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Abstract—The article discusses the Relent|g
Protocol (RPSORP), a new model to find
(SSN) using as little energy as possible. The' ¥

al metM®ds to set up Smart Sensor Networks
rete Particle Swarm Optimization (DPSO) picks
the least EC path that meets the best routing and Wvering requirements. The protocol contributes

to efficiency in node energy use, ftw, overage, and connectivity range by including a fitness

metric. Results indicate that ORP,oujgErforms traditional routing methods regarding network
lifetime, deployment effial nd EC. Fields such as environmental monitoring, innovative

here energy-efficient data communication is vital, can apply

e Deployment, Network Efficiency

UCTION
ensor Networks (SSS) have attracted many researchers in the last few years because of
their great value in the environment, healthcare, industrial automation, and security. SSNs contain
remote distributed Sensor Nodes (SN) that monitor specific amounts of physical or environmental
phenomena such as sound, temperature, pressure, or physical motion. One of the most essential

problems in solving an SSN is energy efficiency. Since SNs are primarily deployed in distant




places, wired power is impossible; hence, batteries mainly draw energy. Hence, optimizing energy
consumption (EC) is essential to prolonging the network's functional lifespan through
uninterrupted monitoring.

Many industries, including defence, environmental safety, and security monitoring, may benefi

production methods [5]. Introducing Vehicular Sensor Networks (VSNE

ands out among these
-rﬁd applications. VSNETS,

developments, offering exciting possibilities for leveraging s

or WSNs, are created when mobile nodes like computer hones, or vehicles connect

wirelessly to share and exchange data [6]. WSN nod ay eir surroundings, analyze the

data collected, and send it to other network orON@o achieve significant improvements in

areas like interaction with digital ele ind MEMS [7], a plethora of lightweight,

inexpensive, and energy-efficient sensors havek@gen developed. The SNs operate on a battery with

limited capacity. Optimizing the ormance ®f the SN in different applications requires

minimizing their EC to the gr. possible. The amount of time a WSN can remain

operational depends on ho g the les last. A smart city monitoring system's foundation is

a WSN. Data collectiqgiigg is are the jobs of the many SNs that make up these networks.
Various WSNs are UgR ferent types of applications since SNs are tiny and inexpensive.
making educated decisions about comfort and safety in smart cities,
and thiQ 0 the development of Internet of Things (loT) technologies. Here is a
of the architecture of the SSN, as depicted in Figure 1.

ontmually introduce new applications that enhance the loT vision. WSN nodes

s disagrees based on the distance between sender and receiver nodes. As a result, multi-hop
communication is recommended. The distinct difficulties brought about by acoustic signals and

several communication layers render the WSN clustering and routing algorithms unsuitable to




UWSNSs. Consequently, researchers have shown much interest in creating clustering-based or route
setup algorithms that consider the ocean properties of UWSNSs [8-11].
Two significant obstacles to efficient EC and network communication in target tracking with

WSN exist. These challenges must be addressed to process the data effectively. Due to it

exceptional features, such as adaptability, performance, robustness, and flexibility, WSNgic
highly regarded in many applications [12]. Considering the limited EC of SN and the
of unreliable electromagnetic transmissions, delays caused by packet transfer, and sha
medium, it is crucial to ensure the performance and stability of the control s

Communication and control systems must consider many critical as
the sampling period of the network's SN, the needed delay, and the ty of packet errors.

Optimizing these parameters enhances the efficiency of the control syste

SN's transmission power and communication rate drop, so d thwrgy required for wireless
transmission. @

Multi-Agent
System

onversely, when the

Management

Imization-based Routing Protocol (RPSORP). RPSORP employs the Particle
ization (PSO) algorithm in order to facilitate the selection and usage of the most

e area, node energy, and communication range so that it can effectively manage and
distribute EC within the area of the network. This way, the operational period of the network is

extended, thereby improving reliability and efficiency.



With regards to this subject, it can be stated that the primary contributions of this research are
as follows:
(a) Design a new routing protocol, RPSORP, that generates routing decisions with the help of
PSO, aiming to achieve further EC in SSN.
(b) It developed a fitness function integrating node energy, coverage, and communic; Q

efficiency during network operation for the maximum network lifetime.

network coverage.

