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is crucial in regenerative science, where precision is

Abstract

Accurate analysis of complex i

effective image interpreta
Transformer-Enhanced al Network, designed to enhance image analysis efficiency and

nd spatial relationships. Multi-scale feature extraction ensures precise
levels, while attention mechanisms highlight key regions for improved
on combining Dice Loss and Unified Focal Loss effectively addresses
ing segmentation of smaller structures. Developed using PyTorch and

ords: Attention Mechanisms, Convolutional Neural Networks, Deep Learning, Image
Segmentation, Multi-scale Future Extraction, Regenerative Medicine, Transformers.

1. INTRODUCTION
Regenerative medicine is an emerging domain aimed at replacing or restoring damaged organs and

tissues, offering groundbreaking treatments for diseases that were once deemed incurable. Medical
imaging is crucial in this field as it facilitates diagnosis, guides therapy planning, and monitors the



effects of treatments [1]. High-resolution imaging modalities such as CT, MRI, and fluorescence
microscopy are some of the imaging techniques commonly utilized to obtain precise pathological and
anatomical information [2]. All the above modalities are, however, faced with several limitations such
as noise, non-homogeneous resolution, and patient anatomical variability [3]. Moreover, multi-modal
imaging where data fusion of two or more than two imaging modalities is a necessity makes things
worse with the requirement that the techniques needed are ones that are capable of handling
heterogeneous data and delivering high accuracy [4].

dvancement, edge detection,
in regenerative medicine [6].
becomes problematic, especially when

through large datasets and multi-level feature extr&@on in deep learning models. With the assistance
of multi-level feature extraction an xt, models'such as U-Net [8] and DeepLab [9] have attained
significantly improved segmentati . Despite all these improvements, existing models have
the tendency to neglect glob ong-range relationships, which are crucial to correctly
segment small or intricate a es, e.g., brain tumors.

t [11]. By adopting advantages from global attention mechanisms [12]
traction [13], hybrid models integrating CNNs and transformers are a highly

Iti-Scale feature extraction and attention mechanisms have further enhanced segmentation
In the case of brain tumor segmentation, where subtle differences in tissue size, shape, and
y a major role in diagnostic precision, this comes in handy [15]. In addition, attention
hanisms facilitate high-priority processing of meaningful regions in multi-modal imaging data,
gua¥anteeing accurate diagnosis and efficient treatment planning [16].

1.1. Motivation for MATHSegNet

MATHSegNet was developed to address the overwhelming challenge of brain tumor segmentation,
especially in the realm of regenerative medicine. Segmentation of tumors properly is essential in
efficient treatment planning, diagnosis, and monitoring. Because of variation in tumor shape, size, and
image with other imaging techniques, current methods are not always good enough. For these problems




to be addressed, this study focuses on a hybrid architecture that brings together the benefits of
transformers and CNNs. The advantages of the two are that they can identify localized fine features and
detect global patterns as well as long-range relationships separately. Besides, multi-modal imaging data
play an important role in regenerative medicine, which needs a platform capable of integrating and
processing different information. For enhancing patient outcomes, MATHSegNet aims at resolving the
aforementioned problems by offering medical professionals an accurate, sturdy, and adaptive solution.

1.2. Main Contributions

Innovative progress has been achieved through MATHSegNet model to counter traditional barrier
medical segmentation, especially recognizing brain tumors within regenerative medicine.

e CNN Integration: MATHSegNet efficiently captures localized medical image,f
Convolutional Neural Networks (CNNs). The feature aids the model to accur,
tumors by grabbing subtle spatial patterns such as edges, textures, andsmaal|

d providhg global
» ®"a perception of the
global structure and context through realizing relations among distagaegions, thus providing

precise even in complex or diverse regions.

e Attention Mechanisms: Incorporatin(¥@itention mechanisms in MATHSegNet enhances
precision without allowing unnecessary putation costs on less informative areas while
focusing on the most infor regions of the medical images.

e The system provides mul@m aging, which is critical in regenerative medicine since
most imaging modali », Ml and CT) offer complementary information for precise
tumor diagnosis

e Enhanced Roj#
enhancing itSgio

provide MATHSegNet with an extremely powerful approach for solving
image segmentation tasks.

