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Abstract —

The research presents a hybrid approach of regression modeling with data-gi
properties by analyzing the effects of composition on strength. The stud @” gap of models in accurately predicting
steel's performance based on composition since traditional methods, 7 (Y

alloying elements and material properties. Various regression m eongdged for predicting material properties,
such as Linear Regression, Random Forest Regressio ession (SVR), XGBoost Regression, and
Neural Networks, and in this paper, Graph Attentiog rk (GAT-TransNet) is proposed. Incorporating
novel graph attention into the transformer archite8 sNet handles complex data relationships and
improves predictive accuracy. Data-driven analyses Ng@ed carried out alongside regression analysis to establish how

hromium (Cr), affect steel's mechanical properties strength,

of 1.40, and an MSE of 4.41, thus underscoring its superior predictive
capability compared to existing models. D, i Nsights show that manganese hardens and increases wear resistance,

while chromium enhances corrosion reases tensile strength. This has great importance for optimizing
specific steel compositions for in i § s. Combining machine learning methodologies with composition
analysis, this study compleme ive modeling for steel properties with material design and promises better

efficiency and targeting in stg

Keywords - Graph Attentio
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. INTRODUCTION

onsIets of evaluating both the chemical makeup and internal structure along with the material strength of
and their alloys in pure or combination forms [1]. Industrial metal evaluation is pivotal for materials
as manufacturing and quality control because it verifies metal compliance with necessary industrial
2]. The category for metal testing methods consists of either destructive or non-destructive approaches.
are verified with quick speed through chemical property databases for non-destructive testing methods that
maintain both the original structure and identity of pure metals [3]. Expert validation of metal alloy compositions normally
equires destructive testing because the sample needs to be systematically destroyed to obtain necessary examination data
4]. Such traditional methods deliver accurate results yet they involve significant time and cost as well as the generation of
wasted materials.

Modern computational methods and machine learning techniques [5] minimize the requirement for extensive physical
testing through their data-driven approaches [6]. Traditional experimental techniques need sophisticated laboratory



facilities along with prolonged time for determining material behavior [7]. The multiple factors such as microstructure
composition and heat treatment conditions affect how yield stress, ultimate tensile strength, and fracture strain behave in
materials [8][9]. The forecasting of these properties remains challenging through standard techniques so machine learning
[10] serves as an effective alternative solution [11].

Present deep learning [12][13] material property prediction systems have major performance problems. CNN-bas

material architectures succeed at finding spatial patterns of material structures but perform poorly when analyzing lon

distance material properties [14]. The Transformer architecture excels at using sequences but standard Transformer model
cannot utilize material microstructures that follow a graph pattern [15]. Most research projects use supervised mode
small datasets which prevents their findings from working across many situations [16]. Moreover, existing st
material property prediction face key limitations. Traditional regression models need extensive data while CNNs
with global dependencies yet capture local information effectively [17]. Transformers excel at processing

that needs many training examples [19]. Our research shows a standard system works best whe,
graph learning and attention to achieve better results and handle various materials h el

transformer networks to utilize their strengths in a complementary way for improved ive accuracy. While Graph
Attention Networks (GAT) represent the spatial and structural relationships in material qg@ostructures and transformer
networks enhance the long-range dependency modeling by operating under the attentids meg@gnism, combining both of
these approaches, we derive a robust regression-based model for predictin at&roperties at high precision using
the R2 score.

The following key contributions are made in this study:

1. A novel GAT-TransNet model that combines 4 Rar with transformer-based architectures for material
property prediction is proposed.

2. It presents a hybrid deep learning framew3
and fracture strain of the dual-phase steels.

3. Itprovides a reliable, data-driven approach that ré

reduced dependence on costly experiments.

e the pré¥iction accuracy of yield stress, ultimate stress,

es experiment-dependent analysis of material behavior with

4. Graph-based material representati e introduced to aid a better understanding of complex microstructural
relationships.
5. It performs well in high py#c erfolhance, evaluated by R2 score, better than traditional CNN and

transformer-based models.

