Journal Pre-proof

Hybrid Data-Driven Deep Learning Framework for Material Property Prediction

Rudra Kumar M, Rama Vasantha Adiraju, LNC. Prakash K, Mahalakshmi V, Penubaka Balaji and Jayavardhanarao Sahukaru

DOI: 10.53759/7669/jmc202505085 Reference: JMC202505085 Journal: Journal of Machine and Computing.

Received 25 April 2024 Revised form 19 December 2024 Accepted 08 March 2025

Please cite this article as: Rudra Kumar M, Rama Vasantha Adiraju, LNC. Prakash K, Mahalakshmi V, Penubaka Balaji and Jayavardhanarao Sahukaru, "Hybrid Data-Driven Deep Learning Framework for Material Property Prediction", Journal of Machine and Computing. (2025). Doi: https:// doi.org/10.53759/7669/jmc202505085

This PDF file contains an article that has undergone certain improvements after acceptance. These enhancements include the addition of a cover page, metadata, and formatting changes aimed at enhancing readability. However, it is important to note that this version is not considered the final authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting, typesetting, and comprehensive review. These processes are implemented to ensure the article's final form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal remain in effect.

© 2025 Published by AnaPub Publications.

Hybrid Data-Driven Deep Learning Framework for Material Property Prediction

¹M Rudra Kumar, ²Rama Vasantha Adiraju, ³LNC. Prakash K, ⁴V.Mahalakshmi, ⁵Penubaka Balaji, ⁶Jayavardhanarao Sahukaru

¹Professor, Department of IT, Mahatma Gandhi Institute of Technology, Hyderabad, India.
 ²Assistant Professor, Aditya University, Aditya Nagar, Surampalem, Andhra Pradesh, India.
 ³Associate Professor, Department of Computer Science and Engineering (DS), CVR College of Engineering, Hydracoac india.
 ⁴Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Sudi Arabi
 ⁵Assistant Professor, Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation Deemed University), Guntur, Andhra Pradesh, India.
 ⁶Assistant Professor, Department of CSE, Aditya Institute of Technology and Management (ASSIC) kali, Ukakulam, Andhra Pradesh, India.

¹mrudrakumar@gmail.com, ² vasantha.adiraju@acet.ac.in, ³ klnc.pr

⁴mlakshmi @jazanu.edu.sa, ⁵penubakabalaji.cse@gmail.com, ⁶jayavardhana mogegmail.com

be

Abstract -

sis for predicting steel's mechanical The research presents a hybrid approach of regression modeling with datap of models in accurately predicting properties by analyzing the effects of composition on strength. The study ills steel's performance based on composition since traditional methods ture complex relationships between ed for predicting material properties, alloying elements and material properties. Various regression mo s hav such as Linear Regression, Random Forest Regression tor Regression (SVR), XGBoost Regression, and Neural Networks, and in this paper, Graph Attention ansfor rk (GAT-TransNet) is proposed. Incorporating er Né novel graph attention into the transformer archited GAT-TransNet handles complex data relationships and e mod improves predictive accuracy. Data-driven analyses a carried out alongside regression analysis to establish how chromium (Cr), affect steel's mechanical properties strength, alloying elements, such as carbon (C), manganese (Mn), a yield strength, hardness, and ductility. The study established the GAT-TransNet model outperformed other regression models, with an R² score of 0.95, the lowest E of 1.40, and an MSE of 4.41, thus underscoring its superior predictive capability compared to existing models. D sights show that manganese hardens and increases wear resistance, a-dri creases tensile strength. This has great importance for optimizing while chromium enhances corrosion and ns. Combining machine learning methodologies with composition specific steel compositions for ind ial appl analysis, this study complements tive modeling for steel properties with material design and promises better pre efficiency and targeting in st

Keywords - Graph Attention Vetwork (GAT), Transformer-based Regression, Self-Attention, Tensile Strength Prediction, Steel Strength Estimated Metaphica Property Prediction, Data-driven Analysis.

I. INTRODUCTION

Testing meta consists of evaluating both the chemical makeup and internal structure along with the material strength of metal is material and their alloys in pure or combination forms [1]. Industrial metal evaluation is pivotal for materials science is well as manufacturing and quality control because it verifies metal compliance with necessary industrial references [2]. The category for metal testing methods consists of either destructive or non-destructive approaches. Naterial are verified with quick speed through chemical property databases for non-destructive testing methods that maintain both the original structure and identity of pure metals [3]. Expert validation of metal alloy compositions normally requires destructive testing because the sample needs to be systematically destroyed to obtain necessary examination data [4]. Such traditional methods deliver accurate results yet they involve significant time and cost as well as the generation of wasted materials.

Modern computational methods and machine learning techniques [5] minimize the requirement for extensive physical testing through their data-driven approaches [6]. Traditional experimental techniques need sophisticated laboratory

facilities along with prolonged time for determining material behavior [7]. The multiple factors such as microstructure composition and heat treatment conditions affect how yield stress, ultimate tensile strength, and fracture strain behave in materials [8][9]. The forecasting of these properties remains challenging through standard techniques so machine learning [10] serves as an effective alternative solution [11].