SegNet addresses variations in image quality and heterogeneity,
in handling complex real-world medical data.

the Paper

e paper is organized as follows: Section 2 presents a survey of existing work in medical
entation, highlighting deep learning-based methods and commenting on the central
s of regenerative medicine. Section 3 presents a comprehensive description of the architecture
proposed MATHSegNet model, including considerations such as multi-scale feature extraction,
utilization of a transformer-based attention mechanism, and convolutional neural network-based
components. Section 4 describes the experimental framework, detailing the datasets, evaluation
methods, and performance metrics. In Section 5, we report the results, analyze them in depth, and
highlight the notable improvements in segmentation performance. Additionally, this section offers a
comparison with baseline models, visual representations, and an assessment of the model’s robustness
across diverse medical imaging modalities. Lastly, Section 6 concludes the study and outlines



prospective directions for further research in medical image segmentation within the context of
regenerative medicine.

2. LITERATURE REVIEW

In regenerative medicine, medical image segmentation is crucial for precisely identifying anatomical
features that are necessary for diagnosis and treatment. Noise, overlapping areas, and anatomical
variability are some of the difficulties associated with advanced imaging methods like MRI, CT, and
fluorescence microscopy. The complexity of contemporary medical images is frequently too great
conventional techniques like thresholding and edge detection. By extracting local features, d
learning models—especially CNNs like U-Net—have improved segmentation; yet, they have
addressing class imbalance and capturing global contextual information. Long-range depeng
well-modeled by recent transformer-based models, and hybrid strategies that combine
transformers hold great potential for improved segmentation accuracy. The
segmentation techniques and their advantages and limitations for applicatigams nSEcal imas
addressed here.

The U-Net model, which is a CNN encoder-decoder specifically for bi mage segmentation,
was first proposed by Ronneberger et al. (2015). The method allows the acc segmentation of tiny
objects such as individual cells based on the combination of high-level segaant\@knowledge from the
decoder and low-level spatial knowledge from the encoder with dj tar&a conriections [17].

provement of medical image
such as organ segmentation,
all areas by class weighting

To solve class imbalance, Sudre et al. (2017) investigated lgss
segmentation with Generalized Dice Loss. As illustrate a
the loss function provides accurate segmentajg
according to prevalence [18].

y Chen et al. (2018). DeepLab uses atrous spatial
receive features at multiple scales to achieve multi-
ery effective in segmenting tissues of different

DeepLab is a semantic segmentation model p
pyramid pooling (ASPP) and atrous convolutio
scale contextual information. The model is there
sizes in medical imaging [19].

The Swin Transformers, a Vvisj
model's performance in handig
learning via shifting windowi ith the maintenance of long-range relationships, SwinTransformers

o ance on being added to U-Net models, especially in imaging
% brain MRI tumor segmentation [20].

g ployed by Tang et al. (2022) to improve the boundary precision in
i research showed that the application of GANS in the post-processing pipeline
entation result, particularly for low-contrast imaging data like fluorescence

rmi model introduced by Liu et al. (2021), strengthens the

. (2022) proposed the HMDA model, which is a multi-scale deformable attention-based
I. The model achieves precise structure segmentation from a range of imaging modalities

Jiang et al. (2022) suggested a hybrid model that dynamically adjusts scales of feature extraction
through the combination of transformer and U-Net architectures. This operation improved segmentation
in regenerative medicine by solving incoherencies in anatomical representations in datasets [23].

Zhang et al. (2023) introduced STUNet, which is implemented using Swin Transformers and the U-Net
architecture. The combination method effectively segments complex boundaries in regenerative



medicine imaging by extracting global and local features simultaneously. Cross-layer feature
enhancement enhances the model's capability to detect smaller structures [24].

Luo et al. (2023) employed a graph neural network and transformer ensemble to segment highly
irregular and heterogeneous anatomical structures. The technique offers context-aware analysis for
tissue regeneration and is good at detecting small regions in high-resolution medical images [25].

Wang et al. (2023) proposed H2Former, a multi-modal hybrid transformer model for medical image
segmentation. The model greatly improves the segmentation of images with large spatial variations
fusing self-attention mechanisms and hierarchical feature extraction. Its optimization for handl
multi-modal data makes it particularly well-suited for application in regenerative medicine [26

Li et al. (2024) introduced a transformer-based segmentation approach specifically, d
application with fluorescence microscopy. The performance of their model was gre i
employing domain-specific preprocessing techniques [27].

