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Abstract—In cybersecurity, network security systems (NSS) are technologies used to protect 

sensitive data against increasing cyber-attacks. This paper has carried out the process of integrating 

advanced Machine Learning (ML) techniques such as the Long Short-Term Memory (LSTM) 

networks along with the Convolutional Neural Networks (CNN) for the task of enhancing the 

Intrusion Detection Systems (IDS) in the NSS. Usually, the traditional models have faced many 

challenges, such as high false positive rates (FPR) and the need for real-time processing of 

extensive data streams, which make these systems insufficient to handle such scenarios. So, to 

handle these complications, ML has evolved to propose improvements in IDS implementation by 

adapting to new attacks and detecting complex patterns with greater accuracy. The study 

introduced a novel deep learning (DL), “GC-SLSTM,” that combined models such as Gated CNN 

with Stacked LSTM to address these challenges. This model includes CNN robust spatial pattern 

recognition and the LSTM that effectively handles the temporal data analysis. The proposed model 

was experimented with using the CICIDS2018 dataset, and the results demonstrate that the 

proposed Gated CNN + Stacked LSTM (GC-SLSTM) had achieved an accuracy of up to 99.59%, 

precision of 99.58% and a recall of 99.47%, culminating in an F1-score of 99.59%.  Auth
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Keywords— Network Security Systems; Intrusion Detection Systems; CNN; LSTM; False Positive 

Rates; Machine Learning. 

I. INTRODUCTION 

Network Security Systems (NSS) are crucial in ensuring business integrity and security in the 

digital age. They protect sensitive data from unauthorized access, breaches, and cyber-attacks. As 

cyber-attacks become more complex and frequent, the need for enhanced network security 

protocols has increased. Intrusion Detection Systems (IDS) are used to identify potential attacks 

by monitoring network traffic. However, IDS faces challenges such as high False Positive Rates 

(FPR), new and unknown attacks, and computational demands for real-time analysis. The 

increasing complexity of network models and attack vectors by cyber criminals complicates the 

development of effective IDS [1-2]. 

Machine learning (ML) has significantly improved predictive analytics for network security, 

replacing traditional rule-based approaches that maintain hope in the face of dynamic cyber-

attacks. ML's adaptive learning capabilities are crucial for managing new and evolving attacks. As 

research on ML, particularly in Deep Learning and Neural Networks, advances, sophisticated IDS 

models have become more accurate and timelier. However, these systems require large datasets 

for training, which require substantial computational resources, which are critical in a security 

context [3]. Long-short memory (LSTM) is a Recurrent Neural Network (RNN) type designed to 

handle time-series data. Its model can remember past data for an extended period, enabling it to 

identify patterns and predict future events. Applying LSTM to IDS can better understand network 

traffic flow and anomalies over time. Unlike traditional models that process each data point 

independently, LSTM considers traffic flow as a sequence, detecting complex attack patterns over 

an extended period. This reduces the FP and increases attack detection accuracy in real-time [4-

5]. 

Convolutional Neural Networks (CNN) are used in IDS to classify network intrusion patterns. 

They can process and analyze spatial relationships within data, IDS, and relevant network traffic 

patterns. Integrating CNN + LSTM can provide a more reliable IDS. This hybrid model uses 

CNN's spatial pattern recognition capability and LSTM's sequence prediction capabilities [6-10]. 

CNN analyzes data to detect spatial anomalies, while LSTM processes output over time to 

understand temporal patterns and anomalies. This integration allows for more effective multi-stage 

cyber-attack detection and higher chances of reducing the frequency of attacks (FP). 
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This work proposed a Deep Learning (DL) Advanced Intrusion Detection and Real-Time 

Response in NSS. The work combines the Gated CNN (GCNN) with Stacked LSTM (S-LSTM) 

networks for network IDS. The method effectively preprocesses network traffic by segmenting the 

input data employing time and type of attack. Then, the segmented data are serialized and 

converted into grayscale images fed as CNN input. The proposed GC-SLSTM processes the 

preprocessed data by utilizing the G-CNN to filter the essential features that S-LSTM processes to 

analyze the temporal dependencies. The GC-LSTM was experimented with using the 

CICIDS2018, and it showed better performance than existing models.  

The paper is structured as follows: Section 2 presents the literature review, Section 3 provides 

the methods used in this work, Section 4 presents the proposed IDS, Section 5 examines the 

performance of the work, and Section 6 concludes the work. 

