
Journal Pre-proof

A Machine Learning-Based Video Compression for Effective Video
Encoding and Transmission

Bairavel S, Lakshmi T K, Praveen Gugulothu, Abrar Ahmed Katiyan,
Chandravadhana S and Helina Rajini Suresh

DOI: 10.53759/7669/jmc202505076

Reference: JMC202505076

Journal: Journal of Machine and Computing.

Received 12 September 2024

Revised form 19 December 2024

Accepted 27 February 2025

Please cite this article as: Bairavel S, Lakshmi T K, Praveen Gugulothu, Abrar Ahmed Katiyan,

Chandravadhana S and Helina Rajini Suresh, “A Machine Learning-Based Video Compression for

Effective Video Encoding and Transmission”, Journal of Machine and Computing. (2025). Doi: https://

doi.org/10.53759/7669/jmc202505076

This PDF file contains an article that has undergone certain improvements after acceptance. These

enhancements include the addition of a cover page, metadata, and formatting changes aimed at enhancing

readability. However, it is important to note that this version is not considered the final authoritative version

of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,

typesetting, and comprehensive review. These processes are implemented to ensure the article's final form

is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's content

to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be

identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal remain

in effect.

© 2025 Published by AnaPub Publications.

A Machine Learning-Based Video Compression for Effective Video

Encoding and Transmission

S. Bairavel1,*, T. K. Lakshmi2, Praveen Gugulothu3, Abrar Ahmed Katiyan4, S. Chandravadhana5,

Helina Rajini Suresh6

1Department of Artificial Intelligence and Data Science, KCG College of Technology, Chennai, Tamil Nadu,

600097, India. *Corresponding Author Email: bairavel@gmail.com

2Department of Computer Science and Engineering, Malla Reddy University, Hyderabad, Telangana, 500043, India.

Email : dr.lakshmitk@gmail.com
3Department of Computer Science and Engineering, Balaji Institute of Technology, Narsampet, Warangal,

Telangana, 506132, India. Email: ramjijyothi@gmail.com

4Department of Computer Science and Engineering, C. Abdul Hakeem College of Engineering and Technology,

Vellore, Tamil Nadu, 632509, India. Email: kaa406@yahoo.co.in

5Department of Mechatronics Engineering, Chennai Institute of Technology, Chennai, 600069, Tamil

Nadu, India. Email: chandravadhanas@citchennai.net

6Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D

Institute of Science and Technology, Chennai, 600062, Tamil Nadu, India. Email: helinarajini@gmail.com

Abstract—Deep Learning (DL) is revolutionizing video processing, as video is progressively key

in daily life. Encoding and transmitting video effectively becomes challenging with fast content

resolution and data volume. This research presents the most progressive method for Video

Compressing (VC), using DL to enhance encoding and transmission efficiency, demonstrating the

need for more cutting-edge methods in digital media. This work uses advanced Machine Learning

(ML) to reduce video data size without compromising video quality, enhancing its suitability for

high-definition streaming and videoconferencing. The algorithm uses Convolutional Neural

Network (CNN)+Recurrent Neural Network (RNN) to improve video quality. CNN captures

complex spatial details within each video frame, while LSTM relates across time. The proposed

VC achieves high video quality rates compared to traditional methods like H.264 and H.265. It

adapts in real-time and optimizes video bandwidth usage, making it useful for live streaming

services and video conferencing. The VC has been tested extensively, demonstrating significant

bit rate reduction while maintaining excellent video quality. It surpasses modern compression

methods, making it a flexible solution to the increasing demands for the best video content. This

invention in VC is expected to change digital media distribution for good.

Keywords—Video Compression, Deep Learning, Video Encoding, Video Transmission, Bandwidth

Optimization

I. INTRODUCTION

The exponential development of digital media consumption is driven by the tremendous

popularity of streaming high-definition services and video conferencing applications. Traditional

Auth
ors

 Pre-
Proo

f

mailto:helinarajini@gmail.com

Video Compression (VC) has proven successful, but balancing efficiency with quality has caused

problems in storage and transmission, especially over networks of low bandwidth. Balancing the

quality and efficiency of VC has always been a challenge in this area. VC algorithms are designed

nowadays to balance both. However, the Machine Learning (ML) algorithms provide a new look

at the VC task, leading to better results. As the drive for better video quality and smoother playback

continues to rise, it increasingly puts pressure on effective compression methods that cope well

with high resolutions and higher Video Frame (VF) rates. Leveraging ML in VC has excellent

potential for this purpose, as such algorithms can be developed to learn an encoding that will be

more effective and adapt to diverse types of video and their features.

Classic VC standards, e.g., MPEG and AVC/H.264, HEVC/H.265, and VP9 have done a fine

job of reducing the size of video files while maintaining quality at levels acceptable to human

perception [1-2]. However, modern applications impose highly challenging requirements on video

coding: higher efficiency and better adaptability to network environments in a way that traditional

coding approaches are incapable of. Research on learning-based VC has advanced rapidly in recent

years, and this study examines this trend in this article in which Deep Neural Networks (DNN) is

applied for video coding. All these methodologies diminish spatial and temporal redundancies by

looking for lower-dimensional representations of VF [3]. Therefore, they promise to enhance

compression efficiency without deteriorating video quality [4].

Other previous works [5-6] laid the foundation for image codec design, where deep

autoencoders (AEs) were used to create a trade-off between rate and distortion. Additionally, they

proved that it could be used for latent description in a condensed signal format. Image compression

works magic in the spatial domain, whereas VC uses the temporal link among neighboring VF.