Present deep learning [12][13] material property prediction systems have major performance problems. CNN-bas material architectures succeed at finding spatial patterns of material structures but perform poorly when analyzing long distance material properties [14]. The Transformer architecture excels at using sequences but standard Transformer models cannot utilize material microstructures that follow a graph pattern [15]. Most research projects use supervised model small datasets which prevents their findings from working across many situations [16]. Moreover, existing st ies in material property prediction face key limitations. Traditional regression models need extensive data while CNNs ggle with global dependencies yet capture local information effectively [17]. Transformers excel at processing they cannot efficiently handle materials represented as graphs [18]. Researchers mainly use small topic specifi mple sets for their work which makes the results hard to apply to different materials plus they often emplo vised le ning that needs many training examples [19]. Our research shows a standard system works best when ombin heural graph learning and attention to achieve better results and handle various materials o overcome these el challenges, we introduce a hybrid data-driven deep learning method for predicting. terial i opertio sing the Graph Attention Transformer Network (GAT-TransNet). In this framework, learning raphs is combined with ed op transformer networks to utilize their strengths in a complementary way for improved tive accuracy. While Graph ostructures and transformer Attention Networks (GAT) represent the spatial and structural relationships in material networks enhance the long-range dependency modeling by operating under the attenti nism, combining both of these approaches, we derive a robust regression-based model for predicting al properties at high precision using the R² score.

The following key contributions are made in this study:

- 1. A novel GAT-TransNet model that combines *sup*, earner with transformer-based architectures for material property prediction is proposed.
- 2. It presents a hybrid deep learning framewor to increase the prediction accuracy of yield stress, ultimate stress, and fracture strain of the dual-phase steels.
- 3. It provides a reliable, data-driven approach that represent experiment-dependent analysis of material behavior with reduced dependence on costly experiments.
- 4. Graph-based material representation are introduced to aid a better understanding of complex microstructural relationships.
- 5. It performs well in high production performance, evaluated by R² score, better than traditional CNN and transformer-based models.

II. LITERATURE REVIEW

In the last fewelec des, the chine learning has emerged as a powerful tool in materials science to discover materials, optimize manufacturing processes, and predict properties based on data. By comparing the studies reviewed here one can see how ML on be a plied to a variety of material systems including metals and alloys and metal-organic frameworks (MOF), with doment molels trained using a variety of methodologies.

Using ResNet0 and VGG16 components in a hybrid deep learning tool developed by Darabi et al. [20] succeeded in preducing dual mase steel mechanical conduct which resulted in less than 1% prediction error. The model demonstrates high prediction precision yet its operability restriction for industrial use produces expensive computation requirements. The model demonstrates in precision (SVR) combined with symbolic regression in Fang et al. [21]'s research yielded predictions for industrial phase transition temperatures in precious metal alloys with under 9.83% and 9.35% prediction errors in solid as well as liquid phases. Their predictive approach requires expensive computations and depends heavily on manual system details creation thus making it challenging for wide alloy system applications. The research by Li et al. [22] developed a Bayesian Neural Network (BNN) with Markov Chain Monte Carlo (MCMC) sampling for uncertainty quantification in steel alloy creep rupture life prediction. The technique proves better than traditional methods while facing similar computational challenges from researchers suffering from previous distribution sensitivity and convergence failure.

Cao et al. [23] designed MOFormer which utilizes MOFid text-based representations to perform structure-agnostic predictions of quantum-chemical properties. Despite outperforming the 3D-structure-dependent algorithms like CGCNN in data efficiency the text input of MOFormer does not account for complex structural details which Jose et al. [24]'s method minimizes through its regression tree-based active learning framework. The authors of Jose et al. developed low-dimensional descriptors to predict band gap and adsorption properties in MOFs while achieving better results that alternative active learning techniques during data-sparse conditions. The approaches by Cao et al. [23] and Jose et al.[2] encounter difficulties when attempting to represent complex material features since they use text-based and simple descriptor methods that affect the trade-off between computational complexity and structural accuracy.

Akbari et al. [25] developed a physics-aware featurization benchmarking framework for metal additive manufa uring (MAM) to predict melt pool characteristics that is more accurate and interpretable than the traditional Rosenthal est ation. On the other hand, Logeswaran et al. [26] compared regression-based ML models (grey Matrix forest, Grag as they predicted hardness in low alloy metals and could perform better than physics-based met ds bi icked interpretability. Both studies emphasize the importance of dataset quality and diversity and the relation otability f the Akbari et al. [25]'s framework, which is more physics-informed, as compared to the models from bgesv . [26] which may overfit in scenarios that are too complex. Stoll et al. [27] reviewed ML application er metallic material characterization showing a strong correlation between small punch test (SPT) and the sile tes lata. ch decreases the need for expensive experiments. Wang et al. [28] used XGBoost to predict the mech erties of untrathin niobium cal pr strips and successfully achieved $R^2=0.944$ and $R^2=0.964$ in predicting the tensile and ength respectively. Both are excellent use cases for leveraging data-driven insight, but are limited by the need for very , high-quality datasets: Stoll et al. [27] in the case of training across scales and Wang et al. [28] for predictions based tructure-specific datasets. mi Following the introduction of gradient boosting techniques, Wang et al. erforms Random Forest and MLP models, but because of the price tag for the hyperparameter, gradie ng techniques are better in terms of outperforming the two models above.

Justi et al. [29] finally also applied FTIR spectroscopy with ist squ LS) regression to predict the properties artia of metal complexes, thus providing a fast, non-destrug o conventional methods. However, even though nati precise. spectral overlap and calibration restrictions make it l an the k re computationally demanding, but structurally ery effective for predictions of stability and solubility. All detailed, approaches of Darabi et al. [20] or Li et al. it of these aspects are a recurring theme throughout the stu and it is reflected in this trade-off between speed and depth.