The rest of the paper is organized into the following structures: | , the related works

are defined, while Section 3 elaborates on the approach taken, including rotocol design of the
RPSORP and its corresponding fitness function. The outcome he‘duct d simulation and the
performance analysis is described in Section 4. The summ nted in Section 5.

Il RELATED WORKS

The Virtual Force-directed Particle
deployment technique [3]. Node density @
amongst nodes to compute the node mobility@&tance. Their distance from one another dictates
the degree of mutual disagreeme etween n®des, and Virtual Force (VF) measures this
interference. WSN comprises ically placed and installed according to their specific
applications. These sensors qglacco d by a washbasin conveniently located within or close
eeds data, it asks adjacent sensors to collect it [4]. The sensors

to the sink. Several studies have examined the development of

optimal considering factors such as delay and packet loss [13-14]. A wide

range as led to numerous protocols with many adjustable parameters.
Neve iC parameters carry out a variety of tasks and are found in many applications,

king ly important.

e echnological constraints, WSN relies on mobile energy sources and rechargeable
les with a limited energy supply. Consequently, ensuring these networks utilize energy
efficiently is vital [15]. In a study conducted by researchers [16], they introduced a routing
approach called Clustering-Based Energy-Efficient Routing (CBEER), intending to prolong the

lifespan of Underwater Wireless Sensor Networks (UWSNSs). Performance was assessed through




thorough simulations. In a different study, a technique for routing in UWSNs was introduced. This
technique, known as EERBLC, focuses on energy efficiency and is based on layers and unequal
clusters [17]. EERBLC was developed in three stages: the creation of layers and clusters with

varying sizes, the routing of transmissions, and the ongoing maintenance and updating of cluster

much attention and research.

When evaluating a distribution system's dependability, [19] soug uce the influence of
subjective or incomplete parameters. Due to the nature of WSNs, SNs 2¥@ayulnerable to attacks.
This susceptibility is exacerbated by factors such as in rel between wireless links,
applications used in warfare, and nodes that are not physic ed from the surroundings. A

new algorithm, NBBTE, has been created to improv W ty. This algorithm combines

node behavioural approaches with evidence R0]. sensors in the sensing region are used

for sensing, processing, and communica ¥Ses. The overall network lifetime depends on

the factors mentioned above. One method to@bance the network lifetime is by preventing the

sensor from transmitting raw data. Jdads can be ac®omplished by consolidating the sensed data to
remove unnecessary repetition ] e number of control messages, and minimizing long-
distance transmission. Consiging t rs mentioned above can lead to an improvement in the

overall network lifeti

Forests, rivers, and t buildings are examples of demanding environments where WNS

to [21] and other researchers. In order to keep tabs on the physical
are frequently used as monitoring nodes. This involves taking readings
of thi und, velocity, and the trajectory of objects in motion. Thanks to wireless self-
es can maintain labels on their environment without human intervention. WSNs
ses [22], including data collecting, surveillance from afar, tracking targets, and
ous evaluation. They also noted that these networks are unusual because they span multiple
disciplines. When determining the power transmission level for each SN, we considered various
factors such as energy efficiency, PDR, distance, link quality, and neighborhood density. All nodes

in the neighborhood are taken into account when forwarding the packets. The proposed results




demonstrated superior performance in data delivery while effectively managing energy costs
across all system levels. An algorithm called "FPT-Approximation Algorithm™ was created to
address the load balancing problem.

Using the PSO technique in WSN has effectively addressed the clustering problem. The PSO-
based algorithm aims to achieve energy balance in clustering by dividing the sensor field Q

clusters of varying sizes. As they approach the sink node, these clusters shrink in size. S tf

to maintain in attention with inter-cluster relay communication is that the Cluster
energy level will be more significant. The cluster head SN'-EC is minimiz y il ter

interaction employing a multi-hop energy-aware routing mechanism,

Authors have created a new and improved clustering algorithm th rs energy economy

and telecommunication distance when selecting SN to function as cluster Ngads. In order to reduce

the CH-SN's power usage, relay SNs are selected from the pagl o . To ITmprove the sensing

gal buildings, [23] put up a

after incorporating all of the necessary sensors¥@g barriers into a 3D building model, the enhanced

solution will be shown using the plugin t¥0l. The determination variable vector in the
optimization problem depicts t ing's SN locations. The primary limitation is ensuring
that every SN can commuriaite wi sink node. An adaptive multipath routing method is
presented in the study imize routing inefficiency and maximize EC. To improve the

pase the residual capacity in SN, the Competitive Clustering (CC)
techniqu

25]. The remaining energy and range of the competition radio are
used t d from among the competing contenders. The technique moves the head
node l0s S by creating clusters at the fixed sink node. Consequently, less energy is
eded ™ageoIIECT data amongst the clusters.

