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Abstract—In cybersecurity, network secu stems (NSS) are technologies used to protect
sensitive data against increasing cyber-attacks. paper has carried out the process of integrating
advanced Machine Learning (M hniques such as the Long Short-Term Memory (LSTM)
ural Networks (CNN) for the task of enhancing the

NSS. Usually, the traditional models have faced many

networks along with the Co

handle the Lons, ML has evolved to propose improvements in IDS implementation by
adaptin attacks and detecting complex patterns with greater accuracy. The study
eep learning (DL), “GC-SLSTM,” that combined models such as Gated CNN

LSTM to address these challenges. This model includes CNN robust spatial pattern

perimented with using the CICIDS2018 dataset, and the results demonstrate that the
proposed Gated CNN + Stacked LSTM (GC-SLSTM) had achieved an accuracy of up to 99.59%,
precision of 99.58% and a recall of 99.47%, culminating in an F1-score of 99.59%.



Keywords— Network Security Systems; Intrusion Detection Systems; CNN; LSTM; False Positive
Rates; Machine Learning.

I.  INTRODUCTION

Network Security Systems (NSS) are crucial in ensuring business integrity and security in the
digital age. They protect sensitive data from unauthorized access, breaches, and cyber-attackg Q

cyber-attacks become more complex and frequent, the need for enhanced network

protocols has increased. Intrusion Detection Systems (IDS) are used to identify pot

igh F ,' es
jme lysis. The

als complicates the

by monitoring network traffic. However, IDS faces challenges such as h

eu etworks, advances, sophisticated IDS
owever, these systems require large datasets
for training, which require substantial compUONg&ional resources, which are critical in a security
context [3]. Long-short memory (L ) is a Rec®rrent Neural Network (RNN) type designed to
handle time-series data. Its mo mber past data for an extended period, enabling it to
identify patterns and predici{gure e Applying LSTM to IDS can better understand network

traffic flow and ano ime. Unlike traditional models that process each data point

independently, LST traffic flow as a sequence, detecting complex attack patterns over
an exten ces the FP and increases attack detection accuracy in real-time [4-
5].

Co al ral Networks (CNN) are used in IDS to classify network intrusion patterns.

They caN@Rrocess and analyze spatial relationships within data, IDS, and relevant network traffic

pat™Qus. J¥tegrating CNN + LSTM can provide a more reliable IDS. This hybrid model uses

s spatial pattern recognition capability and LSTM's sequence prediction capabilities [6-10].
CNN analyzes data to detect spatial anomalies, while LSTM processes output over time to
understand temporal patterns and anomalies. This integration allows for more effective multi-stage

cyber-attack detection and higher chances of reducing the frequency of attacks (FP).




This work proposed a Deep Learning (DL) Advanced Intrusion Detection and Real-Time
Response in NSS. The work combines the Gated CNN (GCNN) with Stacked LSTM (S-LSTM)
networks for network IDS. The method effectively preprocesses network traffic by segmenting the
input data employing time and type of attack. Then, the segmented data are serialized ang
converted into grayscale images fed as CNN input. The proposed GC-SLSTM processeg
preprocessed data by utilizing the G-CNN to filter the essential features that S-LSTM p oae
analyze the temporal dependencies. The GC-LSTM was experimented wit
CICIDS2018, and it showed better performance than existing models.

The paper is structured as follows: Section 2 presents the literaturg
the methods used in this work, Section 4 presents the proposed

performance of the work, and Section 6 concludes the work.

Il.  LITERATURE REVIEW ,

instance selection algorithm, "Sam : cluding a Stacked Contractive Auto-Encoder
(SCAE) for dimension reductiop. m had shown a detection accuracy rate of 97.4% with
an achieved detection time

ine learning (ML) [10] for IDS, using Signature IDS (S-1DS)
ptasets like KKDDCUP99 and NLS-KDD. They used SVM, Naive
ethod performed better in real-time networks. They also explored
IDS for Cyber-physical-based Industrial Systems using the Kalman

rsive Gaussian mixture model. Their method efficiently recognized potential

rs have developed an Artificial Intelligence System (A-1DS) [11] based on the human
e System features, incorporating innate and adaptive layers. They used statistical and
adaptive Immune models to mimic the immune system's response mechanisms. The system
achieved high True Positive Rates (TPR) and effective IDS. The authors also investigated the

integration of network profiling, ML, and game theory to secure loT environments against cyber-




attacks. Their A-IDS dynamically profiles and monitors lIoT devices, identifying suspicious
transactions. Tested on the Cyber-Trust testbed, the model achieved a high overall accuracy of
98.35% and a low FRP of 0.98%.