III. METHOLOGY

osed GAT-TransNet model to perform regression analysis based on This section explains the overall workflow f our data input. Our suggested method use ased arning to spot data dependencies both near and far which makes ploys GAT and self-attention from Transformers to learn effectively predictions more accurate and stable he model while dealing with noisy input data large datasets. The method improves standard regression methods through ng structured input data to solve main problems, and performance evaluation, attention-based feature aggre le 101 to provide a complete and reproducible framework. all of which are summarized n Figure

Figure 1: Overview of the research methodology framework

3.1 Dataset Description and Preprocessing

The dataset [30] contains findings for 312 different steel compositions with mechanical properties, including yield strength and ultimate tensile strength measured through experiments. The data has been retrieved from Citrine, enhanced, and deduplicated for accuracy and reliability purposes. It is available in Monty Encoder's JSON encoding format, as well as CSV format, to allow flexibility in different analytic workflows. Recommended access includes the use of the matminer Python package through the datasets module, which can be readily plugged into a materials informatics undertaking. The dataset is hence a useful addition to the discussion of structure-property relationships for steels and the development of machin learning-based predictive materials design. During the cleaning process, 9 columns containing infinite (inf) or missing (NaN) values were identified and removed, reducing the dataset from 312 to 303 valid columns. The overall distribution of the dataset is shown in Figure 2.

The distribution plot (distplot) has been utilized to an ze each feature of the data set since it usually shows the umer underlying data patterns, skewness, and distribution t combines a histogram and Kernel Density Estimation A dist ed, or multimodal distribution. This analysis is very important (KDE), indicating whether a feature follows the normal when choosing suitable preprocessing techniques such as malization or transformation to improve the performance of the model. Yield strength and tensile strength distribution ha been studied to see whether they require any scaling or transformation. Moreover, the comparison of in the features helped to identify the differences in distribution over featured ones as it is very important in feature engi machine learning applications. The overall distribution analysis of eeri all the features of the dataset is show

Figure 3: Distribution plots (distplots) for each numerical feature in the dataset

3.2 Outlier Detection and Removal

To ensure data quality and refine the reliability of subsequent analytics, we applied a purification outlier rejection process according to the interquartile range (IQR) method. The outlier was identified by the following formula:

Outlier = (Greater than Q3 + $1.5 \times IQR$) OR (Lower than Q1 - $1.5 \times IQR$)

Where Q1 and Q3 may be denoted as the first and third quartiles, respectively, and IQR is the interquartile range (Q3 Q1). Applying this formula brought up every numerical column of the dataset. A custom user function was created for iteration through all the features with a threshold marking the upper and lower bounds assigned to potential outliers few outliers would then also be verified and even one would only be removed if they affect the overall integrit of the dataset. After cleaning values, it showed that the dataset became much more statistically consistent. Furthermore, re lting non-zero values indicated possible outliers within the resulting dataset. These outliers were also at the further evaluation, and the rows affected were dropped accordingly to achieve a more representative data s Subse ntly, after removal, the dataset was scrutinized and re-evaluated across overall distribution to ensure the utliers l not have any inconsistency or alteration in the actual underlying trends in yield strength. streng alloy tens compositions. This dataset, thinned out to remove extreme values, has thus been const enable to analysis and modeling work. Figure 4 is a box plot representing the distribution of different merical ariable n the dataset. It shows the presence of outliers across various features. Each box represents the inter tile ge (IQR), with the central line indicating the median. The whiskers extend to 1.5 times the IQR, while point ing outside the whiskers are considered outliers. The key observations from this plot include:

- \rightarrow The majority of the features have very small values, thereby yielding composed boxplots near zero.
- → The yield strength and tensile strength variables exhibit more spead, 2 ong with numerous outliers as indicated by the circular markers beyond the whiskers.
- \rightarrow Outliers indicate that those values differ significantly from the matching ution of the data.

ure 4: Box plot representing the distribution of various numerical features in the dataset.

Figure 5 condises numerous scatter plots showing the distribution of data points for various numerical features. Among the distribution of data points for various numerical features.

- → Some features Mn, Si, Cr, Ni, Mo, Nb, and W show distinctly separated clusters, which indicates some patterns in the distributions of their data.
- → The features yield strength, tensile strength, and elongation, however, show a relatively wider distribution with the presence of obvious extreme values.
- → Some variables show concentrations of data points near zero, which further indicates a high occurrence of small values in the dataset.

Figure 5: Scatter plots displaying the distribution of individual numeric features.

The scatter plot analysis suggests that some features are associated and display some kind of relationship, with some variables showing more symmetric distributions while others are skewed a irregular.

3.3 Correlation Analysis

Once a correlation between variables has been established an effective predictor. With a strong relationship an between two or more variables, if the value of one var le is kn er estimate can be made for another. The degree vn, a of correlation denotes the accuracy of the prediction therein gher correlation coefficients indicate stronger association and thus more reliable predictions. In the case of perfe elation (positive or negative), the prediction could be made with complete certainty. On the other hand, when the corr tion is weak, predictions will become very erroneous due to higher variability in the relationship. The scatterplot matrix gure 6) gives the pairwise comparison of all numerical g assess their relationships. Each subplot shows a scatterplot between two features in the dataset, thus allowing us to vi different variables, indicating possible ear. ations or non-linear correlations. The diagonal plots represent histograms and are typically used to s aistrib ion of each feature independently. From the patterns seen in these ends such as clustering, outliers, or linear relationships. For example, scatterplots, one can infer possible d ndencie a tight clustering of points along the d onal of a scatterplot denotes strong correlations, while a greater scatter would indicate weak or no correlati two variables. bet en t

