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Abstract
Autonomous Vehicles (AV) are revolutionidy

tion, but real-time decision-

@ D introduced by Cloud Computing
Q@R @Plting Model (5G-EECM) is proposed to address

A the network edge, closer to the AV, reducing

making remains a challenge due to End-
(CC) based processing. A 5G-enabled Edg
this problem by processing time-sensitive task
EED and improving responsivene e architecture uses Machine Learning (ML) for Obstacle
Detection (OD) and Reinforce
Edge Computing (EC) EC
user-friendly AV on a

(RL) for navigation, dynamically switching between
CC

on task demands. The study tested the system using a
K, revealing increased response times, reduced average EED,
reduced energy cons d improved OD accuracy. The results demonstrate that 5G-EECM

significan st ems' real-time safety and efficiency, making it reliable and scalable

for ne er AV'Systems.
topotnous Vehicles, 5G Network, Machine Learning, Edge Computing, Cloud
nergy Consumption.

ction

Researchers predict that introducing Autonomous Vehicles (AV) will transform the
automobile sector by enhancing road safety, reducing the probability of human errors, and
optimizing traffic flow [1-2]. Employing advanced technologies such as Machine Learning

(ML) and Avrtificial Intelligence (Al) has provided AV with the ability to understand sensor data,



make rapid decisions, and adapt to a constantly evolving environment [3]. The massive volume of
data that AV requires to process rapidly while ensuring reliability and safety renders the real-time
Decision-Making Process (DMP) problematic for success [4-5]. For the collection and analysis of
data collected by AV, the present methods focus primarily on Cloud Computing (CC) [6-7]. By
employing remote servers with significant computational resources, CC systems have effectively

as Obstacle Detection (OD) and Collision Avoidance (CA), where CC typjga
application [10-11].
SS

Long-distance data communication presents an EED on the P oud-based

AV systems for tasks requiring real-time execution despite advances computing [12-13].
These EEDs can result in slower response times, potentially comprOW@sing the safety and
performance of AV [14]. Additionally, CC systems frequ A’mdwidth constraints and
network reliability OD, which can further degrade syste ce in critical situations [15].

AV systems' primary challenge is reducing real- MP while maintaining high

computational performance [16-17]. Tradijg haveouble meeting the low-EED needs for

safety-critical tasks. This means we need a t method to process data faster and control AV
more reliably [18-19]. Therefore, there is a gap W@gXxisting AV, as high-EED cloud-based solutions
are lacking for real-time operation

This article recomme ed Edge Computing Model (5G-EECM) to solve the

inr e AV management. Edge Computing (EC) performs

challenges integrated with

primary tasks like O[g jc navigation at the network's edge, closer to the AV. This

-per ance tasks like large-scale data analysis and long-term planning, while the edge can

e-sensitive tasks [20]. The resulting combination makes achieving both ends of the
pectrum feasible. Finding out how effectively 5G-EECM performs in monitoring AVSs in
real-time is the primary objective of the current research. This study investigates the effectiveness
of CC and EC in terms of EED, reaction time, CA, track change, and energy consumption. The

primary objective of the research is to demonstrate how EC might enhance AV tasks in real-time




[21]. The proposed model predicts a significant improvement in real-time responsiveness for AV
systems, particularly in low-EED-DMP environments [22]. This model could boost the scalability,
efficiency, and safety of AV-driving technologies by integrating 5G-EECM and Al. The findings
of this research can lead to the development of more reliable AV systems that operate in dynamic
environments with minimal EED [23].

The rest of this paper is organized as follows: Section 2 presents the system architect
detailing the Edge Control Unit (ECU), Cloud Control Unit (CCU), and the 5G net

integration. Section 3 describes the experimental setup, including the AV and performa

4

used in the study. Section 4 presents the results and analysis, comparing the per
and CC. Finally, Section 5 concludes the paper and discusses the impligagion the
future research and development.
2. Methodology
2.1 Proposed Architecture

As demonstrated by Figure 1, the 5G-EECM relie (eral features. This section
provides an overview of every element.
e ECU: A vital component of the approagals t/Ql the as been designed to control

neighborhood real-time DMP. An edgg

picaAgassociated with nearby networks or a
mobile base station, performs the dema in the vehicle's closest proximity. The vehicle

connects to this server via 5G and trans raw data from its sensors, comprising video

cameras, Light Detection and ing (LIDAR), and radar. The decreased EED between data
collecting and control im oM@results from the edge server's proximity to the data
origin.