Tab. 1. Related work comparison

Algorithm/ o
rence ) Focus Key Features Limitations
Technique
) Utilizes virtual force to Node density
Virtual Force- Deployment o )
[3] ) ) ) ) measure node significantly impacts
directed Particle technique using

interference performance




Swarm Algorithm
(VF-PSO)

node mobility

distance

Data collection

Strategic sensor

Limited to the

[4] - o placement with the proximity of sensors
mechanism in WSN ) ) )
adjacent sink node to the sink
Network High complexity
) ) Focus on delay and
[13-14] Optimal Controllers performance in
packet loss
WSN
o ] Use of mobile energy
Energy efficiency in
[15] - sources and rechar
WSN ]
batteri
. Performance
Clustering-Based ] .
. Prolong UWSN Clustering technique dependent on
[16] Energy-Efficient ) . ) . )
) lifespan energy-efficie ting simulation
Routing (CBEER)
parameters
Energy-Efficient
) u roach: ) )
Routing Based on ) High complexity due
[17] er/cluster creation, )
Layers and Clusters . to multiple stages
rosgng, maintenance
(EERBLC)
Grid Exclusion . ) L
. Considers energy metrics ~ Complexity in real-
[18] Method, Dijkstra . o
) and radio range world applications
Algorithm
. Reduces the impact of Complexity in
D-S Evide o o
[19] network subjective/incomplete parameter estimation

reliability

parameters

and application

Network Security

Combines node behavior

with evidence theory

Complexity in
integration and

implementation

ing Information
odelling (BIM),

Sensor placement

Uses BIM for

Complexity in

[ . ] optimization in information and GA for integrating sensors
Genetic Algorithm o o .
smart buildings optimization and barriers
(GA)
) ) ) o Minimizes routing Dependent on
Adaptive Multipath Routing efficiency o ) ) )
24] inefficiency with a adaptive mechanism

Routing

and EC

multipath strategy

efficiency




Competitive Uses competition-based Potential overhead
. ) Enhanced WSN ) ) . ) .
[25] Clustering (CC) with clustering with mobile from sink mobility
. . performance )
Sink Mobility sink management

I1l. METHODS AND MATERIALS
A. Problem Formulation

In the SSN, energy optimization is one of the most crucial challenges, mainly when node
battery-powered. Effective use of energy is an essential concern in increasing the wo, .
the network and helping to facilitate efficient data exchange. The typical routing@c %
do not account for energy management, resulting in inefficient EC angg# r&ne work’s

nt routing

lifespan. This work's main problem is the energy optimization in N effi
protocol. More specifically, we attempt to develop a protocol that red(\g@'the EC at the onset of

communication while ensuring maximum coverage and effective da%n among the nodes.
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Fig 2. Flowchart of the Routing Process in RPSORP

be the set of SN in the network, where each node i € N has an initial energyE;. The
routing path between nodes is represented as P, Where each path consists of a sequence of SN

responsible for forwarding data. The EC of a node i for transmitting and receiving data is denoted



as E,. (i) and E,., (i), respectively. The total EC along a routing path P can be expressed as Eq.
D).

Etorar(P) = Xiep(Ex () + Epx (1)) 1)
where, E., (i) is the energy required to transmit data from node i, E,., (i) is the energy required

receive data at node i. The objective is to minimize the total EC across all possible routing
while maximizing network coverage and maintaining effective communication. Tha

formulated as Eq. (2) an optimization problem:

min ¥.p Eorar (P)
Subject to the following constraints

The remaining energy at any node i must not fall below a threshold . (3)
Ei - Etotal(P) = Emin VieP (3)
In Coverage Constraint, the set of selected nodes N, ¢ive uﬁovide complete coverage

of the target area N, Eq. (4).

UiENactiveAi =4 (4)
where 4; is the area covered by node i.