The triangular heatmap (Fig 7) grap cally represents the correlation matrix of the dataset under consideration using its he to avoid redundancy. The color scale, ranging from blue (indicating negative upper or lowe triar or correlation) to i ndicati positive correlation), helps visualize where strong positive or negative relationships exist prtantly by allowing the elimination of duplicate values that normally exist in a full correlation between fe matrix, this alizati and its interpretation are further simplified. Thus high positive correlations, e.g. those between yield strength, have mutual significant dependencies among these features; near-zero correlations tensile st gth les are independent. indicate that van

The complete correlation heatmap (Figure 8) offers a panoramic view of pairwise relationships among all attributes in the lataset, while a underlying correlation values delineated against the background for precision. The numerical values of the relation color the scale from -1 (strong negative correlation) to +1 (strong positive correlation). The illustration here very spiimarily for feature selection into machine learning models; correlated features are highly more likely to offer redundancy, while weakly correlated ones help in generalizations. Chemical composition parameters like Nickel (Ni) and Chromium (Cr) are negatively correlated, while mechanical property parameters like tensile strength and yield strength confirm the interdependence between these two.

Figure 7: Triangular Correlation Heatmap

han In analyzing the correlations properties in the dataset proved to be significantly correlated. The Pearson correlation coefficient for ength and tensile strength was found to be 0.821, with a p-value of 1.80e-77, yield s indicating a strong positive c elatior An increase in yield strength would increase the tensile strength of materials and two properties concerning material behavior. As for yield strength and elongation, hence, the inte epe den of h there is an inverorrelativ as depicted by the scatterplot, meaning that higher yield strength results in still lower ining ugher materials are likely to be less ductile. In the same manner, an increase in tensile strength elongation, to far, which adds support to the inverse correlation between strength and ductility. These correlations causes elongan coording the trade-offs of mechanical properties of great practical importance in the selection of have muc to say gineering applications; hence they deserve close examination. materials for

3.4 Processed (raph Attention Transformer Network Model (GAT-TransNet)

GAT and self-attention mechanisms based on transformers. It is proposed to capture the local relationship between neighboring nodes and long-range relationships over the whole graph. First, the model localizes context using graph attention, and then the global context is enriched with Transformer layers. While maintaining the spatial and sequential properties of the data, GAT-TransNet can prognostically predict graphs' capabilities through its combination of multi-head attention and positional encoding and handle complex large-scale graphs with high efficiency. This property makes these tasks particularly well-suited for working with the transformer, for example, node classification, graph-based anomaly detection, and graph representation learning.

Input Layer (Graph Construction):

The input consists of a graph G = (V, E), where each node $v \in V$ has an associated feature vector $x_v \in \mathbb{R}^d$. These feature vectors serve as the starting point for further processing in the network. The equation for this (1)

$$x_v \in \mathbb{R}^a \text{ for } v \in V$$

Graph Attention Layer (GAT Layer):

The Graph Attention Layer computes attention coefficients α_{vu} to weight the contribution of each neighboring no u for node v. The attention mechanism enables to to pay attention to dominated neighbors according to feature similarity. The attention score α_{vu} between nodes v and u is computed as:

 $\alpha_{vu} = \frac{\exp\left(LeakyReLU(\bar{a^{T}}[Wx_{v}||Wx_{u}])\right)}{\sum_{u' \in N(v) \cup \{v\}} \exp\left(LeakyReLU(\bar{a^{T}}[Wx_{v}||Wx_{u'}])\right)}$

Where N(v) denotes the neighbors of node v, and a is the attention weight vector. Then, the output feature for node v is:

$$h'_{v} = LeakyReLU(\sum_{u \in N(v) \cup \{v\}} \alpha_{vu} W \alpha_{u})$$

Transformer Layer (Self-Attention Mechanism):

The dep Each node's feature vector is applied by the Transformer Layer with a self-attentio endencies are long-ranged: each node attends to all other nodes. With the learned transform and value, the ons to ler attention mechanism computes similarity scores between nodes.

First, we transform the node features into Query, Key, and Value vectors:

$$Q = XW_Q, K = XW_K, V = XW_V \tag{4}$$

Where X is the matrix of input features and W_Q , W_K , W_V are learned weight matrices R queries, keys, and values, respectively.

We then compute attention scores between each query and all keys he dimension of the keys. d_k :

(3)

Then, we apply the softmax to obtain normalized at

(6)vu tted sum of the values V weighted by the attention scores: Secondly, we compute the output features by tak

tma

$$\rho_{\alpha vu}V_{u} \tag{7}$$

The above attention mechanism is applied to different leaved projections (i.e., multi-head Attention) multiple times, and the results are concatenated,

$$ea (Q, K, V) = concat(h_1, h_2, \dots, h_n)W^0$$
(8)

Where, W^0 is the output projection matr

Positional Encoding (for fon r Layer):

n, the Transformer does not inherently handle and we add positional encoding to To work with sequentia nforma The posit the input feature vectors nal encoding for a node at position pos works according to the following formula,

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right) \tag{9}$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d}}}\right) \tag{10}$$

al representation pos is positioned at node index i through its feature dimension. The added positional e posit comes an additional component in the node feature set xv. ling

d-Forward Network (FFN):

The feed-forward network (FFN) operates on output from attention operations where it performs two linear transformations with ReLU activation functions between them. Through this process, the model learns difficult nonlinear associations. The feed-forward operation follows the following equation:

$$TN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$
(11)

Where W_1 , W_2 are weight matrices and b_1 , b_2 are biases.

