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Abstract –  

The research presents a hybrid approach of regression modeling with data-driven analysis for predicting steel's mechanical 

properties by analyzing the effects of composition on strength. The study fills the gap of models in accurately predicting 

steel's performance based on composition since traditional methods cannot fully capture complex relationships between 

alloying elements and material properties. Various regression models have been used for predicting material properties, 

such as Linear Regression, Random Forest Regression, Support Vector Regression (SVR), XGBoost Regression, and 

Neural Networks, and in this paper, Graph Attention Transformer Network (GAT-TransNet) is proposed. Incorporating 

novel graph attention into the transformer architecture model, GAT-TransNet handles complex data relationships and 

improves predictive accuracy. Data-driven analyses are also carried out alongside regression analysis to establish how 

alloying elements, such as carbon (C), manganese (Mn), and chromium (Cr), affect steel's mechanical properties strength, 

yield strength, hardness, and ductility. The study established that the GAT-TransNet model outperformed other regression 

models, with an R² score of 0.95, the lowest MAE of 1.40, and an MSE of 4.41, thus underscoring its superior predictive 

capability compared to existing models. Data-driven insights show that manganese hardens and increases wear resistance, 

while chromium enhances corrosion resistance and increases tensile strength. This has great importance for optimizing 

specific steel compositions for industrial applications. Combining machine learning methodologies with composition 

analysis, this study complements predictive modeling for steel properties with material design and promises better 

efficiency and targeting in steel production. 

Keywords - Graph Attention Network (GAT), Transformer-based Regression, Self-Attention, Tensile Strength Prediction, 

Steel Strength Estimation, Mechanical Property Prediction, Data-driven Analysis. 

 

 

I. INTRODUCTION 

 

Testing metals consists of evaluating both the chemical makeup and internal structure along with the material strength of 

metallic materials and their alloys in pure or combination forms [1]. Industrial metal evaluation is pivotal for materials 

science as well as manufacturing and quality control because it verifies metal compliance with necessary industrial 

requirements [2]. The category for metal testing methods consists of either destructive or non-destructive approaches. 

Materials are verified with quick speed through chemical property databases for non-destructive testing methods that 

maintain both the original structure and identity of pure metals [3]. Expert validation of metal alloy compositions normally 

requires destructive testing because the sample needs to be systematically destroyed to obtain necessary examination data 

[4]. Such traditional methods deliver accurate results yet they involve significant time and cost as well as the generation of 

wasted materials. 

Modern computational methods and machine learning techniques [5] minimize the requirement for extensive physical 

testing through their data-driven approaches [6]. Traditional experimental techniques need sophisticated laboratory 
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facilities along with prolonged time for determining material behavior [7]. The multiple factors such as microstructure 

composition and heat treatment conditions affect how yield stress, ultimate tensile strength, and fracture strain behave in 

materials [8][9]. The forecasting of these properties remains challenging through standard techniques so machine learning 

[10] serves as an effective alternative solution [11]. 

Present deep learning [12][13] material property prediction systems have major performance problems. CNN-based 

material architectures succeed at finding spatial patterns of material structures but perform poorly when analyzing long-

distance material properties [14]. The Transformer architecture excels at using sequences but standard Transformer models 

cannot utilize material microstructures that follow a graph pattern [15]. Most research projects use supervised models with 

small datasets which prevents their findings from working across many situations [16]. Moreover, existing studies in 

material property prediction face key limitations. Traditional regression models need extensive data while CNNs struggle 

with global dependencies yet capture local information effectively [17]. Transformers excel at processing sequences but 

they cannot efficiently handle materials represented as graphs [18]. Researchers mainly use small topic-specific sample 

sets for their work which makes the results hard to apply to different materials plus they often employ supervised learning 

that needs many training examples [19]. Our research shows a standard system works best when combined with neural 

graph learning and attention to achieve better results and handle various materials effectively. To overcome these 

challenges, we introduce a hybrid data-driven deep learning method for predicting material properties using the Graph 

Attention Transformer Network (GAT-TransNet). In this framework, learning based on graphs is combined with 

transformer networks to utilize their strengths in a complementary way for improved predictive accuracy. While Graph 

Attention Networks (GAT) represent the spatial and structural relationships in material microstructures and transformer 

networks enhance the long-range dependency modeling by operating under the attention mechanism, combining both of 

these approaches, we derive a robust regression-based model for predicting the material properties at high precision using 

the R² score. 