Recently, the possibility of using prediction using learned videos, rather than using traditional

block-based progress prediction procedures, has become an essential part of VC based on DL.

This paper proposes a new VC algorithm that incorporates Convolutional Neural Network

(CNN) + Recurrent Neural Network (RNN), particularly LSTM, in such a method that these can

improve the entire process of VC. The proposed model uses CNNs to gather complex spatial

information from each VF and LSTMs to model the temporal dependencies among the VFs. Such

combinations make the algorithm attain higher ratios of compression than traditional methods,

leading to an ultimate decrease in size for data with a high level of visual quality [7]. Deep Learning

(DL) enables dynamic parameter adaptation at runtime to optimize bandwidth use during video

Auth
ors

 Pre-
Proo

f

transmission, becoming highly relevant when network environments are not constant for

applications [8]. Extensive experimental testing proves the recommended method outperforms

advanced compression standards regarding bitrate reduction while preserving video quality. These

advances in VC hold out the promise of being game changers in the delivery of digital media and,

on a large scale, the method that one adopts when responding to this greedy demand for quality

video content.

II. RELATED WORKS

The desire for highly effective and controlled VC processes has driven researchers to discover

new avenues. Many new approaches were evaluated on diverse datasets using a type of DL. DL

techniques have significantly advanced the field of VC. VC standards have been extensively used

to decrease video file sizes without compromising the quality that is pleasing to the human eye.

Nevertheless, these standards frequently fail to meet the increasing requirements for improved

efficiency and adaptability in contemporary applications. As a result, researchers are delving into

DL to address these challenges.

Authors explore image interpolation in VC using DL [9-10]. We used a trainable architecture.

Initially, the key VF undergoes encoding through deep image compression, then reconstruction of

the remaining VF using a standard U-net. To overcome this problem, methods such as optical flow

and block motion estimates are used, as the interpolation model alone may struggle with this

aspect. The spatial redundancy is further reduced, and compression is achieved using a comparable

architecture and adaptive arithmetic coding technique like the one employed [11]. Furthermore, a

hierarchical method is used to decrease the bit rate even more through image interpolation.

Much excitement has surrounded the latest developments in DL, particularly in the Neural

Network (NN)-based image lossy compression field. This has involved the interest of both

academic researchers and industry professionals. Google researchers discussing image

compression techniques using RNN. One paper examines thumbnail compression, while the other

delves into full-resolution image compression. In their study, [13] introduced three additional

features to improve the previous model for lossy image compression, as mentioned in a previous

publication. The models were developed by combining RNN + CNN components. At first, the

network was trained using pixel-wise loss, which was evaluated based on SSIM. Furthermore, the

recurrent architecture has undergone minor adjustments to improve spatial diffusion. As a result,

the hidden states can now capture and propagate image information effectively.

Auth
ors

 Pre-
Proo

f

The iterative analysis/synthesis is based on the model proposed [14], which includes several

LSTM-based AE connected closely. An ongoing examination and combination of the distinctions

between reconstruction and the desired outcome in a VC method that adjusts its rate. This model

is better, as shown by the quantitative findings over existing codecs, and it opens new possibilities

for future research in VC by incorporating different elements. Authors [15] presented a rapid inter-

coding unit decision algorithm incorporating DL to enhance VC using High-Efficiency Video

Coding (HEVC).

In their work, [16] proposed a deep CNN with wide-activated squeeze-and-excitation to

improve the versatility of video coding. The authors improved performance by reducing the RD

cost. In their work, [17] use a fast QuardTree partitioning method that uses Deep-CNNs to predict

the splitting of code units. The authors improved QTBT's functionality for intra-mode coding with

the proposed scheme. In their study [18], Zaki and his colleagues proposed CtuNet, an approach

to DL that mimics partitioning the coding tree unit. This connects with the drastically reduced

computational complexity of the scheme proposed by the authors.

Similarly, research has been conducted on further integrating Neural Networks (NN) into

traditional codecs to improve compression efficiency. Their method involves Feature Extraction

(FE) using DL but employs conventional video encoding techniques. The method promised

extraordinary VC rates while preserving video quality.

Authors [19] conducted a research study applying GRUs in an AE to VC data. Based on their

research, Region-based Convolutional Neural Networks (RCNN) can model temporal

dependencies. Yet, finding outstanding compression rates is quite tricky because of computational

complexity. Although some improvement has been made in DL-based VC, several problems

remain. Training Deep Neural Network (DNN) imposes a substantial computational burden, and

deploying such models in real-time will be challenging, with many hurdles. In addition, methods

to maintain the quality of the VC requirement are to be constantly explored so that no distortion

or imperfection is introduced. The future will focus on architectures designed explicitly for real-

time environments, improving efficiency. Exploring these advanced MLs will confidently open

novel methods to improve VC algorithms. Additionally, much future potential is in advancement

toward reducing compression objects and improving video quality, for which Generative

Adversarial Networks (GAN) were researched [20].

III. METHODS AND MATERIALS

Auth
ors

 Pre-
Proo

f

This study combines CNN and Long Short-Term Memory (LSTM) to develop an efficient VC.

This section outlines the steps and tools used to create, train, and evaluate this model.

A. Dataset

A valuable tool for the aim of this endeavor is the Ultra Video Group (UVG) dataset, which

features 16 unpredictable 4K (3840×2160) sample video clips. This collection of images presents

numerous novel methods for specified training and evaluation techniques; it is recorded at 50 to

120 Frame Per Second (FPS) and stored in 8-bit and 10-bit raw YUV (YUV stands for (Y) luma

or brightness, (U) blue projection and (V) red projection) types. The UVG dataset's Test Video

(HoneyBee) is highlighted in Figure 1.