II. LITERATURE REVIEW 

Authors [9] invented a Deep Neural Network (DNN) using 28 features from the NSL-KDDt. It 

included a real-time feature extraction (FE) into an ML pipeline. Their proposed DNN has 

demonstrated performance with accuracy, precision, recall, and F1-score metrics at 81%, 96%, 

70%, and 81%, respectively. Authors have designed a Conditional Deep Belief Network (CDBN)-

based IDS for handling data imbalance and redundancy by the method of using a window-based 

instance selection algorithm, "SamSelect," and by including a Stacked Contractive Auto-Encoder 

(SCAE) for dimension reduction. Their system had shown a detection accuracy rate of 97.4% with 

an achieved detection time mean of 1.14 ms.  

The authors have applied machine learning (ML) [10] for IDS, using Signature IDS (S-IDS) 

and Anomaly IDS (A-IDS) on datasets like KKDDCUP99 and NLS-KDD. They used SVM, Naïve 

Bayes, and ANN, and their method performed better in real-time networks. They also explored 

hierarchically distributed IDS for Cyber-physical-based Industrial Systems using the Kalman 

Filter (KF) and a recursive Gaussian mixture model. Their method efficiently recognized potential 

and covert cyber-attacks across ICPS links, as demonstrated by several experiments. 

The authors have developed an Artificial Intelligence System (A-IDS) [11] based on the human 

Immune System features, incorporating innate and adaptive layers. They used statistical and 

adaptive Immune models to mimic the immune system's response mechanisms. The system 

achieved high True Positive Rates (TPR) and effective IDS. The authors also investigated the 

integration of network profiling, ML, and game theory to secure IoT environments against cyber-
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attacks. Their A-IDS dynamically profiles and monitors IoT devices, identifying suspicious 

transactions. Tested on the Cyber-Trust testbed, the model achieved a high overall accuracy of 

98.35% and a low FRP of 0.98%. 

The authors [12] developed an LSTM-based IDS to detect attacks on vehicles' Controller Area 

Network (CAN) bus networks. They generated a unique dataset using attack simulations on an 

experimental car and trained and tested their model. The system demonstrated a 99.9% detection 

accuracy. They designed a novel II-stage DL that combined LSTM with Auto-Encoders (AE) and 

used their model for attack detection. The model performed better in CICIDS2017 and CSE-CIC-

IDS2018 datasets. 

The authors have developed a Network Intrusion Detection System (NIDS) using a Recurrent 

Neural Network (RNN) [13]. The system integrates multiple modules, including a management 

center, knowledge database, data acquisition, risk analysis, BiLSTM + DNN for sequential data 

relevance, and FE. An attention mechanism enhances the importance of features for NN efficiency. 

The authors also proposed a distributed DL-IDS using Apache Spark to tackle challenges related 

to the Internet of Vehicles (IoV) under 5G. The model achieved fast IDS speeds and a high 

accuracy of 99.7%, proving superiority over existing models. They also developed a novel IDS to 

detect botnet activities by analyzing the input flow of network node features using RL2TM. This 

model improves network efficiency and eliminates redundant activities [14-15]. 

III. METHODS 

A. Convolution Neural Network 

A CNN is a type of ANN designed to process data with a grid-like topology; such data usually 

encompass images or videos [16]. These datasets hold and exhibit complex patterns effectively 

processed and analyzed by CNN. The model of a CNN (Fig. 1) includes multiple layers, such as 

an input layer, one or more convolutional layers, pooling layers, and fully connected layers at the 

end. Each layer has its role to play: 
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Fig. 1: Basic CNN 

(a) Input Layers: In a CNN, the typical inputs are predominantly images or videos. This layer 

receives the image's raw data, which has dimensions of 32×32×3 and width ‘w’ height ‘h’ 

depth corresponding to the color channels. 

(b) Convolutional Layers: The convolutional layer extracts the features from the input data from 

input layers by applying filters called kernels to the input images. These kernels are typically 

matrices of 2×2, 3×3, or 5×5 in size. They compute the dot product between the kernel weights 

and the corresponding patches of the image. The output from this layer is known as feature 

maps that highlight essential features in the input. 

(c) Activation Layer: After the convolutional layer, this layer introduces non-linear into the 

network by applying an activation function to the outputs from the previous layer. Commonly 

used activation functions include RELU, which is defined as max (0, x), tanh, and Leaky 

RELU, among others.  