The following key contributions are made in this study: 

1. A novel GAT-TransNet model that combines graph learning with transformer-based architectures for material 

property prediction is proposed. 

2. It presents a hybrid deep learning framework to increase the prediction accuracy of yield stress, ultimate stress, 

and fracture strain of the dual-phase steels. 

3. It provides a reliable, data-driven approach that replaces experiment-dependent analysis of material behavior with 

reduced dependence on costly experiments. 

4. Graph-based material representations are introduced to aid a better understanding of complex microstructural 

relationships. 

5. It performs well in high prediction performance, evaluated by R² score, better than traditional CNN and 

transformer-based models. 

 

II.  LITERATURE REVIEW 

 

In the last few decades, machine learning has emerged as a powerful tool in materials science to discover materials, 

optimize manufacturing processes, and predict properties based on data. By comparing the studies reviewed here one can 

see how ML can be applied to a variety of material systems including metals and alloys and metal-organic frameworks 

(MOF), with different models trained using a variety of methodologies. 

Using ResNet50 and VGG16 components in a hybrid deep learning tool developed by Darabi et al. [20] succeeded in 

predicting dual-phase steel mechanical conduct which resulted in less than 1% prediction error. The model demonstrates 

high prediction precision yet its operability restriction for industrial use produces expensive computation requirements. 

Support Vector Regression (SVR) combined with symbolic regression in Fang et al. [21]'s research yielded predictions for 

solid-liquid phase transition temperatures in precious metal alloys with under 9.83% and 9.35% prediction errors in solid 

as well as liquid phases. Their predictive approach requires expensive computations and depends heavily on manual system 

details creation thus making it challenging for wide alloy system applications. The research by Li et al. [22] developed a 

Bayesian Neural Network (BNN) with Markov Chain Monte Carlo (MCMC) sampling for uncertainty quantification in 

steel alloy creep rupture life prediction. The technique proves better than traditional methods while facing similar 

computational challenges from researchers suffering from previous distribution sensitivity and convergence failure. 
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Cao et al. [23] designed MOFormer which utilizes MOFid text-based representations to perform structure-agnostic 

predictions of quantum-chemical properties. Despite outperforming the 3D-structure-dependent algorithms like CGCNN 

in data efficiency the text input of MOFormer does not account for complex structural details which Jose et al. [24]’s 

method minimizes through its regression tree-based active learning framework. The authors of Jose et al. developed low-

dimensional descriptors to predict band gap and adsorption properties in MOFs while achieving better results than 

alternative active learning techniques during data-sparse conditions. The approaches by Cao et al. [23] and Jose et al.[24] 

encounter difficulties when attempting to represent complex material features since they use text-based and simple 

descriptor methods that affect the trade-off between computational complexity and structural accuracy. 

Akbari et al. [25] developed a physics-aware featurization benchmarking framework for metal additive manufacturing 

(MAM) to predict melt pool characteristics that is more accurate and interpretable than the traditional Rosenthal estimation. 

On the other hand, Logeswaran et al. [26] compared regression-based ML models (grey Matrix forest, Gradient Boosting) 

as they predicted hardness in low alloy metals and could perform better than physics-based methods but lacked 

interpretability. Both studies emphasize the importance of dataset quality and diversity and the relative adaptability of the 

Akbari et al. [25]’s framework, which is more physics-informed, as compared to the models from Logeswaran et al. [26] 

which may overfit in scenarios that are too complex. Stoll et al. [27] reviewed ML applications for broader metallic material 

characterization showing a strong correlation between small punch test (SPT) and the tensile test data, which decreases the 

need for expensive experiments. Wang et al. [28] used XGBoost to predict the mechanical properties of ultrathin niobium 

strips and successfully achieved R²=0.944 and R² = 0.964 in predicting the tensile and yield strength respectively. Both are 

excellent use cases for leveraging data-driven insight, but are limited by the need for very large, high-quality datasets: Stoll 

et al. [27] in the case of training across scales and Wang et al. [28] for predictions based on microstructure-specific datasets. 

Following the introduction of gradient boosting techniques, Wang et al. [28]’s outperforms Random Forest and MLP 

models, but because of the price tag for the hyperparameter, gradient boosting techniques are better in terms of 

outperforming the two models above. 

Justi et al. [29] finally also applied FTIR spectroscopy with partial least squares (PLS) regression to predict the properties 

of metal complexes, thus providing a fast, non-destructive alternative to conventional methods. However, even though 

spectral overlap and calibration restrictions make it less precise than the more computationally demanding, but structurally 

detailed, approaches of Darabi et al. [20] or Li et al. [22], it is very effective for predictions of stability and solubility. All 

of these aspects are a recurring theme throughout the studies and it is reflected in this trade-off between speed and depth. 

