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Abstract—Deep Learning (DL) is revolutionizing videgor

in daily life. Encoding and transmitting videg (l becorTies challenging with fast content

resolution and data volume. This rese ts theN@nost progressive method for Video

Compressing (VC), using DL to enhance en g and transmission efficiency, demonstrating the
need for more cutting-edge methods in digital meg@g. This work uses advanced Machine Learning
(ML) to reduce video data size wjfiou promising video quality, enhancing its suitability for
high-definition streaming ioeocong@rencing. The algorithm uses Convolutional Neural
Network (CNN)+Recurreg
complex spatial detai
VC achieyes hj '

adapts gn r

al Network (RNN) to improve video quality. CNN captures

eac™ video frame, while LSTM relates across time. The proposed
rates compared to traditional methods like H.264 and H.265. It
optimizes video bandwidth usage, making it useful for live streaming
service Vi onferencing. The VC has been tested extensively, demonstrating significant
du while maintaining excellent video quality. It surpasses modern compression
ing it a flexible solution to the increasing demands for the best video content. This

en In VC is expected to change digital media distribution for good.
Keywords—Video Compression, Deep Learning, Video Encoding, Video Transmission, Bandwidth
Optimization

I.  INTRODUCTION
The exponential development of digital media consumption is driven by the tremendous

popularity of streaming high-definition services and video conferencing applications. Traditional
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Video Compression (VC) has proven successful, but balancing efficiency with quality has caused
problems in storage and transmission, especially over networks of low bandwidth. Balancing the
quality and efficiency of VVC has always been a challenge in this area. VVC algorithms are designed
nowadays to balance both. However, the Machine Learning (ML) algorithms provide a new loo
at the VC task, leading to better results. As the drive for better video quality and smoother play,

with high resolutions and higher Video Frame (VVF) rates. Leveraging ML in VC

potential for this purpose, as such algorithms can be developed to learn an encq@ing 1

more effective and adapt to diverse types of video and their features.

Classic VC standards, e.g., MPEG and AVC/H.264, HEVC/H.2 9 have done a fine
job of reducing the size of video files while maintaining quality at le cceptable to human
perception [1-2]. However, modern applications impose highlychallging réquirements on video
coding: higher efficiency and better adaptability to networ ents in a way that traditional

coding approaches are incapable of. Research on learrg-ba as advanced rapidly in recent
hich Deep Neural Networks (DNN) is

applied for video coding. All these methd¥ diminish'spatial and temporal redundancies by

years, and this study examines this trend i

looking for lower-dimensional representatior@gf VF [3]. Therefore, they promise to enhance

compression efficiency without detggarating vide® quality [4].
Other previous works [5- i foundation for image codec design, where deep
autoencoders (AEs) were u o cre ade-off between rate and distortion. Additionally, they

t description in a condensed signal format. Image compression

ain, whereas VC uses the temporal link among neighboring VF.

iction procedures, has become an essential part of VC based on DL.
ses a new VC algorithm that incorporates Convolutional Neural Network
ecurrent Neural Network (RNN), particularly LSTM, in such a method that these can
e entire process of VC. The proposed model uses CNNs to gather complex spatial
ation from each VF and LSTMs to model the temporal dependencies among the VVFs. Such
combinations make the algorithm attain higher ratios of compression than traditional methods,
leading to an ultimate decrease in size for data with a high level of visual quality [7]. Deep Learning

(DL) enables dynamic parameter adaptation at runtime to optimize bandwidth use during video




transmission, becoming highly relevant when network environments are not constant for
applications [8]. Extensive experimental testing proves the recommended method outperforms
advanced compression standards regarding bitrate reduction while preserving video quality. These
advances in VC hold out the promise of being game changers in the delivery of digital media an
on a large scale, the method that one adopts when responding to this greedy demand for q
video content.
I1. RELATED WORKS

The desire for highly effective and controlled VVC processes has driven reseagdiers er
a of DL. DL

Een extensively used

Ang to the human eye.
Nevertheless, these standards frequently fail to meet the ingreasi quirements for improved
efficiency and adaptability in contemporary applications. 4% ¥UlA researchers are delving into

DL to address these challenges.