The authors [12] developed an LSTM-based IDS to detect attacks on vehicles' Controller Areg
Network (CAN) bus networks. They generated a unique dataset using attack simulations o
experimental car and trained and tested their model. The system demonstrated a 99.9%
accuracy. They designed a novel l1-stage DL that combined LSTM with Auto-Encod
used their model for attack detection. The model performed better in CICIDS2Qg¥ an
IDS2018 datasets.

The authors have developed a Network Intrusion Detection Syst ) using a Recurrent
Neural Network (RNN) [13]. The system integrates multiple modules, ding a management

center, knowledge database, data acquisition, risk analysis, DNN for sequential data

relevance, and FE. An attention mechanism enhances the i o@f features for NN efficiency.
The authors also proposed a distributed DL-1DS usi pa

to the Internet of Vehicles (loV) under 5

to tackle challenges related

0 chieved fast IDS speeds and a high
accuracy of 99.7%, proving superiority o modelS. They also developed a novel IDS to
detect botnet activities by analyzing the inpu of network node features using RL2TM. This
model improves network efficienc eliminate¥redundant activities [14-15].

I1l. METHODS

A. Convolution Neural Ne
ed to process data with a grid-like topology; such data usually
encompass images o 6]. These datasets hold and exhibit complex patterns effectively
N. The model of a CNN (Fig. 1) includes multiple layers, such as
an inp re convolutional layers, pooling layers, and fully connected layers at the

ts role to play:
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Fig. 1: Basic CNN
(@) Input Layers: In a CNN, the typical inputs are predominantly images or videos. This layer
receives the image's raw data, which has dimensions of 32x32x3 and width ‘w’ height ‘h’

depth corresponding to the color channels.

(b) Convolutional Layers: The convolutional layer extracts the features from the input data

input layers by applying filters called kernels to the input images. These kernels arg

matrices of 2x2, 3x3, or 5x5 in size. They compute the dot product between the kg

and the corresponding patches of the image. The output from this layer is¢@ow

maps that highlight essential features in the input.
(c) Activation Layer: After the convolutional layer, this layer in non-linear into the
network by applying an activation function to the outputs from the pregaous layer. Commonly
used activation functions include RELU, which is defi as& (0, %), tanh, and Leaky
RELU, among others.

(d) Pooling Layer: The pooling layer is placed be n onal layers to downsize the

MEQQry usage, and prevent overfitting. The

¥oling and average pooling.

State candidate gate Output gate \

(X)—

Fig. 2. LSTM



B. LSTM

LSTM is a type of RNN designed to capture long and short-term dependencies. An LSTM (Fig.
2) typically consists of four layers called gates, EQU (1) to (2).
1 Input Gate (IG) (i,) : The IG decides how much of the new data to allow into the cell state:
ir = o(W; - [he—1, x¢] + by) (1)

Here, o is the sigmoid activation function, which outputs values between 0 and 1

controlling the extent to which new data is allowed into the cell. W; is the weight

IG, h._; is the previous output, x; is the current input, and b; is the bias

2 Forget Gate (FG) (f.) : The FG determines the amount of the el Qe (c;—1) to
retain:

fe = O'(Wf he_q,x] + bf) (2)
This gate filters out insignificant parts of the previous st eﬁvely letting only valuable

parts based on the current input and previous output.

3 Output Gate (OG) (0,) : The OG contro ut e cell state to the rest of the
network:

o = (W, - [he—q, x¢] + by) 3)

This EQU (3) fixes which parts of the cell state
4  Cell State Candidates (¢, ): T,

utput based on the current and previous inputs.