2.1. Research Gap

These results reinforce the popularity of hybrid architectures using the atte skill of transformers
[28] and the local feature extraction power of CNNs [29]. These results asize the need for
domain-specific technologies in regenerative medicine imagingg i;ccurate segmentation is
Ppontribution from each of these

Segmentation of brain tumors in medical i
due to the intricacies involved in images. Ne

hich requires highly accurate models
icated deep learning models have been developed
better performance in segmentation.

| Dice Loss and Unified Focal Loss |

| Training and Evaluation |
| Post-processing and Visualization |

Figure 2. Architecture of MATHSegNET

Th of MATHSegNET is specifically developed for brain tumor segmentation using the state-
-art deep learning approaches, illustrated in Figure 2. Brain Tumor Database is the initial step,
when raw data is cleaned for analysis and normalization. For optimizing the results of segmentation,
the hybrid CNN-Transformer module leverages the global contextual comprehension provided by
Transformers with the local feature extraction capabilities of CNNs. This double-pronged approach
ensures medical images accurately pick up specific details and general patterns. The model is capable
of handling varying tumor shapes in size and complexity due to the presence of multi-scale feature
extraction as well. A Transformer attention mechanism enhances segmentation precision by paying
special attention to salient parts of the images. Loss functions to optimize the training process towards



making accurate predictions include Dice Loss and Unified Focal Loss. Lastly, strong model
performance is guaranteed by training and testing, and medical analysis can be aided by transparent,
interpretable results from post-processing with visualization.

To enhance segmentation accuracy in medical imaging tasks, particularly in regenerative medicine,
Table 1 would illustrate how these components interact.

Table 1.MATHSegNet: Bridging the Gap in Medical Image Segmentation
Segmentatio | Local Feature Global Feature Multi-Scale
Approach N ,gAccurac Capture (Fine- Capture (Long- Feature Eusion
Y| Grained Details) | Range Context)
. Very High
o . Very High (long- (cap{ureg muylti
MATHSegN Very High High (fine-grained | range context via scale feat
et (Proposed) yHig details from CNN) | adaptive s
transformers) scales)
Medium- High (captures Low (poor long Low (no
CNN [8] High small structures range attention
g well) understanding) mechanisms)
. A, ¢ High (self-
Transformer . Medium (focuses prlmarl!y . attention,
High more on global global, limited
[11] - long-range
than local features) multi-scale dependencies)
integration) P
. Medium Very High
Attention Medium (fg ; (focuses more (self-attention,
Mechanisms | High on critical§g@ on alob on key regions | enables
[12] areas) de gen dencies) rather than context-aware
P entire scale) focus)
Multi-scale High (integrates Very High Medium (can
(fusion of local | .
Feature Very High global context and alobal integrate
Extraction yHig across multiple g attention
[13] levels) context at within scales)
different scales)

Every component of,
mathematical formul

is elaborated in depth below along with the corresponding

the Input data is properly formatted and ready for the model, preprocessing is
jor preprocessing operations are part of MATHSegNet's pipeline: Multi-modal
ation, and Data Augmentation.

ugmentation

ndomly changing images, this operation increases the dataset's size and creates more varied
training data. By preventing overfitting, these changes strengthen the model's resistance to changes in
the input images. Rotation, scaling, flipping, and intensity fluctuation are examples of common
transformations.

Let I,,gStand for the initial image. Applying a series of transformations Ty, Ty, ... Tg, on the image
yields the augmented image 4,4



lgug = To, (THZ (TBn (Iorig) )) 1)

The transformation parameters 6;, such as rotation angle or scaling factor, define each transformation
Ty..

3.1.2. Standardization

By normalizing pixel values to a uniform range, standardization makes images from various modaliti
(such as CT and MRI) comparable. To standardize the image data, pixel values are adjusted to hay,
mean of zero and a standard deviation of one, helping to maintain consistency in input features.

Given an image I,we first calculate the mean u and standard deviation o

1
H=Ntw 2 w=1l Lw) @
1
7= \/N.L.W 2w (UG w) — p)? @)
The pixel value normalization is computed as:
1Qw)— ’
Inorm(l, W) = M (4)

[

whereL and Wrepresent the length and width of the im resp

3.1.3. Multi-modal Fusion

To leverage complementary information from
This combines the features from each mo
1, 1, ... I,represent different image mogalities. The

I fused

nt imaging modalities, multi-modal fusion is used.
ity into a single, unified representation. Let
jon function fcombines these into a single image

Ifused =f (5)

Wheref could either lon or a weighted summation to combine the features from each
modality effectively.

sizes, CNNs can capture small-scale features (e.g., textures and edges) as well as large-scale
es (e.g., anatomical structures).

For a given image I and a convolutional filter w, the output feature map F is performed as
F@,j) = *w)(i)) (6)

where(i, j)are pixel indices and = indicates the convolution operation.