III.    METHODOLOGY 

 

This section explains the overall workflow of our proposed GAT-TransNet model to perform regression analysis based on 

data input. Our suggested method uses graph-based learning to spot data dependencies both near and far which makes 

predictions more accurate and stable. The model employs GAT and self-attention from Transformers to learn effectively 

while dealing with noisy input data and large datasets. The method improves standard regression methods through 

attention-based feature aggregation while using structured input data to solve main problems, and performance evaluation, 

all of which are summarized in Figure 1 to provide a complete and reproducible framework. 

 

Figure 1: Overview of the research methodology framework 

3.1   Dataset Description and Preprocessing 
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The dataset [30] contains findings for 312 different steel compositions with mechanical properties, including yield strength 

and ultimate tensile strength measured through experiments. The data has been retrieved from Citrine, enhanced, and de-

duplicated for accuracy and reliability purposes. It is available in Monty Encoder's JSON encoding format, as well as CSV 

format, to allow flexibility in different analytic workflows. Recommended access includes the use of the matminer Python 

package through the datasets module, which can be readily plugged into a materials informatics undertaking. The dataset 

is hence a useful addition to the discussion of structure-property relationships for steels and the development of machine-

learning-based predictive materials design. During the cleaning process, 9 columns containing infinite (inf) or missing 

(NaN) values were identified and removed, reducing the dataset from 312 to 303 valid columns. The overall distribution 

of the dataset is shown in Figure 2. 

 

Figure 2: Distribution of the dataset 

The distribution plot (distplot) has been utilized to analyze each numerical feature of the data set since it usually shows the 

underlying data patterns, skewness, and distribution. A distplot combines a histogram and Kernel Density Estimation 

(KDE), indicating whether a feature follows the normal, skewed, or multimodal distribution. This analysis is very important 

when choosing suitable preprocessing techniques such as normalization or transformation to improve the performance of 

the model. Yield strength and tensile strength distribution have been studied to see whether they require any scaling or 

transformation. Moreover, the comparison of many features helped to identify the differences in distribution over featured 

ones as it is very important in feature engineering and machine learning applications. The overall distribution analysis of 

all the features of the dataset is shown in Figure 3. 

 

Figure 3: Distribution plots (distplots) for each numerical feature in the dataset 
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3.2 Outlier Detection and Removal 

To ensure data quality and refine the reliability of subsequent analytics, we applied a purification outlier rejection process 

according to the interquartile range (IQR) method. The outlier was identified by the following formula:   

Outlier = (Greater than Q3 + 1.5 × IQR) OR (Lower than Q1 − 1.5 × IQR) 

Where Q1 and Q3 may be denoted as the first and third quartiles, respectively, and IQR is the interquartile range (Q3 - 

Q1). Applying this formula brought up every numerical column of the dataset. A custom user function was created for 

iteration through all the features with a threshold marking the upper and lower bounds assigned to potential outliers. These 

few outliers would then also be verified and even one would only be removed if they affect the overall integrity of the 

dataset. After cleaning values, it showed that the dataset became much more statistically consistent. Furthermore, resulting 

non-zero values indicated possible outliers within the resulting dataset. These outliers were also at the column level for 

further evaluation, and the rows affected were dropped accordingly to achieve a more representative data set. Subsequently, 

after removal, the dataset was scrutinized and re-evaluated across overall distribution to ensure that the outliers did not 

have any inconsistency or alteration in the actual underlying trends in yield strength, tensile strength, and alloy 

compositions. This dataset, thinned out to remove extreme values, has thus been construed as more amenable to analysis 

and modeling work. Figure 4 is a box plot representing the distribution of different numerical variables in the dataset. It 

shows the presence of outliers across various features. Each box represents the interquartile range (IQR), with the central 

line indicating the median. The whiskers extend to 1.5 times the IQR, while points sitting outside the whiskers are 

considered outliers. The key observations from this plot include: 

➔ The majority of the features have very small values, thereby yielding compressed boxplots near zero. 

➔ The yield strength and tensile strength variables exhibit more spread, along with numerous outliers as indicated 

by the circular markers beyond the whiskers. 

➔ Outliers indicate that those values differ significantly from the main distribution of the data.  

 

Figure 4: Box plot representing the distribution of various numerical features in the dataset. 