U (4) represents a candidate version of the new cell state,

combining new input datagg regous output:
¢ = tanh (W, - [he_q, x¢] +
The tanh function

(4)
the network by scaling the output between -1 and 1, providing
a normalized for ) 0 be added to the cell state [18].

5 CellS . The cell state is updated using the FG, IG, and the new candidate cell

(5)
tion ensures that the cell state is a mixture of old data (FG) and new data (IG).
from the LSTM cell (h,) Finally, the output of the LSTM cell, EQU (6)
¢ W, - tanh (c;) (6)
The OG decides how much of the cell state to output and the tanh of the cell state c; helps to
scale the output values.
1. Stacked LSTM



A Stacked LSTM is a modified single-layer LSTM comprised of multiple hidden LSTM layers,

each with several memory cells. Stacked LSTMs are particularly effective for complex sequence

prediction problems that other models can handle. They effectively use their model parameters,

rapid convergence, and better parameter efficiency in learning (Fig. 3) [19].
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IV. PROPOSED MODEL
A. Data Preprocessing

Data preprocessing is done in
i4btrace, LANalyzer, and pcap

[20]. The preprocessing invees sev

valu

Xt+1

Fig. 4%

h
L
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erous formats, such as snoop, pcap, pppdump, btsnoop,
ats organize the data for input into the proposed IDS

eps: segmenting the traffic by time, serializing the data

ding on the programming language used, labeling serialized

b image of the traffic data [21-22].

ime division involves partitioning the incoming data stream based
e of potential attacks. Let D = {(t;, x;)} represent the data stream, where
p of the i-th data point, and x; is the matching data value (or set of data

Assume we have a set of known attack types A and corresponding time intervals

hich these attacks are likely to occur. Each attack type a € A is associated with a time

rval [teiart » tend |- A Segmentation function S is defined as those partitions D based on the
specified attack time and type, EQU (7)
S(D,a, Lstart » tend) = {(ti'xi) € D:tgrare < t; < tenq and type (xi) = a}

()



Here, type (x;) determines whether the data point x; matches to the type of attack a. The output
of this function S is a subset of D containing only those data points that fall within the specified
time interval and match the attack type. This subset is then used for further analysis or processing
in the IDS.
b) Step 2 (Traffic Segmentation): Traffic segmentation involves further dividing the da

obtained from Step 1, which has already been segmented by time, into more discreigsgasi

This is achieved by sharding the data based on the IP addresses of the attacking @
victim host for each corresponding time.

From Step 1, we have a subset of data S(D, a, tgiart » tenq ) that

type and time. Let H,acx aNd Hyierim Fepresent the sets of IP add
and victim hosts. A function T is defined that partitions the subset S into ions based on the IP
addresses of the attack and victim hosts:
T(S, Hattack » Hvictim ) = {Sk € S:1Pagrack (%) € Hagrac im (%) € Hyjctim  for all
(ti, x;) € Sk}

In this function, S, represents a sessjg

tack¥) and IP;..im (x;) are functions that
extract the attacking and victim IP add om each data point x;. The output of this
segmentation function T is a collection of seSS@ps {S,}, each session contains data points that
share the same attacking and victi ddresses within the specified time frame.

c) Step 3 (Serializing Data); r flattening is the process where denormalized data,

resulting from joining tafSg in a 0 many" (1:M) relationship, is compacted into repeating

table. Let us consider a primary table P and a secondary table

n):D € P,s; € S and s; is related to p through k} (8)
esents a record in the primary table, and sy, s,, ..., s,, are the related records

rocess of serializing involves restructuring J such that the data from S is embedded

p, {51,32, "'iSn}): (p' S1,52, ""Sn) E]} (9)
In this structure, F, each primary record p is associated with a set of related secondary records

{s1,52, ...,Sp}, which are serialized into a single row or record in the identity table.