Authors explore image interpolation in -10]. We used a trainable architecture.
Initially, the key VVF undergoes encoding cep imagde compression, then reconstruction of
the remaining VF using a standard U-net. To OWg&come this problem, methods such as optical flow
and block motion estimates are u as the inté¥polation model alone may struggle with this
aspect. The spatial redundancy | ced, and compression is achieved using a comparable
architecture and adaptive arigiinetic qaig® technique like the one employed [11]. Furthermore, a

ase the bit rate even more through image interpolation.

nded the latest developments in DL, particularly in the Neural
ossy compression field. This has involved the interest of both
nd industry professionals. Google researchers discussing image
ues using RNN. One paper examines thumbnail compression, while the other
fult®resolution image compression. In their study, [13] introduced three additional
prove the previous model for lossy image compression, as mentioned in a previous
tion. The models were developed by combining RNN + CNN components. At first, the
network was trained using pixel-wise loss, which was evaluated based on SSIM. Furthermore, the
recurrent architecture has undergone minor adjustments to improve spatial diffusion. As a result,

the hidden states can now capture and propagate image information effectively.




The iterative analysis/synthesis is based on the model proposed [14], which includes several
LSTM-based AE connected closely. An ongoing examination and combination of the distinctions
between reconstruction and the desired outcome in a VC method that adjusts its rate. This model
IS better, as shown by the quantitative findings over existing codecs, and it opens new possibilitie
for future research in VC by incorporating different elements. Authors [15] presented a rapid i
coding unit decision algorithm incorporating DL to enhance VC using High-Efficie
Coding (HEVC).

In their work, [16] proposed a deep CNN with wide-activated squeezcqld-¢ to
rcq@eing the RD

improve the versatility of video coding. The authors improved perfq
cost. In their work, [17] use a fast QuardTree partitioning method tha¥ cep-CNNs to predict
the splitting of code units. The authors improved QTBT's functionality foN@atra-mode coding with

the proposed scheme. In their study [18], Zaki and his colleague osed CtuNet, an approach

to DL that mimics partitioning the coding tree unit. This with the drastically reduced

computational complexity of the scheme proposed bypfMc a

Similarly, research has been conducte
traditional codecs to improve compressio

(FE) using DL but employs conventional o encoding techniques. The method promised

extraordinary VC rates while prese video quaMity.
Authors [19] conducted a re applying GRUs in an AE to VC data. Based on their

research, Region-based voluti eural Networks (RCNN) can model temporal

stNQling compression rates is quite tricky because of computational
)provement has been made in DL-based VC, several problems
' Network (DNN) imposes a substantial computational burden, and
real-time will be challenging, with many hurdles. In addition, methods
ity of the VC requirement are to be constantly explored so that no distortion

s introduced. The future will focus on architectures designed explicitly for real-

ethods to improve VC algorithms. Additionally, much future potential is in advancement
toward reducing compression objects and improving video quality, for which Generative
Adversarial Networks (GAN) were researched [20].

I11. METHODS AND MATERIALS




This study combines CNN and Long Short-Term Memory (LSTM) to develop an efficient VVC.
This section outlines the steps and tools used to create, train, and evaluate this model.
A. Dataset

A valuable tool for the aim of this endeavor is the Ultra Video Group (UVG) dataset, whic

features 16 unpredictable 4K (3840x2160) sample video clips. This collection of images pre;

numerous novel methods for specified training and evaluation techniques; it is record

» 0:00/0:20

= (F,F,, ..., B} 1)
where 'n’ is the complete VF in the video clips. Individually FE as F; is reshaped to an average

resolution R x C, where 'R’ is the row count, and 'C’ is the column count. This ensures



standardization in input value for the NN. The reshaping function is mathematically signified as
EQU (2)
F, > F/ (2)
where F;" is the reshaped VF of size is R x C.

The pixel values of each VF are as F;’ are normalized to the range [0, 1]. If ‘P’ denotes the | Q
value, the normalization is performed using the following EQU (3):

P ="
255
Here, P’ represents the normalized pixel value. To enhance mod S an vent
overfitting, various data augmentation techniques are applied:

Each VF as F;’ can be flipped horizontally with a probability ‘p". L denote the horizontal
flipping operation EQU (4) ,

F" = H(F) 4)
VF are randomly cropped to a specified size. Let 'C’ cr@ping operation EQU (5)
F"" = C(F) (5)
VF are rotated by a random angle 6. ent otation operation EQU (6)
F"" = Rqo(F;") (6)

These preliminary steps ensure that the test (%gigset is well-prepared and standardized for NN
training. This meticulous processgfialantees that the input data remains consistent in format and

mixed enough to boost the m ectiy@ness during training.