Figure 5 comprises numerous scatter plots showing the distribution of data points for various numerical features. Among 

the relevant observations are:  

➔ Some features Mn, Si, Cr, Ni, Mo, Nb, and W show distinctly separated clusters, which indicates some patterns 

in the distributions of their data. 

➔ The features yield strength, tensile strength, and elongation, however, show a relatively wider distribution with 

the presence of obvious extreme values. 

➔ Some variables show concentrations of data points near zero, which further indicates a high occurrence of small 

values in the dataset.  
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Figure 5: Scatter plots displaying the distribution of individual numerical features. 

The scatter plot analysis suggests that some features are associated and display some kind of relationship, with some 

variables showing more symmetric distributions while others are skewed or irregular. 

3.3   Correlation Analysis 

Once a correlation between variables has been established, it can be an effective predictor. With a strong relationship 

between two or more variables, if the value of one variable is known, a better estimate can be made for another. The degree 

of correlation denotes the accuracy of the prediction, wherein higher correlation coefficients indicate stronger association 

and thus more reliable predictions. In the case of perfect correlation (positive or negative), the prediction could be made 

with complete certainty. On the other hand, when the correlation is weak, predictions will become very erroneous due to 

higher variability in the relationship. The scatterplot matrix (Figure 6 ) gives the pairwise comparison of all numerical 

features in the dataset, thus allowing us to visually assess their relationships. Each subplot shows a scatterplot between two 

different variables, indicating possible linear correlations or non-linear correlations. The diagonal plots represent 

histograms and are typically used to show the distribution of each feature independently. From the patterns seen in these 

scatterplots, one can infer possible dependencies or trends such as clustering, outliers, or linear relationships. For example, 

a tight clustering of points along the diagonal of a scatterplot denotes strong correlations, while a greater scatter would 

indicate weak or no correlations between the two variables. 

The triangular heatmap (Figure 7) graphically represents the correlation matrix of the dataset under consideration using its 

upper or lower triangular portions alone to avoid redundancy. The color scale, ranging from blue (indicating negative 

correlation) to red (indicating positive correlation), helps visualize where strong positive or negative relationships exist 

between features. Importantly, by allowing the elimination of duplicate values that normally exist in a full correlation 

matrix, this visualization and its interpretation are further simplified. Thus high positive correlations, e.g. those between 

tensile strength and yield strength, have mutual significant dependencies among these features; near-zero correlations 

indicate that the variables are independent. 

The complete correlation heatmap (Figure 8) offers a panoramic view of pairwise relationships among all attributes in the 

dataset, with the underlying correlation values delineated against the background for precision. The numerical values of 

the correlation color the scale from -1 (strong negative correlation) to +1 (strong positive correlation). The illustration here 

serves primarily for feature selection into machine learning models; correlated features are highly more likely to offer 

redundancy, while weakly correlated ones help in generalizations. Chemical composition parameters like Nickel (Ni) and 

Chromium (Cr) are negatively correlated, while mechanical property parameters like tensile strength and yield strength 

confirm the interdependence between these two. 
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Figure 6: Scatterplot Matrix for Feature Relationships 

 

 

Figure 7: Triangular Correlation Heatmap 
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Figure 8: Full Correlation Matrix Heatmap 

 

In analyzing the correlations, key mechanical properties in the dataset proved to be significantly correlated. The Pearson 

correlation coefficient for the yield strength and tensile strength was found to be 0.821, with a p-value of 1.80e-77, 

indicating a strong positive correlation. An increase in yield strength would increase the tensile strength of materials and 

hence, the interdependence of these two properties concerning material behavior. As for yield strength and elongation, 

there is an inverse correlation, as depicted by the scatterplot, meaning that higher yield strength results in still lower 

elongation, meaning tougher materials are likely to be less ductile. In the same manner, an increase in tensile strength 

causes elongation to fall, which adds support to the inverse correlation between strength and ductility. These correlations 

have much to say regarding the trade-offs of mechanical properties of great practical importance in the selection of 

materials for engineering applications; hence they deserve close examination. 