Communication Range Constraint is the e between any two communicating nodes i and

j on a path P must not exceed the maximum coNggunication range. R4, EQ. (5)

d(i,J) < Rmax Vi,j €P ()
where d(i.j) is the distance gget nojes i and j. To solve this optimization problem, the
RPSORP is employed to itersgaely for the optimal routing paths that minimize EC while

satisfying the above
B. Methodology

olve optimization problems with a fluctuating population. Due to this, it has

to optimize particularly non-linear functions in high-dimensional spaces. Examples

0 paths that conserve the maximum energy in an SSN.
In this algorithm, every particle is considered a potential solution; in this case, it is a routing

path/Sensor routing path set in an SN. That is, the position of each particle can be treated as an n-



dimensional vector in terms of search space, where n reflects the number of interrelated parameters
that define the routing path.
Let S be the number of particles in the swarm. X; = (x;1, Xi2, ..., X;3) be the position vector of

the i-th particle. V; = (v;1,vip, ..., Vj3). At each iteration t, the particles update their velociti

and positions according to Eq. (6) and Eq. (7).

(t+1) _ . (D ® ® ® ®
Vij =w;" ton (pij — X )+czr2 (gj X )

(t+1) _ (D) (t+1)
Xl.j = Xjj + Vij

where, V. is the velocity of particle i in dimension j at time t. x

Vi sitvqg of particle i

i
e previous velocity.

c; and c, are acceleration coefficients representing cognitive and social CS&gonents, respectively.

r, and r; are random numbers uniformly distributed in the C AROR

Zis the personal best
ij

e | bt position found by the entire

position of particle i in dimension j up to time t. g}@ [

swarm in dimension j up to time t. The inertj alances the global and local exploration

abilities of the swarm, Eq. (8).

_ Wmax—Wmin
= g — (B2

(8)
where, w4, and w,,;,, are the inijgdgipand final hertia weights. T is the maximum number of
iterations. t is the current itergti . The fitness function evaluates the quality of each

particle's position (routing base g. (9)

Fitness; = aErorai( v ¢(Xi) + YDcommunication (Xi) (9)
where, E¢prqr(xi) IS

measures routing path covers the network area. D.ommunication(Xi) 1S the total

(10)

To incorporate constraints into the PSO, apply penalty functions or repair mechanisms, Eq. (11)
Fitness; = Fitness; + P X ConstraintViolation (11)

where P is a significant positive constant.



In the case of the Relentless Particle Swarm Optimization based Routing Protocol (RPSORP),
routing activities start from the initialization phase, where SN is placed within the designated area,
and the parameters needed for the PSO are defined as shown in Fig. 2. Afterwards, particle
initialization occurs, producing a swarm of particles representing possible routing paths. Th
fitness of the particles is determined using a fitness function that factors in EC, coverage effici

and communication range, among other parameters. RPSORP incorporates iterative opjis

as a vital element of the algorithm, where the velocities and portions of particles are to
search through the available routing path space. After each such update, everygRrtic §
recalculated, which enables the algorithm to look for the best possj g When the

and refreshes the nodes' routing tables accordingly. The actual height o sink node is taken as

the anchor reference to which other nodes find their positions /it per routing paths laid out,

ards the sink node are sent

along the shortest or optimized routes. Following trg@mi ¥ energy update phase of the

framework re-estimates the energy state of VSR the active transmission and reception
of data packets.

In the last stage, the system goes into the at phase, progressing from the routing intervals

and evaluating the routing paths frogasiime to bette®cope with changing conditions in the network,
such as energy depletion or ng g that efficiency can be maintained. Focusing on this
process method indicates haQg@RPSQO, n impact computation processes in improving routing

decisions and using e

The R ance SSN-based EC by automatically adapting the routing paths to
PSO is used in the protocol to navigate amongst various possible routing
e least amount of energy possible while meeting the set requirements. Let
2, v, Ny} represent the set of ‘M’, SN deployed over an area A. Each node n; has
~. Communication Range, R; . Coverage Range, C;. A routing path P, is
nted as a sequence of nodes connecting a source node n, to the sink node ng;, :

Pk = ( Ng, N1, N2, oeey nsink) (12)




The set of all possible routing paths is denoted as 'P’. The fitness function in RPSORP evaluates
the quality of routing paths based on three key factors: EC (E;y.q;), Coverage Efficiency (C.rr),
Communication Distance (D;,:4:)- The fitness function for a routing path Py is defined as:
Fitness(Px) = a - Erorar(Pr) + B - (1 — Corr(Pi)) + ¥ - Drotar (Pr) (13)
where «, 8,y are weighting coefficients satisfying « + § + y = 1, and they determine the rel @
importance of each component.