C. Network Architecture

First, the input VF, is VF from the original video sequence. At these initial steps,

VF goes through includes FE, resizing, normalizing, and data

\VF. After that follows the dense bottleneck layer, which will compress encoded
er in a lower-dimension space; these compressed features pass through the LSTM.
rk has layers of LSTM that capture dependencies between VF in time and, through this
mecManism, allow significant improvement in compression efficiency. A block diagram for VC is
exposed in Figure 2.

After encoding the temporal features, the decoder compresses them and reconstructs them to

the original VF dimensions using deconvolutional and upsampling layers. The result is output



VF—the produced reconstructed VF. These VF results are at the end of the entire process of
compression and decomposition, thereby proving the effectiveness and usefulness of an NN in
bringing forth positive results on video data. The following scenario provides a high-level
overview of how data flows over the proposed pipeline model for VC and decompression an

illustrates how each constituent element contributes toward overall functionality.

1 1
1 1 1
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| Data !
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Decoder [+ (Temporal -
Dependencies)
ocising block diagram for the VC
(i) Autoencoder
This VC has an i ~ at contains an encoder, an LSTM, and a decoder to form an

n trained to record temporal relationships using the encoder's output; the

anal the encoded VF and provides a sequence of hidden state data. The final process is for
he to employ these hidden states to reassemble the beginning VF in the video. The final
e images originate from a decoder that progressively restores spatial dimensions using
several deconvolutional and upsampling layers. This hybrid method allows a high VC ratio and
improved VF duration while rapidly reducing and restoring videos using temporal and spatial data.



In this regard, the AE model encapsulates the whole process to provide a robust model for modern
challenges in VC.
(i1) Encoder Design

The encoder in this proposed VC is designed to effectively capture spatial features from eac

VF while reducing the dimensionality of the input data. Here is how it works, with
mathematical rules. Figure 3 shows the model diagram of the encoder. Let us start wit
VF as F, which has dimensions H X W x C (Height, Width, Channels). The first stg

a convolutional layer with k; filters of size 3 x 3 to the input VF, EQU (7
Ex(0,q,7) = Yine1 Zo=1 2em1 Winmer - F(p + m—1,q +n—1,¢)

Here, W,,cr are the weights of the filters, by, is the bias term, a q,7) is the output of
the convolution operation at position (p, q) for the k-th filter. Next, w a ReLU activation
function to introduce non-linearity EQU (8) }

E'1(p,q,7) = max(0,E;(p,q,7)) (8)

After that, this study uses a max-pooling layer t uce ial dimensions by half EQU

(9)
Py(p,q,7) = max{E',(2p,2q,k),E'y (2p + '1(2p,2q + 1,k),E'1(2p + 1,2q + 1,k)} (9)
Several layers repeat this process. For the onvolutional layer, with k, filters EQU (10) to

EQU (12).

E;(9,q,7)) = Yme1 Loe1 2o p+m—1,g+n—1,c)+ by (10)
EZI(pI q) T) = max (0' E2 (p' )) (11)
P,(p,q,7) = max{ Eg R(2p +1,2q, k), E5(2p, 2q + 1,k),E;(2p + 1,29 + 1,k)} (12)
ut =
Flatten
[_/ | Dense
+ L2
L = =]
a2 = = Encoder
& &
=




Fig 3. Model diagram of the encoder
And again, for the 3" and 4" layers EQU (14) to EQU (18).
Es(,q,7)) = Yme1 Loe1 Yomy Winer " P2(p + m— 1, + n—1,¢) + by, (13)
E3,(p! q; T') = Max (01 E3 (p' q' T')) (14)
Ps(p,q,r) = Max{E;(2p,2q,k),E3(2p +1,2q,k),E3(2p,2q + 1,k),E32p + 1,2q + 1,k)} (1
Es(0,4,7)) = Yme1 Xoe1 Yomy Winer " Ps(p + m— 1, + n—1,¢) + by,
E4,(p! q; T') = Max (01 E4- (p' q' T'))
P,(p,q,v) = Max{E,(2p,2q,k),E,(2p +1,2q,k),E4(2p,2q + 1,k), E,(2p

After these layers, this study flatten the final pooling layer P, into a g
(19)

F' = Flatten(P,)
Finally, this flattened vector goes through a dense layer, p 'nﬁe encoded representation
EQU (20)

E = Max(0,W - F' + b)

where W and b are the weights and biasesg4

(20)

se , correspondingly.