Processing tasks id responses, including OD, changing routes automatically,

and responding to di where this unit performs. Due to the edge server's real-time data

elections obtained from the edge server while ensuring the vehicle drives

d on time. To keep things safe and dependable, the unit can hand off control to the

[24].
e CCU: Asopposed to the nearness of the EC, the CCU employs cloud servers set up at a greater

distance from the actual vehicle. EED increases due to the longer distances required when
transmitting sensor data from the vehicle over the internet. The data is transmitted to a server




in the cloud, which then utilizes neural networks to analyze the environment or performs high-
level planning with multiple automobiles or longer paths, both of which can be

computationally demanding [25].
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Figure. 1

Despite its processing power, the C troduces delays that make it less suitable for

tasks requiring split-second decisions. HoweWga it is ideal for applications that do not demand

immediate feedback, such as optimizsag traffic maNagement over a broader area, conducting large-

scale data analysis, or managi le fleet's long-term behavior. The CC-based vehicle
controller sends the process«qg@iata b he vehicle, but the time taken to transmit this data over
the network can impacjg ness for real-time actions.
e 5G Network: Thé prk is the system's backbone, connecting the vehicle to the EC and
CC.1 9%, |ow-EED data transmission between the vehicle and the edge server,
cessing and control. The network's ultra-low EED and high bandwidth
suring the vehicle can operate smoothly in dynamic environments, mainly
yirg on the edge for DMP.
isggssential for transmitting data to cloud services because it enables faster transfer than
s-generation networks. Nevertheless, EED continues to be caused by traveling long
distances, so CCU is more appropriate for processes that are not time-sensitive. 5G can cope with
both simple, rapid responses and more complex, highly resource-intensive tasks due to its

capabilities to facilitate real-time and large-scale data transfer.




e Vehicle Sensors: The computer network depends on the AV's collection of sensors, which
collect real-time data about the vehicle's settings. Cameras collect visual data, LIDAR, and
radar generate 3-D maps, and OD and global positioning systems assist with navigating
around. Every DMP is developed based on sensor data, giving the vehicle the starting point to
analyze the environment and design its subsequent motion.

A within-proximity edge server deals with the data and transforms it into actionable commapg

oud

in an EC. In a CC environment, the same data is transmitted to a remote server to be analyze

by actively pivoting, stopping, or driving up in response to de ® made by its control
lle commands more
r navigating traffic. On the

other hand, CCU data could involve higher-level DIP, w to best communicate with

gti
for YQaintaining the system's performance,

other AVs or maximize the vehicle's route g

he vehicle's operations with the surrounding

environment.

e Error Handling and Hybr ontrol: The design includes a robust error-correcting

mechanism to maintain th re[Jbility. The result is that even if the ECU or CCU fails,
the system continues to fUNgion ut losing safety. If there's a problem with the edge server,
the cloud server cj take over, but there will be more EED. On the contrary, if the

e
evice may assume real-time tasks, maintaining the AV's operation.

cloud server

otely despite significant system errors, preventing dangerous situations.

Swit Method

roposed 5G-EECM, switching between the ECU and CCU is critical for ensuring the
aintains optimal performance and responsiveness in different operating conditions. The

system is designed to make decisions dynamically, selecting between EC and CC processing based

on EED, task type, and network conditions. The key goal is to ensure low-EED responses for time-



critical tasks while leveraging the cloud for more computationally intensive tasks that are not time-
sensitive.

i. Latency Monitoring and Decision Criteria: EED is the primary factor that dictates
switching. The system continuously monitors the total EED, which consists of the
communication EED Ly, and processing EED Ly,,.. The total EED Ly, is calculated
as, Eq. (1)

Liotat = Leomm + Lproc (1

where:

e L1°%9€ s the time required to transmit data between the vehicle and the egge Q

comm

o LU the time to transmit data between the vehicle and the clg r @enerally
higher due to longer transmission distances.
. L‘;Ddrgjc and L3oud represent the processing times for the edge an d servers.