The serialized dataset F encapsulates the primary and its related secondary data in a compact form,




which simplifies and accelerates search operations by reducing the need to perform multiple joins

during queries

d) Step 4 (Tag the Serialized File): This step involves labeling the serialized data to facilitate
more efficient data extraction, addressing the challenge of large file sizes. Assume from Step

associated with the session. The labeling function L is defined to assign a label to
based on its attack type, EQU (10)
L(Sk) = ax (10)
where a,, is the attack type determined from the data characteristics o n, a labeled package
P, is created for each session, EQU (11)
P = (Sk, L(SK)) / (11)
In this packaging, each session Sy, is paired with its cgrr inflabel L(S;), which describes
the type of attack the session data represents. tis tion of labeled sessions {P;},
socl label L(Sy,).
his final step in data preprocessing involves

converting statical data into a format suita@afor CNN input, specifically into 2-D matrices

representing gray-scale image outcome from the preceding preprocessing steps is a set
of labeled sessions, {P;} S P, contains numerical data S, which needs to be
normalized to ensure all ure S are on the same scale, typically [0,1], EQU (11).

xjk—min(xjk)

(12)

f the 'k’ session, and x;; is its normalized value. Each normalized

to a 2D matrix M,. Assume each session S; comprises of a flattened
(13)
ing. Each element in the matrix M, is then interpreted as a pixel in a gray-scale image. The

pixel intensity is determined by EQU (14)
Pixelj, = 255 X (1 — x3) (14)




In this model, a pixel's intensity is inversely proportional to the normalized feature value, with
higher feature values resulting in darker pixels. The final output from this step for each session k

is a gray-scale image represented by the matrix M;,.

Gated Convolutional Block Stacked LSTM Block Classii“ncation
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C. Gated CNN + Stacked LSTM (GC-SLS
The model of the proposed IDS is depic Fig. 4; the details of each layer and its function
are explained here:

a) Input: The input layer receives ocessed network data as a gray-scale image, which is then

directly inputted into the inpu
b) Convolutional S: The cSgoluti yer employs a Gated Convolutional Neural Network
(GCNN). This approag ting mechanism inspired by RNN to filter the data selectively
ata. The process begins by computing C as a linear transformation
of F usi ad bias d; . Simultaneously, D is calculated as another linear
time using 6, and d,, and then passed through the ReLU function to

. The final output h(F) of the gated convolutional operation is obtained by

(15)

(16)

h(F) = C o ReLU (D), 17)
Here, F denotes the output from the preceding layer. The terms 6, and 6, are weight matrices,

while d; and d, serve as biased terms. The activation function used is ReLU. The symbol o



indicates element-wise multiplication between matrices. The model includes three convolutional
layers of configuration, as shown in the following Table 1 :

TABLE 1: KERNEL SizE OF CONVOLUTIONAL LAYER

Layer Number Kernel Size Number of Kernels
2 1x3 16
4 1x2 32

6 1x1

issetto “0’. If the dropout rate is p = 0.5, it indicates a 50% chance thit QL neuron's output will

be ‘0’ during training. Due to issues like data set label imb ich can lead to overfitting,

the dropout layers are included in the 3%, 5", and 7*" in th ck and the 10" layer in the

ith a dropout rate p, the output x; is
transformed as follows: EQU (18)

, {0 with probability p
xi =

l’i—"p with probability (1 -

d) Max-Pooling: The Max-pg,

(18)

compresses features and removes redundancy while

reducing the computational of t odel. The Max-pooling in this architecture is designed
with a stride set to 2.

and S is the size of thé

y, if M represents the input matrix to the Max-pooling layer
ilter, the output matrix N at position (i, j) is calculated as follows:
(20)

maxi va ithin each pooling window as the output for that window.

layer is initialized with a hidden vector size 128 for layers 9 and 11. The 11" layer
ector h;, which is input to the next layer. The LSTM units in layers 9 and 11 process
data Dy gates and a cell state, each managing a hidden vector of 128 dimensions. The hidden state
h; at any time, step t in these LSTM layers is updated based on the current input x;, the previous

hidden state h;_,, and the previous cell state ¢;_, : hy = LSTM (x¢, hy—1, Ct—1)



d) Fully Connected (FC): The proposed model incorporates 2-FC layers, with the 1% layer
containing 512 neurons and the 2" containing 128 neurons. Let L, represent the k-th fully
connected layer in the model. The neurons in these layers are interconnected with all activations
from the previous layer. The first FC layer, L, has 512 neurons. Each neuron in L, is connecteg
to all outputs from the previous layer or network section. If x represents the input vector to L @

output y; from this layer can be represented by the EQU (21):
y1=f(Wy-x+by)