(d) Pooling Layer: The pooling layer is placed between convolutional layers to downsize the 

volume of data, speed up computation, decrease memory usage, and prevent overfitting. The 

two most common forms of pooling are max pooling and average pooling. 

 

Fig. 2. LSTM Auth
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B. LSTM 

LSTM is a type of RNN designed to capture long and short-term dependencies. An LSTM (Fig. 

2) typically consists of four layers called gates, EQU (1) to (2). 

1 Input Gate (IG) (𝒊𝒕) : The IG decides how much of the new data to allow into the cell state: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)         (1) 

Here, 𝜎 is the sigmoid activation function, which outputs values between 0 and 1, effectively 

controlling the extent to which new data is allowed into the cell. 𝑊𝑖 is the weight matrix for the 

IG, ℎ𝑡−1 is the previous output, 𝑥𝑡 is the current input, and 𝑏𝑖 is the bias [17]. 

2 Forget Gate (FG) (𝒇𝒕) : The FG determines the amount of the previous cell state (𝑐𝑡−1) to 

retain: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)         (2) 

This gate filters out insignificant parts of the previous state by selectively letting only valuable 

parts based on the current input and previous output. 

3 Output Gate (OG) (𝑶𝒕) : The OG controls the output from the cell state to the rest of the 

network: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)         (3) 

This EQU (3) fixes which parts of the cell state are output based on the current and previous inputs. 

4 Cell State Candidates ( 𝒄̃𝒕 ): This EQU (4) represents a candidate version of the new cell state, 

combining new input data with the previous output: 

𝑐̃𝑡 = tanh⁡(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)        (4) 

The tanh function helps regulate the network by scaling the output between -1 and 1, providing 

a normalized form of new data to be added to the cell state [18]. 

5 Cell State Update (𝒄𝒕) : The cell state is updated using the FG, IG, and the new candidate cell 

state, EQU (5). 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑐̃𝑡          (5) 

This equation ensures that the cell state is a mixture of old data (FG) and new data (IG). 

6 Output from the LSTM cell (𝒉𝒕) Finally, the output of the LSTM cell, EQU (6) 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh⁡(𝑐𝑡)          (6) 

The OG decides how much of the cell state to output and the tanh of the cell state 𝑐𝑡 helps to 

scale the output values. 

1. Stacked LSTM 
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A Stacked LSTM is a modified single-layer LSTM comprised of multiple hidden LSTM layers, 

each with several memory cells. Stacked LSTMs are particularly effective for complex sequence 

prediction problems that other models can handle. They effectively use their model parameters, 

rapid convergence, and better parameter efficiency in learning (Fig. 3) [19]. 

 

Fig. 3: Stacked LSTM 

IV. PROPOSED MODEL 

A. Data Preprocessing 

Data preprocessing is done in numerous formats, such as snoop, pcap, pppdump, btsnoop, 

i4btrace, LANalyzer, and pcapng. These formats organize the data for input into the proposed IDS 

[20]. The preprocessing involves several steps: segmenting the traffic by time, serializing the data 

into formats like pkl or json, depending on the programming language used, labeling serialized 

files, and generating a greyscale image of the traffic data [21-22]. 

a) Step 1 (Time Division): Time division involves partitioning the incoming data stream based 

on the timing and type of potential attacks. Let 𝐷 = {(𝑡𝑖, 𝑥𝑖)} represent the data stream, where 

𝑡𝑖  is the timestamp of the 𝑖-th data point, and 𝑥𝑖  is the matching data value (or set of data 

values). Assume we have a set of known attack types 𝐴 and corresponding time intervals 

during which these attacks are likely to occur. Each attack type 𝑎 ∈ 𝐴 is associated with a time 

interval [𝑡start , 𝑡end ]. A segmentation function 𝑆 is defined as those partitions 𝐷 based on the 

specified attack time and type, EQU (7) 

𝑆(𝐷, 𝑎, 𝑡start , 𝑡end ) = {(𝑡𝑖, 𝑥𝑖) ∈ 𝐷: 𝑡start ≤ 𝑡𝑖 ≤ 𝑡end  and⁡type (𝑥𝑖) = 𝑎}  (7) Auth
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Here, type (𝑥𝑖) determines whether the data point 𝑥𝑖 matches to the type of attack 𝑎. The output 

of this function 𝑆 is a subset of 𝐷 containing only those data points that fall within the specified 

time interval and match the attack type. This subset is then used for further analysis or processing 

in the IDS. 

b) Step 2 (Traffic Segmentation): Traffic segmentation involves further dividing the dataset 

obtained from Step 1, which has already been segmented by time, into more discrete sessions. 