The vehicle will prefer the ECU as long as the edge EED [282° 'sﬁlin a predefined threshold

for real-time processing, T,., which represents the maximu
like OD and emergency braking.
The decision criteria are Eq. (2).

If L% < T, use ECU. )
However, if the edge processing bec overloaded or network conditions degrade,

leading to higher EED, the syste switch to the CCU, Eq. (3).

If L% > Ty, switch to CCU. (3)

In scenarios where tasks less TIe-sensitive, such as route planning or data analysis, the

cloud can be used reg e server EED.

ii. d Switching: Besides EED, the system monitors the health of the
edg rvers. Let Eqoe and Eq,q be binary indicators representing whether there
fai (1) or normal operation (0) in the respective servers. If the edge server
CO a failure or performance degradation (e.g., hardware fault, overheating, or
prq@ssing errors), the system immediately switches to the cloud, even if the EED is
eptable, Eq. (4).
If Ecgee = 1, switch to CCU. 4)
Similarly, if the cloud server experiences problems and the edge is operational, the system
returns to the edge for real-time control, Eq. (5)

If Ecioua = 1 and Eqee = 0, switch to ECU. (5)



iii.  Task-Based Switching: Not all tasks in an AV system require real-time execution. For
time-critical tasks such as emergency braking or CA, the system will prioritize the edge
server for processing to ensure minimal delay. Tasks that are more computationally
intensive but less sensitive to EED, such as long-term navigation planning, can be
offloaded to the cloud. The system uses the task time-sensitivity function t(x), where
t(x) < T, indicates a time-critical task.

If a task is time-sensitive, the system ensures that it is processed at the edge, Eq. (6).

f(x) = ECUIift(x) <T,
For tasks where t(x) > T,., indicating that real-time execution is not critj@al @ S

are sent to the cloud for processing, Eq. (7).
f(x) = CCUIft(x) > T, (7)
iv.  Network Condition-Based Switching: The switching a counts for network

conditions. If the network connection to the edge serv?e es, such as when

experiencing high packet loss or network congestio S®m will automatically switch
to the cloud server to maintain vehicle control, spi@ially important in scenarios
where the vehicle may move out of the edg r or when network disruptions
occur.

Let Qeqe represent the quality of the n Ink to the edge server. If the link quality falls

below a certain threshold Q,,;, , the system swit to the cloud server, Eqg. (8).

If Qeage < @min, switch to CCU. (8)

for time-critical tasks in AV, with EED being minimized by purposefully
e servers closer to the AV.

icle Communication with 5G Access Network: In this setup, each AV communicates
wirelessly with the 5G access network using a connection established via enhanced
NodeBs (eNBs). These base stations handle communication between the vehicles and the
5G core network. The communication is optimized to minimize delay, with the EED

between the vehicles and the edge server being less than 1 ms. This ensures that data such




as vehicle sensor readings (e.g., Cameras, LIDAR) is transmitted to the edge servers with
minimal EED, allowing real-time DMP and control.

ii. Deployment of Edge Servers: Edge servers are deployed within the access network,
typically co-located or very close to the eNBs, to process vehicle data locally. This reduces
the need for long-distance communication with the cloud and helps achieve the low-latency
goals required for real-time AV operations. With an access network EED ranging from
ms to 24 ms, the edge server can quickly analyze data and return control commands t @
AV, significantly improving reaction times for CA and speed adjustments.

S

e itec®ies
aCCQ

iii. Internet and Cloud Server Communication: For less time-critical tasksa S

term route planning, data analytics, or Deep Learning (DL) updajg

on cloud-based processing. The cloud servers are located regs le via the

Internet. Data transmission from the AV to the cloud incurs 3

the internet delay ranging from 15 to 150 ms. This added ?
p

unsuitable for real-time control but ideal for handling

EED than EC, with
es cloud processing
utationally intensive, non-
time-sensitive tasks.

iv. 5G Core Network: The 5G core netyork 4ams bone connecting the access

network (eNBs and edge servers) tg et cloud. The core network components,

such as the Serving Gateway (S- Packet Gateway (P-GW), manage data traffic,
ensuring that packets are efficiently rOqged between the access network and the cloud.