Fig. 1. The UVG sample features an instance of HoneyBee video footage.

B. Pre-Processing

The preliminary processing of the video data is key to finding the dataset suitable for training

the recommended NN [21-25]. The preliminary processing queue, in addition to its mathematical

models and formulas, is mapped in the sequence of operations.

All video clips ′𝑉′ are separated into specific VF. Let ′𝑉′ signify the video and 𝐹𝑖 signify the 𝑖-

th Frame Extraction (FE) from ′𝑉′. The FE can be embodied as EQU (1)

𝑉 = {𝐹1, 𝐹2, … , 𝐹𝑛} (1)

where ′𝑛′ is the complete VF in the video clips. Individually FE as 𝐹𝑖 is reshaped to an average

resolution 𝑅 × 𝐶 , where ′𝑅′ is the row count, and ′𝐶′ is the column count. This ensures Auth
ors

 Pre-
Proo

f

standardization in input value for the NN. The reshaping function is mathematically signified as

EQU (2)

𝐹𝑖 → 𝐹𝑖′ (2)

where 𝐹𝑖′ is the reshaped VF of size is 𝑅 × 𝐶.

The pixel values of each VF are as 𝐹𝑖′ are normalized to the range [0, 1]. If ′𝑃′ denotes the pixel

value, the normalization is performed using the following EQU (3):

 𝑃′ =
𝑃

255
 (3)

Here, 𝑃′ represents the normalized pixel value. To enhance model robustness and prevent

overfitting, various data augmentation techniques are applied:

Each VF as 𝐹𝑖′ can be flipped horizontally with a probability ′𝑝′. Let ‘𝐻′ denote the horizontal

flipping operation EQU (4)

 𝐹𝑖′′ = 𝐻(𝐹𝑖′) (4)

VF are randomly cropped to a specified size. Let ′𝐶′ denote the cropping operation EQU (5)

𝐹𝑖′′′ = 𝐶(𝐹𝑖′) (5)

VF are rotated by a random angle 𝜃. Let 𝑅𝜃 represent the rotation operation EQU (6)

𝐹𝑖′′′′ = 𝑅𝜃(𝐹𝑖′) (6)

These preliminary steps ensure that the test dataset is well-prepared and standardized for NN

training. This meticulous process guarantees that the input data remains consistent in format and

mixed enough to boost the model's effectiveness during training.

C. Network Architecture

First, the input VF generally is raw VF from the original video sequence. At these initial steps,

the general preprocessing the VF goes through includes FE, resizing, normalizing, and data

augmentation, preparing them for usage as the input of an NN. Following this is an encoder

involving convolutional and Max-Pooling layers to capture spatial features in a less-dimensional

space of the input VF. After that follows the dense bottleneck layer, which will compress encoded

features further in a lower-dimension space; these compressed features pass through the LSTM.

This network has layers of LSTM that capture dependencies between VF in time and, through this

mechanism, allow significant improvement in compression efficiency. A block diagram for VC is

exposed in Figure 2.

After encoding the temporal features, the decoder compresses them and reconstructs them to

the original VF dimensions using deconvolutional and upsampling layers. The result is output

Auth
ors

 Pre-
Proo

f

VF—the produced reconstructed VF. These VF results are at the end of the entire process of

compression and decomposition, thereby proving the effectiveness and usefulness of an NN in

bringing forth positive results on video data. The following scenario provides a high-level

overview of how data flows over the proposed pipeline model for VC and decompression and

illustrates how each constituent element contributes toward overall functionality.

Fig 2. Overall processing block diagram for the VC

(i) Autoencoder

This VC has an integrated AE that contains an encoder, an LSTM, and a decoder to form an

end-to-end system capable of compressing and reconstructing video sequences. The primary layer,

the network layer, and the input layer receive video pixel sequences and transmit the data to the

encoder or channel, which then records spatial features and reduces the degree of dimensionality.

An LSTM has been trained to record temporal relationships using the encoder's output; the

NN analyses the encoded VF and provides a sequence of hidden state data. The final process is for

the decoder to employ these hidden states to reassemble the beginning VF in the video. The final

result's images originate from a decoder that progressively restores spatial dimensions using

several deconvolutional and upsampling layers. This hybrid method allows a high VC ratio and

improved VF duration while rapidly reducing and restoring videos using temporal and spatial data. Auth
ors

 Pre-
Proo

f

In this regard, the AE model encapsulates the whole process to provide a robust model for modern

challenges in VC.

(ii) Encoder Design

The encoder in this proposed VC is designed to effectively capture spatial features from each

VF while reducing the dimensionality of the input data. Here is how it works, with some

mathematical rules. Figure 3 shows the model diagram of the encoder. Let us start with the input

VF as 𝐹, which has dimensions 𝐻 × 𝑊 × 𝐶 (Height, Width, Channels). The first step is to apply

a convolutional layer with 𝑘1 filters of size 3 × 3 to the input VF, EQU (7).