3.2.2. Transformer-Based Feature Extraction
To capture long-range dependencies in the image, transformers are used. Focusing on distant or

irregular patterns is made possible by transformers' self-attention mechanism. The attention mechanism
is defined as

T
Attention(Q,K,V) = softmax Q—I;k %4 @)

N

whered, is the dimension of the key vectors and Q, K, and Vstand for the query, key, and value matric

respectively.
o (NI
global

Fenn = CNN(D)
In order to capture global relationships, the transformer block {% CNN properties.

3.3. Hybrid CNN-Transformer Architecture

b chitecture,
pendeMgy capture.

The model can effectively handle both local and long-range data becaus
which combines CNNs for local feature extraction with transformers
Local features are extracted from the image by the CNN block.

8)

Firans = Transformer(F¢,,) 9)

where the CNN and transformer feature map
a hybrid feature map is created by concateqg

d nn and Firans, respectively. Eventually,
puts both blocks.
thbrid =Concat (Fenn, Ferans (10)

Both the broad contextual informati d the fine-
feature map.

grained local features are combined in this hybrid

3.4. Loss Function

A key feature of MA@ its capability to address class imbalance, which is a common
ymentation. To overcome this, the model employs a combined loss

aximize the overlap between the predicted segmentation mask Aand the ground
Dice coefficient D is calculated as

__2]ANB]
|Al+]B|

(11)

Aand Brepresent the predicted and actual segmentation masks, respectively. The Dice Loss is
simply the complement of the Dice coefficient

Lpice =1—D (12)

This encourages the model to generate a segmentation mask that closely matches the ground truth.



3.4.2. Unified Focal Loss
Focal Loss is introduced to tackle class imbalance by putting more emphasis on difficult-to-classify

areas, such as small tumors, while reducing the weight given to easier-to-classify regions, like the
background. It is defined as

Lrocar = —a(1 —p.)" log (pr) (13)

wherep, represents the predicted probability for the true class, « is a balancing factor, and y is a focusj
parameter that reduces the impact of easy examples.

3.4.3. Combined Loss Function
MATHSegNet combines Lp;..and Lg,q4; t0 leverage the advantages of both loss funcyi@s. Q

loss function is expressed as

Lcombined = 41Lpice + A2Lrocar

whereA; and A,are hyper-parameters that control the weight of each loss ter
overlap accuracy (maximizing DSC), improving segmentation quality. Ugafie
class imbalance, enabling the model to focus more on small or undacrep ted structures like tumors.

3.5. Output Segmentation

The final output of MATHSegNet is a segme ) here pixel is classified as part of a
particular structure (e.g., healthy tissue, tumg s). The segmentation mask is generated

(15)

k

ygmd (i, j) refers to the feature map at pixel (i, j) for

whereCdenotes the tq OW of Tlasses, and F}E
class k.

3.5.2.,5¢eg ation N@msk Prediction

The {i mer@on mask Sis generated by selecting the class with the highest probability for each
pixe

(i,j) = argmax(softmax( Frypria (L, J))) (16)

llows the model to produce either a binary or multi-class mask depending on the task, where each
pixel is assigned to a specific tissue or structure.

Algorithm 1 illustrates MATHSegNet’s approach through detailed pseudo-code, outlining the key steps
in its process. The diagram clearly shows the flow of operations, from data preprocessing to the final
segmentation result, providing a transparent view of the model's workflow. The procedure begins with
data preprocessing, involving augmentation, standardization, and multi-modal fusion to ready the input
images. Next, multi-scale feature extraction integrates CNNs for capturing local features and



transformers for identifying global relationships, resulting in a combined hybrid feature map. A hybrid
loss function, which merges Dice Loss and Unified Focal Loss, helps address class imbalance and
enhances segmentation accuracy. The segmentation mask is produced by applying softmax activation
to the hybrid features, assigning each pixel to the appropriate category.