These elements are necess maintain the proper Quality of Service (QoS) for real-time

AV communication. hat the edge of the cloud consistently and rapidly
receives high-priorit)\ggta fr e AV based on the task demands.

This architecture additionally references a 5G network, which

eters'can be implemented in each segment. For instance, the network may
portant navigation and safety tasks by providing a segment with minimal
for communication between AV and the edge. However, additional segments can be
loyed for tasks that do not require high time sensitivity, such as sending data to the
public cloud.
2.4 Vehicle Control and Internal States
This section describes how the control system works within the proposed design, focusing on

the internal conditions and DMP that allow the vehicle to operate autonomously while maintaining



safety and efficiency. In order to make recommendations from real-time sensor data and internal
states, the engine control system dynamically interfaces with the EC and CC units. This makes

sure the vehicle tracks its surroundings with precision.
I.  Vehicle Control System (VCU): The VCU performs control signals computed locally on
the vehicle or in the data center. Acceleration, slowdown, steering, and other actuator

In a feedback loop, the vehicle functions in a particular method:

(@) In the initially occurring position, sensor data is consistently collecteg
(b) The edge server is used for decisions made in real-time, and thg
for more advanced tasks to transmit control commands to the VC

(c) The system monitors the vehicle's internal functioning and a
commands are implemented. }
ii. Internal States and State Estimation: The ye irgrior conditions are current

operational and physical variables.

These scenarios are vital for driving stabilj gaQg around.
The key internal states include:
(@) Position (P): The vehicle's location via GPe@@nd sensor fusion.
(b) Velocity (V): Vehicle speed a
(c) Acceleration (A): Tracke

(d) Heading (H): Navigati

ection vital to navigational instruction and CA.

ORble driving and emergency stopping.
dc ing the steering require vehicle position.

determine the vehicle's vertical rotation helps with balance

to en anges. For instance, the system can modify the vehicle's speed and steering
while preserving stability if it senses an OD.

e Transition and DMP: Sensor data and control signals upgrade the vehicle's internal
configurations. The state transition function § (x) governs how the vehicle travels from one
state to another based on the control inputs u it receives, Eq. (10).

This can be expressed as:

x(t+ 1) = 6(x(t),u(t)) (10)



where:

e x(t) Represents the current state of the vehicle at time 't’.

e u(t) represents the control input, such as adjustments to velocity, steering angle, or
acceleration.

e x(t+ 1) isthe updated vehicle state after executing the control input.
In reply to an obstacle, the edge server decreases speed and changes steering angle. The

will transition from its present state x(t) (e.g., moving at a positive velocity and heading) to a

state x(t + 1) where it has slowed down and altered its path to CA.
iv.  Real-Time Control via EC: The edge server achieves the AV’s control @
low-EED communication, the edge server processes data from h&;sen Ors and
sends control commands to adjust the vehicle’s internal C ¥ xampNp When the

vehicle is navigating a busy intersection, the edge server may rega@#e live video feeds and

LiDAR data, process this information in real-time, and s?co pands to adjust the
vehicle’s velocity and steering angle to ensure it navj ly through the environment.
v. High-Level Decision-Making via CC: While j&e arjiles immediate control tasks,

the CC unit assists with high-level DI\nb n the cle’s overall internal state and

long-term objectives. For exampl ay rate the optimal route for the vehicle

to take over a long distance, considg rrent traffic patterns, road conditions, and fuel
efficiency. Although less time-sensitive, Xgase higher-level decisions are based on a holistic
view of the vehicle’s inte ates and external data sources.

vi.  Internal State Monit or Handling: The vehicle continuously monitors its

internal states for ab

ali or errors. If key states (e.g., velocity, acceleration, or
ificantly from expected values, the system triggers an error

es instability during a turn.

ailo To Local Control: If the EC or CC communication fails, the vehicle’s internal

unit can take over, using pre-programmed algorithms to ensure safe navigation based
real-time sensor data and internal states.

The AV's ability to manage internal state errors ensures its resilience and safety, even in

challenging environments or in case of network failures.
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Figure 2: CNN Model
2.5 CNN for OD
The OD for the AV leverages the Convolutional Neural Ne N) architecture, as

depicted in Figure 2. The model consists of several convolutional laye r Feature Extraction
(FE), pooling layers for dimensionality reduction, and nnected (FC) layers for
classification.

