
Journal Pre-proof

Enhancing Network Security Intrusion Detection and Real-Time
Response with Long Short-Term Memory Networks

Rukmani Devi S, Manju A, Lakshmi T K, Venkataramanaiah B,
Sureshkumar Chandrasekaran and Lakshmi Prasanna P

DOI: 10.53759/7669/jmc202505079

Reference: JMC202505079

Journal: Journal of Machine and Computing.

Received 23 March 2024

Revised form 24 December 2024

Accepted 02 March 2025

Please cite this article as: Rukmani Devi S, Manju A, Lakshmi T K, Venkataramanaiah B, Sureshkumar

Chandrasekaran and Lakshmi Prasanna P, “Enhancing Network Security Intrusion Detection and Real-

Time Response with Long Short-Term Memory Networks”, Journal of Machine and Computing. (2025).

Doi: https:// doi.org/10.53759/7669/jmc202505079

This PDF file contains an article that has undergone certain improvements after acceptance. These

enhancements include the addition of a cover page, metadata, and formatting changes aimed at enhancing

readability. However, it is important to note that this version is not considered the final authoritative version

of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,

typesetting, and comprehensive review. These processes are implemented to ensure the article's final form

is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's content

to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be

identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal remain

in effect.

© 2025 Published by AnaPub Publications.

Enhancing Network Security Intrusion Detection and Real-Time Response

with Long Short-Term Memory Networks

S. Rukmani Devi1,*, A. Manju2, T. K. Lakshmi3, B. Venkataramanaiah4,

Sureshkumar Chandrasekaran5, P. Lakshmi Prasanna6

1Department of Computer Science, Saveetha College of Liberal Arts and Sciences, SIMATS Deemed to be

University, Chennai, 602105, Tamil Nadu, India.

*Corresponding Author Email rukmanibaveshnambi@gmail.com

2Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram,

Chennai, 600089, Tamil Nadu, India. Email: manjuappukuttan1985@gmail.com

3Department of Computer Science and Engineering, Malla Reddy University, Hyderabad, 500014, Telangana, India.

Email: dr.lakshmitk@gmail.com

4Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute

of Science and Technology, Avadi, Chennai, 600062, Tamil Nadu, India.

Email: bvenkataramanaiah@veltech.edu.in

5Department of Artificial Intelligence and Data Science, KCG College of Technology, Chennai, 600097, Tamil

Nadu, India. Email: csureshkumarmca@gmail.com

6Department of Computer Science and Engineering Koneru Lakshmaiah Education Foundation, Vaddeswaram,

Guntur, 522302, Andhra Pradesh, India. Email: lakshmiprasannap87@gmail.com

Abstract—In cybersecurity, network security systems (NSS) are technologies used to protect

sensitive data against increasing cyber-attacks. This paper has carried out the process of integrating

advanced Machine Learning (ML) techniques such as the Long Short-Term Memory (LSTM)

networks along with the Convolutional Neural Networks (CNN) for the task of enhancing the

Intrusion Detection Systems (IDS) in the NSS. Usually, the traditional models have faced many

challenges, such as high false positive rates (FPR) and the need for real-time processing of

extensive data streams, which make these systems insufficient to handle such scenarios. So, to

handle these complications, ML has evolved to propose improvements in IDS implementation by

adapting to new attacks and detecting complex patterns with greater accuracy. The study

introduced a novel deep learning (DL), “GC-SLSTM,” that combined models such as Gated CNN

with Stacked LSTM to address these challenges. This model includes CNN robust spatial pattern

recognition and the LSTM that effectively handles the temporal data analysis. The proposed model

was experimented with using the CICIDS2018 dataset, and the results demonstrate that the

proposed Gated CNN + Stacked LSTM (GC-SLSTM) had achieved an accuracy of up to 99.59%,

precision of 99.58% and a recall of 99.47%, culminating in an F1-score of 99.59%. Auth
ors

 Pre-
Proo

f

Keywords— Network Security Systems; Intrusion Detection Systems; CNN; LSTM; False Positive

Rates; Machine Learning.

I. INTRODUCTION

Network Security Systems (NSS) are crucial in ensuring business integrity and security in the

digital age. They protect sensitive data from unauthorized access, breaches, and cyber-attacks. As

cyber-attacks become more complex and frequent, the need for enhanced network security

protocols has increased. Intrusion Detection Systems (IDS) are used to identify potential attacks

by monitoring network traffic. However, IDS faces challenges such as high False Positive Rates

(FPR), new and unknown attacks, and computational demands for real-time analysis. The

increasing complexity of network models and attack vectors by cyber criminals complicates the

development of effective IDS [1-2].

Machine learning (ML) has significantly improved predictive analytics for network security,

replacing traditional rule-based approaches that maintain hope in the face of dynamic cyber-

attacks. ML's adaptive learning capabilities are crucial for managing new and evolving attacks. As

research on ML, particularly in Deep Learning and Neural Networks, advances, sophisticated IDS

models have become more accurate and timelier. However, these systems require large datasets

for training, which require substantial computational resources, which are critical in a security

context [3]. Long-short memory (LSTM) is a Recurrent Neural Network (RNN) type designed to

handle time-series data. Its model can remember past data for an extended period, enabling it to

identify patterns and predict future events. Applying LSTM to IDS can better understand network

traffic flow and anomalies over time. Unlike traditional models that process each data point

independently, LSTM considers traffic flow as a sequence, detecting complex attack patterns over

an extended period. This reduces the FP and increases attack detection accuracy in real-time [4-

5].