Algorithm 1. Pseudo-code for MATHSegNet
Algorithm MATHSegNet(BraTS_dataset)
1. Data Preprocessing
Input: Image dataset D = {I;,1,,...1,}
For each image T in D:
a. Apply transformations Ty, , Ty, ... Tg, to augment data
Igug = To, (T92 (Ten(l) ))
b. Standardize image:
i. Compute mean (1) and standard deviation (g
u =mean(l), o = std(I)
ii. Normalize

I—u
- - a- -, .
c. Perform multi-modal fusion for modalities I, , ... I,

Ifused = f(y, o Im) ,

2. Multi-Scale Feature Extraction
Input: Preprocessed image Iy seq
a. Extract local features using CN

Inorm =

Fenn = CNN (148
b. Extract global featurgg ANS r
Frrans = TransforNgs .
c. Combine features

W 21ANB|
_ |Al+1B]
ed Focal Loss

Lcombinea = A1Lpice + A2Lpocar
\ Output Segmentation
Predict probabilities for each pixel (i, j)
Pk (i,)) = softmax(Fpypria(k, i,j))
b. Generate segmentation mask
5@, j) = arg max(softmax( Frypria (i, J)))

5. End MATHSegNet




4. EXPERIMENTAL CONFIGURATION AND EVALUATION METRICS
4.1. Experimental Configuration

Experimental configuration of MATHSegNet is presented in Table 2 focusing on the most critical
aspects for deployment.

Table 2. Experimental Configuration for MATHSegNet

Component Details
Dataset BraTS(Brain Tumor Segmentation Dataset)
Framework TensorFlow and PyTorch
Programming Python 3.8
Language

Data augmentation (rotation, scaling, flipping

Preprocessing standardization, and multi-modal fu

Model Architecture

Loss Function Combined Dice Loss and Unified B
Evaluation Metrics DSC, loU, Sensitivity, and Specificit

NVIDIA GPU, 32GB RAM, In’Co
processor

Hardware

4.1.1. Dataset Description

Experimental setup tests the adaptability of MA

e.g., MRI, CT scans, and fluorescence mic @
e Q

features, each dataset has a different chall®
susceptible to radiation artifact noise, MRI i Pisually present good resolution and sharp grayscale
contrast. In contrast, fluorescence microscopy I™"Qges generally have finer textures as well as lower

resolutions. The evaluation guarantees that MATHY

b) Meningioma tumors c) Pituitary tumors d) Non-tumor
Figure 3. Different Tumor Categories

> A collection of labeled MRI images formed the training set, and the test set was held out for
ke of performance evaluation and validation. Four types of tumors i.e., enhancing tumor, tumor
core, whole tumor, and non-tumorous tissues were mined from the images. All four kinds of tumors in
BraTsS were utilized to assess the performance of the model. The outcomes demonstrated the efficiency
of the program in classifying and detecting various kinds of tumors. Example samples are shown in
Figure 3, which depicts the location of the sites and the appearance of tumors. This detailed analysis
highlights the flexibility of the method in the treatment of various kinds of tumors and demonstrates its
suitability for therapeutic application.



4.2. Evaluation Metrics

A number of popular metrics, such as the Dice Similarity Coefficient (DSC), Intersection over Union
(loV), sensitivity, and specificity, are used to measure the performance of MATHSegNet. In
segmentation tasks, these metrics provide a complete description of the model's accuracy and reliability.
The DSC estimates the degree to which expected segmentation overlaps with the ground truth and is
given by

__ 2|PnT|

DSC = (17)

|P|+]T|

Here, P and Trepresent the real and estimated segmentation masks, respectively. The loU, \
measure, calculates the intersection to union ratio of true and estimated masks.

__|PnT]
= |PuT|

IoU

In medical imaging procedures, where accuracy in the position of sm
significant, the choice of metrics follows their significance. Sensitivity, fo
detecting all positions that can potential tumor regions, reducing falswatl
sensitivity, also as recall, is

regular structures is
tance, is essential in
. The definition of

P
TP+FN (19)

False negatives (FN) and true positives (TP) xpel
instances are indicated by FN, and accuratel# '
or sometimes referred to as recall, calculc¥ g
identifies.

Sensitivity =

a easures for the model: Missed positive
Kitive M@gances are indicated by TP. Sensitivity,
Broportion of true positives the model correctly

Specificity, on the other hand, detegaaines how
minimizing false positives. It's calgate

the model can identify non-tumorous areas,

Specificity (20)

+FP

True negatives (TN)
themselves negative
model can avoi

entified negative instances here, while false positives (FP) are
rongly identified as positive. An important measure of how well the
en recognizing negative cases is specificity.

Incorpgrati i ange of criteria in the test is intended to give an unbiased description of
MAT formance and generalizability on difficult imaging modalities.

5R DISCUSSION

THSaWet is designed to have high segmentation accuracy, noise robustness, and flexibility in

ha ultiple brain tumor imaging modalities. In this section, the performance evaluation of the
sed model is presented, and its key strengths over the state-of-the-art models are highlighted.