The key steps involved in this CNN are outlined belo

1 Input Layer: The input to the CN pf i1Qges from the vehicle's camera capturing

the race track and surrounding en¥ t. The input image is input into the CNN for
processing. Let's denote the input imadS@ I, with dimensions H x W X C, where H is the
height, W is the width, and s the numbeF of color channels.

2 Convolution Operati t image is convolved with a set of learnable filters

(kernels) in the con i . Let the filter W,,,,, € R¥*k*C represent the weights,
filter, and C matches the number of input channels.
The convolution ope diich layer is expressed as Eq. (11).
Ocony (X, Zo I+ 4y +J, OWeonu(ij,€) + b (11)
where:
) 1s the output of the convolution at position (x, y).
(i,J, ¢) is the value of the filter at position (i, j) for channel 'c’
s the bias term, a learnable parameter added to the output.

I(x + i,y + j,c) is the pixel value from the input at position (x + i,y + j) in channel ¢
The convolution results in a feature map representing different aspects of the input, such as

edges, textures, and shapes.



3 Activation Function (ReLU): After the convolution, a non-linear activation function is

applied to the feature map. The ReLU (Rectified Linear Unit) is used in this case, Eq. (12).
OgeLu(®,y) = max(0, O¢ony (x,¥)) (12)

ReLU helps introduce non-linearity into the network, allowing it to learn more complex
features.

4 Pooling Operation: The feature map is subsequently down-sampled utilizing a poolj
operation, decreasing its spatial dimensions while deleting significant data. This sce
calls for max pooling, whereby each local region of the feature map has the high
value selected.

For a pooling window of size p X p, the max pooling function is specifi

Opoor(t,y) = | max, Opery (X + 15,y +J)

This reduces the size of the feature map while retaining essential featu

5 Second Convolution + ReLU: Before ReLU activation, an aggtio

sends the initial pooling layer's data. Using the feature maps, this procedure
duplicates the first convolution layer but retri itiojl complicated features, Eq.
(14).

OconVZ(x' y) = Z ZCI_l
OReLUZ(x y) - MaX(O Oco

where W,,.» and b are the weights and biases 0

+]'C conVZ(LI]'C)-I'b (14)

pe second convolution layer.
6 Flattening: After applyingonyglution and pooling layers, the resulting feature maps are

flattened into a single @#®c at g¥n be input into FC layers. Let the output feature map

. x C'. The flattening operation transforms this 3D tensor into a
x C', denoted as Eq. (15).
(15)

» Eq. (16).

W 0p1ae (DWec (i) + bre (D) (16)
rc (1) 1s the output of the i-th unit in the FC layer, Wz (i, j) is the weight connecting the

j-th input to the i-th unit, bp¢ (i) is the bias for the i-th unit.
8 SoftMax Layer (Classification): The output of the final FC is passed through SoftMax to
convert the raw scores into probabilities for classification. The SoftMax is given by, Eq.
@an.




P(y=i|x)=zj—zizj (7)

where z; is the raw score for class i; the denominator sums the exponentials of the raw scores for
all classes to normalize the output. This gives a probability distribution over all possible classes
(e.g., obstacle or non-obstacle), with the class having the highest probability selected as the

predicted class.

9 Final Classification: The final output of the network is the class label y, predicted b
on the highest probability from the SoftMax output, Eq. (18).
y =arg maxP(y =i | x)
l

This indicates the class to which the input image belongs, enablin m to ine
whether the detected object is an OD or CA.
2.6 RL Model for CA

L a) £xperiment AV model, b) Circuit diagram, ¢) Race track

ulation: In the RL, the CA is represented as a Markov Decision Process

1 Pr
(MQRP), Wi y the following components:
State ce: The state s € S represents the environment's current condition, including the
g s

internal states (position, velocity, acceleration, heading) and OD (location, size,

ance from the vehicle).
e Action Space: The action a € A is the set of possible actions the vehicle can take to CA. These
actions include adjusting the steering angle, changing speed (accelerating or decelerating), or

applying the brakes.



e Transition Function (s’ | s,a) : The probability of transitioning from the current state s to a
new state s’ after taking action a. The environment is stochastic, meaning that the vehicle's
actions may have probabilistic results due to uncertainties in the real world (e.g., friction, road
conditions).

e Reward Function (s, a): The reward function provides feedback to the agent after taking an

action. The reward is positive for actions that lead to CA and negative for actions that resuljg

a collision. The goal is to maximize the cumulative reward.