Convolutional Neural Networks (CNN) are used in IDS to classify network intrusion patterns.

They can process and analyze spatial relationships within data, IDS, and relevant network traffic

patterns. Integrating CNN + LSTM can provide a more reliable IDS. This hybrid model uses

CNN's spatial pattern recognition capability and LSTM's sequence prediction capabilities [6-10].

CNN analyzes data to detect spatial anomalies, while LSTM processes output over time to

understand temporal patterns and anomalies. This integration allows for more effective multi-stage

cyber-attack detection and higher chances of reducing the frequency of attacks (FP).

Auth
ors

 Pre-
Proo

f

This work proposed a Deep Learning (DL) Advanced Intrusion Detection and Real-Time

Response in NSS. The work combines the Gated CNN (GCNN) with Stacked LSTM (S-LSTM)

networks for network IDS. The method effectively preprocesses network traffic by segmenting the

input data employing time and type of attack. Then, the segmented data are serialized and

converted into grayscale images fed as CNN input. The proposed GC-SLSTM processes the

preprocessed data by utilizing the G-CNN to filter the essential features that S-LSTM processes to

analyze the temporal dependencies. The GC-LSTM was experimented with using the

CICIDS2018, and it showed better performance than existing models.

The paper is structured as follows: Section 2 presents the literature review, Section 3 provides

the methods used in this work, Section 4 presents the proposed IDS, Section 5 examines the

performance of the work, and Section 6 concludes the work.

II. LITERATURE REVIEW

Authors [9] invented a Deep Neural Network (DNN) using 28 features from the NSL-KDDt. It

included a real-time feature extraction (FE) into an ML pipeline. Their proposed DNN has

demonstrated performance with accuracy, precision, recall, and F1-score metrics at 81%, 96%,

70%, and 81%, respectively. Authors have designed a Conditional Deep Belief Network (CDBN)-

based IDS for handling data imbalance and redundancy by the method of using a window-based

instance selection algorithm, "SamSelect," and by including a Stacked Contractive Auto-Encoder

(SCAE) for dimension reduction. Their system had shown a detection accuracy rate of 97.4% with

an achieved detection time mean of 1.14 ms.

The authors have applied machine learning (ML) [10] for IDS, using Signature IDS (S-IDS)

and Anomaly IDS (A-IDS) on datasets like KKDDCUP99 and NLS-KDD. They used SVM, Naïve

Bayes, and ANN, and their method performed better in real-time networks. They also explored

hierarchically distributed IDS for Cyber-physical-based Industrial Systems using the Kalman

Filter (KF) and a recursive Gaussian mixture model. Their method efficiently recognized potential

and covert cyber-attacks across ICPS links, as demonstrated by several experiments.

The authors have developed an Artificial Intelligence System (A-IDS) [11] based on the human

Immune System features, incorporating innate and adaptive layers. They used statistical and

adaptive Immune models to mimic the immune system's response mechanisms. The system

achieved high True Positive Rates (TPR) and effective IDS. The authors also investigated the

integration of network profiling, ML, and game theory to secure IoT environments against cyber-

Auth
ors

 Pre-
Proo

f

attacks. Their A-IDS dynamically profiles and monitors IoT devices, identifying suspicious

transactions. Tested on the Cyber-Trust testbed, the model achieved a high overall accuracy of

98.35% and a low FRP of 0.98%.

The authors [12] developed an LSTM-based IDS to detect attacks on vehicles' Controller Area

Network (CAN) bus networks. They generated a unique dataset using attack simulations on an

experimental car and trained and tested their model. The system demonstrated a 99.9% detection

accuracy. They designed a novel II-stage DL that combined LSTM with Auto-Encoders (AE) and

used their model for attack detection. The model performed better in CICIDS2017 and CSE-CIC-

IDS2018 datasets.

The authors have developed a Network Intrusion Detection System (NIDS) using a Recurrent

Neural Network (RNN) [13]. The system integrates multiple modules, including a management

center, knowledge database, data acquisition, risk analysis, BiLSTM + DNN for sequential data

relevance, and FE. An attention mechanism enhances the importance of features for NN efficiency.

The authors also proposed a distributed DL-IDS using Apache Spark to tackle challenges related

to the Internet of Vehicles (IoV) under 5G. The model achieved fast IDS speeds and a high

accuracy of 99.7%, proving superiority over existing models. They also developed a novel IDS to

detect botnet activities by analyzing the input flow of network node features using RL2TM. This

model improves network efficiency and eliminates redundant activities [14-15].

III. METHODS

A. Convolution Neural Network

A CNN is a type of ANN designed to process data with a grid-like topology; such data usually

encompass images or videos [16]. These datasets hold and exhibit complex patterns effectively

processed and analyzed by CNN. The model of a CNN (Fig. 1) includes multiple layers, such as

an input layer, one or more convolutional layers, pooling layers, and fully connected layers at the

end. Each layer has its role to play:

Auth
ors

 Pre-
Proo

f

Fig. 1: Basic CNN

(a) Input Layers: In a CNN, the typical inputs are predominantly images or videos. This layer

receives the image's raw data, which has dimensions of 32×32×3 and width ‘w’ height ‘h’

depth corresponding to the color channels.

(b) Convolutional Layers: The convolutional layer extracts the features from the input data from

input layers by applying filters called kernels to the input images. These kernels are typically

matrices of 2×2, 3×3, or 5×5 in size. They compute the dot product between the kernel weights

and the corresponding patches of the image. The output from this layer is known as feature

maps that highlight essential features in the input.