Output Layer (Final Prediction):

The prediction emerges when all layers synchronize their results through a softmax function which operates during classification assignments. The last output derives from this process:

$$softmax(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^{N} \exp(z_j)}$$
(12)

 z_i is the input score for the *i* -th class or element, *N* is the total number of elements in the input, exp (z_i) represents the exponentiation of z_i , the denominator ensures that all output values sum to 1, making it a valid probability distribution.

The architectural view of our proposed model is visualized in Figure 9.

Figure 9: Architecture of the proposed GAT-TransNe podel

IV. RESULT AND ANALYSIS

The current research envisages the complete study of the relationship between the obtinical composition of steel and its mechanical properties, especially yield strength and tensile strength. The study has two major components: predictive determination of yield strength of steel and an understanding of the effect of y nor alloying elements on the strength of steel: A data-driven analysis.

4.1 Predicting the Yield Strength

We studied the predictive effect of a novel deep lear ag appro h applied to the modeling of steel yield strength based on is the dependent variable concerning other possible predictor the chemical composition, where the study used yield s el the relationship between the alloying elements-composition variables of interest. Regression techniques were used to it of steel, Carbon (C), Manganese (Mn), and Silicon (Si), with eir corresponding yield strength. Through such predictive prties of steel with high accuracy, thereby optimizing steel compositions approaches, we can predict the mechanical p for different applications. More advanced ing techniques would ensure greater accuracy in predictions, thereby ep lea facilitating material selection and steel sses. In assessing our predictive model's merits, we employed some bro regression assessment metrics includ in our anal

- **R² Score:** This number give the idea of how much variance in the dependent variable (yield strength) is expressed in the model, that is, how well the hodel as the data.
- Mean Absolute Error (IAE): This figure gives the average error of the model in absolute terms, whereas it gives a sense of how big a provide the nodel are.
- Root Mean is ared heror (RMSE): This gives an idea of the average magnitude of the errors, where larger errors are peoplized here heaving thereby giving a better picture of the model prediction accuracy.
- Mean Sympred Loor (MSE): In a way analogous to RMSE, MSE gives the average difference between predicted and chual as quaree values, which are of interest to larger prediction errors. A comparative performance is shown in Table 2.

The Excession Vevidence indicates a definite performance ranking across different evaluation metrics. The Linear Regression Vevidence indicates a definite performance ranking across different evaluation metrics. The Linear Regression Vevidence indicates in this hierarchy, with an R² score of 0.75. An MAE of 3.45, RMSE of 4.21, and an MSE of 0.75 indicate minimal performance margins because these measures can moderate error levels. A marked improvement from the Random Forest Regression model was seen at an R of 2 = 0.88, suggesting better capturing of the pattern or improved accuracy in modeling the actual representation of data. This evidence also reports lesser MAE values of 2.14, RMSE values of 3.11, and MSE values of 9.68, plus a higher explained variance score of 0.89, which indicates that the model has more apt handling characteristics for the complex, nonlinear relationships within the data. SVR has an R-squared value of 0.81, comparable to Random Forest. However, it exhibits higher errors in MAE at 3.01 and an RMSE of 4.00, eventually bringing about a slightly higher MSE value of 16.00. With 0.82 as an explained variance score, it might predict moderately; however, it lags much behind the Random Forest. The XGBoost regression model again puts other models to shame, performing fabulously with a predictably superior R² value of 0.92. It thus shows a good prediction score regarding

MAE of 1.85, RMSE of 2.73, and MSE of 7.46, confirming its superior model precision and robustness. Keeping its prediction prowess high by attaining an explained variance score of 0.92 further reiterates this strength. MLP's R² score of 0.89 also does well on a low scale of MAE 2.10 and RMSE 3.05, culminating in MSE 9.30. A high score of explained variance at 0.90 shows good generalization capabilities as a good performer but a little behind XGBoost.

	*		Ŭ		
Model	R ² Score	Mean Absolute Error (MAE)	Root Mean Squared Error (RMSE)	Mean Squared Error (MSE)	Explained Varianc Scor
Linear Regression	0.75	3.45	4.21	17.74	0.76
Random Forest Regression	0.88	2.14	3.11	9.68	0.89
Support Vector Regression (SVR)	0.81	3.01	4.00	16.	0.82/
XGBoost Regression	0.92	1.85	2.73	7.5	0.92
Neural Networks (MLP)	0.89	2.10	V	9.30	0.90
Proposed GAT-TransNet Model (Graph Attention Transformer Network)	0.95		10	4.41	0.96

Table 2: Comparison of Evaluation Metrics for Different Regression Models

Figure 10: Training and validation loss and accuracy curves for the proposed GAT-TransNet Model

Last, all models get trumped by the Proposed GAT-TransNet Model (Graph Attention Transformer Network), which records an astounding R² of 0.95. This implies that it has greater predictive power than other models in this application. It is the model with the least numbers for both MAE (1.40) and RMSE (2.10) as well as MSE (4.41). Hence, the GAT-TransNet model has excellent prediction accuracy but minimal error. An overall score for explained variance measurement of 0.96 illustrates how the model will work exceptionally well in capturing and describing how much of the variance in the

data can be understood. Thus, it stands on top of being the most reliable and robust model in this comparison. In the end, while all the models show a trend toward increasing performance over the baseline, Linear Regression, the GAT-TransNet leads both on accuracy and predictive power, thus making it the most effective model for this task.