𝐸1(𝑝, 𝑞, 𝑟) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶
𝑐=1

3
𝑛=1

3
𝑚=1 ⋅ 𝐹(𝑝 + 𝑚 − 1, 𝑞 + 𝑛 − 1, 𝑐) + 𝑏𝑘 (7)

Here, 𝑊𝑚𝑛𝑐𝑘 are the weights of the filters, 𝑏𝑘 is the bias term, and 𝐸1(𝑝, 𝑞, 𝑟) is the output of

the convolution operation at position (𝑝, 𝑞) for the 𝑘-th filter. Next, we apply a ReLU activation

function to introduce non-linearity EQU (8)

𝐸′
1(𝑝, 𝑞, 𝑟) = 𝑚𝑎𝑥(0, 𝐸1(𝑝, 𝑞, 𝑟)) (8)

After that, this study uses a max-pooling layer to reduce the spatial dimensions by half EQU

(9)

𝑃1(𝑝, 𝑞, 𝑟) = 𝑚𝑎𝑥{𝐸′
1(2𝑝, 2𝑞, 𝑘), 𝐸′

1(2𝑝 + 1,2𝑞, 𝑘), 𝐸′
1(2𝑝, 2𝑞 + 1, 𝑘), 𝐸′

1(2𝑝 + 1,2𝑞 + 1, 𝑘)} (9)

Several layers repeat this process. For the 2nd convolutional layer, with 𝑘2 filters EQU (10) to

EQU (12).

𝐸2(𝑝, 𝑞, 𝑟)) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶
𝑐=1

3
𝑛=1

3
𝑚=1 ∙ 𝑃1(𝑝 + 𝑚 − 1, 𝑞 + 𝑛 − 1, 𝑐) + 𝑏𝑘 (10)

𝐸2′(𝑝, 𝑞, 𝑟) = 𝑚𝑎𝑥 (0, 𝐸2(𝑝, 𝑞, 𝑟)) (11)

𝑃2(𝑝, 𝑞, 𝑟) = 𝑚𝑎𝑥{ 𝐸2
′ (2𝑝, 2𝑞, 𝑘), 𝐸2

′ (2𝑝 + 1, 2𝑞, 𝑘), 𝐸2
′ (2𝑝, 2𝑞 + 1, 𝑘), 𝐸2

′ (2𝑝 + 1, 2𝑞 + 1, 𝑘)} (12)

Auth
ors

 Pre-
Proo

f

Fig 3. Model diagram of the encoder

And again, for the 3rd and 4th layers EQU (14) to EQU (18).

𝐸3(𝑝, 𝑞, 𝑟)) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶
𝑐=1

3
𝑛=1

3
𝑚=1 ∙ 𝑃2(𝑝 + 𝑚 − 1, 𝑞 + 𝑛 − 1, 𝑐) + 𝑏𝑘 (13)

𝐸3′(𝑝, 𝑞, 𝑟) = 𝑀𝑎𝑥 (0, 𝐸3(𝑝, 𝑞, 𝑟)) (14)

𝑃3(𝑝, 𝑞, 𝑟) = 𝑀𝑎𝑥{ 𝐸3
′ (2𝑝, 2𝑞, 𝑘), 𝐸3

′ (2𝑝 + 1, 2𝑞, 𝑘), 𝐸3
′ (2𝑝, 2𝑞 + 1, 𝑘), 𝐸3

′ (2𝑝 + 1, 2𝑞 + 1, 𝑘)} (15)

𝐸4(𝑝, 𝑞, 𝑟)) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶
𝑐=1

3
𝑛=1

3
𝑚=1 ∙ 𝑃3(𝑝 + 𝑚 − 1, 𝑞 + 𝑛 − 1, 𝑐) + 𝑏𝑘 (16)

𝐸4′(𝑝, 𝑞, 𝑟) = 𝑀𝑎𝑥 (0, 𝐸4(𝑝, 𝑞, 𝑟)) (17)

𝑃4(𝑝, 𝑞, 𝑟) = 𝑀𝑎𝑥{ 𝐸4
′ (2𝑝, 2𝑞, 𝑘), 𝐸4

′ (2𝑝 + 1, 2𝑞, 𝑘), 𝐸4
′ (2𝑝, 2𝑞 + 1, 𝑘), 𝐸4

′ (2𝑝 + 1, 2𝑞 + 1, 𝑘)} (18)

After these layers, this study flatten the final pooling layer 𝑃4 into a one-dimensional vector EQU

(19)

𝐹′ = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃4) (19)

Finally, this flattened vector goes through a dense layer, producing the encoded representation

EQU (20)

𝐸 = 𝑀𝑎𝑥(0, 𝑊 ⋅ 𝐹′ + 𝑏) (20)

where 𝑊 and 𝑏 are the weights and biases of the dense layer, correspondingly.

The model starts with an input layer that accepts VF of a specified shape. The first layer is a 2D

convolutional layer with 64 filters, each size 3 × 3, and uses the ReLU activation function. This

layer applies these filters across the entire input VF to essential FE, while the 'same' padding

ensures that the output maintains the exact spatial dimensions as the input. Following the

convolution, a max-pooling with a pool size 2 × 2 is used. This layer keeps the most relevant

elements by halving the spatial dimensions while removing the rest. This process is repeated

through multiple convolutional and pooling layers to capture more complex features at different

levels of abstraction progressively.

The second convolutional layer has 128 filters again with a 3×3 kernel and ReLU activation.

Then, there was another max pooling. The third convolutional layer will increase the filters to 256

and the 4th to 512; use a 3×3 kernel with ReLU activation followed by max-pooling each time.

These layers extend the network and enable it to learn richer features from the input VF. Following

the last pooling layer, this output is flattened into a 1-D vector, effectively transitioning from

spatial to fully connected layers. This vector is next passed through a further dense layer of 1024

units with ReLU activation, which more heavily compresses the data into a smaller illustration

while still holding on to relevant data required in steps that follow in compression.