(c) Activation Layer: After the convolutional layer, this layer introduces non-linear into the

network by applying an activation function to the outputs from the previous layer. Commonly

used activation functions include RELU, which is defined as max (0, x), tanh, and Leaky

RELU, among others.

(d) Pooling Layer: The pooling layer is placed between convolutional layers to downsize the

volume of data, speed up computation, decrease memory usage, and prevent overfitting. The

two most common forms of pooling are max pooling and average pooling.

Fig. 2. LSTM Auth
ors

 Pre-
Proo

f

B. LSTM

LSTM is a type of RNN designed to capture long and short-term dependencies. An LSTM (Fig.

2) typically consists of four layers called gates, EQU (1) to (2).

1 Input Gate (IG) (𝒊𝒕) : The IG decides how much of the new data to allow into the cell state:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1)

Here, 𝜎 is the sigmoid activation function, which outputs values between 0 and 1, effectively

controlling the extent to which new data is allowed into the cell. 𝑊𝑖 is the weight matrix for the

IG, ℎ𝑡−1 is the previous output, 𝑥𝑡 is the current input, and 𝑏𝑖 is the bias [17].

2 Forget Gate (FG) (𝒇𝒕) : The FG determines the amount of the previous cell state (𝑐𝑡−1) to

retain:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

This gate filters out insignificant parts of the previous state by selectively letting only valuable

parts based on the current input and previous output.

3 Output Gate (OG) (𝑶𝒕) : The OG controls the output from the cell state to the rest of the

network:

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3)

This EQU (3) fixes which parts of the cell state are output based on the current and previous inputs.

4 Cell State Candidates (𝒄̃𝒕): This EQU (4) represents a candidate version of the new cell state,

combining new input data with the previous output:

𝑐̃𝑡 = tanh⁡(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4)

The tanh function helps regulate the network by scaling the output between -1 and 1, providing

a normalized form of new data to be added to the cell state [18].

5 Cell State Update (𝒄𝒕) : The cell state is updated using the FG, IG, and the new candidate cell

state, EQU (5).

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑐̃𝑡 (5)

This equation ensures that the cell state is a mixture of old data (FG) and new data (IG).

6 Output from the LSTM cell (𝒉𝒕) Finally, the output of the LSTM cell, EQU (6)

ℎ𝑡 = 𝑜𝑡 ⋅ tanh⁡(𝑐𝑡) (6)

The OG decides how much of the cell state to output and the tanh of the cell state 𝑐𝑡 helps to

scale the output values.

1. Stacked LSTM

Auth
ors

 Pre-
Proo

f

A Stacked LSTM is a modified single-layer LSTM comprised of multiple hidden LSTM layers,

each with several memory cells. Stacked LSTMs are particularly effective for complex sequence

prediction problems that other models can handle. They effectively use their model parameters,

rapid convergence, and better parameter efficiency in learning (Fig. 3) [19].

Fig. 3: Stacked LSTM

IV. PROPOSED MODEL

A. Data Preprocessing

Data preprocessing is done in numerous formats, such as snoop, pcap, pppdump, btsnoop,

i4btrace, LANalyzer, and pcapng. These formats organize the data for input into the proposed IDS

[20]. The preprocessing involves several steps: segmenting the traffic by time, serializing the data

into formats like pkl or json, depending on the programming language used, labeling serialized

files, and generating a greyscale image of the traffic data [21-22].

a) Step 1 (Time Division): Time division involves partitioning the incoming data stream based

on the timing and type of potential attacks. Let 𝐷 = {(𝑡𝑖, 𝑥𝑖)} represent the data stream, where

𝑡𝑖 is the timestamp of the 𝑖-th data point, and 𝑥𝑖 is the matching data value (or set of data

values). Assume we have a set of known attack types 𝐴 and corresponding time intervals

during which these attacks are likely to occur. Each attack type 𝑎 ∈ 𝐴 is associated with a time

interval [𝑡start , 𝑡end]. A segmentation function 𝑆 is defined as those partitions 𝐷 based on the

specified attack time and type, EQU (7)

𝑆(𝐷, 𝑎, 𝑡start , 𝑡end) = {(𝑡𝑖, 𝑥𝑖) ∈ 𝐷: 𝑡start ≤ 𝑡𝑖 ≤ 𝑡end and⁡type (𝑥𝑖) = 𝑎} (7) Auth
ors

 Pre-
Proo

f

Here, type (𝑥𝑖) determines whether the data point 𝑥𝑖 matches to the type of attack 𝑎. The output

of this function 𝑆 is a subset of 𝐷 containing only those data points that fall within the specified

time interval and match the attack type. This subset is then used for further analysis or processing

in the IDS.

b) Step 2 (Traffic Segmentation): Traffic segmentation involves further dividing the dataset

obtained from Step 1, which has already been segmented by time, into more discrete sessions.

This is achieved by sharding the data based on the IP addresses of the attacking host and the

victim host for each corresponding time.

From Step 1, we have a subset of data 𝑆(𝐷, 𝑎, 𝑡start , 𝑡end) that has been segmented by attack

type and time. Let 𝐻attack and 𝐻victim represent the sets of IP addresses for the attacking hosts

and victim hosts. A function 𝑇 is defined that partitions the subset 𝑆 into sessions based on the IP

addresses of the attack and victim hosts:

𝑇(𝑆, 𝐻attack , 𝐻victim) = {𝑆𝑘 ⊆ 𝑆: IPattack ⁡(𝑥𝑖) ∈ 𝐻attack and IPvictim ⁡(𝑥𝑖) ∈ 𝐻victim for all

(𝑡𝑖, 𝑥𝑖) ∈ 𝑆𝑘}.