The proposed GAT-TransNet Model (Graph Attention Transformer Network) showed excellent training and validation performance on the best model as illustrated in Figure 10. The training loss was reduced from an initial value of 1.8 to 0.74 sequentially while the validation loss followed a parallel path from 2.0 to 1.0. This pattern of decreasing loss values indicates an effective learning ability of the model with the validation loss closely following the training loss, suggesting good generalization. Regarding accuracy, both training and validation accuracies begin from low values, marking pronounced upward trajectory as training continues. Training accuracy rises from 0.75 to 1.0 while validation a furacy rises from 0.72 to 0.99, indicating that the model performs nearly perfectly during the last epochs. Importantly, the ast 10 epochs show clear benefits in accuracy and loss, indicating the model's optimization and learning stability or the bis performance indicates effective learning of the GAT-TransNet with good generalization ability to an unseen lateset achieving high accuracy in both training and validation sets.

A scatter plot for predicted values against the actual values is seen in Figure 11. The red dashed line is perfect for predictions; that is, the predicted values would be exactly equal to those of the actual ones. Most of the data points appear close to this line, so the model must have high accuracy. However, some scatter exists around that line, margin found not too often in between the predicted and actual values. Though it declares the model to be quite good, it suggests improvement in decreasing the extent of deviation in predictions.

Residuals, or actuals minus predicted value, are plotted in Figure 12 against predicted values. The plot indicates a somewhat random scatter of points about the red dashed horizontal line at zero. The absence of any clear trend signifies what we desire: the residuals of the model are being randomly distributed, indicating no bias in the model and with errors not following any trend. This indicates that the model has successfully captured the relationship between the inputs and target variable and indicates no signs of either underfitting or overfitting.

4.2 Data-Driven Analysis

4.2.1 How does the variation in carbon (C) content affect the mechanical properties of steel alloys?

The yield and ultimate tensile stress increased with higher carbon content, while elongation remained almost compant as visualized in Figure 13. The explanation given was that solid-solution hardening retards dislocation motion. At the up and trend of yield stress and ultimate tensile stress with increasing carbon content suggests that carbon atoms infibit discretion motion and thus contribute toward strengthening the material. However, the elongation does not charge appreciable with increased carbon, implying that ductility is unaffected. This behavior is explained by the increased penether aterial due to the presence of carbon as a solid solution in the iron matrix, which does not appreciable solution.

Figure 13: Histogram showing the distribution - Copon (C) percentages in a dataset, measured as a percentage of total composition

4.2.2 How does adding mange (M. influence steel's strength and mechanical properties?

Figure 14 indicates that many nese steep or alloy of manganese, iron, and carbon have a higher hardness and wear resistance than other steels. The use mainly is used mainly to harden the steel to resist deformation and wear, especially under high-stress conditions. It subscripts hardness by forming a solid solution strengthening by which the manganese atom dissolves in bediron attice and distorts the latter to a greater extent so that dislocation movement is retard.

Manganese we also consibute towards the pearlite formation and has some additional microstructures that will give better mechanics properies such as augmenting the tensile strength. The augmented strength and abrasion resistance make manganese shall effective and applicable for demanding high-durability applications like the construction, mining, and management of the strength of

Figure 14: Histogram of Manganese (Mn) percentage distribution in a dataset, ranging from 0.0% to 3.0%, with most

values concentrated below 0 %

4.2.3 How does Silicon (Si) addition influence the properties of vel?

From the above Figure 15, it is evident that steel's mentanical and electrical properties are highly dependent on the silicon content. Steels with 5 percent silicon have increase electrical resistivity, making them extremely useful in electric transformer and motor core applications. Silicon enables are yield point and tensile strength of steel, improving structural performance. However, increased brittleness, resulting in reacted elongation values, is one of the significant disadvantages of a higher amount of silicon. The strength ductility balance brought about by high-silicon steel should be carefully deliberated before incorporation for optima suit in purpose.

Figure 15: Histogram of Silicon (Si) percentage distribution in a dataset, with the majority of values near 0.0% and a long

tail up to 4.0%.

4.2.4 What does adding Chromium (Cr) to steel do?

Figure 16: Histogram of Chromium (Cr) percentage distribution in a dataset, showing per near 0.0% and 12.5%, with values ranging up to 17.5%

As an essential component for stainless steel manufacturing, chromium forms a proximately 18% in most stainless steel alloys. This element increases the hardness and toughness while greatly enhancing corrosion resistance, particularly at elevated temperatures. Corrosion testing has, therefore, shown in Figure 1

4.2.5 What are the effects of various alloying elements, including lickel (Ni), Molybdenum (Mo), Vanadium (V), Nitrogen (N), Niobium (Nb), Cobalt (Co), Tungs ((W), A uninium Al), Titanium (Ti), and Chromium (Cr), on the properties of steel?

ness and ductility while increasing strength and hardness. Nickel is used for hardening steel, but it also increases the tot poving toughness. Like chromium, it contributes to corrosion resistance, This is very helpful at low temperatures in hardenability, toughness, and tensile streng h of ut also promotes quenching in the heat treatment process to produce strong and hard steel because it low quench rate. Vanadium refines the grain structure of steel and require strengthens it, increases toughness wear resistance. When vanadium dissolves in austenite at high ad imp temperatures, it helps steel to] n: h ever, being in the form of vanadium carbides lowers hardenability. Nb greatly increases the strength and h hot blled steel with a rise of about 80% in yield strength due to an increase in dness niobium content from 0.2 to he presence of niobium carbides at rolling temperatures wards off excessive grain 0 wt.%. anical properties. Cobalt also plays a major role in the processing of alloy steels. growth hence t ae in Cobalt raises th of martensitic transformation lowers the amount of retained austenite in the alloy steel and perati brings pred dening ungsten, when it acts as an alloying element, improves hardness, strength, wear resistance, sion resistance in steel and therefore approaches that for high-performance applications. toughness, k nd c