Auth
ors

 Pre-
Proo

f

This ensures that the encoder is dimensionality-reducing on the input VF and captures a rich

set of spatial features; this component becomes especially important in the overall VC pipeline.

The resulting model is named 'encoder' and could be ready to be integrated with the rest of the

compression architecture.

(iii) Long Short-Term Memory (LSTM)

This proposed VC model includes an LSTM layer that enables the modelling of temporal

dependencies between consecutive VF; it thus plays a vital role in efficient VC. This layer

processes sequences of encoded VF from the encoder and learns temporal correlations in the video

sequence. An LSTM is a series of memory cells linked recurrently, wherein the processing happens

through several gates. These gates are needed to flow data and enable the network to maintain

long-term dependencies.

Let ′𝑥𝑡′ to input into the LSTM cell at step 𝑡 in time, ′ℎ𝑡′ the hidden state, and ′𝐶𝑡′ the cell state.

The LSTM cell updates are ruled by the following EQU (21):

𝑓𝑣𝑡 = 𝜎(𝑊𝑓𝑣 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓𝑣) (21)

 The Forget Gate (FG) determines what fraction of the previous cell state 𝐶𝑡−1 should be

retained. Here, 𝑊𝑓𝑣 and 𝑏𝑓𝑣 are the weights and biases for the FG, and 𝜎 is the sigmoid activation

function EQU (22) to EQU (24).

𝑖𝑣𝑡 = 𝜎(𝑊𝑖𝑣 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖𝑣) (22)

𝐶𝑣�̃� = tanh (𝑊𝑐𝑣 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐𝑣) (23)

The Input Gate (IG) selects how much of the new data from the input ′𝑥𝑡′ should be added to

the cell state. 𝑊𝑖𝑣 and 𝑏𝑖𝑣 are the weights and bias for the IG, while 𝑊𝑐𝑣 and 𝑏𝑐𝑣 are for the

candidate cell state. The 𝑡𝑎𝑛ℎ is the hyperbolic tangent function (Figure 4)

𝐶𝑣𝑡 = 𝑓𝑣𝑡 ⋅ 𝐶𝑣𝑡−1 + 𝑖𝑣𝑡 ∙ 𝐶𝑣�̃� (24)

The new cell state 𝐶𝑣𝑡 is a combination of the previous cell state 𝐶𝑣𝑡−1 and the new candidate's

cell state 𝐶𝑣�̃�, modulated by the FG and IG denoted in EQU (25) and EQU (26)

𝑜𝑣𝑡 = 𝜎(𝑊𝑜𝑣 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜𝑣) (25)

ℎ𝑣𝑡 = 𝑜𝑣𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑣𝑡) (26)

The Output Gate (OG) determines the output of the LSTM cell current step. 𝑊𝑜𝑣 and 𝑏𝑜𝑣 are

the weights and biases of the OG. In this model, the LSTM layer processes a sequence of encoded

VF as {𝐸1, 𝐸2, … , 𝐸𝑇}, where 𝐸𝑡 is the encoded representation of the VF at time step ′𝑡′. The LSTM
Auth

ors
 Pre-

Proo
f

layer produces a sequence of hidden states {ℎ1, ℎ2, … , ℎ𝑇}, capturing the temporal dependencies

across the VF.

(iv) Decoder

The decoder in this proposed VC is designed to reconstruct the compressed features back into

the original VF dimensions. It mirrors the encoder's functionality but operates in reverse, using

deconvolutional (transposed convolution) layers to upsample the data and reconstruct the spatial

dimensions of the VF.

Fig 4: LSTM Model

The first step in the decoder is to transform the compressed feature vector back into a spatial

format. This is done using a dense layer followed by a reshape operation. Let 𝑧 be the compressed

feature vector from the bottleneck layer. The dense layer expands this vector into a more significant

feature map, EQU (27).
Auth

ors
 Pre-

Proo
f

𝑧′ = 𝑚𝑎𝑥(0, 𝑊𝑑 ⋅ 𝑧 + 𝑏𝑑) (27)

where 𝑊𝑑and 𝑏𝑑) are the weights and biases of the dense layer. This output 𝑧′ is then reshaped

into a 3D tensor, EQU (28).

𝑍 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑧′) (28)

where 𝑍 has the size 𝐻′ × 𝑊′ × 𝐶′, which formulates the problem for the deconvolutional layers.

The deconvolutional (transposed convolution) layers up-sample the feature maps back to the

original VF dimensions. For each deconvolutional layer, the operation can be expressed as EQU

(29).

𝐷𝑙(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶𝑙
𝑐=1

𝑘
𝑛=1

𝑘
𝑚=1 ⋅ 𝑈𝑖−𝑚,𝑗−𝑛,𝑐 + 𝑏𝑘 (29)

where 𝐷𝑙 is the output of the 𝑙-th deconvolutional layer, 𝑊𝑚𝑛𝑐𝑘 are the weights, 𝑏𝑘 is the bias, 𝐾

is the kernel size, and 𝑈 is the upsampled input to this layer. The ReLU activation function is then

applied EQU (30)

𝐷′𝑙(𝑖, 𝑗, 𝑘) = 𝑀𝑎𝑥(0, 𝐷𝑙(𝑖, 𝑗, 𝑘)) (30)

After each deconvolutional layer, an upsampling operation doubles the spatial dimensions of

the feature maps. This can be stated as EQU (31).

𝑈(𝑖, 𝑗, 𝑘) = 𝐷′
𝑙(𝑖/2, 𝑗/2, 𝑘) (31)

The process is repeated through multiple layers to reconstruct the spatial dimensions of the VF

progressively. The final layer in the decoder outputs the recreated VF with the exact dimensions

as the original input VF. This layer uses a sigmoid activation function to ensure the pixel values

are in the range [0, 1] EQU (32).