The model starts with an input layer tha B'\/F of a specified shape. The first layer is a 2D

convolutional layer with 64 filters, each size , and uses the ReLU activation function. This

layer applies these filters across tire input VF to essential FE, while the 'same' padding

ensures that the output mai ct spatial dimensions as the input. Following the
convolution, a max-pooling\@ Size 2 X 2 is used. This layer keeps the most relevant

ensions while removing the rest. This process is repeated

her max pooling. The third convolutional layer will increase the filters to 256

0 512; use a 3x3 kernel with ReLU activation followed by max-pooling each time.

t pooling layer, this output is flattened into a 1-D vector, effectively transitioning from
spatial to fully connected layers. This vector is next passed through a further dense layer of 1024
units with ReLU activation, which more heavily compresses the data into a smaller illustration

while still holding on to relevant data required in steps that follow in compression.




This ensures that the encoder is dimensionality-reducing on the input VF and captures a rich
set of spatial features; this component becomes especially important in the overall VC pipeline.
The resulting model is named ‘encoder' and could be ready to be integrated with the rest of the
compression architecture.

(iii) Long Short-Term Memory (LSTM)
This proposed VC model includes an LSTM layer that enables the modelling o

dependencies between consecutive VF; it thus plays a vital role in efficient V
processes sequences of encoded VF from the encoder and learns temporal corre

sequence. An LSTM is a series of memory cells linked recurrently, w
through several gates. These gates are needed to flow data and ena etwork to maintain
long-term dependencies.

Let ‘x;’ to input into the LSTM cell at step ¢ intime, 'h," th 'dd@ate, and 'C,' the cell state.
The LSTM cell updates are ruled by the following EQU (2
fve =Wy - [he—1,x¢] + byy)

The Forget Gate (FG) determines whg

(21)

n ON@Re previous cell state C;,_; should be
retained. Here, Wy,, and by, are the weigh'\qg ases for the FG, and o is the sigmoid activation

function EQU (22) to EQU (24).

vy = oWy - [he—1, %] + bi) (22)
Cvy = tanh (W, - [Re_q, %] (23)
The Input Gate (1G) sele ow of the new data from the input 'x;" should be added to

the cell state. W;, a eights and bias for the 1G, while W,, and b, are for the

candidate cell st the hyperbolic tangent function (Figure 4)

Cv, (v, - C, (24)

ulated by the FG and IG denoted in EQU (25) and EQU (26)
* [he-1, %] + boy) (25)
¢ - tanh(Cv; ) (26)

e Output Gate (OG) determines the output of the LSTM cell current step. W,,, and b,,,, are
the weights and biases of the OG. In this model, the LSTM layer processes a sequence of encoded
VFas {Ey, E,, ..., Er}, where E; is the encoded representation of the VF at time step 't’. The LSTM



layer produces a sequence of hidden states {h,, h,, ..., hy}, capturing the temporal dependencies
across the VF.
(iv) Decoder

The decoder in this proposed VC is designed to reconstruct the compressed features back intg

the original VF dimensions. It mirrors the encoder's functionality but operates in reverse,
deconvolutional (transposed convolution) layers to upsample the data and reconstruct

dimensions of the VF.

L L L
Sequences of S S S
encoded frames > T » T —> T Output
from the encoder M M M
Output
Gate
cell
ht*l
> ¢ >®_}

nput
Modulation

Gate ’I’

Forget
Gate

Fig 4. LSTM Model
st step in the decoder is to transform the compressed feature vector back into a spatial

h
format. This is done using a dense layer followed by a reshape operation. Let z be the compressed
feature vector from the bottleneck layer. The dense layer expands this vector into a more significant
feature map, EQU (27).



z'=max(0,Wy -z + by) (27)
where W and b,) are the weights and biases of the dense layer. This output z’ is then reshaped
into a 3D tensor, EQU (28).

Z = Reshape(z') (28)
where Z has the size H' x W' x ', which formulates the problem for the deconvolutional Ia

The deconvolutional (transposed convolution) layers up-sample the feature maps bzgimko
(29)
ts, by, is the bias, K

original VF dimensions. For each deconvolutional layer, the operation can be expred
(29).