V. CONCLUSION

This tudy empasizes how crucial regression modeling and data-driven analysis are in understanding the mechanical properties of forous materials, particularly steel. Steel is ubiquitous in industrial and manufacturing applications; thus, adjusting to properties and performance has become paramount in preventing structural dysfunctions in associated comparents. The research has rightly demonstrated, using a host of regression models including the proposed Graph Attention Transformer Network (GAT-TransNet), the enhanced ability of advanced machine-learning techniques toward the prediction of steel properties. This study further assessed alloying elements such as carbon, manganese, and chromium, n the evaluation of mechanical properties of steel. This provided insight into relationships between material composition and performance in steel optimization for specific applications. It further generated questions concerning basic material properties and the relevance of elongation, yield strength, and tensile strength in evaluating steel quality. Higher elongation usually signifies that the material is ductile and rigid, whereas yield strength becomes essential when the steel is loaded structurally by far-reaching forces, loads, and impacts. In addition, the study made distinctions between yield strength and

tensile strength, stating that yield strength becomes vital for ductile materials, while tensile strength becomes essential for brittle ones. The distinction clarifies how these two properties are important in material design and selection. In conclusion, the research provides extra insight into how composition influences the mechanical properties of steel while further reaffirming the efficacy of machine learning models in predicting materials. This provides insight into steel alloy design and selection for enhanced performance and durability across various industrial applications.

REFERENCES

- [1] X. Dong *et al.*, "Heterostructured Metallic Structural Materials: Research Methods, Properties, and Future Perspectives," *Adv Funct Mater*, vol. 34, no. 51, p. 2410521, Dec. 2024, doi: 10.1002/ADFM.202410521.
- [2] P. Gradl *et al.*, "Robust Metal Additive Manufacturing Process Selection and Development for Actspace Components," *Journal of Materials Engineering and Performance 2022 31:8*, vol. 31, no. 8, pp. 6012–6044, hpr. 2022, doi: 10.1007/S11665-022-06850-0.
- [3] R. Kumpati, W. Skarka, and S. K. Ontipuli, "Current Trends in Integration of Nondestructive rest, of Methods for Engineered Materials Testing," *Sensors 2021, Vol. 21, Page 6175*, vol. 21, no. 18, p. 75, Sept. 621, doi: 10.3390/S21186175.
- [4] P. Demircioglu, M. Seckin, A. C. Seckin, and I. Bogrekci, "Non-destructive Testing Methods in Composite Materials," *Fracture Behavior of Nanocomposites and Reinforced Laminate Sciences*, pp. 487–516, 2024, doi: 10.1007/978-3-031-68694-8_21.
- [5] B. Seshakagari, H. Reddy, R. Venkatramana, and L. Jayasree, "Enhancing Apple Fruit Quality Detection with Augmented YOLOv3 Deep Learning Algorithm," *International Journal of Human Computations & Intelligence*, vol. 4, no. 1, pp. 386–396, Mar. 2025, doi: 10.5281/ZENODO.14.98904.
- [6] R. Pollice *et al.*, "Data-Driven Strategies for Accelerated Laterials," *Acc Chem Res*, vol. 54, no. 4, pp. 849–860,
 Feb. 2021,
 doi: 10.1021/ACS.ACCOUNTS.0C00785/ASSET MAGE: LARG. AROC00785 0006.JPEG.
- [7] K. U. K. Reddy, S. Shabbiha, and M. R. Kum, "esign of high security smart health care monitoring system using IoT," *Int. J*, vol. 8, 2020.
- [8] J. Liang, Z. He, W. Du, X. Ruan, E. Guo, and N. Shen, 'Tailoring the microstructure and mechanical properties of laser metal-deposited Hastelloy X superallov sheets via post heat-treatment," *Materials Science and Engineering:* A, vol. 884, p. 145546, Sep. 2023, with 1000/J.MSEA.2023.145546.
- [9] R. K. Madapudi, A. A. Rao, and G. Marca, "Change requests artifacts to assess impact on structural design of SDLC phases," *Int'l J. Computer Applications*, vol. 54, no. 18, pp. 21–26, 2012.
- [10] S. V. Suryanarayana and G. N. Balaji, "Using Computer Vision to enhance Safety in a Post COVID World," 2022 International Conference on Data Science, Agents and Artificial Intelligence, ICDSAAI 2022, 2022, doi: 10.110/ICD/AL/0543.0102.10028919.
- B. Asbaka, ei and H. Jeddy, "Deep Learning-Based Detection of Hair and Scalp Diseases Using CNN and Image Proceeding," *J. Jestone Transactions on Medical Technometrics*, vol. 3, no. 1, pp. 145–155, Mar. 2025, doi: 10.5281, ENOD.0.14965660.
- [12] M. Stahakara, M. J. Meena, K. R. Madhavi, P. Anjaiah, and L. N. Prakash, "Fish classification using deep learning on smart cale and low-quality images," *Int. J. Intell. Syst. Appl. Eng*, vol. 10, no. 1s, pp. 282–293, 2022.