In this function, 𝑆𝑘 represents a session, ip pattack (𝑥𝑖) and IPvictim (𝑥𝑖) are functions that

extract the attacking and victim IP addresses from each data point 𝑥𝑖 . The output of this

segmentation function 𝑇 is a collection of sessions {𝑆𝑘}, each session contains data points that

share the same attacking and victim IP addresses within the specified time frame.

c) Step 3 (Serializing Data): Serializing or flattening is the process where denormalized data,

resulting from joining tables in a "one to many" (1:M) relationship, is compacted into repeating

groups within a primary identity table. Let us consider a primary table 𝑃 and a secondary table

𝑆 with a one-to-many relationship. The data in 𝑃 is then joined with 𝑆 based on a shared key

𝑘, EQU (8).

𝐽 = {(𝑝, 𝑠1, 𝑠2, … , 𝑠𝑛): 𝑝 ∈ 𝑃, 𝑠𝑖 ∈ 𝑆 and 𝑠𝑖 is⁡related⁡to 𝑝 through 𝑘} (8)

Here, each 𝑝 represents a record in the primary table, and 𝑠1, 𝑠2, … , 𝑠𝑛 are the related records

from 𝑆. The process of serializing involves restructuring 𝐽 such that the data from 𝑆 is embedded

into 𝑃 as repeating groups, EQU (9)

𝐹 = {(𝑝, {𝑠1, 𝑠2, … , 𝑠𝑛}): (𝑝, 𝑠1, 𝑠2, … , 𝑠𝑛) ∈ 𝐽} (9)

In this structure, 𝐹, each primary record 𝑝 is associated with a set of related secondary records

{𝑠1, 𝑠2, … , 𝑠𝑛} , which are serialized into a single row or record in the identity table.

The serialized dataset 𝐹 encapsulates the primary and its related secondary data in a compact form,

Auth
ors

 Pre-
Proo

f

which simplifies and accelerates search operations by reducing the need to perform multiple joins

during queries

d) Step 4 (Tag the Serialized File): This step involves labeling the serialized data to facilitate

more efficient data extraction, addressing the challenge of large file sizes. Assume from Step

2 that we have a set of traffic sessions {𝑆𝑘}, where each 𝑆𝑘 matches to a specific interaction

between hosts. For each session 𝑆𝑘 , predominant attack type 𝑎𝑘 is identified as being

associated with the session. The labeling function 𝐿 is defined to assign a label to each session

based on its attack type, EQU (10)

𝐿(𝑆𝑘) = 𝑎𝑘 (10)

where 𝑎𝑘 is the attack type determined from the data characteristics of 𝑆𝑘. Then, a labeled package

𝑃𝑘 is created for each session, EQU (11)

𝑃𝑘 = (𝑆𝑘, 𝐿(𝑆𝑘)) (11)

In this packaging, each session 𝑆𝑘 is paired with its corresponding label 𝐿(𝑆𝑘), which describes

the type of attack the session data represents. The result is a collection of labeled sessions {𝑃𝑘},

where each 𝑃𝑘 contains the session data 𝑆𝑘 and its associated label 𝐿(𝑆𝑘).

e) Step 5 (Sample Gray Image Conversion): This final step in data preprocessing involves

converting statical data into a format suitable for CNN input, specifically into 2-D matrices

representing gray-scale images. The outcome from the preceding preprocessing steps is a set

of labeled sessions, {𝑃𝑘} . Each session 𝑃𝑘 contains numerical data 𝑆𝑘 which needs to be

normalized to ensure all feature values are on the same scale, typically [0,1], EQU (11).

𝑥𝑗𝑘
′ =

𝑥𝑗𝑘−min(𝑥𝑗𝑘)

max(𝑥𝑗𝑘)−min(𝑥𝑗𝑘)
 (12)

Here, 𝑥𝑗𝑘 is the ′j′ feature of the ′k′ session, and 𝑥𝑗𝑘
′ is its normalized value. Each normalized

session 𝑆𝑘
′ is converted into a 2D matrix 𝑀𝑘. Assume each session 𝑆𝑘 comprises of a flattened

array of features, reshape this array into a matrix, EQU (13)

𝑀𝑘 = reshape⁡(𝑆𝑘
′ ,𝑚, 𝑛) (13)

where 𝑚 and 𝑛 are the dimensions that form the matrix representation suitable for image

processing. Each element in the matrix 𝑀𝑘 is then interpreted as a pixel in a gray-scale image. The

pixel intensity is determined by EQU (14)

Pixel𝑗𝑘 = 255 × (1 − 𝑥𝑘
′) (14) Auth
ors

 Pre-
Proo

f

In this model, a pixel's intensity is inversely proportional to the normalized feature value, with

higher feature values resulting in darker pixels. The final output from this step for each session 𝑘

is a gray-scale image represented by the matrix 𝑀𝑘.