3.4 Proposed Graph Attention Transformer Network Model (GAT-TransNet) 

Our proposed GAT-TransNetwork model is a strong one that works with graph-structured data. It combines the best parts 

of GAT and self-attention mechanisms based on transformers. It is proposed to capture the local relationship between 

neighboring nodes and long-range relationships over the whole graph. First, the model localizes context using graph 

attention, and then the global context is enriched with Transformer layers. While maintaining the spatial and sequential 

properties of the data, GAT-TransNet can prognostically predict graphs' capabilities through its combination of multi-head 

attention and positional encoding and handle complex large-scale graphs with high efficiency. This property makes these 

tasks particularly well-suited for working with the transformer, for example, node classification, graph-based anomaly 

detection, and graph representation learning. 
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• Input Layer (Graph Construction): 

The input consists of a graph 𝐺 = (𝑉, 𝐸), where each node 𝑣 ∈ 𝑉 has an associated feature vector 𝑥𝑣∈ℝ𝑑. These 

feature vectors serve as the starting point for further processing in the network. The equation for this 

𝑥𝑣 ∈ ℝ𝑑  𝑓𝑜𝑟 𝑣 ∈ 𝑉                                                                                 (1) 

• Graph Attention Layer (GAT Layer): 

The Graph Attention Layer computes attention coefficients 𝛼𝑣𝑢 to weight the contribution of each neighboring node 

𝑢 for node 𝑣. The attention mechanism enables to to pay attention to dominated neighbors according to feature 

similarity. The attention score 𝛼𝑣𝑢 between nodes 𝑣 and 𝑢 is computed as: 

𝛼𝑣𝑢=
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊𝑥𝑣||𝑊𝑥𝑢]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊𝑥𝑣||𝑊𝑥𝑢′]))𝑢′∈𝑁(𝑣)⋃{𝑣}

                                                      (2) 

Where 𝑁(𝑣) denotes the neighbors of node 𝑣, and 𝑎 is the attention weight vector.  

Then, the output feature for node 𝑣 is: 

ℎ𝑣
′ = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(∑ 𝛼𝑣𝑢𝑊𝑢∈𝑁(𝑣)∪{𝑣} 𝛼𝑢)                                                    (3) 

• Transformer Layer (Self-Attention Mechanism): 

Each node’s feature vector is applied by the Transformer Layer with a self-attention mechanism. The dependencies 

are long-ranged: each node attends to all other nodes. With the learned transformations to query, key, and value, the 

attention mechanism computes similarity scores between nodes. 

First, we transform the node features into Query, Key, and Value vectors: 

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉                                                                 (4)  

Where 𝑋 is the matrix of input features and 𝑊𝑄, 𝑊𝐾, 𝑊𝑉 are learned weight matrices for queries, keys, and values, 

respectively. 

We then compute attention scores between each query and all keys scaled by the dimension of the keys. 𝑑𝑘: 

𝐴 =
𝑄𝐾𝑇

√𝑑𝑘

                                                                                          (5) 

Then, we apply the softmax to obtain normalized attention weights, 

𝛼𝑣𝑢 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴)                                                                              (6) 

Secondly, we compute the output features by taking a weighted sum of the values 𝑉 weighted by the attention scores: 

ℎ𝑣
′ = ∑ 𝛼𝑣𝑢𝑉𝑢                                                                                     (7)

𝑢∈𝑉

 

The above attention mechanism is applied to different learned projections (i.e., multi-head Attention) multiple times, 

and the results are concatenated, 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2, … , ℎ𝑛)𝑊𝑂                                               (8) 

Where, 𝑊𝑂 is the output projection matrix. 

 

• Positional Encoding (for Transformer Layer): 

To work with sequential information, the Transformer does not inherently handle and we add positional encoding to 

the input feature vectors. The positional encoding for a node at position 𝑝𝑜𝑠 works according to the following formula, 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖
𝑑

)                                                                        (9) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

10000
2𝑖
𝑑

)                                                                  (10) 

The positional representation 𝑝𝑜𝑠 is positioned at node index 𝑖 through its feature dimension. The added positional 

encoding becomes an additional component in the node feature set 𝑥𝑣. 

• Feed-Forward Network (FFN): 

The feed-forward network (FFN) operates on output from attention operations where it performs two linear 

transformations with ReLU activation functions between them. Through this process, the model learns difficult non-

linear associations. The feed-forward operation follows the following equation: 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2                                                        (11) 

Where 𝑊1, 𝑊2 are weight matrices and 𝑏1, 𝑏2 are biases. 

• Output Layer (Final Prediction): 
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The prediction emerges when all layers synchronize their results through a softmax function which operates during 

classification assignments. The last output derives from this process: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑁
𝑗=1

                                                                      (12) 

𝑧𝑖 is the input score for the 𝑖 -th class or element, 𝑁 is the total number of elements in the input, exp (𝑧𝑖) represents the 

exponentiation of 𝑧𝑖, the denominator ensures that all output values sum to 1, making it a valid probability distribution. 