The agent learns an optimal policy m(s), which defines the best action in each sta
2 State Representation: The first component of the RL is defining the state spage.

The state s, at time t captures the following information: {
e x,: The current position of the vehicle.
e v, : The velocity of the vehicle.
e 0, :The heading angle of the vehicle.
e d, : The distance between the vehicle and the n ﬁa.

Thus, the state vector at time t is represented a
(19)
arly rstands its state, the next step is to

Se = [x¢, v, 6, di]

3 Action Representation: Once t

or continuous selections that control its

Common actions include:

e Adjusting the steglifig a (e.g., turning left or right).

Modifying tha v (e.g., accelerating or decelerating).

if Necessary
The actio nted as, Eq. (20)
a: = [ (20)
4 ction: The reward function R(s, a) is designed to encourage the agent to CAs
m in safe driving behavior. The reward structure is as follows:
o positive reward +R,z 1S given to CA and moves safely toward the goal.
e A negative reward —R_,pision 1S given for colliding with an OD.
Thus, the reward function can be expressed as Eq. (21)
R = (TR0 i < done @)

Where:



e d Isasafe distance threshold from obstacles.
* d_.ision 1S the minimum distance where a collision is detected.

5 Policy and Value Function: The policy m(s) represents the agent's strategy, mapping
states to actions. The goal of the RL agent is to learn an optimal policy m*(s) that
maximizes the expected cumulative reward. The value of a state under policy m, called the
value function V™ (s), is the expected total reward starting from state s and following
policy r after that.

It is defined as Eq. (22)
VT(s) = Ex[¥iZ0 Y*R(s, ar)]
where:

ey € [0,1) is the discount factor that gives more importance to iR Bwar an future
rewards.

* R(s;, a;) is the reward received at time step t.

Similarly, the Q-value function Q™(s, a) represen ected cumulative reward for
taking action a in state s and following policy m after tjgt, 23)
Q™(s,a) = Eq[XiZo ¥'R(sp,ap) | o = s, ag { (23)
The optimal Q-function Q*(s, a) & -q@ Eq. (

(24)

Q*(s,a) = maxQ™ (s, a)
Y
6 Bellman Equation: The corgalation betw3

. For the value function V™(s), the Bellman Eqg. (25)

the values of a state and the resulting states

is outlined by the Bellma@e

and Eq. (26) are:

Vi(s) = Xa m(als)
For the Q-function Q
Q" (s, a)
Th

a)[R(s,a) +yV"(s")] (25)

Bellman equation is:

s'|s, a)rrbz;\XQ”(s', a’) (26)

recurSively updates the value of each state-action pair based on the expected

future@gewa

7 arning Algorithm: The Q-learning continuously improves the Q-values based on the

rved state changes and rewards, enabling the learning agent to learn the most effective
policy.

The Q-value update rule is given by Eq. (27).

Q(spap) <« Q(spar) + a [R(St: az) + VH}{?}XQ(SHL a) —Q(sy at)] (27)

where;




e  isthe learning rate that controls how much new data overrides old data
e vy isthe discount factor.
e 5.,.4 Isthe next state after taking action a; in state s;.

e a' isthe action reserved in the next state.

The agent updates its Q-values as it detects the environment, progressively converging to the

optimal policy *(s).
8 Action Selection (Exploration vs. Exploitation): The agent uses an epsilon-g @
strategy to balance exploration and exploitation:
e With probability €, the agent takes a random action (exploration).
e With probability 1 —¢€, the agent selects the action vy est Q-value
(exploitation).
The action selection is formalized as Eqg. (28)

Random Action =~ With Probability € ,
a4t = 1Arg_ MaxQ(s,,a) With Probability 1 — € (28)
a
As the agent learns more about the environment, € iagr y rlluced to prioritize exploiting

the learned policy.

9 Final Policy for CA: The learneg blicy ™M@ s) the agent can take the best action

in any assumed state to CA. Safel ating around obstacles while maximizing the

alues based on their interactions with the

reward is achieved by modifying the
surrounding atmosphere.