Il. LITERATURE REVIEW

In the last fe
optimize

rning has emerged as a powerful tool in materials science to discover materials,
s, and predict properties based on data. By comparing the studies reviewed here one can

GG16 components in a hybrid deep learning tool developed by Darabi et al. [20] succeeded in
se steel mechanical conduct which resulted in less than 1% prediction error. The model demonstrates

r Regression (SVR) combined with symbolic regression in Fang et al. [21]'s research yielded predictions for
d phase transition temperatures in precious metal alloys with under 9.83% and 9.35% prediction errors in solid
as well as liquid phases. Their predictive approach requires expensive computations and depends heavily on manual system
etails creation thus making it challenging for wide alloy system applications. The research by Li et al. [22] developed a
ayesian Neural Network (BNN) with Markov Chain Monte Carlo (MCMC) sampling for uncertainty quantification in
steel alloy creep rupture life prediction. The technique proves better than traditional methods while facing similar
computational challenges from researchers suffering from previous distribution sensitivity and convergence failure.



Cao et al. [23] designed MOFormer which utilizes MOFid text-based representations to perform structure-agnostic
predictions of quantum-chemical properties. Despite outperforming the 3D-structure-dependent algorithms like CGCNN
in data efficiency the text input of MOFormer does not account for complex structural details which Jose et al. [24]’s
method minimizes through its regression tree-based active learning framework. The authors of Jose et al. developed low-
dimensional descriptors to predict band gap and adsorption properties in MOFs while achieving better results th
alternative active learning techniques during data-sparse conditions. The approaches by Cao et al. [23] and Jose et al.][.
encounter difficulties when attempting to represent complex material features since they use text-based and simpl
descriptor methods that affect the trade-off between computational complexity and structural accuracy.

Akbari et al. [25] developed a physics-aware featurization benchmarking framework for metal additive manuf;
(MAM) to predict melt pool characteristics that is more accurate and interpretable than the traditional Rosenthal est
On the other hand, Logeswaran et al. [26] compared regression-based ML models (grey Matrix forest, Grags
as they predicted hardness in low alloy metals and could perform better than physics-based me
interpretability. Both studies emphasize the importance of dataset quality and diversity and the relatj

strips and successfully achieved R?>=0.944 and R?=0.964 in predicting the tensile and ength respectively. Both are
excellent use cases for leveraging data-driven insight, but are limited by the need for very TR@ae, high-quality datasets: Stoll
etal. [27] in the case of training across scales and Wang et al. [28] for predictions based tructure-specific datasets.
Following the introduction of gradient boosting techniques, Wang et al. o‘ﬁorms Random Forest and MLP
models, but because of the price tag for the hyperparameter, gradie g techniques are better in terms of
outperforming the two models above.

spectral overlap and calibration restrictions make it [g#
detailed, approaches of Darabi et al. [20] or Li et al.
of these aspects are a recurring theme throughout the st

This section explains the overall workflo 0 osed GAT-TransNet model to perform regression analysis based on
data input. Our suggested method us Sedarning to spot data dependencies both near and far which makes
icti oys GAT and self-attention from Transformers to learn effectively
large datasets. The method improves standard regression methods through
A0 structured input data to solve main problems, and performance evaluation,

h W=
X B
oo
N‘. %o/ ol I
Data %o C°
\p - & Mode.l
reprocessing - Evaluation
. Regression
\ s Data-Driven Analvsi )
~ - Analysis nalysis R” Score
MAE
RMSE
=y A N MSE
_: b .ot Variance
o ——— b o Score
GAT-TransNet

Model Training

Figure 1: Overview of the research methodology framework

3.1 Dataset Description and Preprocessing



The dataset [30] contains findings for 312 different steel compositions with mechanical properties, including yield strength
and ultimate tensile strength measured through experiments. The data has been retrieved from Citrine, enhanced, and de-
duplicated for accuracy and reliability purposes. It is available in Monty Encoder's JSON encoding format, as well as CSV
format, to allow flexibility in different analytic workflows. Recommended access includes the use of the matminer Python
package through the datasets module, which can be readily plugged into a materials informatics undertaking. The datas
is hence a useful addition to the discussion of structure-property relationships for steels and the development of machi
learning-based predictive materials design. During the cleaning process, 9 columns containing infinite (inf) or missin
(NaN) values were identified and removed, reducing the dataset from 312 to 303 valid columns. The overall distribution
of the dataset is shown in Figure 2.