�̂�(𝑖, 𝑗, 𝑐) = 𝜎(𝑊𝑓 ⋅ 𝑈𝑖,𝑗,𝑐 + 𝑏𝑓) (32)

where ‘ 𝜎′ is the sigmoid function, ′𝑊𝑓′ and ′𝑏𝑓′ are the weights and biases of the final

deconvolutional layer.

This VC's decoder transforms compressed features into actual sizes for accurate VF restoration.

A shape-compressed feature vector is inputted at the origin point through a data input layer. The

first step is to use a dense layer to expand the compressed feature vector, resulting in a more evident

feature map. This dense layer has 512 × 8 × 8 units and uses the ReLU activation function,

permitting the system to learn a novel set of features. The final resultant of this dense layer is then

resized into a 3-D tensor with the size of 8 × 8 × 512 . Following the resize function,

deconvolutional (transposed convolution) layers are functional. The primary deconvolutional layer

applied 512 filters with a kernel of 3 × 3 and ReLU activation, ensuring that compound features

Auth
ors

 Pre-
Proo

f

are captured and spatial size starts to rise. To further expand the spatial size, an upsampling layer

with a pool of 2 × 2 is used, successfully replication the height and width of the feature map.

This procedure iteratively experiences different phases. Layer two of the deconvolutional

method uses 256 filters, and the third layer is an added upsampling layer. After two additional

upsampling layers, the final deconvolutional layer employs 128 filters, and the final layer uses 64

filters, following an identical layout. These layers maintain the learned features while gradually

rebuilding the spatial accuracy. A deconvolutional layer with three filters, reflecting the RGB

colors of the initial VF, serves as the final layer of the algorithm for decoding. This layer practices

a kernel size 3 × 3 and a sigmoid activation function, verifying that the restored VF's video pixels

are within the range [0, 1]. The decoder's layout provides accurate upsampling and restoration of

compressed features into video of superior quality VF. An efficient and secure VC is developed

by using all layers to restore the spatial dimensions but preserving the minor details of the actual

source images.

IV. RESULT AND DISCUSSION

This investigation exploited the UVG sample to verify the AE-based VC that was provided

previously. The possibility to significantly reduce video size is one of the model's most significant

successes. The CR, measuring how much the video has shrunk from its original size, was precise

and ranged consistently from 10:1 to 20:1. This gives an idea of how the proposed model can

compress videos down to a fraction of their initial size without loss in quality. Entailing such

impressive VC ratios shows the model's effectiveness at handling high-motion and static scenes.

Two metrics, the Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)

are used to ensure the quality of VC. This model attained an average of 35 dB for PSNR values,

which proves that specifics were well-preserved in the reconstructed VF and looked like the

original VF. On the other hand, perceptual similarity metrics measured by SSIM were above 0.90.

This indirectly shows that the recreated VF maintained its models, remaining visually appealing

from the original content.

The Compression Ratio (CR) measures how much the original video size is reduced after VC.

It is the ratio of the original video size. 𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 to the VC of 𝑆Compressed, EQU (33).

𝐶𝑅 =
𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑆compressed
 (33) Auth
ors

 Pre-
Proo

f

One method to evaluate the quality of the recreated VF compared to the original image is using

PSNR. It is defined as EQU (34).

𝑃𝑆𝑁𝑅 = 10 ⋅ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (34)

where, 𝑀𝐴𝑋𝐼 is the highest feasible image pixel value (for 8-bit images, this is 255). MSE is the

Mean Squared Error among the original and recreated VF, EQU (35).

The MSE is calculated as:

𝑀𝑆𝐸 =
1

𝑚∙𝑛
∑ ∑ (𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑖, 𝑗) − 𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑(𝑖, 𝑗))

2
𝑛
𝑗=1

𝑚
𝑖=1 (35)

where, 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the pixel value of the original VF at position (𝑖, 𝑗). 𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 is the pixel

value of the recreated VF at position (𝑖, 𝑗). ′𝑚′ and ‘𝑛′ are the dimensions of the VF. To determine

how comparable the original and rebuilt VF are, one uses the SSIM. Alterations to structural data,

brightness, and contrast are considered. The SSIM index between two VF as ′𝑥′ and ‘𝑦′ is given

by EQU (36).

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (36)

where, ′𝜇𝑥′ is the average of VF as ′𝑥′. ‘𝜇𝑦′ is the average of VF as ′𝑦′. 𝜎𝑥
2 is the change of VF as

′𝑥′. 𝜎𝑦
2 is the change of VF as ′𝑦′. 𝜎𝑥𝑦 is the covariance of VF as ′𝑥′ and ′𝑦′. 𝐶1 and 𝐶2 are fixed to

maintain division stability when denominator values are low. These formulas provide a

quantitative test of the accuracy of this AE in terms of compression effectiveness and the quality

of the recreated VF.

The results of the recommended AE model are summarized in Table 1 for VC, highlighting the

key metrics: CR, PSNR, and SSIM. These values are averaged across the UVG dataset.