5.1. Quantitative Results

MATHSegNet outperformed several baseline models, such as transformer-based models (STUNet), a
semantic ~ segmentation model (DeepLab), and traditional CNN-based  networks  (U-
Net). MATHSegNet's segmentation ~ performance comparedto  other models on  abrain
tumor image dataset is listed in Table 3 below.



Table 3: Evaluation Metrics Comparison of Segmentation Model Performance
Sensitivit |Specificit

Model DSC| loU y y
MATHSegNet (Proposed) 0.92 | 0.87 0.94 0.91
Domain-specific  Transformer-based

Model [26] 0.91 | 0.85 0.89 0.86

H2Former [25] 0.90 | 0.84 0.88 0.85

Graph-based Neural Networks with
Transforms [24] 0.89 | 0.83 0.87 0.84

STUNet [23] 0.90 | 0.84 0.88 0.85
Hybrid U-Net-Transformer [22] 091 0.83 0.89 0.86

Hybrid  Multi-Scale  Deformable
Attention [21] 0.90 | 0.84 | 088 0.8

Swin Transformer [20] 0.89 | 0.83

Encoder-Decoder with Atrous
Separable Convolution [19] 0.88 | 0.81 0.

Generalised Dice Overlap [18] 0.87 | 0.80
U-Net [17] 0.85

That a high agreement between the ground truth and expected

STUNet |

et-Transformer |

Models

Generalised Dice Overlap |

U-Net 1

0.B6 0.88 0.90 0.92
Dice Similarity Coefficient

Figure 4. Boxplot Visualization of Dice Similarity Coefficient (DSC)

Figure 4 shows a comparison of the Dice Similarity Coefficient (DSC) of different models, including
the proposed MATHSegNet and other state-of-the-art architectures. The x-axis represents the DSC
values, and the y-axis represents the various models. MATHSegNet is highlighted with the highest
median DSC, followed by the domain-specific transformer-based model and the hybrid U-Net-
transformer. The boxplot emphasizes that MATHSegNet not only achieves the best performance but
also has a tight range of DSC values, reflecting stable performance on various test samples. On the other
hand, traditional models such as U-Net and the generalized Dice overlap method exhibit lower DSC



values and larger variability, reflecting less stable segmentation performance. This figure evidently
displays MATHSegNet's higher robustness and accuracy compared to its counterparts.

[=10] Sensitiviky N Specihcity

U-MNet [17]

Generalised Dice Owerlap [18]

Encoder-Decoder with Atrous Separable Convalution [19]

Swin Transformer [20]

Hybrid Multi-Scale Deformable attention [21]

Hybrid U-Met-Transformer | 22]

STUNet [23]

Graph-based Neural Networks with Transforms [24]

H2Former [25]

Domain-specific Transformer-based Model [26]

MATHSegMel {Proposed)

0.0

0.6 0.8
Value

odels using Evaluation Metrics

Figure 5 shows a performance comparison o SegNet against some of the current segmentation
models in terms of various evaluation metrics. higher loU, sensitivity, and specificity values of
MATHSegNet indicate that it is better performigpcompared to most of the other models. The

accuracy in detecting relevant feat@es venting false positives. The other models, however, like

U-Net and STUNet, also do w@Pb e generally less consistent for all the metrics, especially
for specificity and sensitivit is ref e advantage of MATHSegNet in providing a reliable and

balanced segmentation :
4.0
0.00 0.00 0.00 3.5

Enhancing tumor - 0.00 1.00 0.00 2.5

Tumor core - 0.00 0.00
1o
whole tumeor 0.00 0.00 0.00 - o5
T - 0.0
Non-tumorous Enhancing tumor Tumor core Whole tumor
Predicted Labels

Figure 6.MATHSegNet Segmentation Confusion Matrix

20

True Lab

A confusion matrix of the segmentation accuracy of MATHSegNet for four different classes—non-
tumorous regions, enhancing tumors, tumor cores, and whole tumors—is presented in Figure 6. The



diagonal represents correct classifications, while each column of the matrix represents the frequency at
which the model generated correct or incorrect predictions. For instance, with 4.00 score, non-tumorous
areas were predicted correctly by the model, while tumor locations with augmenting lesions were
mostly predicted correctly, even though some of them were also wrongly predicted as tumor cores.
Tumor cores were mostly identified correctly, except when they got mixed up with enhancing tumors.
Predictions of the whole class of tumors with minor deviations were mostly accurate. This chart gives
informative data on the strengths and weaknesses of MATHSegNet, showing how well it can
distinguish between various types of tumors and where it still needs improvement.