This is achieved by sharding the data based on the IP addresses of the attacking host and the 

victim host for each corresponding time.  

From Step 1, we have a subset of data 𝑆(𝐷, 𝑎, 𝑡start , 𝑡end ) that has been segmented by attack 

type and time. Let 𝐻attack  and 𝐻victim  represent the sets of IP addresses for the attacking hosts 

and victim hosts. A function 𝑇 is defined that partitions the subset 𝑆 into sessions based on the IP 

addresses of the attack and victim hosts: 

𝑇(𝑆, 𝐻attack , 𝐻victim ) = {𝑆𝑘 ⊆ 𝑆: IPattack ⁡(𝑥𝑖) ∈ 𝐻attack  and IPvictim ⁡(𝑥𝑖) ∈ 𝐻victim  for all  

(𝑡𝑖, 𝑥𝑖) ∈ 𝑆𝑘}. 

In this function, 𝑆𝑘  represents a session, ip pattack (𝑥𝑖) and IPvictim (𝑥𝑖) are functions that 

extract the attacking and victim IP addresses from each data point 𝑥𝑖 . The output of this 

segmentation function 𝑇 is a collection of sessions {𝑆𝑘}, each session contains data points that 

share the same attacking and victim IP addresses within the specified time frame. 

c) Step 3 (Serializing Data): Serializing or flattening is the process where denormalized data, 

resulting from joining tables in a "one to many" (1:M) relationship, is compacted into repeating 

groups within a primary identity table. Let us consider a primary table 𝑃 and a secondary table 

𝑆 with a one-to-many relationship. The data in 𝑃 is then joined with 𝑆 based on a shared key 

𝑘,  EQU (8). 

𝐽 = {(𝑝, 𝑠1, 𝑠2, … , 𝑠𝑛): 𝑝 ∈ 𝑃, 𝑠𝑖 ∈ 𝑆 and 𝑠𝑖 is⁡related⁡to 𝑝 through 𝑘}   (8) 

Here, each 𝑝 represents a record in the primary table, and 𝑠1, 𝑠2, … , 𝑠𝑛 are the related records 

from 𝑆. The process of serializing involves restructuring 𝐽 such that the data from 𝑆 is embedded 

into 𝑃 as repeating groups, EQU (9) 

𝐹 = {(𝑝, {𝑠1, 𝑠2, … , 𝑠𝑛}): (𝑝, 𝑠1, 𝑠2, … , 𝑠𝑛) ∈ 𝐽}      (9) 

In this structure, 𝐹, each primary record 𝑝 is associated with a set of related secondary records 

{𝑠1, 𝑠2, … , 𝑠𝑛} , which are serialized into a single row or record in the identity table. 

The serialized dataset 𝐹 encapsulates the primary and its related secondary data in a compact form, 
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which simplifies and accelerates search operations by reducing the need to perform multiple joins 

during queries 

d) Step 4 (Tag the Serialized File): This step involves labeling the serialized data to facilitate 

more efficient data extraction, addressing the challenge of large file sizes.  Assume from Step 

2 that we have a set of traffic sessions {𝑆𝑘}, where each 𝑆𝑘 matches to a specific interaction 

between hosts. For each session 𝑆𝑘 , predominant attack type 𝑎𝑘  is identified as being 

associated with the session. The labeling function 𝐿 is defined to assign a label to each session 

based on its attack type, EQU (10) 

𝐿(𝑆𝑘) = 𝑎𝑘           (10) 

where 𝑎𝑘 is the attack type determined from the data characteristics of 𝑆𝑘. Then, a labeled package 

𝑃𝑘 is created for each session, EQU (11) 

𝑃𝑘 = (𝑆𝑘, 𝐿(𝑆𝑘))          (11) 

In this packaging, each session 𝑆𝑘 is paired with its corresponding label 𝐿(𝑆𝑘), which describes 

the type of attack the session data represents. The result is a collection of labeled sessions {𝑃𝑘}, 

where each 𝑃𝑘 contains the session data 𝑆𝑘 and its associated label 𝐿(𝑆𝑘).  

e) Step 5 (Sample Gray Image Conversion): This final step in data preprocessing involves 

converting statical data into a format suitable for CNN input, specifically into 2-D matrices 

representing gray-scale images. The outcome from the preceding preprocessing steps is a set 

of labeled sessions, {𝑃𝑘} . Each session 𝑃𝑘  contains numerical data 𝑆𝑘  which needs to be 

normalized to ensure all feature values are on the same scale, typically [0,1], EQU (11). 