The architectural view of our proposed model is visualized in Figure 9. 

 

Figure 9: Architecture of the proposed GAT-TransNet model 

 

IV.  RESULT AND ANALYSIS 

 

The current research envisages the complete study of the relationship between the chemical composition of steel and its 

mechanical properties, especially yield strength and tensile strength. The study has two major components: predictive 

determination of yield strength of steel and an understanding of the effect of various alloying elements on the strength of 

steel: A data-driven analysis. 

4.1 Predicting the Yield Strength 

We studied the predictive effect of a novel deep learning approach applied to the modeling of steel yield strength based on 

the chemical composition, where the study used yield strength as the dependent variable concerning other possible predictor 

variables of interest. Regression techniques were used to model the relationship between the alloying elements-composition 

of steel, Carbon (C), Manganese (Mn), and Silicon (Si), with their corresponding yield strength. Through such predictive 

approaches, we can predict the mechanical properties of steel with high accuracy, thereby optimizing steel compositions 

for different applications. More advanced deep learning techniques would ensure greater accuracy in predictions, thereby 

facilitating material selection and steel production processes. In assessing our predictive model's merits, we employed some 

regression assessment metrics included in our analysis. 

• R² Score: This number gives an idea of how much variance in the dependent variable (yield strength) is expressed in 

the model, that is, how well the model fits the data. 

• Mean Absolute Error (MAE): This figure gives the average error of the model in absolute terms, whereas it gives a 

sense of how big the errors of the model are. 

• Root Mean Squared Error (RMSE): This gives an idea of the average magnitude of the errors, where larger errors 

are penalized more heavily, thereby giving a better picture of the model prediction accuracy. 

• Mean Squared Error (MSE): In a way analogous to RMSE, MSE gives the average difference between predicted 

and actual as squared values, which are of interest to larger prediction errors. A comparative performance is shown in 

Table 2. 

The regressions' evidence indicates a definite performance ranking across different evaluation metrics. The Linear 

Regression model ranks lowest in this hierarchy, with an R² score of 0.75. An MAE of 3.45, RMSE of 4.21, and an MSE 

of 17.74 indicate minimal performance margins because these measures can moderate error levels. A marked improvement 

from the Random Forest Regression model was seen at an R of 2 = 0.88, suggesting better capturing of the pattern or 

improved accuracy in modeling the actual representation of data. This evidence also reports lesser MAE values of 2.14, 

RMSE values of 3.11, and MSE values of 9.68, plus a higher explained variance score of 0.89, which indicates that the 

model has more apt handling characteristics for the complex, nonlinear relationships within the data. SVR has an R-squared 

value of 0.81, comparable to Random Forest. However, it exhibits higher errors in MAE at 3.01 and an RMSE of 4.00, 

eventually bringing about a slightly higher MSE value of 16.00. With 0.82 as an explained variance score, it might predict 

moderately; however, it lags much behind the Random Forest. The XGBoost regression model again puts other models to 

shame, performing fabulously with a predictably superior R² value of 0.92. It thus shows a good prediction score regarding 
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MAE of 1.85, RMSE of 2.73, and MSE of 7.46, confirming its superior model precision and robustness. Keeping its 

prediction prowess high by attaining an explained variance score of 0.92 further reiterates this strength. MLP's R² score of 

0.89 also does well on a low scale of MAE 2.10 and RMSE 3.05, culminating in MSE 9.30. A high score of explained 

variance at 0.90 shows good generalization capabilities as a good performer but a little behind XGBoost. 

                                                Table 2: Comparison of Evaluation Metrics for Different Regression Models 

Model R² 

Score 

Mean 

Absolute 

Error (MAE) 

Root Mean 

Squared Error 

(RMSE) 

Mean 

Squared 

Error (MSE) 

Explained 

Variance 

Score 

Linear Regression 0.75 3.45 4.21 17.74 0.76 

Random Forest Regression 0.88 2.14 3.11 9.68 0.89 

Support Vector Regression 

(SVR) 

0.81 3.01 4.00 16.00 0.82/ 

XGBoost Regression 0.92 1.85 2.73 7.46 0.92 

Neural Networks (MLP) 0.89 2.10 3.05 9.30 0.90 

Proposed GAT-TransNet 

Model (Graph Attention 

Transformer Network) 

0.95 1.40 2.10 4.41 0.96 

 

 

Figure 10: Training and validation loss and accuracy curves for the proposed GAT-TransNet Model 