PR Cc
Dy(i,j, k) = Z§1=1 Z$1=1 ch=1 Winnek * Uiemj-nc + by
where D is the output of the [-th deconvolutional layer, W,k are t

is the kernel size, and U is the upsampled input to this layer. The Re%c ion function is then
applied EQU (30)

D",(i,j, k) = Max(0,D,(i,j, k)) (30)
After each deconvolutional layer, an upsargahi rati les the spatial dimensions of

the feature maps. This can be stated as EQ

U@, j, k) =D"(i/2,j/2k) (31)

The process is repeated through multiple layS@ato reconstruct the spatial dimensions of the VF
progressively. The final layer in t coder outputs the recreated VF with the exact dimensions
as the original input VF. Thi S J@pigmoid activation function to ensure the pixel values
are in the range [0, 1] EQU

F(,j,c)=aWs- U (32)

!

where ‘o’ is t ction, 'W;" and 'bs" are the weights and biases of the final

deconvplut
This RS deSqQuler transforms compressed features into actual sizes for accurate VF restoration.
A shasgo ed feature vector is inputted at the origin point through a data input layer. The

tep igWpuse a dense layer to expand the compressed feature vector, resulting in a more evident

tu p. This dense layer has 512 x 8 x 8 units and uses the ReLU activation function,
permtting the system to learn a novel set of features. The final resultant of this dense layer is then
resized into a 3-D tensor with the size of 8 x 8 x 512 . Following the resize function,
deconvolutional (transposed convolution) layers are functional. The primary deconvolutional layer

applied 512 filters with a kernel of 3 x 3 and ReL. U activation, ensuring that compound features




are captured and spatial size starts to rise. To further expand the spatial size, an upsampling layer
with a pool of 2 x 2 is used, successfully replication the height and width of the feature map.
This procedure iteratively experiences different phases. Layer two of the deconvolutional

method uses 256 filters, and the third layer is an added upsampling layer. After two additiong

upsampling layers, the final deconvolutional layer employs 128 filters, and the final layer usg
filters, following an identical layout. These layers maintain the learned features while s
rebuilding the spatial accuracy. A deconvolutional layer with three filters, reflecti

colors of the initial VF, serves as the final layer of the algorithm for decoding. T4 lay

a kernel size 3 x 3 and a sigmoid activation function, verifying that tj AV ideo pixels

are within the range [0, 1]. The decoder's layout provides accurate U@ g and restoration of
compressed features into video of superior quality VF. An efficient andS@gure VC is developed
by using all layers to restore the spatial dimensions but presegg minor details of the actual
source images.

IV. RESULT AND DISCUSSION

-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
VC. This model attained an average of 35 dB for PSNR values,

ere well-preserved in the reconstructed VF and looked like the

e ot hand, perceptual similarity metrics measured by SSIM were above 0.90.
sh&@rs that the recreated VF maintained its models, remaining visually appealing
Cgahpression Ratio (CR) measures how much the original video size is reduced after VC.

ratio of the original video size. Sy gina; t0 the VC of Scompressea: EQU (33).

CR = Soriginal (33)

Scompressed



One method to evaluate the quality of the recreated VF compared to the original image is using
PSNR. It is defined as EQU (34).

MAXIZ)
MSE

PSNR = 10 - logy (

(34)

where, MAX, is the highest feasible image pixel value (for 8-bit images, this is 255). MSE is

Mean Squared Error among the original and recreated VF, EQU (35).

The MSE is calculated as:
1 wm wn .. N
MSE = EZi:l 2j=1 (Ioriginal(l']) - Ireconstructed(l']))

where, Ioriging: 1S the pixel value of the original VF at position (i, j L. OIS the pixel

value of the recreated VF at position (i, ). ‘'m’ and ‘n’ are the dimensi e VF. To determine

how comparable the original and rebuilt VF are, one uses the SSIM. Alte[%@ns to structural data,

brightness, and contrast are considered. The SSIM index be VF as'x’ and ‘y’ is given
by EQU (36).
_ (Zuxuy+C1)(20'xy+C2)
SSIM(x, ) = (u3+u3+C1)(0F+05+C7)
where, ‘u," is the average of VF as 'x’. ¢ erage ® VF as 'y’. 2 is the change of VF as

'x'. o is the change of VF as 'y’. g, is the CSqriance of VF as "x" and "y". C; and C, are fixed to
maintain division stability when ominator Walues are low. These formulas provide a
quantitative test of the accurac thi in terms of compression effectiveness and the quality
of the recreated VF.