Fig. 4: GC-LSTM

C. Gated CNN + Stacked LSTM (GC-SLSTM)-IDS

The model of the proposed IDS is depicted in the Fig. 4; the details of each layer and its function

are explained here:

a) Input: The input layer receives preprocessed network data as a gray-scale image, which is then

directly inputted into the input layer.

b) Convolutional S: The convolutional layer employs a Gated Convolutional Neural Network

(GCNN). This approach utilizes a gating mechanism inspired by RNN to filter the data selectively

by discarding the less relevant data. The process begins by computing 𝐶 as a linear transformation

of 𝐹 using weights 𝜃1 and bias 𝑑1 . Simultaneously, 𝐷 is calculated as another linear

transformation of 𝐹, this time using 𝜃2 and 𝑑2, and then passed through the ReLU function to

present non-linearity. The final output ℎ(𝐹) of the gated convolutional operation is obtained by

performing an element-wise multiplication of 𝐶 and the transformed 𝐷, EQU (15) to EQU (17).

𝐶 = 𝐹 ⋅ 𝜃1 + 𝑑1 (15)

𝐷 = 𝐹 ⋅ 𝜃2 + 𝑑2 (16)

ℎ(𝐹) = 𝐶 ∘ ReLU⁡(𝐷), (17)

Here, 𝐹 denotes the output from the preceding layer. The terms 𝜃1 and 𝜃2 are weight matrices,

while 𝑑1 and 𝑑2 serve as biased terms. The activation function used is ReLU. The symbol ∘

Auth
ors

 Pre-
Proo

f

indicates element-wise multiplication between matrices. The model includes three convolutional

layers of configuration, as shown in the following Table 1 :

TABLE 1: KERNEL SIZE OF CONVOLUTIONAL LAYER

Layer Number Kernel Size Number of Kernels

2 1×3 16

4 1×2 32

6 1×1 64

c) Dropout: The Dropout Layer is implemented to prevent overfitting and increase the

simplification of the model by randomly turning off a subset of feature detectors during each

training iteration. Each layer’s neuron has a probability 𝑝 of being deactivated, meaning its output

is set to ‘0’. If the dropout rate is 𝑝 = 0.5, it indicates a 50% chance that each neuron's output will

be ‘0’ during training. Due to issues like data set label imbalance, which can lead to overfitting,

the dropout layers are included in the 3rd, 5th, and 7th in the CNN block and the 10th layer in the

LSTM stack with probabilities of 0.6,0.5, 0.4, and 0.4.

Let 𝑥𝑖 be the output from the 𝑖-th neuron. During training, with a dropout rate 𝑝, the output 𝑥𝑖 is

transformed as follows: EQU (18)

𝑥𝑖
′ = {

0 with⁡probability 𝑝
𝑥𝑖

1−𝑝
 with⁡probability (1 − 𝑝) (18)

d) Max-Pooling: The Max-pooling in a CNN compresses features and removes redundancy while

reducing the computational load of the model. The Max-pooling in this architecture is designed

with a stride set to 2. Mathematically, if 𝑀 represents the input matrix to the Max-pooling layer

and 𝑆 is the size of the pooling filter, the output matrix 𝑁 at position (𝑖, 𝑗) is calculated as follows:

𝑁𝑖,𝑗 = Max
𝑘,𝑙∈[1,𝑆]

 𝑀2𝑖+𝑘,2𝑗+𝑙 (20)

Here, 𝑘 and 𝑙 iterate over the matrix region covered by the pooling filter, selecting the

maximum value within each pooling window as the output for that window.

The LSTM layer is initialized with a hidden vector size 128 for layers 9 and 11. The 11th layer

outputs a vector ℎ𝑖, which is input to the next layer. The LSTM units in layers 9 and 11 process

data by gates and a cell state, each managing a hidden vector of 128 dimensions. The hidden state

ℎ𝑡 at any time, step 𝑡 in these LSTM layers is updated based on the current input 𝑥𝑡, the previous

hidden state ℎ𝑡−1, and the previous cell state 𝑐𝑡−1 : ℎ𝑡 = LSTM⁡(𝑥𝑡, ℎ𝑡−1, 𝑐𝑡−1)
Auth

ors
 Pre-

Proo
f

d) Fully Connected (FC): The proposed model incorporates 2-FC layers, with the 1st layer

containing 512 neurons and the 2nd containing 128 neurons. Let 𝐿𝑘 represent the k -th fully

connected layer in the model. The neurons in these layers are interconnected with all activations

from the previous layer. The first FC layer, 𝐿1, has 512 neurons. Each neuron in 𝐿1 is connected

to all outputs from the previous layer or network section. If 𝑥 represents the input vector to 𝐿1, the

output 𝑦1 from this layer can be represented by the EQU (21):

𝑦1 = 𝑓(𝑊1 ⋅ 𝑥 + 𝑏1) (21)

The 2nd FC layer, 𝐿2, follows 𝐿1 and contains 128 neutrons. It takes 𝑦1 as input and produces

the output 𝑦2, calculated as EQU (22):

𝑦2 = 𝑓(𝑊2 ⋅ 𝑦1 + 𝑏2) (22)

e) Output: The output layer used a SoftMax function for multiclass classification that converts

the logits from the previous fully connected layer into a set of probabilities that collectively sum

to one, providing a distribution across the various classes. Given a vector of logits 𝑧 from the

preceding layer, the output probabilities for each class 𝑗 are calculated using the EQU (23):

𝑝𝑗 =
𝑒
𝑧𝑗

∑  𝐾
𝑘=1  𝑒

𝑧𝑘
 (23)

where 𝑒𝑧𝑗 is the exponential function applied to the logit of class 𝑗, and the denominator is the sum

of the exponentials of all logits within the vector 𝑧, with 𝐾 representing the total number of class

options in the model.

f) Cross-Entropy Loss Function: For the IDS employing a SoftMax output layer for multiclass

classification, the appropriate loss function to use is the Cross-Entropy Loss, also known as the