The 2" FC layer, L,, follows L, and contains 128 neutrons. It takes
the output y,, calculated as EQU (22):
y2 = f(Wy -y, + by)

e) Output: The output layer used a SoftMax function for multiclz?a

t an ces

(22)
jcation that converts

the logits from the previous fully connected layer into a set ities that collectively sum

to one, providing a distribution across the various classe vector of logits z from the

preceding layer, the output probabilities for each clasgllare d using the EQU (23):

e’J

Pj = S e

(23)

where e? is the exponential function applie e logit of class j, and the denominator is the sum

of the exponentials of all logits withig the vector Wwith K representing the total number of class

options in the model.

f) Cross-Entropy Loss Fu 0 DS employing a SoftMax output layer for multiclass

classification, the approgiis function to use is the Cross-Entropy Loss, also known as the
e class labels y and the predicted probability distributions p from
tropy loss for a single data example can be expressed as EQU (24)

(24)

1
o = — -2, X yijlog (pi)) (25)
Here, N is the number of data points in the batch, y;; Indicates whether class j is the correct
class for the i-th data point and p;; is the model's predicted probability that the i-th data point

belongs to class j.



V. EXPERIMENT ANALYSIS

In this study, the CICIDS2018 (Canadian Institute for Cybersecurity) is employed, and it
includes different attack scenarios. The datasets cover ten days of network traffic, four of which
have DoS and DDoS attacks [23-25]. This work uses data from four traffic days: Thursday, Frida
Tuesday, and Wednesday. This study evaluated the proposed model by training it individuall

testing it on the same data sets. In addition, we also experimented by training on Thu

(29)
e Accuracy (Acc.): This metric measures the overall correctness of the\@gdel and is defined as
the ratio of correctly predicted observations to the total o

Number of correct predictions

Accuracy (26)

Total number of predictions

dicte sitive observations to the total

e Precision (P): Precision is the ratio of cg
predicted positives. It is a measure of, @
True Positives (TP)

True Positives (TP) + False Positives

e Recall (R): Recall is the ratio

Precision = (27)

rrectly pre¥icted positive observations to all observations

in the actual class. It is a mea assifier's completeness:

True Po, es (TP)
True Positives (TP) + e Negatives (FN)

Recall = (28)

both FP and i t:

jsion X Recall

e Fl-score(F1): T % e T'Wthe weighted average of Precision and Recall. This score takes
(29)

riday, Tuesday, and Wednesday data sets, we train the models individually and
est t on the same data sets.

TABLE 2: RESULTS (EXPERIMENT 1)

Thursday Friday
Models Acc. P R Fi Acc P R F1
Model#1 0.9835 0.9846 0.9646 0.9646 0.9536 0.9659 0.9055 0.9457
Model#2 0.9650 0.9536 0.9557 0.9254 0.9465 0.9366 0.9270 0.9367




Model#3 0.9753 0.9372 0.8021 0.8800 0.9365 0.8695 0.8423 0.8871

GC-S$ 0.9898 0.9955 0.9857 0.9851 0.9959 0.9958 0.9959 0.9859
Tuesday Wednesday
Models Acc P R F1 Acc P R F1

Model#1 0.9848 0.9849 0.9845 0.9749 0.9836 0.9858 0.9752
Model#2 0.9639 0.9536 0.9652 0.9650 0.9547 0.9561 0.9465
Model#3 0.9759 0.9490 0.8021 0.8307 0.8423 0.8695 0.8423
GC-SLSTM  0.9958 0.9919 0.9951 0.9957 0.9959 0.9958 0.9947

Performance Metrics for Each Model on Thursgg
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, performance Metrics for Each Model on Friday (16/02/18)
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Pgaorformance Metrics for Each Model on Wednesday (21/02/18)

09¢r
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—
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O
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Fig 5: Performance analysis of the propose"gagel compared to other models for a) Thursday, b)
Friday, c) Tuesday, anyg

In the performance compariso in Tab. 2 and Fig. 5 (a) to (d), the GC-SLSTM has shown

Wednesday dataset
better results than other model ang®, on Thursday and Friday datasets, the proposed model
(ACC), 0.9955 (P), 0.9857 (R), and 0.9851 (F1) for Thursday
), 0.9959 (R) and 0.9859 (F1) for Friday dataset. Model#1
c of 0.9835, an F1-score of 0.9646 on Thursday, and a slight drop

showed a performance of 0.