The total EC for transmitting data along the path P, is calculated as:
Etotar(Pr) = Zfi(l_l(Etx(nkpnki_,_l) + ERx(nki+1))
where Ly is the length (number of nodes) of the path Py. E, (1, ny ¥ Cbh node ny,
to transmit data to the node ny,, . Egx(ny,,,) is the EC by node to receive data. The
transmission energy is modelled as follows:
Etx(nk,»nkiﬂ) = Eejec 1 + Eamp - 1 d;cni,kiﬂ (15)

where, Ejec IS the energy dissipated per bit to run th

NSQLter g receiver circuit. E;pp is the

energy dissipated per bit per m™ by the trg# ifier. [ is the size of the data packet in

bits. dj]x,,. is the Euclidean distance 0 Ddes k;and k;,,. m is the path loss exponent
(typically m=2). The reception energy is:
ERx(nkH_l) = Eelec - |

Coverage efficiency measure

(16)

he routing path contributes to the overall network

coverage

Area covergd™

Cerr(Pr) = (17)
Alterngivel an be adjusted if the coverage is represented in terms of coverage
e nuNQer of covered targets. The total communication distance along the path Py

probabjlity

Ak ki (18)
rorar NEIPS reduce EC due to lower transmission distances.

m 1 for RPSORP

1. Initialization:
a. Deploy SNas N = {nq,n,,...,ny} in the target area A.

- Assign initial energy E? to each node n; .



- Define communication range R,,,, and coverage range C; for each node.
b. Initialize PSO parameters:
- Swarm size S (number of particles).

- Maximum number of iterations T.

- Inertia weight w, cognitive coefficient c;, social coefficient c,.
- Weighting factors «, 8, y for the fitness function.
c. Generate Initial Swarm:
FORi = 1TOSDO
- Randomly generate a feasible routing path P;.
- Ensure P; connects source node ng to sink node ng;y -
- Satisfies communication range and energy constraints.
- Initialize particle position x; to represent P; . ,
- Initialize particle velocity v; (could be zeros or sm ouf values).
- Evaluate fitness Fitness(x;) using the fitgess fqgtion:
- Set personal-best position p; = x;
End For

d. Determine the global best position:

- g = argmin(Fitness(p;)) FOR rticlesi=1TOS.

2. Iterative Optimization:

Fort=1to T Do
@ f using dynamic inertia):

Fori=1to S Do
max” Wmin) * t) IT

a. Update inertid

enerate random numbers r; and r, uniformly distributed in [0, 1].

ildl = w x vi[d] + ¢y * 1y * (pi[d] — x,[d]) +cp * 1 % (gld] — x;[d])
End For

c. Update particle position x;:
- For discrete PSO, update x;based on v; using a suitable method

(e.g., probability mapping, position swap operations).



d. Ensure particle position x;represents a feasible routing path:

- If x;violates communication range constraint:
- Repair x;by adjusting node sequences to satisfy d{kik{i+1}} < Rpax-

- If x; violates energy constraints:

- Remove nodes with E; < E,;;, from x;.
- Find alternative nodes with sufficient energy.

e. Evaluate fitness Fitness(x;):
- Compute Etorai(Xi), Cerf(xp)r Deotai(x))
- Fitness(x;) = a * Expraixpy + B * (1 — Ceff(xi))-l— @ )
f. Update personal best position p;:
- If Fitness(x;) < Fitness(p;) Then ,
P =X
End IF
End For

g. Update global best position g:

-g = argmin(Fitness(p;)) FOR a iclesi=1TOS.
h. Check termination criteria:

- If convergence is achieve inimal improvement over several iterations)

OR t equals maximu s T4 hen
- Break loop
End If

End Fo
3. Updgate ing es:

a. Ext: pti routing path Py, from global best position ‘g’.
b. er g tables of SN :
For h node n; in Py, update its routing information to forward data accordingly.

at®rransmission: Nodes transmit data packets using the optimized routing paths in their
routing tables.