Last, all models get trumped by the Proposed GAT-TransNet Model (Graph Attention Transformer Network), which 

records an astounding R² of 0.95. This implies that it has greater predictive power than other models in this application. It 

is the model with the least numbers for both MAE (1.40) and RMSE (2.10) as well as MSE (4.41). Hence, the GAT-

TransNet model has excellent prediction accuracy but minimal error. An overall score for explained variance measurement 

of 0.96 illustrates how the model will work exceptionally well in capturing and describing how much of the variance in the 
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data can be understood. Thus, it stands on top of being the most reliable and robust model in this comparison. In the end, 

while all the models show a trend toward increasing performance over the baseline, Linear Regression, the GAT-TransNet 

leads both on accuracy and predictive power, thus making it the most effective model for this task. 

The proposed GAT-TransNet Model (Graph Attention Transformer Network) showed excellent training and validation 

performance on the best model as illustrated in Figure 10. The training loss was reduced from an initial value of 1.8 to 0.75 

sequentially while the validation loss followed a parallel path from 2.0 to 1.0. This pattern of decreasing loss values 

indicates an effective learning ability of the model with the validation loss closely following the training loss, suggesting 

good generalization. Regarding accuracy, both training and validation accuracies begin from low values, marking a 

pronounced upward trajectory as training continues. Training accuracy rises from 0.75 to 1.0 while validation accuracy 

rises from 0.72 to 0.99, indicating that the model performs nearly perfectly during the last epochs. Importantly, the last 10 

epochs show clear benefits in accuracy and loss, indicating the model's optimization and learning stability over time. This 

performance indicates effective learning of the GAT-TransNet with good generalization ability to an unseen dataset 

achieving high accuracy in both training and validation sets. 

 

Figure 11: Predicted vs Actual Plot 

 

Figure 12: Residual Plot 

A scatter plot for predicted values against the actual values is seen in Figure 11. The red dashed line is perfect for 

predictions; that is, the predicted values would be exactly equal to those of the actual ones. Most of the data points appear 

close to this line, so the model must have high accuracy. However, some scatter exists around that line, margin found not 

too often in between the predicted and actual values. Though it declares the model to be quite good, it suggests improvement 

in decreasing the extent of deviation in predictions. 
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Residuals, or actuals minus predicted value, are plotted in Figure 12 against predicted values. The plot indicates a somewhat 

random scatter of points about the red dashed horizontal line at zero. The absence of any clear trend signifies what we 

desire: the residuals of the model are being randomly distributed, indicating no bias in the model and with errors not 

following any trend. This indicates that the model has successfully captured the relationship between the inputs and target 

variable and indicates no signs of either underfitting or overfitting. 

 

4.2 Data-Driven Analysis 

 

4.2.1 How does the variation in carbon (C) content affect the mechanical properties of steel alloys? 

The yield and ultimate tensile stress increased with higher carbon content, while elongation remained almost constant as 

visualized in Figure 13. The explanation given was that solid-solution hardening retards dislocation motion. A clear upward 

trend of yield stress and ultimate tensile stress with increasing carbon content suggests that carbon atoms inhibit dislocation 

motion and thus contribute toward strengthening the material. However, the elongation does not change appreciably with 

increased carbon, implying that ductility is unaffected. This behavior is explained by the increased strength of the material 

due to the presence of carbon as a solid solution in the iron matrix, which does not appreciably impede plasticity. 

 
Figure 13: Histogram showing the distribution of Carbon (C) percentages in a dataset, measured as a percentage of total 

composition 

 

4.2.2 How does adding manganese (Mn) influence steel's strength and mechanical properties? 

 

Figure 14 indicates that manganese steel or alloy of manganese, iron, and carbon have a higher hardness and wear resistance 

than other steels. The manganese alloy is used mainly to harden the steel to resist deformation and wear, especially under 

high-stress conditions. It strengthens hardness by forming a solid solution strengthening by which the manganese atom 

dissolves in the iron lattice and distorts the latter to a greater extent so that dislocation movement is retard.  