5.2. Qualitative Results

Preprocessing plays 3 :
apparent in Figure 7. % hon of tumor regions is challenging by virtue of the presence of noise

and distortions i

skull strifQain echniques have been applied in solving these issues and enhancing input

quality. In jzation minimizes variability caused by acquisition differences by normalizing
i ans, while skull stripping removes unnecessary non-brain features to separate

alysis. Through augmentation of significant features, noise reduction, and image

nhanced Brain Tumor Segmentation with MATHSegNet

The superior effectiveness of MATHSegNet for enhancing brain tumor segmentation is evident in
Figure 8. Due to the surrounding tissues' complexity, noise, and homotopic intensity patterns, it is
difficult to spot the tumor region in the left raw MRI scan image. However, the MATHSegNet-produced
processed result on the right clearly depicts the tumor borders with high accuracy. The distinctively
highlighted tumor boundaries successfully demarcate areas of tumors from normal tissue. Through its
highly advanced multi-scale adaptive hybrid CNN-Transformer network architecture, MATHSegNet
can effectively discern contextual relationships as well as advanced spatial information and thereby



perform strong segmentation even under challenging conditions. This advanced functionality allows the
model to precisely spot significant tumor regions in various configurations and intensities. The
highlighted segmentation output demonstrates how MATHSegNet can enhance diagnostic precision
and support clinical decision-making, particularly in the areas of regenerative medicine and medical
imaging. Its potential as an effective tool for tumor diagnosis and treatment planning is indicated by
this output.
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a) Original Image b) MAT mage
Figure 8. Segmentation with M t
5. 3. Impact of Multi-scale Feature Extractio

egNet@pmpressive performance in brain tumor
odel effectively extracts both distinctive local
features and general global relationships by \@Rnbining the strengths of CNNs with transformer
architectures. One of the main challenges in nS@cal image segmentation is the management of
structures of varying size and compleygime Which MAPHSegNet addresses through this hybrid approach.

CNNs employ filters of differe re local features at different scales during the process of
multi-scale feature extracti or ex a larger kernel (7x7) will capture a broad geographical
context but a smaller one (3 subtle features such as edges and textures. A mathematical
rom an image patch at some scale is given by

Y WENICe+ 5y + ) (21)

i=—k

e convolutional kernel weights, I(x + i,y + j)is the input image intensity,
local feature at pixel (x,y).

pplies Equation 7 to encode global relationships. This complements the local feature
performed by CNNs by allowing the model to focus on meaningful areas regardless of their
jal distance.

In medical image segmentation, where tumors exhibit significant heterogeneity in size, shape, and
location, the integration of CNNs and transformers is particularly valuable. CNNs perform well in
detecting subtle features in tiny tumors, which ensures early-stage tumors or very small lesions are
accurately segmented. Edge detection and texture identification are facilitated by CNN filters' local
nature. Transformers ensure segmentation of large or irregularly shaped tumors holistically by detecting
the overall context of massive or complicated tumors. This matters when the general structure is being
determined by spatial interactions between remote locations. In one test, for instance, MATHSegNet



employed CNN-based fine-detail extraction to correctly segment a minuscule lesion in a low-contrast
MRI image. In another case, the model utilized transformer-based global attention to identify a massive,
irregular tumor in a CT scan.

Tumor segmentation of different sizes and complexity is facilitated by MATHSegNet's multiscale
feature extraction method, which fills the gap between local and global feature representation.

5. 4. Transformer Attention Mechanism

A significant improvement for MATHSegNet was introducing transformer layers so that the m
could understand context relationships across the entire image. By focusing on relevant a a
minimizing the role of irrelevant background features, the self-attention method of M
improves segmentation quality and model robustness in general.

Because of their limited receptive fields, CNNs are not able to capture LommadisTSg&e cor ns
between pixels; this is one of the transformer attention mechanism's key bg A Net could
avoid issues like false positives, where background noise is incorrect d48F bein rt of the
object being segmented, by centering on notable regions of the image and c ol insignificant areas.

S
,// .

Figure 9. Attention Heat Origal MRI Comparison, Emphasizing Tumor Areas

A clear visual difference bet the 1Isomorphic attention heatmap generated by a deep learning
network and the actua : ears in Figure 9. The superimposed heatmap indicates where there
is focused attention, cally the locations of the tumor areas, and the MRI scan provides a
structural view 0 iher values of attention are concentrated within the borders of the tumor,
Byed by the heatmap to identify points where the model has identified
ssociated with the tumor. Besides demonstrating where the model focuses on

Net addresses the common issue of class imbalance in medical image segmentation by
rating Dice Loss with Unified Focal Loss. The class distribution in medical imaging is imbalanced
0 the fact that areas of interest, such as tumors, are often much smaller than the background. The
imbalance can result in bad segmentation and restrict effective model training, particularly when
identifying small or rare structures.