formula

elongation

tensile strength

yield st ,

eature of the data set since it usually shows the
t combin®s a histogram and Kernel Density Estimation
%d, or multimodal distribution. This analysis is very important
when choosing suitable preprocessing techniques such as alization or transformation to improve the performance of
the model. Yield strength and tensile strength distribution h been studied to see whether they require any scaling or

transformation. Moreover, the comparison y features helped to identify the differences in distribution over featured
ones as it is very important in feature engigeerj machine learning applications. The overall distribution analysis of

all the features of the dataset is shown
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Figure 3: Distribution plots (distplots) for each numerical feature in the dataset



3.2 Outlier Detection and Removal

To ensure data quality and refine the reliability of subsequent analytics, we applied a purification outlier rejection process
according to the interquartile range (IQR) method. The outlier was identified by the following formula:

Outlier = (Greater than Q3 + 1.5 x IQR) OR (Lower than Q1 — 1.5 x IQR)

Where Q1 and Q3 may be denoted as the first and third quartiles, respectively, and IQR is the interquartile range (Q3
Q1). Applying this formula brought up every numerical column of the dataset. A custom user function was created fo
iteration through all the features with a threshold marking the upper and lower bounds assigned to potential outliers
few outliers would then also be verified and even one would only be removed if they affect the overall integrit
dataset. After cleaning values, it showed that the dataset became much more statistically consistent. Furthermore, r§
non-zero values indicated possible outliers within the resulting dataset. These outliers were also at the g

further evaluation, and the rows affected were dropped accordingly to achieve a more representative data §

shows the presence of outliers across various features. Each box represents the inters
line indicating the median. The whiskers extend to 1.5 times the IQR, while point? g outside the whiskers are
considered outliers. The key observations from this plot include:

= The majority of the features have very small values, thereby yieldi p@d boxplots near zero.
- The yield strength and tensile strength variables exhibit more sgif Phg with numerous outliers as indicated

by the circular markers beyond the whiskers.
= OQutliers indicate that those values differ significantl
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AJure 4: Box plot representing the distribution of various numerical features in the dataset.

jgure ISes numerous scatter plots showing the distribution of data points for various numerical features. Among
nt observations are:
- Some features Mn, Si, Cr, Ni, Mo, Nb, and W show distinctly separated clusters, which indicates some patterns
in the distributions of their data.
- The features yield strength, tensile strength, and elongation, however, show a relatively wider distribution with

the presence of obvious extreme values.

- Some variables show concentrations of data points near zero, which further indicates a high occurrence of small
values in the dataset.
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3.3 Correlation Analysis

Once a correlation between variables has been establigy
between two or more variables, if the value of one vayg

elation (positive or negative), the prediction could be made
with complete certainty. On the other hand, when the co ion is weak, predictions will become very erroneous due to

higher variability in the relationship. The scatterplot matri

histograms and are typically used to
scatterplots, one can infer possible
a tight clustering of points along

The triangular heatmap (FigXgR
upper or lowegatria
correlation) to
between f . y allowing the elimination of duplicate values that normally exist in a full correlation
nd its interpretation are further simplified. Thus high positive correlations, e.g. those between

cally represents the correlation matrix of the dataset under consideration using its
Pne to avoid redundancy. The color scale, ranging from blue (indicating negative

tion color the scale from -1 (strong negative correlation) to +1 (strong positive correlation). The illustration here
rves plimarily for feature selection into machine learning models; correlated features are highly more likely to offer
redundancy, while weakly correlated ones help in generalizations. Chemical composition parameters like Nickel (Ni) and
hromium (Cr) are negatively correlated, while mechanical property parameters like tensile strength and yield strength
confirm the interdependence between these two.
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In analyzing the correlation
correlation coefficient for
indicating a strong pogiti An increase in yield strength would increase the tensile strength of materials and
0 properties concerning material behavior. As for yield strength and elongation,

as depicted by the scatterplot, meaning that higher yield strength results in still lower

sed GAT-TransNetwork model is a strong one that works with graph-structured data. It combines the best parts
GAT and self-attention mechanisms based on transformers. It is proposed to capture the local relationship between
neighboring nodes and long-range relationships over the whole graph. First, the model localizes context using graph
ttention, and then the global context is enriched with Transformer layers. While maintaining the spatial and sequential
properties of the data, GAT-TransNet can prognostically predict graphs' capabilities through its combination of multi-head
attention and positional encoding and handle complex large-scale graphs with high efficiency. This property makes these
tasks particularly well-suited for working with the transformer, for example, node classification, graph-based anomaly
detection, and graph representation learning.