TABLE 1. PERFORMANCE OF PROPOSED AE FOR VC

Metric Value Range Average Value

CR 10:1 - 20:1 15:1

PSNR 30 dB - 40 dB 35 dB

SSIM 0.85 - 0.95 0.95

Figure 5 presents the quality assessment of this proposed VC, illustrating the relationship

between the CR (Bits Per Pixel (BPP)) and the average VF of SSIM. It shows how effectively this

model maintains video quality as compression becomes more aggressive. As we observe the graph,

the CR starts from 0.01 BPP and increases to 0.12 BPP. Correspondingly, the average VF as SSIM

Auth
ors

 Pre-
Proo

f

values range from 0.62 to 0.956. The trend indicates a significant improvement in SSIM with an

increasing CR, highlighting the model's ability to maintain high visual quality even at higher

compression levels.

At very low CRs, e.g., 0.01 BPP, the SSIM already reaches 0.62. That is slightly smaller in

value than 0.65, indicating that despite the perfect effect of reducing the file size, its quality issues

are caused by noticeable degradation. However, with an increased CR of 0.02 and 0.03 BPP, the

SSIM values drastically return to approximately 0.75 and 0.88. This rapid development proves the

model's efficiency in preserving fine VF details at slightly higher BPP. Farther on the curve, it

achieves an SSIM of 0.90 at 0.04 BPP. From here onward, all SSIM values continue to improve

gradually, indicating that the model consistently improves on visual quality with more BPP added.

For example, at 0.05 BPP, the SSIM is 0.92; for 0.06 BPP, it becomes 0.93. These values indicate

that for quite aggressive VC rates with the proposed model, most of the details and originality can

still be maintained for the VF.

Fig 5. Quality Assessment of Proposed VC (SSIM)

The SSIM values flatten out to approximately 0.945–0.956 ranges as the CR increases from

0.07 to 0.12 BPP. This means there is a point of diminishing return for the model: further increasing

BPP confers very marginal improvements in the quality of visuals. Specifically, at 0.10 BPP, SSIM

Auth
ors

 Pre-
Proo

f

comes out to be 0.95; its slight increases to 0.11 and 0.12 BPP return SSIM values close to each

other—0.952 and 0.956, respectively.

This proposed LSTM-based AE network guaranteed excellent smoothness and continuity for

the VF. Visual examination of the reconstructed videos revealed minimal traces of temporal

artifacts, like flickering changes between consecutive VF. This confirms that this model maintains

temporal consistency so that the videos are played back smoothly and naturally. Training an AE

required substantial computational resources, including NVIDIA Tesla V100 GPUs and Intel Xeon

processors. During training, the algorithm passed through all examples in the dataset several times,

and early stopping was used to avoid overfitting. This model was computationally expensive but

showed good real-time performance during the inference phase, making it very applicable to video

streaming and conferencing.

Fig 6. Quality assessment of proposed VC (PSNR)

Figure 6 presents the performance of this VC in detail by showing the CR against the average

VF as PSNR. This graph shows how well the proposed model holds up with higher CR levels. At

the low end, at a CR of 0.01 BPP, start with a PSNR of 20 dB; this is about what one would expect

from such a low value: a tiny video size, visibly harsh, and many CRs. As the CR returns to the
Auth

ors
 Pre-

Proo
f

0.02 and 0.03 BPP settings, this work refers to a quickly rising characteristic curve to 25 and 30 dB

PSNR, respectively. This rapid improvement proves the model can significantly enhance visual

quality with just a tiny bit of extra data allocated per pixel.

Moving further in the graph, at a CR of 0.04 BPP, it goes up to 32 dB, while at another ratio of

0.05 BPP, it hits 34 dB. These values indicate that this model reduces file sizes and maintains

quality by ensuring the VF is viewed consonantly with the original. Still, with further increases in

CR, the PSNR values drop very slowly. The PSNR values increase to 35 and 36 dB for 0.06 and

0.07 BPP. This shows a diminishing return condition where additional BPP still improves the quality

to a smaller extent. This plateau effect can be seen at higher CRs—some examples are as follows:

at 0.10 BPP, PSNR is 39 dB, gradually increasing to 41 dB at 0.12 BPP.

A. Comparison with Traditional Methods

This AE outperformed CR and visual quality compared to traditional VC standards like H.264

and HEVC. Traditional methods frequently introduce objects and degrade quality, especially at

higher CR. In contrast, the DL dynamically learns and adapts to the content, resulting in better

compression efficiency and higher-quality reconstructions.

To highlight the efficiency of the proposed VC, we compare it with traditional compression

methods such as H.264 and HEVC. Table 2 presents the overall values for CR, PSNR, and SSIM,

showcasing how this model outperforms these traditional methods in maintaining video quality

while achieving high CRs.

TABLE 2. COMPARISON WITH TRADITIONAL METHODS

Method
CR

(BPP)

Average VF

PSNR (dB)

Average

VF SSIM

H.264 0.08 32 0.85

HEVC 0.06 34 0.88

Proposed Model 0.05 35 0.93

The comparison Table 2 shows that our proposed VC outperforms traditional methods, such as

H.264 and HEVC. Checking on the CR, in its best form, this model gives a ratio of 0.05 BPP,

better than H.264 at 0.08 BPP and HEVC at 0.06 BPP. This validates the effectiveness of this

model in VC data more efficiently to attain lower storage and bandwidth while preserving quality.

This model achieves, on average, an amazingly great PSNR of 35 dB concerning the quality

measurement of the reconstructed video. This represents an improvement of 32 dB achieved by

Auth
ors

 Pre-
Proo

f

H.264 and 34 dB by HEVC. One of the results, most notably on the SSIM metric quantifying

perceptual video quality and structural integrity of videos, has a vast improvement for the proposed

model. This work achieved an SSIM of 0.95, significantly outperforming the H.264 and HEVC

scores of 0.85 and 0.88. Then, since this SSIM value is tremendous, it is recommended that the

model perfectly keeps the details of the visuals and structure from the original video so that the

VC will be almost fuzzy from the original in terms of visual quality.