SoftMax Loss. Given a set of true class labels 𝑦 and the predicted probability distributions 𝑝 from

the SoftMax layer, the cross-entropy loss for a single data example can be expressed as EQU (24)

𝐿 = −∑  𝐾
𝑗=1 𝑦𝑗log⁡(𝑝𝑗) (24)

where 𝑦𝑗 is the binary indicator (0 or 1). The sum runs over all 𝐾 classes. When calculating the

loss over a batch of data points, the sum or average cross-entropy loss can be computed by sum or

average of the individual losses over all data points in the batch, EQU (25)

𝐿batch = −
1

𝑁
∑  𝑁
𝑖=1 ∑  𝐾

𝑗=1 𝑦𝑖𝑗log⁡(𝑝𝑖𝑗) (25)

Here, 𝑁 is the number of data points in the batch, 𝑦𝑖𝑗 Indicates whether class 𝑗 is the correct

class for the 𝑖-th data point and 𝑝𝑖𝑗 is the model's predicted probability that the 𝑖-th data point

belongs to class 𝑗.

Auth
ors

 Pre-
Proo

f

V. EXPERIMENT ANALYSIS

In this study, the CICIDS2018 (Canadian Institute for Cybersecurity) is employed, and it

includes different attack scenarios. The datasets cover ten days of network traffic, four of which

have DoS and DDoS attacks [23-25]. This work uses data from four traffic days: Thursday, Friday,

Tuesday, and Wednesday. This study evaluated the proposed model by training it individually and

testing it on the same data sets. In addition, we also experimented by training on Thursday data

and testing using Friday data, training using Tuesday data, and testing using Wednesday data. The

proposed GC-SLSTM undergoes training and validation in comparison with other models, such as

Model 1, Model 2, and Model 3, using a set of performance metrics including EQU (26) to EQU

(29)

• Accuracy (Acc.): This metric measures the overall correctness of the model and is defined as

the ratio of correctly predicted observations to the total observations:

 Accuracy
 Number⁡of⁡correct⁡predictions

 Total⁡number⁡of⁡predictions
 (26)

• Precision (P): Precision is the ratio of correctly predicted positive observations to the total

predicted positives. It is a measure of a classifier's exactness:

 Precision =
 True⁡Positives⁡(TP)

 True⁡Positives⁡(TP) + False⁡Positives⁡(FP)
 (27)

• Recall (R): Recall is the ratio of correctly predicted positive observations to all observations

in the actual class. It is a measure of a classifier's completeness:

 Recall =
 True⁡Positives⁡(TP)

 True⁡Positives⁡(TP)⁡+⁡False⁡Negatives⁡(FN)
 (28)

• F1-score (F1): The F1 Score is the weighted average of Precision and Recall. This score takes

both FP and FN into account:

 F1 − Score = 2 ⋅
 Precision × Recall

 Precision + Recall
 (29)

A. Experiment 1:

On Thursday, Friday, Tuesday, and Wednesday data sets, we train the models individually and

then test them on the same data sets.

TABLE 2: RESULTS (EXPERIMENT 1)

 Thursday Friday

Models Acc. P R F1 Acc P R F1

Model#1 0.9835 0.9846 0.9646 0.9646 0.9536 0.9659 0.9055 0.9457

Model#2 0.9650 0.9536 0.9557 0.9254 0.9465 0.9366 0.9270 0.9367

Auth
ors

 Pre-
Proo

f

Model#3 0.9753 0.9372 0.8021 0.8800 0.9365 0.8695 0.8423 0.8871

GC-S$ 0.9898 0.9955 0.9857 0.9851 0.9959 0.9958 0.9959 0.9859

 Tuesday Wednesday

Models Acc P R F1 Acc P R F1

Model#1 0.9848 0.9849 0.9845 0.9749 0.9836 0.9858 0.9752 0.9756

Model#2 0.9639 0.9536 0.9652 0.9650 0.9547 0.9561 0.9465 0.9464

Model#3 0.9759 0.9490 0.8021 0.8307 0.8423 0.8695 0.8423 0.8871

GC-SLSTM 0.9958 0.9919 0.9951 0.9957 0.9959 0.9958 0.9947 0.9959

(a)

Auth
ors

 Pre-
Proo

f

(b)

(c)

Auth
ors

 Pre-
Proo

f

(d)

Fig 5: Performance analysis of the proposed model compared to other models for a) Thursday, b)

Friday, c) Tuesday, and d) Wednesday dataset

In the performance comparison shown in Tab. 2 and Fig. 5 (a) to (d), the GC-SLSTM has shown

better results than other models. For instance, on Thursday and Friday datasets, the proposed model

showed a performance of 0.9898 (Acc), 0.9955 (P), 0.9857 (R), and 0.9851 (F1) for Thursday

dataset and 0.9959 (Acc), 0.9958 (P), 0.9959 (R) and 0.9859 (F1) for Friday dataset. Model#1

showed performance with an Acc of 0.9835, an F1-score of 0.9646 on Thursday, and a slight drop

in performance on Friday to an Acc of 0.9536 and an F1-score of 0.9457. Model#2 scored lower

than Model#1, with an F1 of 0.9254 on Thursday and 0.9367 on Friday. Model#3 scored with the

lowest recall of 0.8021 on Thursday and slightly improved to 0.8423 on Friday. The trends

continued with data from Tuesday and Wednesday, in which the proposed model had shown a

performance of 0.9958 (Acc), 0.9919 (P), 0.9951(R) and 0.9957 (F1) for Tuesday and 0.9959

(Acc), 0.9958 (P), 0.9947 (R) and 0.9959 (F1) for Wednesday dataset. Model#1 on Tuesday has

an Acc of 0.9848 and an F1 of 0.9749; on Wednesday, it has an Acc of 0.9836 and an F1 of 0.9756.