𝑥𝑗𝑘
′ =

𝑥𝑗𝑘−min(𝑥𝑗𝑘)

max(𝑥𝑗𝑘)−min(𝑥𝑗𝑘)
         (12) 

Here, 𝑥𝑗𝑘 is the ′j′ feature of the ′k′ session, and 𝑥𝑗𝑘
′  is its normalized value. Each normalized 

session 𝑆𝑘
′  is converted into a 2D matrix 𝑀𝑘. Assume each session 𝑆𝑘 comprises of a flattened 

array of features, reshape this array into a matrix, EQU (13) 

𝑀𝑘 = reshape⁡(𝑆𝑘
′ ,𝑚, 𝑛)         (13) 

where 𝑚  and 𝑛  are the dimensions that form the matrix representation suitable for image 

processing. Each element in the matrix 𝑀𝑘 is then interpreted as a pixel in a gray-scale image. The 

pixel intensity is determined by EQU (14) 

Pixel𝑗𝑘 = 255 × (1 − 𝑥𝑘
′ )         (14) Auth
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In this model, a pixel's intensity is inversely proportional to the normalized feature value, with 

higher feature values resulting in darker pixels. The final output from this step for each session 𝑘 

is a gray-scale image represented by the matrix 𝑀𝑘.  

 

Fig. 4: GC-LSTM 

C. Gated CNN + Stacked LSTM (GC-SLSTM)-IDS 

The model of the proposed IDS is depicted in the Fig. 4; the details of each layer and its function 

are explained here: 

a) Input: The input layer receives preprocessed network data as a gray-scale image, which is then 

directly inputted into the input layer. 

b) Convolutional S: The convolutional layer employs a Gated Convolutional Neural Network 

(GCNN). This approach utilizes a gating mechanism inspired by RNN to filter the data selectively 

by discarding the less relevant data.  The process begins by computing 𝐶 as a linear transformation 

of 𝐹  using weights 𝜃1  and bias 𝑑1 . Simultaneously, 𝐷  is calculated as another linear 

transformation of 𝐹, this time using 𝜃2 and 𝑑2, and then passed through the ReLU function to 

present non-linearity. The final output ℎ(𝐹) of the gated convolutional operation is obtained by 

performing an element-wise multiplication of 𝐶 and the transformed 𝐷, EQU (15) to EQU (17). 

𝐶 = 𝐹 ⋅ 𝜃1 + 𝑑1          (15) 

𝐷 = 𝐹 ⋅ 𝜃2 + 𝑑2          (16) 

ℎ(𝐹) = 𝐶 ∘ ReLU⁡(𝐷),         (17) 

Here, 𝐹 denotes the output from the preceding layer. The terms 𝜃1 and 𝜃2 are weight matrices, 

while 𝑑1  and 𝑑2  serve as biased terms. The activation function used is ReLU. The symbol ∘ 
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indicates element-wise multiplication between matrices. The model includes three convolutional 

layers of configuration, as shown in the following Table 1 : 

TABLE 1: KERNEL SIZE OF CONVOLUTIONAL LAYER 

Layer Number Kernel Size Number of Kernels 

2 1×3 16 

4 1×2 32 

6 1×1 64 

c) Dropout: The Dropout Layer is implemented to prevent overfitting and increase the 

simplification of the model by randomly turning off a subset of feature detectors during each 

training iteration. Each layer’s neuron has a probability 𝑝 of being deactivated, meaning its output 

is set to ‘0’. If the dropout rate is 𝑝 = 0.5, it indicates a 50% chance that each neuron's output will 

be ‘0’ during training. Due to issues like data set label imbalance, which can lead to overfitting, 

the dropout layers are included in the 3rd, 5th, and 7th in the CNN block and the 10th  layer in the 

LSTM stack with probabilities of 0.6,0.5, 0.4, and 0.4. 