The results of the reg AE model are summarized in Table 1 for VC, highlighting the

IM. These values are averaged across the UVG dataset.

1. PERFORMANCE OF PROPOSED AE FOR VC

etri Value Range Average Value
10:1-20:1 15:1
SNR 30dB-40dB 35dB

SSIM 0.85-0.95 0.95
re 5 presents the quality assessment of this proposed VC, illustrating the relationship
etween the CR (Bits Per Pixel (BPP)) and the average VF of SSIM. It shows how effectively this

model maintains video quality as compression becomes more aggressive. As we observe the graph,
the CR starts from 0.01 BPP and increases to 0.12 BPP. Correspondingly, the average VF as SSIM



values range from 0.62 to 0.956. The trend indicates a significant improvement in SSIM with an
increasing CR, highlighting the model's ability to maintain high visual quality even at higher
compression levels.

At very low CRs, e.g., 0.01 BPP, the SSIM already reaches 0.62. That is slightly smaller i
value than 0.65, indicating that despite the perfect effect of reducing the file size, its quality i
are caused by noticeable degradation. However, with an increased CR of 0.02 and 0.0
SSIM values drastically return to approximately 0.75 and 0.88. This rapid developme
model's efficiency in preserving fine VF details at slightly higher BPP. Farthg¥bn tM™
achieves an SSIM of 0.90 at 0.04 BPP. From here onward, all SSI
gradually, indicating that the model consistently improves on visual g
For example, at 0.05 BPP, the SSIM is 0.92; for 0.06 BPP, it becomes 0.3l hese values indicate

that for quite aggressive VC rates with the proposed model, of&ietai s and originality can
still be maintained for the VF.

Compression Ratio v me SSIM

0.95 1

0.90 -

0.85 1

0.80 -

Average Frame SSIM

0.02 0.04 0.06 0.08 0.10 0.12
Compression Ratio (bits per pixel)

Fig 5. Quality Assessment of Proposed VC (SSIM)
The SSIM values flatten out to approximately 0.945-0.956 ranges as the CR increases from
0.07 to 0.12 BPP. This means there is a point of diminishing return for the model: further increasing

BPP confers very marginal improvements in the quality of visuals. Specifically, at 0.10 BPP, SSIM



comes out to be 0.95; its slight increases to 0.11 and 0.12 BPP return SSIM values close to each
other—0.952 and 0.956, respectively.
This proposed LSTM-based AE network guaranteed excellent smoothness and continuity for

the VF. Visual examination of the reconstructed videos revealed minimal traces of tempor

artifacts, like flickering changes between consecutive VF. This confirms that this model main

temporal consistency so that the videos are played back smoothly and naturally. Trainjases

streaming and conferencing.

Compression Ratio vs. Avera

—e— PSNR

Average Frame PSNR (dB)

0.04 0.06 0.08 0.10 0.12
Compression Ratio (bits per pixel)
Fig 6. Quality assessment of proposed VC (PSNR)
6 presents the performance of this VC in detail by showing the CR against the average
VF as PSNR. This graph shows how well the proposed model holds up with higher CR levels. At
the low end, at a CR of 0.01 BPP, start with a PSNR of 20 dB; this is about what one would expect

from such a low value: a tiny video size, visibly harsh, and many CRs. As the CR returns to the



0.02 and 0.03 BPP settings, this work refers to a quickly rising characteristic curve to 25 and 30 dB
PSNR, respectively. This rapid improvement proves the model can significantly enhance visual
quality with just a tiny bit of extra data allocated per pixel.

Moving further in the graph, at a CR of 0.04 BPP, it goes up to 32 dB, while at another ratio g

0.05 BPP, it hits 34 dB. These values indicate that this model reduces file sizes and main

quality by ensuring the VF is viewed consonantly with the original. Still, with further i
CR, the PSNR values drop very slowly. The PSNR values increase to 35 and 36 dB . 0
~ ity
plesQR as follows:
at 0.10 BPP, PSNR is 39 dB, gradually increasing to 41 dB at 0.12 BP
A. Comparison with Traditional Methods

This AE outperformed CR and visual quality compared to |t|£ VC Standards like H.264
and HEVC. Traditional methods frequently introduce obj egrade quality, especially at

0.07 BPP. This shows a diminishing return condition where additional BPP still i

to a smaller extent. This plateau effect can be seen at higher CRs—sqg

higher CR. In contrast, the DL dynamically learns ad e content, resulting in better

compression efficiency and higher-quality

To highlight the efficiency of the prop , We cormpare it with traditional compression
methods such as H.264 and HEVC. Table 2 pNggnts the overall values for CR, PSNR, and SSIM,
showcasing how this model outper s these traitional methods in maintaining video quality

while achieving high CRs.