5. Adaptation and Iteration:

a. Periodically or upon significant network changes (e.g., node failure, energy depletion):



- Return to Step 2 to re-optimize routing paths.
End RPSORP Algorithm

In the Relentless Particle Swarm Optimization based Routing Protocol, the algorithm for node
selection, deployment, and distribution (the Relentless Particle Swarm Optimization basegd
Routing Protocol) starts by setting the area of interest as well as the specific parameters conce
the SN like energy capacity, communication, and sensing range. Each node is scattereqgsgalo

@

effectiveness of the deployed nodes in terms of coverage areas by measuring the 4ltance

among the appropriate zones and noted in its coordinates. The next step involves det

the deployed nodes and identifying any zones that could be exposeg z0 xist, these

nodes will be relocated to reduce the number of uncovered areas. NG tgorithm formulates

a database of each deployed node and its corresponding attributes to aSgaeve a desirable node

density and energy distribution, preparing the ground for sou uig@® policies in RPSORP.

Algorithm 2 for Node_Selection_Deployment_Distribu E?, R_max, C;):

Step 1. Initialize NodeList =[ ]
Step 2.For i from 1 to N:

Step 3.Create node n_i with:
e E i%C_i,R max
Step 4. Generate random coordin i, yi)InA

Step 5. Assign n_i.position = g |

€ coverage and identify gaps

o gaps exist
Reposition n;to a new random location, maximizing coverage
te1™8. For Each node n;:
Step 9. Append n;to NodeL.ist with its final attributes
Step 10. Return NodeL.ist
Step 11.



3.3. Simulation Setup

Simulations performed extensive assessments to measure the effectiveness of RPSORP. This
section briefly describes the simulation settings, parameters, and methodology adopted to compare
RPSORP and traditional routing protocols. The simulations were conducted in MATLAB R2021

since it is a versatile tool that allows one to design WSN and implement advanced functions

as PSO. The simulation area is a model for the 2-D square area with randomly deployeg

network consists of ‘N’ as SN randomly distributed over 100100 square meters. T
is deployed at the geographical centre of the entire deployment zone. The key nqglRork 8
are summarized in Tab. 2.

Tab. 2. Network Parameters

Parameter Symbol Value
Deployment Area 100x100 m?
Number of SN 100
Initial Energy Per node 2 Joules
Communication range 20 meters
Sensing Range 10 meters
Data Packet Size 4000 bits

Sink Node Position Centre of area

Path Loss Exponen m 2 (Free space)

The EC model is based

transmission and recepti

packets. Such parameters, which are found in the energy model,
are presented in Tab.

Tab. 3. Energy Model Parameters

arameter Symbol Value
C Per Bit (TX/RX) Eglec 50 nJ/bit
Transmit Amplifier Energy Eqmp 100 pJ/bit/m?
Data Aggregation Energy Epy 5 nJ/bit

he Parameters for the PSO used in RPSORP are listed in Tab. 4.
Tab. 4. PSO Parameters

Parameter Symbol Value




Swarm Size S 30

Maximum Iterations T 100
Inertia Weight w Linearly decreasing from 0.9 to 0.4
Cognitive Coefficient c 2.0
Social Coefficient Cy 2.0
Velocity Clamping — Applied

Position Update Method —

The inertia weight w decreases linearly over iterations to balancae In an loitation.

The weighting factors in the fitness function balance the importance

objectives (Tab. 5). ,

Tab. 5. Fitness Function W,

different optimization

Component Sym Weight (a, B, v, 0)
EC a 0.4
Coverage Efficiency B 0.3
Communication Distance Y 0.2
Energy Balance ) 0.1
Total — 1.0

ed to evaluate RPSORP comprehensively. Scenario A
ing protocols, such as LEACH and AODV, under identical

20,25meters).

simulation procedure proceeds with the initialization phase first. In this phase, SNs are
uniformly placed over the designated area, and an initial energy is assigned to each node, which is
6 times the average amount from the previous section. The execution of the RPSORP follows this,
and the first step is the initialization of the PSO. The swarm of particles is built, and routing paths



are optimized with the help of the fitness function, which attempts to optimize the EC, coverage
efficiency, communication distance, and energy balance of each node. After the optimization, each
SN’s routing table is exemplified with the best routing paths obtained. In the data transmission

phase, SN generates packets and sends the data to the sink node via the optimized routing path

During the phase in which data are transmitted and received, EC for both acts is determined

a first-order radio model, and energy residues of the nodes are updated.

the simulation continues until a stopping criterion is pointed out. An exgaaple could be energy
depletion of specific nodes up to some preset level (e.g., 50% org@P to provide reliable results,
the same scenario is repeatedly executed several times ent random seeds, and the
performance metrics are averaged.