.8021 on Thursday and slightly improved to 0.8423 on Friday. The trends
yth data from Tuesday and Wednesday, in which the proposed model had shown a
e of 0.9958 (Acc), 0.9919 (P), 0.9951(R) and 0.9957 (F1) for Tuesday and  0.9959
ACTY; 0.9958 (P), 0.9947 (R) and 0.9959 (F1) for Wednesday dataset. Model#1 on Tuesday has
an Acc of 0.9848 and an F1 of 0.9749; on Wednesday, it has an Acc of 0.9836 and an F1 of 0.9756.
Model#2 has accuracy scores of 0.9639 on Tuesday and 0.9547 on Wednesday and similar F1 of

0.9650 and 0.9464, respectively. Model#3's performance was variable, with a low recall rate.




B. Experiment 2

(i) Thursday data as Training and Friday data for Testing
Analyzing the performance metrics using Thursday's data for training and Friday's data for

testing (Fig. 6). The GC-SLSTM stands out with the highest metrics across the board—accurac

at 0.9486, precision at 0.9878, recall at 0.9747, and an F1-score of 0.8816. following the propf

model, Model#1 has high accuracy at 0.9356; however, its recall at 0.6233 is considergael W
&
N L

Model#3 scored the lowest accuracy at 0.9056, precision, and recal ueSQR0.7681 and
0.7547 and a moderately balanced F1-score of 0.7413.

and has an F1-score of 0.7671. Model#2 scores slightly lower in accuracy at 0.9154 an

in precision at 0.8640, and the recall rate drops further to 0.4874 and its F1-scorgfow

Performance Metrics Using Thursday Tralnlng Friday Testing

B Accuracy
Precision
Recall
- F1-Score
. N

Model#2 Model#3 GC SLSTM
Models

0.91

0.4

0.3

ance comparison for Thursday data as Training and Friday data for Testing

ata as Training and Wednesday data for Testing

for testing is shown in Figure 7. The proposed GC-SLSTM excels with the highest scores across
all metrics: accuracy at 0.9691, precision at 0.8950, recall at 0.8255, and an F1-score at 0.9124.

Model#1 shows a moderate level of accuracy at 0.9126, struggles with precision at 0.8277, and



recall at 0.4922, and its F1-score is only 0.5005, reflecting a significant imbalance between

precision and recall. Model#2 has lower accuracy at 0.9002 but improves precision at 0.8528 and
recall at 0.7759 compared to Model#1 and a higher F1-score of 0.7477. Model#3 reports the lowest

accuracy at 0.8963 and precision at 0.6973. However, its recall at 0.6312 is higher than that g

Model#1.
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D. Experiment on Accuracy and Loss over epochs

Accuracy vs Epochs for Thursday Training and Friday Testing
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Fig. 8: Analysis of Accuracy and Loss against epochs for the two testing scenarios
Figure 8 a & b displays the classification accuracy and loss function of the GC-SLSTM, using
Thursday's data for training and Friday's data for testing. After 100 epochs, the training loss
stabilizes at 0.116, while the validation loss levels off at 0.135. Although the loss function shows



some fluctuations, it consistently decreases over the 100-epoch period, confirming the
convergence of the proposed model. The classification accuracy on the training set converges
relatively quickly, achieving stability after approximately 40 epochs. In contrast, while displaying
minor fluctuations, the validation accuracy maintains a high level throughout the epochs. Afte

100 epochs, the training accuracy reaches 95.87%, and the validation accuracy stands at 95.4 Q
A similar trend is observed for the scenario using Tuesday's data for training and WegaasOSas

data for testing (Fig. 9 (c) & (d)), where the model's loss stabilizes at 0.062 for testi
for the training set after 100 epochs. The corresponding accuracies for this dat rea

training and 97.6% for testing after 100 epochs.
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