Input Layer (Graph Construction):
The input consists of a graph G = (V, E), where each node v € V has an associated feature vector x,ER®. These
feature vectors serve as the starting point for further processing in the network. The equation for this

x, ER? forv eV D
Graph Attention Layer (GAT Layer):
The Graph Attention Layer computes attention coefficients a,,, to weight the contribution of each neighboring no
u for node v. The attention mechanism enables to to pay attention to dominated neighbors according to featur
similarity. The attention score «,,,, between nodes v and u is computed as:

o= exp (LeakyReLU(aT[Wx,,||qu]))
vu Zu’eN(v)U(v} exp (LeakyReLU(aT[Wx,,||qu/]))

Where N (v) denotes the neighbors of node v, and a is the attention weight vector.
Then, the output feature for node v is:

h;; = LeakyReLU(ZueN(v)u{v} ay, W au) (3)
Transformer Layer (Self-Attention Mechanism):
Each node’s feature vector is applied by the Transformer Layer with a self-attenti
are long-ranged: each node attends to all other nodes. With the learned transfor
attention mechanism computes similarity scores between nodes.
First, we transform the node features into Query, Key, and Value vectors:

Q = XWy, K = XWy,V = XW,

Where X is the matrix of input features and Wy, Wy, W, are learned weight majgses
respectively. )‘5

al . The dencies
eryy , and value, the

4

ueries, keys, and values,

e dimension of the keys. d,:

()
Then, we apply the softmax to obtain normalized

(6)
Secondly, we compute the output features by ta the values V weighted by the attention scores:

@)

and the results are concatenated,
Q,K,V) = concat(hy, hy, ..., h,,) )W?° (8)
Where, W2 is the output projecy

To work with sequentia
the input feature vectors

Transformer does not inherently handle and we add positional encoding to
nal encoding for a node at position pos works according to the following formula,

. pos
PE(pos,Zi) = Ssin - (9)
10000d
pos
PE(pos2i+1) = COS| ——; (10)
10000d
e posi | representation pos is positioned at node index i through its feature dimension. The added positional

ing j@Comes an additional component in the node feature set xv.

-Forward Network (FFN):
The" feed-forward network (FFN) operates on output from attention operations where it performs two linear
transformations with ReL U activation functions between them. Through this process, the model learns difficult non-
linear associations. The feed-forward operation follows the following equation:

FFN(x) = max(0,xW; + b)) W, + b, (11)
Where W;, W, are weight matrices and b, b, are biases.
Output Layer (Final Prediction):



The prediction emerges when all layers synchronize their results through a softmax function which operates during
classification assignments. The last output derives from this process:

exp (z;)

softmax(z;)) = =—————
L ?]:1 exp ()

(12)

z; is the input score for the i -th class or element, N is the total number of elements in the input, exp (z;) represents t
exponentiation of z;, the denominator ensures that all output values sum to 1, making it a valid probability distribution.

The architectural view of our proposed model is visualized in Figure 9.
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Figure 9: Architecture of the proposed GAT-TransNd

IVV. RESULT AND ANALYSIS

The current research envisages the complete study of the relationship between the @ical omposition of steel and its
mechanical properties, especially yield strength and tensile strength. T as two major components: predictive
determination of yield strength of steel and an understanding of the effeq alloying elements on the strength of
steel: A data-driven analysis.

4.1 Predicting the Yield Strength

We studied the predictive effect of a novel deep leax appli the modeling of steel yield strength based on
the dependent variable concerning other possible predictor
kel the relationship between the alloying elements-composition
geir corresponding yield strength. Through such predictive
with high accuracy, thereby optimizing steel compositions
ing techniques would ensure greater accuracy in predictions, thereby
sses. In assessing our predictive model's merits, we employed some

approaches, we can predict the mechanical ties of steel
for different applications. More advanced
facilitating material selection and steel
regression assessment metrics inclu

e R2Score: This number gj Y how much variance in the dependent variable (yield strength) is expressed in
the model, that is, how
e Mean Absolute Error s figure gives the average error of the model in absolute terms, whereas it gives a

vidence indicates a definite performance ranking across different evaluation metrics. The Linear
el ranks lowest in this hierarchy, with an R2 score of 0.75. An MAE of 3.45, RMSE of 4.21, and an MSE