Let 𝑥𝑖 be the output from the 𝑖-th neuron. During training, with a dropout rate 𝑝, the output 𝑥𝑖 is 

transformed as follows: EQU (18) 

𝑥𝑖
′ = {

0  with⁡probability 𝑝
𝑥𝑖

1−𝑝
 with⁡probability (1 − 𝑝)       (18) 

d) Max-Pooling: The Max-pooling in a CNN compresses features and removes redundancy while 

reducing the computational load of the model. The Max-pooling in this architecture is designed 

with a stride set to 2. Mathematically, if 𝑀 represents the input matrix to the Max-pooling layer 

and 𝑆 is the size of the pooling filter, the output matrix 𝑁 at position (𝑖, 𝑗) is calculated as follows: 

𝑁𝑖,𝑗 = Max
𝑘,𝑙∈[1,𝑆]

 𝑀2𝑖+𝑘,2𝑗+𝑙        (20) 

Here, 𝑘  and 𝑙  iterate over the matrix region covered by the pooling filter, selecting the 

maximum value within each pooling window as the output for that window. 

The LSTM layer is initialized with a hidden vector size 128 for layers 9 and 11. The 11th  layer 

outputs a vector ℎ𝑖, which is input to the next layer. The LSTM units in layers 9 and 11 process 

data by gates and a cell state, each managing a hidden vector of 128 dimensions. The hidden state 

ℎ𝑡 at any time, step 𝑡 in these LSTM layers is updated based on the current input 𝑥𝑡, the previous 

hidden state ℎ𝑡−1, and the previous cell state 𝑐𝑡−1 : ℎ𝑡 = LSTM⁡(𝑥𝑡, ℎ𝑡−1, 𝑐𝑡−1) 
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d) Fully Connected (FC): The proposed model incorporates 2-FC layers, with the 1st layer 

containing 512 neurons and the 2nd containing 128 neurons. Let 𝐿𝑘  represent the k -th fully 

connected layer in the model. The neurons in these layers are interconnected with all activations 

from the previous layer. The first FC layer, 𝐿1, has 512 neurons. Each neuron in 𝐿1 is connected 

to all outputs from the previous layer or network section. If 𝑥 represents the input vector to 𝐿1, the 

output 𝑦1 from this layer can be represented by the EQU (21): 

𝑦1 = 𝑓(𝑊1 ⋅ 𝑥 + 𝑏1)          (21) 

The 2nd FC layer, 𝐿2, follows 𝐿1 and contains 128 neutrons. It takes 𝑦1 as input and produces 

the output 𝑦2, calculated as EQU (22): 

𝑦2 = 𝑓(𝑊2 ⋅ 𝑦1 + 𝑏2)          (22) 

e) Output:  The output layer used a SoftMax function for multiclass classification that converts 

the logits from the previous fully connected layer into a set of probabilities that collectively sum 

to one, providing a distribution across the various classes. Given a vector of logits 𝑧 from the 

preceding layer, the output probabilities for each class 𝑗 are calculated using the EQU (23): 

𝑝𝑗 =
𝑒
𝑧𝑗

∑  𝐾
𝑘=1  𝑒

𝑧𝑘
           (23) 

where 𝑒𝑧𝑗 is the exponential function applied to the logit of class 𝑗, and the denominator is the sum 

of the exponentials of all logits within the vector 𝑧, with 𝐾 representing the total number of class 

options in the model.  

f) Cross-Entropy Loss Function: For the IDS employing a SoftMax output layer for multiclass 

classification, the appropriate loss function to use is the Cross-Entropy Loss, also known as the 

SoftMax Loss. Given a set of true class labels 𝑦 and the predicted probability distributions 𝑝 from 

the SoftMax layer, the cross-entropy loss for a single data example can be expressed as EQU (24) 

𝐿 = −∑  𝐾
𝑗=1 𝑦𝑗log⁡(𝑝𝑗)         (24) 

where 𝑦𝑗 is the binary indicator ( 0 or 1 ). The sum runs over all 𝐾 classes. When calculating the 

loss over a batch of data points, the sum or average cross-entropy loss can be computed by sum or 

average of the individual losses over all data points in the batch, EQU (25) 

𝐿batch = −
1

𝑁
∑  𝑁
𝑖=1 ∑  𝐾

𝑗=1 𝑦𝑖𝑗log⁡(𝑝𝑖𝑗)       (25) 

Here, 𝑁 is the number of data points in the batch, 𝑦𝑖𝑗 Indicates whether class 𝑗 is the correct 

class for the 𝑖-th data point and 𝑝𝑖𝑗 is the model's predicted probability that the 𝑖-th data point 

belongs to class 𝑗. 
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V. EXPERIMENT ANALYSIS 