IV RESULT AND DISCUSSION

This section of the paper discusses t btained” during the evaluation of the routing

protocol RPSORP and places the results i context of the traditional routing protocols.

Performance metrics that were m ed includ®total EC, Network Lifetime (NL), Coverage

Ratio (CR), Packet Delivery Raji@P Qd Average Residual Energy (ARE). It is evident from
the results that RPSORP is suite moting EC and increasing the useful lifetime of SSNs.
4.1. Scenario A: Co Traditional Routing Protocols

The total EC of R hs compared to LEACH and AODV's under the same networking

condition@aT ' RPSORP are listed in Tab. 6, which indicates that RPSORP

UT
substarq easesWC.
& Tab. 6. Total EC Comparison
0toco Total EC (Joules)
SORP 120
LEACH 180
AODV 200




As seen in Fig. 3, the EC by each protocol, the drug performs relatively better as time progresses
than other protocols’ EC profiles. RPSORP exhibited decreased EC throughout the simulation
period owing to its effective routing path, which reduces the distance to be covered and reclines
the EC on nodes.

Total Energy Consumption over Time
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The number of rounds m res t ork lifetime until the First Node Dies (FND) and until
s shown in Tab. 7, RPSORP extends the network lifetime
H and AODV.
ab. 7. Network Lifetime Comparison

Rounds until FND Rounds until HND

500 900

350 600
AODV 300 550
The extended network lifetime in RPSORP is featured in its energy-aware routing decisions,

which prevent early energy depletion of critical nodes. The coverage ratio over time is depicted in




Fig. 4. RPSORP maintains a higher coverage ratio than LEACH and AODV, ensuring that the

monitoring area remains effectively covered even as nodes deplete their energy.

Coverage Ratio over Time
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As shown in Tab. 8, RPSORP es a higher PDR, indicating more reliable data transmission
to the sink node.

. 8. PDR Comparison

Protocol PDR (%)
S 95
O 88
85

RV cenal B: Scalability Analysis
formance of RPSORP was evaluated by variable the number of SN (N=50,100,150) to
assess scalability. Fig. 5 shows that as the number of nodes increases, the total EC of RPSORP

scales linearly, demonstrating its ability to handle more extensive networks efficiently.



Total Energy Consumption vs. Number of Nodes
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Tab. 9 presents the network lifetime ferent network sizes. RPSORP consistently
outperforms traditional protocols, with the net lifetime slightly decreasing as N increases due
to higher energy demands. Despyj e increase in network size, RPSORP maintains a high
coverage ratio, as illustrateggy . due to its efficient routing and energy-balancing
mechanisms.

T@v Lifetime with Varying Number of Nodes

Numbggof RP Rounds until LEACH Rounds until AODV Rounds until

(w FND FND FND
& 550 400 350

Q 500 350 300

150 450 300 250

Despite the increase in network size, RPSORP maintains a high coverage ratio, as illustrated in

Fig. 4, due to its efficient routing and energy-balancing mechanisms.




Coverage Ratio vs. Number of Nodes

95 |
90 |

9

2 85 1

m

o

Q

[@)]

© 80 -

@

>

(@]

@]
757 —e— RPSORP

LEACH ,

20| —— AODV

60 80 100 140
Number of S or

Fig. 6. Coverag Nu of Nodes

4.3. Scenario C: Impact of Initial Node

By varying the initial node energy levels (E; ,2,3 Joules), the protocol's performance under

different energy constraints wa@evalgated. Fig. 7 shows that network lifetime increases
proportionally with higher inj

e Is. RPSORP makes better use of the available energy,

resulting in longer network |iT8@es than LEACH and AODV at each energy level.
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The energy efficiency of RPSORP is hig y its ability to extend network lifetime without

4.4. Scenario D: Robustness Agaj ommunication Limitations

The communication range ,25 meters) was wide-ranging to test the protocol's
robustness. The PDR typic as the communication range decreases due to limited
connectivity. HowevegPTon ows that RPSORP maintains a higher PDR than traditional

Com

ica Range (m) RPSORP (%) LEACH (%) AODV (%)

96 90 88

Q 20 95 88 85
15 92 80 78

RPSORP adapts to reduced communication ranges by optimizing routing paths considering

communication constraints, thereby maintaining network connectivity and performance.