Random Forest Regression model was seen at an R of 2 = 0.88, suggesting better capturing of the pattern or
improved accuracy in modeling the actual representation of data. This evidence also reports lesser MAE values of 2.14,
MSE values of 3.11, and MSE values of 9.68, plus a higher explained variance score of 0.89, which indicates that the
model has more apt handling characteristics for the complex, nonlinear relationships within the data. SVR has an R-squared
value of 0.81, comparable to Random Forest. However, it exhibits higher errors in MAE at 3.01 and an RMSE of 4.00,
eventually bringing about a slightly higher MSE value of 16.00. With 0.82 as an explained variance score, it might predict
moderately; however, it lags much behind the Random Forest. The XGBoost regression model again puts other models to
shame, performing fabulously with a predictably superior R? value of 0.92. It thus shows a good prediction score regarding



MAE of 1.85, RMSE of 2.73, and MSE of 7.46, confirming its superior model precision and robustness. Keeping its
prediction prowess high by attaining an explained variance score of 0.92 further reiterates this strength. MLP's R2 score of
0.89 also does well on a low scale of MAE 2.10 and RMSE 3.05, culminating in MSE 9.30. A high score of explained

variance at 0.90 shows good generalization capabilities as a good performer but a little behind XGBoost.

Table 2: Comparison of Evaluation Metrics for Different Regression Models

Model R2 Mean Root Mean Mean Explained
Score Absolute Squared Error Squared Varian
Error (MAE) (RMSE) Error (MSE) Sco
Linear Regression 0.75 3.45 4.21 17.74
Random Forest Regression 0.88 2.14 3.11
Support Vector Regression 0.81 3.01 4.00
(SVR)
XGBoost Regression 0.92 1.85 2.73
Neural Networks (MLP) 0.89 2.10 9.30 0.90
Proposed GAT-TransNet 0.95 40 0 441 0.96
Model (Graph Attention
Transformer Network)
Training and Validation Los Training and Validation Accuracy
—8— Training Accuracy
Validation Accuracy
Il
\
r |
! V 1
[ I'® v M
7
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Figure 10: Training and validation loss and accuracy curves for the proposed GAT-TransNet Model

ast, all models get trumped by the Proposed GAT-TransNet Model (Graph Attention Transformer Network), which
records an astounding R2 of 0.95. This implies that it has greater predictive power than other models in this application. It
is the model with the least numbers for both MAE (1.40) and RMSE (2.10) as well as MSE (4.41). Hence, the GAT-
TransNet model has excellent prediction accuracy but minimal error. An overall score for explained variance measurement
of 0.96 illustrates how the model will work exceptionally well in capturing and describing how much of the variance in the



data can be understood. Thus, it stands on top of being the most reliable and robust model in this comparison. In the end,
while all the models show a trend toward increasing performance over the baseline, Linear Regression, the GAT-TransNet
leads both on accuracy and predictive power, thus making it the most effective model for this task.

The proposed GAT-TransNet Model (Graph Attention Transformer Network) showed excellent training and validatio
performance on the best model as illustrated in Figure 10. The training loss was reduced from an initial value of 1.8 to 0.

sequentially while the validation loss followed a parallel path from 2.0 to 1.0. This pattern of decreasing loss valu

indicates an effective learning ability of the model with the validation loss closely following the training loss, suggestln
good generalization. Regarding accuracy, both training and validation accuracies begin from low values, mar
pronounced upward trajectory as training continues. Training accuracy rises from 0.75 to 1.0 while validation a
rises from 0.72 to 0.99, indicating that the model performs nearly perfectly during the last epochs. Importantly, th
epochs show clear benefits in accuracy and loss, indicating the model's optimization and learning stability g
performance indicates effective learning of the GAT-TransNet with good generalization ability to a
achieving high accuracy in both training and validation sets.
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A scatter plot for predicted values against the actual values is seen in Figure 11. The red dashed line is perfect for
predictions; that is, the predicted values would be exactly equal to those of the actual ones. Most of the data points appear
close to this line, so the model must have high accuracy. However, some scatter exists around that line, margin found not
too often in between the predicted and actual values. Though it declares the model to be quite good, it suggests improvement
in decreasing the extent of deviation in predictions.



Residuals, or actuals minus predicted value, are plotted in Figure 12 against predicted values. The plot indicates a somewhat
random scatter of points about the red dashed horizontal line at zero. The absence of any clear trend signifies what we
desire: the residuals of the model are being randomly distributed, indicating no bias in the model and with errors not
following any trend. This indicates that the model has successfully captured the relationship between the inputs and target
variable and indicates no signs of either underfitting or overfitting.