Model#2 has accuracy scores of 0.9639 on Tuesday and 0.9547 on Wednesday and similar F1 of

0.9650 and 0.9464, respectively. Model#3's performance was variable, with a low recall rate.

Auth
ors

 Pre-
Proo

f

B. Experiment 2

(i) Thursday data as Training and Friday data for Testing

Analyzing the performance metrics using Thursday's data for training and Friday's data for

testing (Fig. 6). The GC-SLSTM stands out with the highest metrics across the board—accuracy

at 0.9486, precision at 0.9878, recall at 0.9747, and an F1-score of 0.8816. following the proposed

model, Model#1 has high accuracy at 0.9356; however, its recall at 0.6233 is considerably lower

and has an F1-score of 0.7671. Model#2 scores slightly lower in accuracy at 0.9154 and even lower

in precision at 0.8640, and the recall rate drops further to 0.4874 and its F1-score down to 0.6469.

Model#3 scored the lowest accuracy at 0.9056, precision, and recall, with values at 0.7681 and

0.7547 and a moderately balanced F1-score of 0.7413.

Fig. 6: Performance comparison for Thursday data as Training and Friday data for Testing

(ii) Tuesday data as Training and Wednesday data for Testing

The analysis of the model performances using data from Tuesday for training and Wednesday

for testing is shown in Figure 7. The proposed GC-SLSTM excels with the highest scores across

all metrics: accuracy at 0.9691, precision at 0.8950, recall at 0.8255, and an F1-score at 0.9124.

Model#1 shows a moderate level of accuracy at 0.9126, struggles with precision at 0.8277, and
Auth

ors
 Pre-

Proo
f

recall at 0.4922, and its F1-score is only 0.5005, reflecting a significant imbalance between

precision and recall. Model#2 has lower accuracy at 0.9002 but improves precision at 0.8528 and

recall at 0.7759 compared to Model#1 and a higher F1-score of 0.7477. Model#3 reports the lowest

accuracy at 0.8963 and precision at 0.6973. However, its recall at 0.6312 is higher than that of

Model#1.

Fig. 7. Performance comparison for Tuesday data as Training and Wednesday data for Testing

Auth
ors

 Pre-
Proo

f

D. Experiment on Accuracy and Loss over epochs

(a)

(b) Auth
ors

 Pre-
Proo

f

(c)

(d)

Fig. 8: Analysis of Accuracy and Loss against epochs for the two testing scenarios

Figure 8 a & b displays the classification accuracy and loss function of the GC-SLSTM, using

Thursday's data for training and Friday's data for testing. After 100 epochs, the training loss

stabilizes at 0.116, while the validation loss levels off at 0.135. Although the loss function shows

Auth
ors

 Pre-
Proo

f

some fluctuations, it consistently decreases over the 100-epoch period, confirming the

convergence of the proposed model. The classification accuracy on the training set converges

relatively quickly, achieving stability after approximately 40 epochs. In contrast, while displaying

minor fluctuations, the validation accuracy maintains a high level throughout the epochs. After

100 epochs, the training accuracy reaches 95.87%, and the validation accuracy stands at 95.49%.

A similar trend is observed for the scenario using Tuesday's data for training and Wednesday's

data for testing (Fig. 9 (c) & (d)), where the model's loss stabilizes at 0.062 for testing and 0.053

for the training set after 100 epochs. The corresponding accuracies for this dataset reach 98% for

training and 97.6% for testing after 100 epochs.

VI. CONCLUSION AND FUTURE WORK

In the field of cybersecurity, the integration of ML, such as LSTM + CNN, for the task of IDS

could provide better prediction capability. This work attempted this integration by proposing GC-

LSTM, which combines gated convolutional NN with the stacked LSTM. This work aims to

capture the spatial and temporal features of the network data for effective IDS. For better NN

training, this work incorporates an effective data processing pipeline that includes segmenting and

converting the network data to an image for CNN processing. This model addresses the constant

challenges of high FP in standard IDS and the limitations of such models that challenge them to

adapt swiftly to new and evolving attacks. The proposed research was tested using the CICIDS

2018, focusing on four days, and different evaluation scenarios were examined. The proposed GC-

LSTM proved higher accuracy, precision, recall, and F1-scores in each experiment than traditional

models.

As cyber-attacks evolve, future work will focus on refining and developing such models, vital

for maintaining robust NSS in an increasingly interconnected world.

REFERENCES

1. Thirimanne, S. P., Jayawardana, L., Yasakethu, L., Liyanaarachchi, P., & Hewage, C. (2022). Deep neural

network-based real-time intrusion detection system. SN Computer Science, 3(2), 145.

2. Yang, L., Li, J., Yin, L., Sun, Z., Zhao, Y., & Li, Z. (2020). Real-time intrusion detection in wireless network: A

deep learning-based intelligent mechanism. Ieee Access, 8, 170128-170139.