Average Residual Energy Comparison
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At the end of the simulation for protocol, Figure 8 presents the average residual energy of

nodes. This visualization dis gy efficiency level of the system during operation
ows that RPSORP performs well in energy efficiency

among nodes by show " verage residual energy than the conventional routing protocols

providin NI ter EC equilibrium among the nodes in the network, increasing the

netwo

simulation results, RPSORP outperforms standard routing protocols such as
d
e can be attributed to its succession of routing paths, which effectively shortens

DV regarding EC and prolonging network lifetime. RPSORP’s improved

ission distances and balances the EC on the networks’ nodes. Using PSO, RPSORP can
determine paths that use less energy without exhausting some nodes faster than others. The lack
of a dynamic average coverage ratio in standard protocols makes RPSORP significantly valuable

for applications that need regularly located area tracking. Network protocols based on RPSORP




and similar structures will use significant energy to avoid networking disparity and enhance
productive domain coverage for extended periods. Run-of-the-mill interactions along these lines
are featured by limited protocols that hardly deploy the global optimization approach elucidated
above, and as such, shorter network lifespans are experienced.

The RPSORP exhibits consistent strategic advantages as the network size increases,

points out its scalability. The efficiency of the PSO increases the size of the search spagasd

increasing the level of computation, which proves helpful for RPSORP in large
adapts to different communication ranges and is still functional despite the

limits. The routing paths disagree to enable communication and er ese nodes'

communication capabilities are lowered, thus still operating the ne
constraints. Nevertheless, a few weaknesses of RPSORP, in particular, ne?@go be addressed. These
nodes are assumed to be other corresponding sensors executi e , which adds unnecessary

computations and can be a limiting factor for SN with low ow resources. This problem,

however, is countered by the extended network Ij e ause this overhead and the
Other molds made in the simulations,

¥t ideal sCenarios, will hold in highly dynamic

anging channel conditions where the protocol

Ifetimes translate to lower operational expenditure as fewer batteries
hence®smaller infrastructure footprint. Furthermore, the protocol's effectiveness
can bgli ed @ng adaptive parameter tuning and energy harvesting techniques. This would
an up-and-coming, efficient energy management protocol solution for SSNs. To
the presented results leave no doubt that RPSORP poses excellent potential in
ming the limitations of the conventional routing method in the area of EC, network lifespan,
extent of reach, and network durability. In the same method as routing decisions, which require
the embedding of PSO, these aspects have been integrated into the optimization of the EC in

RSOPRPM by RPSORP.




True Labels

percentage shares of TP and F
data packet classification. Tr TP) and True Negative (TN) are crucial determinants of
protocol usability. S ig®es make it understandable that all the positive and negative

esents the unfortunate situation of a failed transmission being

attempts are c
interprete s, whereas the other method could enhance energy waste and lower
efficien e reasoning applies to FN, which refers to misclassifying a successful message
ailure. The percentage reading on the confusion matrix makes drawing reports
I's performance easy, as most percentages averaged out number nine as a balance.
venly spread the percentage was, the better the performance of the PSO algorithm in
ak®ig routing decisions.

V CONCLUSION AND FUTURE WORK

This paper introduces RPSORP, a technique that addresses energy efficiency in wireless

SSNs. It integrates the advantages of PSO in routing decisions, allowing it to adaptively search for




fewer ECs at any specified time while ensuring acceptable network coverage and connectivity. In
most performance parameters, RPSORP is more effective than traditional routing protocols like
LEACH and AODV. It provides an energy-efficient network operation by routing communication
distances, reducing communication travel distances, and evenly distributing energy depletio

across nodes. It makes the operational time longer, increases the time constant area coverage Q

and advances the over-percent PDR to the sink node, all of which means better dat

RPSORRP is flexible and extendible, preserving performance benefits even when netwy

conditions change. It can endure communication restrictions and promotes suglinab

entire set-up by rerouting communication links.

Future work should explore RPSORP's probable in dynami S, increasing its use
in complex environments and encompassing its lifetime. When PSO ombined with other
routing optimization methods, the result can be better routing tioﬁacau e these technologies
can restore node energy and increase network lifetime. T can enhance the network's

performance.
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