TABLYQR COMR, N WITH TRADITIONAL METHODS
R Average VF Average
(BPP) PSNR (dB) VF SSIM
0.08 32 0.85
0.06 34 0.88
PeRPoNg@AMowe| 0.05 35 0.93

The cS@aparison Table 2 shows that our proposed VC outperforms traditional methods, such as
HEVC. Checking on the CR, in its best form, this model gives a ratio of 0.05 BPP,
han H.264 at 0.08 BPP and HEVC at 0.06 BPP. This validates the effectiveness of this

model in VC data more efficiently to attain lower storage and bandwidth while preserving quality.

H.

This model achieves, on average, an amazingly great PSNR of 35 dB concerning the quality

measurement of the reconstructed video. This represents an improvement of 32 dB achieved by




H.264 and 34 dB by HEVC. One of the results, most notably on the SSIM metric quantifying
perceptual video quality and structural integrity of videos, has a vast improvement for the proposed
model. This work achieved an SSIM of 0.95, significantly outperforming the H.264 and HEVC
scores of 0.85 and 0.88. Then, since this SSIM value is tremendous, it is recommended that the
model perfectly keeps the details of the visuals and structure from the original video so tha m

VC will be almost fuzzy from the original in terms of visual quality.

To thoroughly evaluate the recommended VC algorithm, this study presents th

several videos, including Beauty, Bosphorus, HoneyBee, Jockey, ReadySetG ak

YachtRide. Table 3 summarizes the comparison of the CR, PSNR ach video,
illustrating how this model performs across different types of conten
TABLE 3. RESULTS FOR A TYPE OF VIDEO FROM THE DA

Video Method CR > Average VF
B) SSIM
H.264 0.86
Beauty HEVC 35 0.89
Proposed Model 36 0.96
H.264 31 0.84
Bosphorus HEVC 33 0.87
34 0.94
32 0.85
HoneyBee 34 0.88
35 0.95
30 0.83
Jockey . 32 0.86
ed Model 33 0.93
H.264 29 0.82
HEVC 31 0.85
Proposed Model 32 0.92
H.264 0.08 30 0.83
HEVC 0.06 32 0.86
Proposed Model 0.05 33 0.93
H.264 0.08 31 0.84
YachtRide HEVC 0.06 33 0.87

Proposed Model 0.05 34 0.94




Results show that the proposed VC does not rely on high variability in VF with many detail
sequences. On Beauty, it comes up with an excellent compressibility of 0.05 BPP at a PSNR of 36
dB and SSIM of 0.96, incredibly outperforming traditional methods like H.264 and HEVC. In the
Bosphorus video, quality is maintained with a PSNR of 34 dB and an SSIM of 0.94. HoneyBe
further depicts the superiority of this model with a PSNR of 35 dB and an SSIM of 0.95,

shows that our model retains quality and the structure of details.

for better visual quality and structural details than traditional methods.
with smooth motion, has a PSNR of 34 dB and an SSIM of Q.94
efficient CR.

While the performance of the AE was very co
considered. In this respect, one of the barrig
the model, especially when considering re
thus be focused on optimizing the architectureS@d revisiting techniques—Ilike model quantization

and pruning—radically enough to r e computafonal requirements. Another critical avenue for

future work could concern an ext e model that can handle different resolutions and VF

rates much more gracefully 4ulince beg ore applicable to other VC scenarios.
V. CONCLUSION AND F,

The proposed pression (VC) significantly improves compression efficiency and
reconstru 2 ompared to traditional methods. It uses CNN for spatial feature
extract temporal dependencies. The model has a low CR of 0.05 BPP, allowing

ata storage without loss of visual reliability, making it an ideal solution for

nd required resources to enable its application in resource-constrained scenarios, and
implementing methods such as model quantization and pruning to reduce the model's size and

improve inferencing speed for real-time VC applications. Additionally, extending the model's




capabilities to accommodate different resolutions and VVF rates will increase its versatility across
different video scenarios.
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