J. R. Dwaram and R. K. Madapuri, "Crop yield forecasting by long short-term memory network with Adam timizer and Huber loss function in Andhra Pradesh, India," *Concurr Comput*, vol. 34, no. 27, p. e7310, Dec. 2022, doi: 10.1002/CPE.7310.

4] K. Chen *et al.*, "A review of machine learning in additive manufacturing: design and process," *The International Journal of Advanced Manufacturing Technology 2024 135:3*, vol. 135, no. 3, pp. 1051–1087, Oct. 2024, doi: 10.1007/S00170-024-14543-2.

- [15] Z. Xia, B. Wu, C. Y. Chan, T. Wu, M. Zhou, and L. B. Kong, "Deep-learning-based pyramid-transformer for localized porosity analysis of hot-press sintered ceramic paste," *PLoS One*, vol. 19, no. 9, p. e0306385, Sep. 2024, doi: 10.1371/JOURNAL.PONE.0306385.
- [16] D. Venkata Lakshmi, R. Shyama, S. Anila, S. Abbineni, S. A. Al, and A. Al-Hilali, "An Intelligent Framework for Smart Automated House Implementation via Integration of IOT and DL," 2024 4th International Conference Advance Computing and Innovative Technologies in Engineering, ICACITE 2024, pp. 225–228, 2024, doi: 10.1109/ICACITE60783.2024.10616423.
- [17] Ashwin Shenoy, M., and N. Thillaiarasu. "Enhancing temple surveillance through human activity recognition: A novel dataset and YOLOv4-ConvLSTM approach." Journal of Intelligent & Fuzzy Systems Preprint (202: 1-16.
- [18] C. Sanford *et al.*, "Understanding Transformer Reasoning Capabilities via Graph Algorithms," *Process Syst*, vol. 37, pp. 78320–78370, Dec. 2024.
- [19] T. Plötz, "Applying Machine Learning for Sensor Data Analysis in Interactive Systems," AC/I Converting arveys (*CSUR*), vol. 54, no. 6, Jul. 2021, doi: 10.1145/3459666.
- [20] A. Cheloee Darabi, S. Rastgordani, M. Khoshbin, V. Guski, and S. Schwauder, "Aybrid Dep-Driven Deep Learning Framework for Material Mechanical Properties Prediction with the focus on Dual-Phase Steel Microstructures," *Materials 2023, Vol. 16, Page 447*, vol. 16, no. 1, p. 447, Jan. 2, 3, doi: 10.3390/MA16010447.
- [21] Puttaswamy, B. S., and N. Thillaiarasu. "Fine DenseNet based human personally recognition using english hand writing of non-native speakers." Biomedical Signal Processing and Carbol 20(2025): 106910.
- [22] L. Li, J. Chang, A. Vakanski, Y. Wang, T. Yao, and M. Xia, "Accel inty quantification in multivariable regression for material property prediction with Bayesian ne cal ne torks," *Scientific Reports 2024 14:1*, vol. 14, no. 1, pp. 1–15, May 2024, doi: 10.1038/s41598-0216[18.
- [23] Z. Cao, R. Magar, Y. Wang, and A. Barati Fernani, "MDFormer Self-Supervised Transformer Model for Metal-Organic Framework Property Prediction," *Journ Clain Soc*, vol. 145, no. 5, pp. 2958–2967, Feb. 2023, doi: 10.1021/JACS.2C11420/ASSET/IMAGES/LAR 10.42C11420_0005.JPEG.
- [24] A. Jose, E. Devijver, N. Jakse, and R. Poloni, "Informative Training Data for Efficient Property Prediction in Metal-Organic Frameworks by Active Carning," J Am Chem Soc, vol. 146, no. 9, pp. 6134–6144, Mar. 2024, doi: 10.1021/JACS.3C13687/SUPPL_ILE/IACE13687_SI_001.PDF.
- [25] Ravi Prasad, M., and N. Thill: arasu. "Multi hannel EfficientNet B7 with attention mechanism using multimodal biometric-based authentication for ATM transaction." Multiagent and Grid Systems 20.2 (2024): 89-108.
- [26] K. Logeswaran et al. "Pred sing the Hardness of Low Alloy Metal using Machine Learning Model," 2024 6th International Conference on Computational Intelligence and Networks (CINE), pp. 1–5, Dec. 2024, doi: 10.1109/CINEC2708. 24.10 1672.
- [27] A. Stoll M. P. Berger, "Machine learning for material characterization with an application for predicting metabolical properties," *GAMM-Mitteilungen*, vol. 44, no. 1, p. e202100003, Mar. 2021, doi: 10.100/GAM. 202100003.
- [28] Z. Wang, F. Liu, T. Wang, J. G. Wang, Y. M. Liu, and Q. X. Huang, "Intelligent prediction model of mecha real properties of ultrathin niobium strips based on XGBoost ensemble learning algorithm," *Comput Mater Sci*, vo 231, p. 112579, Jan. 2024, doi: 10.1016/J.COMMATSCI.2023.112579.
 - M. Justi, M. P. de Freitas, J. M. Silla, C. A. Nunes, and C. A. Silva, "Molecular structure features and fast identification of chemical properties of metal carboxylate complexes by FTIR and partial least square regression," *J Mol Struct*, vol. 1237, p. 130405, Aug. 2021, doi: 10.1016/J.MOLSTRUC.2021.130405.
 -)] "Steel Strength Data 2018." Accessed: Mar. 14, 2025. [Online]. Available: https://www.kaggle.com/datasets/fuarresvij/steel-test-data