4.2 Data-Driven Analysis

4.2.1 How does the variation in carbon (C) content affect the mechanical properties of steel alloys?

The yield and ultimate tensile stress increased with higher carbon content, while elongation remained almost co
visualized in Figure 13. The explanation given was that solid-solution hardening retards dislocation motion. 4
trend of yield stress and ultimate tensile stress with increasing carbon content suggests that carbon atoms i
motion and thus contribute toward strengthening the material. However, the elongation does not chzsgye
increased carbon, implying that ductility is unaffected. This behavior is explained by the increase ngth
due to the presence of carbon as a solid solution in the iron matrix, which does not app p lasticity.

Carbon (C) percentage distribution (in %) from dataset
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Figure 13: Histogram showing the disigb

4.2.2 How does adding mang influence steel’s strength and mechanical properties?

Figure 14 indicates that man 4ior alloy of manganese, iron, and carbon have a higher hardness and wear resistance

istorts the latter to a greater extent so that dislocation movement is retard.
ibute towards the pearlite formation and has some additional microstructures that will give better

ive and applicable for demanding high-durability applications like the construction, mining, and
stries. This is because manganese steel assures a longer service life for applications and parts that wear

, rather than increase strength, improve impact and abrasion resistance, making the alloy applicable to severe
nditioMs where fatigue and wear are common.



Manganese (Mn) percentage distribution (in %) from dataset
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Figure 14: Histogram of Manganese (Mn) percentage distribution in a dataset raw from0.0% to 3.0%, with most

values concentrated below Q W

4.2.3 How does Silicon (Si) addition influence the properties oigalkel?

From the above Figure 15, it is evident that steel's

rcentage distribution (in %) from dataset
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Figure 15: Histogram of Silicon (Si) percentage distribution in a dataset, with the majority of values near 0.0% and a long

tail up to 4.0%.



4.2.4 What does adding Chromium (Cr) to steel do?

Chromium (Cr) percentage distribution (in %) from dataset
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Figure 16: Histogram of Chromium (Cr) percentage distribution in a dataset, showing pcSg@anear 0.0% and 12.5%, with
values ranging up to 17.5%

4.2.5 What are the effects of various alloying ele
Nitrogen (N), Niobium (Nb), Cobalt (Co), Tungs
the properties of steel?

hardenability, toughness, and tensile stren t also promotes quenching in the heat treatment process to produce
strong and hard steel because it lo irdl quench rate. Vanadium refines the grain structure of steel and
strengthens it, increases toughnes i wear resistance. When vanadium dissolves in austenite at high
temperatures, it helps steel to passlan: ver, being in the form of vanadium carbides lowers hardenability. Nb greatly
lled steel with a rise of about 80% in yield strength due to an increase in
niobium content from 0.2 toWR0 wt.%. Jhe presence of niobium carbides at rolling temperatures wards off excessive grain
growth hence ge i cNGadPNanical properties. Cobalt also plays a major role in the processing of alloy steels.

brings pred@ita$i ingNPungsten, when it acts as an alloying element, improves hardness, strength, wear resistance,
sion resistance in steel and therefore approaches that for high-performance applications.

V. CONCLUSION

properties and performance has become paramount in preventing structural dysfunctions in associated
s. The research has rightly demonstrated, using a host of regression models including the proposed Graph
ttention Transformer Network (GAT-TransNet), the enhanced ability of advanced machine-learning techniques toward
the prediction of steel properties. This study further assessed alloying elements such as carbon, manganese, and chromium,
the evaluation of mechanical properties of steel. This provided insight into relationships between material composition
and performance in steel optimization for specific applications. It further generated questions concerning basic material
properties and the relevance of elongation, yield strength, and tensile strength in evaluating steel quality. Higher elongation
usually signifies that the material is ductile and rigid, whereas yield strength becomes essential when the steel is loaded
structurally by far-reaching forces, loads, and impacts. In addition, the study made distinctions between yield strength and



tensile strength, stating that yield strength becomes vital for ductile materials, while tensile strength becomes essential for
brittle ones. The distinction clarifies how these two properties are important in material design and selection. In conclusion,
the research provides extra insight into how composition influences the mechanical properties of steel while further
reaffirming the efficacy of machine learning models in predicting materials. This provides insight into steel alloy design
and selection for enhanced performance and durability across various industrial applications.
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