In this study, the CICIDS2018 (Canadian Institute for Cybersecurity) is employed, and it 

includes different attack scenarios. The datasets cover ten days of network traffic, four of which 

have DoS and DDoS attacks [23-25]. This work uses data from four traffic days: Thursday, Friday, 

Tuesday, and Wednesday. This study evaluated the proposed model by training it individually and 

testing it on the same data sets. In addition, we also experimented by training on Thursday data 

and testing using Friday data, training using Tuesday data, and testing using Wednesday data. The 

proposed GC-SLSTM undergoes training and validation in comparison with other models, such as 

Model 1, Model 2, and Model 3, using a set of performance metrics including EQU (26) to EQU 

(29) 

• Accuracy (Acc.): This metric measures the overall correctness of the model and is defined as 

the ratio of correctly predicted observations to the total observations: 

 Accuracy 
 Number⁡of⁡correct⁡predictions 

 Total⁡number⁡of⁡predictions 
       (26) 

• Precision (P): Precision is the ratio of correctly predicted positive observations to the total 

predicted positives. It is a measure of a classifier's exactness: 

 Precision =
 True⁡Positives⁡(TP) 

 True⁡Positives⁡(TP) + False⁡Positives⁡(FP) 
      (27) 

• Recall (R): Recall is the ratio of correctly predicted positive observations to all observations 

in the actual class. It is a measure of a classifier's completeness: 

 Recall =
 True⁡Positives⁡(TP) 

 True⁡Positives⁡(TP)⁡+⁡False⁡Negatives⁡(FN) 
      (28) 

• F1-score (F1): The F1 Score is the weighted average of Precision and Recall. This score takes 

both FP and FN into account: 

 F1 − Score = 2 ⋅
 Precision × Recall 

 Precision + Recall 
        (29) 

A. Experiment 1:  

On Thursday, Friday, Tuesday, and Wednesday data sets, we train the models individually and 

then test them on the same data sets. 

TABLE 2: RESULTS (EXPERIMENT 1) 

 Thursday Friday 

Models Acc. P R F1 Acc P R F1 

Model#1 0.9835 0.9846 0.9646 0.9646 0.9536 0.9659 0.9055 0.9457 

Model#2 0.9650 0.9536 0.9557 0.9254 0.9465 0.9366 0.9270 0.9367 
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Model#3 0.9753 0.9372 0.8021 0.8800 0.9365 0.8695 0.8423 0.8871 

GC-S$ 0.9898 0.9955 0.9857 0.9851 0.9959 0.9958 0.9959 0.9859 

 Tuesday Wednesday 

Models Acc P R F1 Acc P R F1 

Model#1 0.9848 0.9849 0.9845 0.9749 0.9836 0.9858 0.9752 0.9756 

Model#2 0.9639 0.9536 0.9652 0.9650 0.9547 0.9561 0.9465 0.9464 

Model#3 0.9759 0.9490 0.8021 0.8307 0.8423 0.8695 0.8423 0.8871 

GC-SLSTM 0.9958 0.9919 0.9951 0.9957 0.9959 0.9958 0.9947 0.9959 

 

(a) 
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(d) 

Fig 5: Performance analysis of the proposed model compared to other models for a) Thursday, b) 

Friday, c) Tuesday, and d) Wednesday dataset 

In the performance comparison shown in Tab. 2 and Fig. 5 (a) to (d), the GC-SLSTM has shown 

better results than other models. For instance, on Thursday and Friday datasets, the proposed model 

showed a performance of 0.9898 (Acc), 0.9955 (P), 0.9857 (R), and 0.9851 (F1) for Thursday 

dataset and 0.9959 (Acc), 0.9958 (P), 0.9959 (R) and 0.9859 (F1) for Friday dataset. Model#1 

showed performance with an Acc of 0.9835, an F1-score of 0.9646 on Thursday, and a slight drop 

in performance on Friday to an Acc of 0.9536 and an F1-score of 0.9457. Model#2 scored lower 

than Model#1, with an F1 of 0.9254 on Thursday and 0.9367 on Friday. Model#3 scored with the 

lowest recall of 0.8021 on Thursday and slightly improved to 0.8423 on Friday. The trends 

continued with data from Tuesday and Wednesday, in which the proposed model had shown a 

performance of 0.9958 (Acc), 0.9919 (P), 0.9951(R) and 0.9957 (F1) for Tuesday and 0.9959 

(Acc), 0.9958 (P), 0.9947 (R) and 0.9959 (F1) for Wednesday dataset. Model#1 on Tuesday has 

an Acc of 0.9848 and an F1 of 0.9749; on Wednesday, it has an Acc of 0.9836 and an F1 of 0.9756. 