3. Experiment Design

3.1 Testing Setup

The performg

controlled trac

fisheye era Y& capturing the surroundings, and GPS and IMU sensors for tracking location
The vehicle's on-board control (Figure 3 (b)) is handled by an Arduino
er, which interfaces with the sensors and motors. The Arduino receives commands
ge or cloud servers via 5G and translates them into motor control using PWM signals.
A L™on battery powers the vehicle, with EC monitoring system efficiency. The 5G network setup
included a 5G base station operating on the n78 band (3.5 GHz), facilitating communication
between the RV and the edge server—the edge server processed sensor data with low latency,

handling tasks like OD and CA. The same data was processed in the cloud mode on a remote cloud



server, which introduced additional EED. Both setups were used to compare the real-time
processing capabilities of EC vs CC. The software implemented in the testing setup included a
CNN for OD, which processed the visual data captured by the camera. The CNN was trained on a
dataset of track images and obstacles, with real-time inference handled by the edge server. In the
cloud mode, the same CNN ran on the cloud server. The RL managed the vehicle’s navigation
decisions, using sensor data to predict optimal paths.

3.2 Experiment Method

The tests were conducted on a 30-meter track (Figure 3 (c)), including straight secg

mix of 90° and 180° turns. Obstacles were placed at varying intervals along the tigc @
&

the vehicle’s ability to detect and avoid them. Each test consisted of fivgaaantifghus a8 und

the track in a counterclockwise direction, as shown in the images. Th conducted

in two modes: EC and CC. Each mode was tested five times, and des were alternated

between trials to mitigate the impact of battery levels and environmentgl CNQRges. The parameters
for the vehicle, including maximum speed, were held const out all trials.
Multiple metrics were recorded during each test to evalya i 's performance:

e Latency: The time taken from transmittinggenselata t ception of control commands

from the server.
e Response Time: The time between r control commands and the vehicle executing
those commands, such as braking or turnin
e CA Success: The number of ti he vehicle OD and CA along the track.
e Track Deviation: The de the vehicle stayed on the intended path, measured by

deviation from the cente

d: The computational load on the edge and cloud servers is recorded to

com resource usage in each mode.

ata were collected throughout the trials and used to compare the performance of the
des under identical conditions. Each trial’s results were logged, and statistical analysis was

conducted to determine the impact of computing mode on real-time AV control and navigation.

4. Results and Analysis




The latency results from Table 1 and Figure 4 (a) indicate that EC consistently shows
significantly lower EED than CC across all trials. The EED for EC ranged between 8.76 ms and
12.09 ms, while CC exhibited much higher latencies, ranging from 36.87 ms to 53.21 ms. The
difference in EED demonstrates the impact of communication distance and server proximity, with
EC performing better for tasks requiring low-EED processing. In Table 2 and Figure 4 (b), the

response time for EC is also notably lower than that of CC. EC response times range from 17

ms to 24.47 ms, while CC times are between 63.54 ms and 85.21 ms. The results show th

to delays in vehicle control.

Latency Results: Edge vs Cloud Computing

—®— Edge Computing Latency (ms)
5o —®— Cloud Computing Latency (ms)

8
Response Time (ms)
3

Response time comparison
1: EED Results

CC based EED (ms)

38.85

36.87

53.21

47.84

50.82

Table 2: Response Time Results
EC based Response Time (ms) CC based Response Time (ms)

24.03 78.74

2 21.64 85.21
3 24.47 68.07
4 17.22 63.54
5 18.52 69.78




Obstacle Avoidance Success: Edge vs Cloud Computing Track Deviation: Edge vs Cloud Computing

9.0 L * —&— Edge Computing Track Deviation (cm)
9 —8— Cloud Computing Track Deviation (cm)
8.5
B
8.0

—8— Edge Computing Obstacle Avoidance
—8— Cloud Computing Obstacle Avoidance

o
B
ation (c

@
@

L

Obstacle Avoidance (out of 10)

@
o

o
=]