3. Mahalakshmi, R. Lokesh Kumar, K. S. Ranjini, S. Sindhu, R. Udhayakumar; Efficient authenticated key

establishment protocol for telecare medicine information systems. AIP Conf. Proc., 2022, vol. 2519, no. 1,

020006. Auth
ors

 Pre-
Proo

f

4. Liu, J., Zhang, W., Ma, T., Tang, Z., Xie, Y., Gui, W., & Niyoyita, J. P. (2020). Toward security monitoring of

industrial cyber-physical systems via hierarchically distributed intrusion detection. Expert Systems with

Applications, 158, 113578.

5. Dutt, I., Borah, S., & Maitra, I. K. (2020). Immune system-based intrusion detection system (IS-IDS): A proposed

model. IEEE Access, 8, 34929-34941.

6. Krishnadoss, Nivethitha, & Lokesh Kumar Ramasamy. "A study on high dimensional big data using predictive

data analytics model." Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 1, 2023,

pp. 174-182. Web. 2 Mar. 2025.

7. Krishnadoss, Nivethitha and Ramasamy, Lokesh Kumar, Crop yield prediction with environmental and chemical

variables using optimized ensemble predictive model in machine learning, Environmental Research

Communications, Vol. 6, No. 10, 2024.

8. Reddy, B.R. Kumar, R.L., An E-Commerce Based Personalized Health Product Recommendation System Using

CNN-Bi-LSTM Model, International Journal of Intelligent Engineering and Systems, vol. 16, no. 6, PP. 398- 410,

2023.

9. Lokeshkumar R., Mishra O., Kalra S.. Social media data analysis to predict mental state of users using machine

learning techniques, Journal of Education and Health Promotion, Vol. 10 No. 1, 2021.

10. Alferaidi, A., Yadav, K., et al., (2022). Distributed deep CNN-LSTM model for intrusion detection method in

IoT-based vehicles. Mathematical Problems in Engineering, 2022.

11. Padmavathi, B., & Muthukumar, B. (2023). A deep recursively learning LSTM model to improve cyber security

Botnet attack intrusion detection. International Journal of Modeling, Simulation, and Scientific

Computing, 14(02), 2341018.

12. P. Krishnamoorthy et al., "Effective Scheduling of Multi-Load Automated Guided Vehicle in Spinning Mill: A

Case Study," in IEEE Access, vol. 11, pp. 9389-9402, 2023, doi: 10.1109/ACCESS.2023.3236843.

13. T. Gopalakrishnan, P. Sengottuvelan, A. Bharathi, R. Lokeshkumar, "An Approach To Webpage Prediction

Method Using Variable Order Markov Model In Recommendation Systems," Journal of Internet Technology,

vol. 19, no. 2, pp. 415-424, Mar. 2018.

14. Singh, J. P. (2022). Mitigating Challenges in Cloud Anomaly Detection Using an Integrated Deep Neural

Network-SVM Classifier Model. Sage Science Review of Applied Machine Learning, 5(1), 39-49.

15. Sengupta, S., Basak, S., et al., (2020). A review of deep learning with particular emphasis on architectures,

applications, and recent trends. Knowledge-Based Systems, 194, 105596.

16. Mahalakshmi, R. Lokesh Kumar, K. S. Ranjini, S. Sindhu, R. Udhayakumar; Efficient authenticated key

establishment protocol for telecare medicine information systems. AIP Conf. Proc. 3, 2022; vol. 2519, no. 1,

020006.

17. Chadha, Utkarsh, Selvaraj, Senthil Kumaran, et al., Powder Bed Fusion via Machine Learning-Enabled

Approaches, Complexity, 2023, 9481790, pp: 1-25, 2023. Auth
ors

 Pre-
Proo

f

18. Kunjiappan, S., Ramasamy, L.K., Kannan, S. et al. Optimization of ultrasound-aided extraction of bioactive

ingredients from Vitis vinifera seeds using RSM and ANFIS modeling with machine learning algorithm. Sci

Rep 14, 1219 (2024).

19. Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Saloutos’s, C., & Samatova, N. F. (2015). Anomaly detection

in dynamic networks: a survey. Wiley Interdisciplinary Reviews: Computational Statistics, 7(3), 223-247.

20. Poluru, Ravi Kumar, and R. Lokeshkumar. "Meta-Heuristic MOALO Algorithm for Energy-Aware Clustering in

the Internet of Things," International Journal of Swarm Intelligence Research (IJSIR), vol. 12, no.2, pp. 74-93.

2024.

21. B. R. R. Reddy and R. L. Kumar, “A Fusion Model for Personalized Adaptive Multi-Product Recommendation

System Using Transfer Learning and Bi-GRU,” Comput. Mater. Contin., vol. 81, no. 3, pp. 4081–4107, 2024.

22. P. Krishnamoorthy et al., "Effective Scheduling of Multi-Load Automated Guided Vehicle in Spinning Mill: A

Case Study," in IEEE Access, vol. 11, pp. 9389-9402, 2023.

23. P. Selvam et al., "A Transformer-Based Framework for Scene Text Recognition," in IEEE Access, vol. 10, pp.

100895-100910, 2022.

24. S. Sengan, S. Vairavasundaram, L. Ravi, A. Q. M. AlHamad, H. A. Alkhazaleh and M. Alharbi, "Fake News

Detection Using Stance Extracted Multimodal Fusion-Based Hybrid Neural Network," in IEEE Transactions on

Computational Social Systems, vol. 11, no. 4, pp. 5146-5157, 2024.

25. Panneerselvam, S., Thangavel, S.K., Ponnam, V.S. et al. Federated learning-based fire detection method using

local MobileNet. Sci Rep 14, 30388 (2024).

Auth
ors

 Pre-
Proo

f