Manganese will also contribute towards the pearlite formation and has some additional microstructures that will give better 

mechanical properties such as augmenting the tensile strength. The augmented strength and abrasion resistance make 

manganese steel effective and applicable for demanding high-durability applications like the construction, mining, and 

manufacturing industries. This is because manganese steel assures a longer service life for applications and parts that wear 

and stress repetitively, which means less frequent replacements for efficient cost-effectiveness. Manganese additions in 

steel would, rather than increase strength, improve impact and abrasion resistance, making the alloy applicable to severe 

conditions where fatigue and wear are common. 
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Figure 14: Histogram of Manganese (Mn) percentage distribution in a dataset, ranging from 0.0% to 3.0%, with most 

values concentrated below 0.5% 

4.2.3 How does Silicon (Si) addition influence the properties of steel? 

 

From the above Figure 15, it is evident that steel's mechanical and electrical properties are highly dependent on the silicon 

content. Steels with 5 percent silicon have increased electrical resistivity, making them extremely useful in electric 

transformer and motor core applications. Silicon enables the yield point and tensile strength of steel, improving structural 

performance. However, increased brittleness, resulting in reduced elongation values, is one of the significant disadvantages 

of a higher amount of silicon. The strength-ductility balance brought about by high-silicon steel should be carefully 

deliberated before incorporation for optimal suit in purpose. 

 
Figure 15: Histogram of Silicon (Si) percentage distribution in a dataset, with the majority of values near 0.0% and a long 

tail up to 4.0%. 
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4.2.4 What does adding Chromium (Cr) to steel do? 

 

Figure 16: Histogram of Chromium (Cr) percentage distribution in a dataset, showing peaks near 0.0% and 12.5%, with 

values ranging up to 17.5% 

 

As an essential component for stainless steel manufacturing, chromium forms approximately 18% in most stainless steel 

alloys. This element increases the hardness and toughness while greatly enhancing corrosion resistance, particularly at 

elevated temperatures. Corrosion testing has, therefore, shown in Figure 16. 

 

4.2.5 What are the effects of various alloying elements, including Nickel (Ni), Molybdenum (Mo), Vanadium (V), 

Nitrogen (N), Niobium (Nb), Cobalt (Co), Tungsten (W), Aluminium (Al), Titanium (Ti), and Chromium (Cr), on 

the properties of steel? 

 

Nickel is used for hardening steel, but it also increases the toughness and ductility while increasing strength and hardness. 

This is very helpful at low temperatures in improving toughness. Like chromium, it contributes to corrosion resistance, 

hardenability, toughness, and tensile strength of steel but also promotes quenching in the heat treatment process to produce 

strong and hard steel because it lowers the required quench rate. Vanadium refines the grain structure of steel and 

strengthens it, increases toughness, and improves wear resistance. When vanadium dissolves in austenite at high 

temperatures, it helps steel to harden; however, being in the form of vanadium carbides lowers hardenability. Nb greatly 

increases the strength and hardness of hot-rolled steel with a rise of about 80% in yield strength due to an increase in 

niobium content from 0.2 to 1.0 wt.%. The presence of niobium carbides at rolling temperatures wards off excessive grain 

growth hence the improvement in mechanical properties. Cobalt also plays a major role in the processing of alloy steels. 

Cobalt raises the temperature of martensitic transformation lowers the amount of retained austenite in the alloy steel and 

brings precipitation hardening. Tungsten, when it acts as an alloying element, improves hardness, strength, wear resistance, 

toughness, heat, and corrosion resistance in steel and therefore approaches that for high-performance applications. 

V. CONCLUSION 

This study emphasizes how crucial regression modeling and data-driven analysis are in understanding the mechanical 

properties of ferrous materials, particularly steel. Steel is ubiquitous in industrial and manufacturing applications; thus, 

predicting its properties and performance has become paramount in preventing structural dysfunctions in associated 

components. The research has rightly demonstrated, using a host of regression models including the proposed Graph 

Attention Transformer Network (GAT-TransNet), the enhanced ability of advanced machine-learning techniques toward 

the prediction of steel properties. This study further assessed alloying elements such as carbon, manganese, and chromium, 

in the evaluation of mechanical properties of steel. This provided insight into relationships between material composition 

and performance in steel optimization for specific applications. It further generated questions concerning basic material 

properties and the relevance of elongation, yield strength, and tensile strength in evaluating steel quality. Higher elongation 

usually signifies that the material is ductile and rigid, whereas yield strength becomes essential when the steel is loaded 

structurally by far-reaching forces, loads, and impacts. In addition, the study made distinctions between yield strength and 
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tensile strength, stating that yield strength becomes vital for ductile materials, while tensile strength becomes essential for 

brittle ones. The distinction clarifies how these two properties are important in material design and selection. In conclusion, 

the research provides extra insight into how composition influences the mechanical properties of steel while further 

reaffirming the efficacy of machine learning models in predicting materials. This provides insight into steel alloy design 

and selection for enhanced performance and durability across various industrial applications. 
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