Table 3: CA Success Results

(a) (b)
Figure 5: a) CA comparison. b)Track deviation comparison&

Trial EC based CA
(Out of 10)
1 9
2 9
3 9
4 8
5 9
Table 4: Tra eviation Results
Trial EC-based Track Devi (cm) CC-based Track Deviation (cm)
1 9.49
2 7.74
3 8.56
4 7.41
5 8.57
e 5 (a) show that EC consistently performs better in CA than CC across
all tr C, vehicle successfully avoided 8 to 9 obstacles out of 10, while in CC, the

ranged from 5 to 7. This indicates that the lower EED in EC allows for more timely
e responses to OD, leading to higher CA success. In Table 4 and Figure 5 (b), track
yon results further demonstrate the advantage of EC. The track deviation for EC was
consistently lower, ranging from 2.33 cm to 4.49 cm, compared to CC, where deviations were

between 7.41 cm and 9.49 cm. The more significant deviations in CC recommend that the increased



EED negatively impacted the vehicle’s ability to maintain its path, while EC enabled more precise
navigation.

Energy Consumption: Edge vs Cloud Computing Packet Loss and Network Delay: Edge vs Cloud Computing

4.0 —e— Edge Packet Loss (%)
14| —e— Cloud Packet Loss (%)
-— =8
12
35
1.0 \/// e
30 —e— Edge Computing Energy Consumption (Wh) 2
—e— Cloud Computing Energy Consumption (Wh) = 0.8
e .6
5

Edge Network Delay(ms)
Cloud Network Delay (ms)

Energy Consumption (Wh)

1\
A
O

(a)
Figure 6: a) Energy consumption, b) Network qu

Table 5: Energy Consumption Results

Trial EC based EC (Wh) C based EC (Wh)
1 2.26 3.95
2 2.31 3.48
3 1.83 4.07
4 1.95 3.85
5 242 3.37

twork Quality Results

Trial Edge Packet Loss 0SS Edge Network EED Cloud Network EED
(%) (ms) (ms)
1 0.17 1.26 5.67 28.83
2 0.18 1.28 4.09 21.67
3 0.89 3.68 26.82
4 1.45 241 18.68
5 0.99 3.68 28.81

THE®C results in Table 5 and Figure 6 (2) indicate that EC is more efficient in terms of EC
. Across all trials, EC had less EC, ranging from 1.83 to 2.42 Wh, while CC's EC was
higher, ranging from 3.37 Wh to 4.00 Wh. The higher EC in CC can be attributed to the additional

processing time and communication overhead required for remote data transmission. In Table 6

and Figure 6 (b), network quality results show that EC had significantly lower packet loss and
network EED than CC. EC packet loss ranged from 0.17% to 0.40%, while CC exhibited higher



packet loss between 0.89% and 1.45%. Similarly, network delay for EC was consistently low,
between 2.41 and 5.67 ms, while CC showed much higher EED, ranging from 18.68 to 28.83 ms.
The higher packet loss and network EED in CC reflect the additional challenges associated with
longer communication distances, affecting the reliability and timeliness of data transmission.

Processing Load: Edge vs Cloud Computing

—&— Edge Processing Load (%)
—&— Cloud Processing Load (%)

~l
&)

~l
o

41 D D
al o al

Processing Load (%)

al
o

A
a1

A
)

w
al

cessing Load Results

Cloud Processing Load (%)
71.44
65.09
69.52
67.68
75.35

sing load results from Table 7 and Figure 7 demonstrate that CC consistently

hig rocessing load than EC. For EC, the processing load ranged from 36.04% to 46.47%,

he oud computing exhibited a higher load, between 65.09% and 75.35%. Due to a higher

atawansfer rate and remote processing, the need for computational resources in CC has increased.

EC, on the other hand, direction, is more effective for real-time tasks because it processes data
locally while requiring fewer resources for processing.

5 Conclusion and Future Work



The paper introduces a 5G-EECM system that enhances the real-time DMP of AV systems.
It uses Al and RL to design time-critical tasks like OD and CA at the edge. The system switches
between CC and edge processing when the network is busy or complex. The experiment shows
that EC significantly boosts response times, reduces average EED, improves CA by 40%, reduces
path errors by 58%, and reduces energy consumption by 35%. The model balances real-time
timeliness with CC performance by automatically switching between EC and CC.

Future work will scale this model for smart city deployment and improve Al to img w°

DMP accuracy and reliability in complex circumstances.
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