Dice Loss is highly effective for binary segmentation tasks because it maximizes the overlap between
the ground truth and the expected segmentation. Due to its ability to handle imbalanced class
distributions, it has become a common choice in medical imaging [31].



Unified Focal Loss was a new aspect of MATHSegNet that was designed to specifically solve the issue
of class imbalance by downplaying the weight of the easier-to-classify background areas and giving
more importance to areas harder to classify, such as very small tumors. This loss function enhances the
model's ability to detect smaller structures that could be underrepresented in the data, particularly useful
when the dataset has an unbalanced class distribution [32]. By mixing these two losses, MATHSegNet
was better able to balance the competing demands of reducing class imbalance (through Focal Loss)
and maximizing overlap (through Dice Loss), which improved segmentation accuracy.

Table 4 clearly illustrates that although some loss functions, like Dice Loss or Unified Focal Loss,
very good in some scenarios (overlap and class imbalance, respectively), they are not particul
effective when employed individually.

DSC | loU | Sensitivity | Spz Remarks

Loss Function

High overlap
accuracy and robust
class balance

Dice + Unified Focal

Loss (MATHSegNet) | 292 | 087 N

Focuses on small
Unified Focal Loss 0.90 | 0.85 .92 0.89 structures, better at
handling imbalance

Better handles class
0.88 0.87 imbalance, but lower
overlap accuracy

Focal Loss Only

Focuses on overlap,
0.83 0.91 0.88 struggles with class
imbalance

Dice Loss Only

Focal LossNOndy
Duce Loss Onby

1.5 Bu Sarditivily Spacificity
Metric

Figurel0. Loss Function Combinations on Segmentation Model



Performance of various combinations of loss functions over a segmentation model, such as
MATHSegNet, is presented in Figure 10. DSC, loU, sensitivity, and specificity are the metrics being
compared. The graph illustrates how the combination of Dice Loss and Unified Focal Loss of
MATHSegNet always outperforms other setups in all metrics, achieving higher DSC and loU along
with improved sensitivity and specificity. Other configurations of loss such as Focal Loss Only, Dice
Loss Only, and Unified Focal Loss are worse comparatively. This proves how effectively segmentation
results can be optimized through combining loss algorithms.

5.6. Scalability and Real-world Applicability

One of the primary benefits of MATHSegNet is scalability. The model can handle medical ig
different resolutions and levels of complexity because of the hybrid CNN-transformer str
therefore suited for a wide range of regenerative medicine applications.

Recent studies that place great emphasis on the application of multi-mod
to medical image segmentation resonate with generalizability across
the application of transformer attention mechanisms and multi-modd
guaranteed to function optimally in a broad array of imaging conditions and'8

. MATHSegNet is
Alications.

In regenerative medicine and medical image segmentation, the Multi e Adaptive Transformer-
Enhanced Hybrid Segmentation Network (MATHSegNet) i@t w benchmark. MATHSegNet
to its employment of multi-
earning loss functions. The

performance of the model is also significantly 34 its @

#ion mechanism that depends on
the transformer and capability for input use alities. These outcomes are confirming
MATHSegNet as a useful clinical tool that rful and efficient means of evaluating
brain tumor images for regenerative medicinSghia is and therapy planning.

is work presented MATHSegNet, a cutting-edge medical
atly enhances segmentation performance by combining

With an emphasis on regenerative
image segmentation model. M
CNNs, transformers, and m
segmentation because it uses transformers to learn global patterns
and CNNs to learn locg eatures. The usability of the model in clinical settings is increased
through its capacity jte On critical regions through the use of multi-modal information and
the transformer's hnism. With its more accurate segmentation for regenerative medicine,
MATH com®cntial for enhancing the accuracy of diagnosis and therapy processes.
anced in several ways in the future.

operating with large, high-resolution datasets. Using MATHSegNet to process 3D
ta, which is typically utilized in organ regeneration and regenerative medicine, is another
area. The necessity of costly labeled data in medical imaging can be reduced by investigating

ased through generalization across other imaging modalities, for instance, multi-organ or multi-
pathology segmentation. Also, the inclusion of explainable Al capabilities may provide valuable
information to clinicians, increasing confidence in the system and enhancing decision-making.
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