvely, highlighting its

As shown in Figure 3, the T-GCN achieves the lowest M
RMSE (1.19) values, demonstrating superior accuracy in predictin
follows MSE, MAE, and RMSE values of 1.58, 0.98, and 1.26, resp

effectiveness with slightly higher errors than T-GCN. ST-GCN showg#oderale performance, with

spatial-temporal capabilities

0 spatial-temporal dependencies. ARIMA, a
MSE of 3.57, MAE of 1.78, and RMSE of 1.89,

temporal data.

purely temporal model, has the highest errors™

indicating its limited capability for plex spatia

Model Perforfllan ss Metrics (MSE, MAE, RMSE)
T-GCN
35r ARIMA
LSTM
GCN
3.0r ST-GCN
A3T-GCN
2.5
(7]
E
g 2.0
5
st
of
MSE MAE RMSE
Metrics

Figure 3: MSE, MAE, and RMSE results for each model
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Figure 4: Temporal Prediction Horizon Analysis
5.2 Temporal Prediction Horizon Analysis

The T-GCN demonstrates the highest accuracy across all p o@

For the 1-day horizon, T-GCN achieves an MSE of 1.38, MAE of Q. and RMSE of 1.17,
outperforming A3T-GCN, which has MSE, MAE, and RMSE valug$ oT\@p4, 0.98, and 1.24,
respectively. ST-GCN follows with higher errors (MSE of KSTM, GCN, and ARIMA
thelighest errors (MSE of 3.41,

Intains the lowest errors (MSE

1 Day

Figure 4).

show progressively worse performance, with ARIMA gio

MAE of 1.76, RMSE of 1.85). For the 1-wee Ol -GC
of 1.89, MAE of 1.12, RMSE of 1.37). A STA
slightly higher errors (MSE of 2.02 and 2. M, GCN, and ARIMA show further increases

in error values, with ARIMA again demonstrati e highest errors (MSE of 3.76, MAE of 1.88,
RMSE of 1.94).

N perform moderately well but have

Impac angllemporal Dependence on Error Metrics

MSE
. MAE
N RMSE
2.0p

Error Value

Model Configuration

Figure 5: Impact of GCN and GRU layer
At the 1-month horizon, T-GCN remains the most accurate, with an MSE of 2.51, MAE of
1.36, and RMSE of 1.58. A3T-GCN follows with slightly higher errors (MSE of 2.73, MAE of



1.43, RMSE of 1.65), while ST-GCN has an MSE of 3.06. The LSTM and GCN show further

degradation in accuracy, while ARIMA records the highest error metrics (MSE of 4.29, MAE of

2.02, RMSE of 2.07), indicating limited capability for long-term temporal predictions.

5.3 Impact of Spatial Dependence (GCN) and Temporal Dependence (GRU) Layer
Including the GCN in the T-GCN significantly enhances accuracy (Figure 5), achieving an

MSE of 1.42, MAE of 0.92, and RMSE of 1.19. The GRU-only configuration (without GCN

environments.

5.4 Hyper Parameter Sensitivity
The optimal configuration for the
rate of 0.001, and a batch size of 32, achiev

gure 6),'with 2 GCN, 64 GRU units, a learning
e lowest MSE (1.42), MAE (0.92), and RMSE
(1.19), indicating balanced accuracyacross all rics and increasing the GCN to 3 results in
slightly higher errors (MSE of 1.0, f 0.98, RMSE of 1.24), showing diminishing returns
eG
signifying that 64 units best balance complexity and error
of 0.001 minimizes MSE, MAE, and RMSE, with higher (0.005)
and lowerd. S g to increased errors due to convergence challenges. For batch size,
32 yie s (MSE, MAE, RMSE), while smaller (16) and larger (64) batch sizes
three error metrics, showing that 32 provides the most balanced update rate

ormance across MSE, MAE, and RMSE.

across all metrics. Adjusti
across MSE, MAE, 3

minimization. The le:

ts from 64 to either 32 or 128 similarly raises errors

fQr optiNgged
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5.5 Prediction Consistency Across Structural Health Metrics

s MSE

Corrosion



The T-GCN model shows strong consistency across structural health metrics (Figure 7),
with the lowest errors in stress prediction (MSE of 1.28, MAE of 0.83, RMSE of 1.13), indicating
high accuracy in tracking stress variations. Vibration predictions also perform well, with an MSE
of 1.37, MAE of 0.88, and RMSE of 1.17, suggesting reliable capture of dynamic structural
responses. Temperature predictions exhibit slightly higher errors (MSE of 1.51, MAE of 0.96

RMSE of 1.23), reflecting the impact of environmental variations on model performa
Corrosion predictions have an MSE of 1.45, MAE of 0.91, and RMSE of 1.20, demons

model’s ability to forecast gradual changes in material degradation.
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Figure 8: Predicted vs. Actual Metrics

5.6 Predicted vs. Actual Metrics Over Three Months
Over three months, the T-GCN maintains accuracy across metrics (Figure 8) with slight

deviations between actual and predicted values. For stress, the predicted values closely follow



actual readings (e.g., Day 1: actual 50.2, predicted 49.7), showing consistent tracking of load
distribution. Vibration predictions align with minor differences, reflecting accurate detection of
frequency changes (e.g., Day 7: actual 0.46, predicted 0.44). Temperature predictions exhibit
realistic deviations, as seen in daily values (e.g., Day 22: actual 23.0, predicted 22.7). Corrosion
predictions capture gradual trends with minor variations (e.g., Day 60: actual 0.060, predicted
0.058), indicating reliable long-term monitoring.
6 Conclusion and Future Work

The study presents a robust model for predictive DM and BS in civil engineeri

and loT to monitor structural factors. The IIMS uses real-time data from loT or

proactive results for hazard assessment and maintenance plannin
predicts durability by collecting spatial and temporal links. The mo8
modern models in essential methods. Optimizing the model's accuracy 3@ efficiency is easy by
identifying suitable environments for GCN layers, GRU, learning ratgdhd batCh size. The research
supports combining Al-based predictive measures with lo ing to manage infrastructure

durability proactively.

In the future, researchers prefer t  t odel further for more general use in
structural engineering, explore adaptive
and render it even faster to compute for large™g@le applications.
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