Model#2 has accuracy scores of 0.9639 on Tuesday and 0.9547 on Wednesday and similar F1 of 

0.9650 and 0.9464, respectively. Model#3's performance was variable, with a low recall rate.  
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B. Experiment 2 

(i) Thursday data as Training and Friday data for Testing   

Analyzing the performance metrics using Thursday's data for training and Friday's data for 

testing (Fig. 6). The GC-SLSTM stands out with the highest metrics across the board—accuracy 

at 0.9486, precision at 0.9878, recall at 0.9747, and an F1-score of 0.8816. following the proposed 

model, Model#1 has high accuracy at 0.9356; however, its recall at 0.6233 is considerably lower 

and has an F1-score of 0.7671. Model#2 scores slightly lower in accuracy at 0.9154 and even lower 

in precision at 0.8640, and the recall rate drops further to 0.4874 and its F1-score down to 0.6469. 

Model#3 scored the lowest accuracy at 0.9056, precision, and recall, with values at 0.7681 and 

0.7547 and a moderately balanced F1-score of 0.7413.  

 

Fig. 6: Performance comparison for Thursday data as Training and Friday data for Testing   

(ii) Tuesday data as Training and Wednesday data for Testing 

The analysis of the model performances using data from Tuesday for training and Wednesday 

for testing is shown in Figure 7. The proposed GC-SLSTM excels with the highest scores across 

all metrics: accuracy at 0.9691, precision at 0.8950, recall at 0.8255, and an F1-score at 0.9124. 

Model#1 shows a moderate level of accuracy at 0.9126, struggles with precision at 0.8277, and 
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recall at 0.4922, and its F1-score is only 0.5005, reflecting a significant imbalance between 

precision and recall. Model#2 has lower accuracy at 0.9002 but improves precision at 0.8528 and 

recall at 0.7759 compared to Model#1 and a higher F1-score of 0.7477. Model#3 reports the lowest 

accuracy at 0.8963 and precision at 0.6973. However, its recall at 0.6312 is higher than that of 

Model#1.  

 

Fig. 7. Performance comparison for Tuesday data as Training and Wednesday data for Testing 
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D. Experiment on Accuracy and Loss over epochs 

 

(a) 
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(c) 

 

(d) 

Fig. 8: Analysis of Accuracy and Loss against epochs for the two testing scenarios 

Figure 8 a & b displays the classification accuracy and loss function of the GC-SLSTM, using 

Thursday's data for training and Friday's data for testing. After 100 epochs, the training loss 

stabilizes at 0.116, while the validation loss levels off at 0.135. Although the loss function shows 
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some fluctuations, it consistently decreases over the 100-epoch period, confirming the 

convergence of the proposed model. The classification accuracy on the training set converges 

relatively quickly, achieving stability after approximately 40 epochs. In contrast, while displaying 

minor fluctuations, the validation accuracy maintains a high level throughout the epochs. After 

100 epochs, the training accuracy reaches 95.87%, and the validation accuracy stands at 95.49%. 

A similar trend is observed for the scenario using Tuesday's data for training and Wednesday's 

data for testing (Fig. 9 (c) & (d)), where the model's loss stabilizes at 0.062 for testing and 0.053 

for the training set after 100 epochs. The corresponding accuracies for this dataset reach 98% for 

training and 97.6% for testing after 100 epochs. 

VI. CONCLUSION AND FUTURE WORK 

In the field of cybersecurity, the integration of ML, such as LSTM + CNN, for the task of IDS 

could provide better prediction capability. This work attempted this integration by proposing GC-

LSTM, which combines gated convolutional NN with the stacked LSTM. This work aims to 

capture the spatial and temporal features of the network data for effective IDS. For better NN 

training, this work incorporates an effective data processing pipeline that includes segmenting and 

converting the network data to an image for CNN processing. This model addresses the constant 

challenges of high FP in standard IDS and the limitations of such models that challenge them to 

adapt swiftly to new and evolving attacks. The proposed research was tested using the CICIDS 

2018, focusing on four days, and different evaluation scenarios were examined. The proposed GC-

LSTM proved higher accuracy, precision, recall, and F1-scores in each experiment than traditional 

models.  

As cyber-attacks evolve, future work will focus on refining and developing such models, vital 

for maintaining robust NSS in an increasingly interconnected world. 
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