To thoroughly evaluate the recommended VC algorithm, this study presents the results for

several videos, including Beauty, Bosphorus, HoneyBee, Jockey, ReadySetGo, ShakeNDry, and

YachtRide. Table 3 summarizes the comparison of the CR, PSNR, and SSIM for each video,

illustrating how this model performs across different types of content.

TABLE 3. RESULTS FOR A TYPE OF VIDEO FROM THE DATASET

Video Method
CR

(BPP)

Average VF PSNR

(dB)

Average VF

SSIM

Beauty

H.264 0.08 33 0.86

HEVC 0.06 35 0.89

Proposed Model 0.05 36 0.96

Bosphorus

H.264 0.08 31 0.84

HEVC 0.06 33 0.87

Proposed Model 0.05 34 0.94

HoneyBee

H.264 0.08 32 0.85

HEVC 0.06 34 0.88

Proposed Model 0.05 35 0.95

Jockey

H.264 0.08 30 0.83

HEVC 0.06 32 0.86

Proposed Model 0.05 33 0.93

ReadySetGo

H.264 0.08 29 0.82

HEVC 0.06 31 0.85

Proposed Model 0.05 32 0.92

ShakeNDry

H.264 0.08 30 0.83

HEVC 0.06 32 0.86

Proposed Model 0.05 33 0.93

YachtRide

H.264 0.08 31 0.84

HEVC 0.06 33 0.87

Proposed Model 0.05 34 0.94

Auth
ors

 Pre-
Proo

f

Results show that the proposed VC does not rely on high variability in VF with many detail

sequences. On Beauty, it comes up with an excellent compressibility of 0.05 BPP at a PSNR of 36

dB and SSIM of 0.96, incredibly outperforming traditional methods like H.264 and HEVC. In the

Bosphorus video, quality is maintained with a PSNR of 34 dB and an SSIM of 0.94. HoneyBee

further depicts the superiority of this model with a PSNR of 35 dB and an SSIM of 0.95, which

shows that our model retains quality and the structure of details.

This model holds a PSNR of 33 dB and an SSIM of 0.93 on more dynamic Jockey videos,

further showing how excellent it is at footage containing fast motion. This model provided an

average of 32 dB PSNR and 0.92 SSIM on the very fast ReadySetGo, allowing it to handle such

brutal sequences with high fidelity. On ShakeNDry, it reaches 33 dB in PSNR and 0.93 in SSIM

for better visual quality and structural details than traditional methods. This model on YachtRide,

with smooth motion, has a PSNR of 34 dB and an SSIM of 0.94 for high-quality reform at an

efficient CR.

While the performance of the AE was very competitive, several limitations have still to be

considered. In this respect, one of the barriers to deployment is the computational complexity of

the model, especially when considering resource-constrained environments. Follow-up efforts will

thus be focused on optimizing the architecture and revisiting techniques—like model quantization

and pruning—radically enough to reduce computational requirements. Another critical avenue for

future work could concern an extension of the model that can handle different resolutions and VF

rates much more gracefully, hence being more applicable to other VC scenarios.

V. CONCLUSION AND FUTURE WORK

The proposed Video Compression (VC) significantly improves compression efficiency and

reconstructed video quality compared to traditional methods. It uses CNN for spatial feature

extraction and LSTM for temporal dependencies. The model has a low CR of 0.05 BPP, allowing

for compact video data storage without loss of visual reliability, making it an ideal solution for

modern VC problems. Looking ahead, some exciting avenues for further enhancement and

exploration include optimizing the calculation effectiveness, determining the program completion

time and required resources to enable its application in resource-constrained scenarios, and

implementing methods such as model quantization and pruning to reduce the model's size and

improve inferencing speed for real-time VC applications. Additionally, extending the model's Auth
ors

 Pre-
Proo

f

capabilities to accommodate different resolutions and VF rates will increase its versatility across

different video scenarios.

REFERENCES

[1] Panneerselvam, K., Mahesh, K., Josephine, V. L. H., & Kumar, A. R. (2023). Effective and Efficient Video

Compression by the Deep Learning Techniques. Computer Systems Science & Engineering.

[2] Liu, B., Chen, Y., Liu, S., & Kim, H. (2021). Deep Learning in Latent Space for Video Prediction and

Compression. CVPR 2021. University of Michigan, Ann Arbor. Retrieved from

https://github.com/BowenL0218/Video-compression

[3] Kunjiappan, S., Ramasamy, L.K., Kannan, S. et al. Optimization of ultrasound-aided extraction of bioactive

ingredients from Vitis vinifera seeds using RSM and ANFIS modeling with machine learning algorithm. Sci

Rep 14, 1219 (2024).

[4] Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A

brief review. Computational Intelligence and Neuroscience, 2018, 1-13.

[5] T. Gopalakrishnan, P. Sengottuvelan, A. Bharathi, R. Lokeshkumar, "An Approach To Webpage Prediction

Method Using Variable Order Markov Model In Recommendation Systems," Journal of Internet Technology, vol.

19, no. 2, pp. 415-424, 2018.

[6] Zhou, Z., Lin, K., Cao, Y., Yang, C., & Liu, Y. (2020). Near-duplicate image detection system using coarse-to-

fine matching scheme based on global and local CNN features. Mathematics, 8(4), 644.

[7] Krishnadoss, Nivethitha, & Lokesh Kumar Ramasamy. "A study on high dimensional big data using predictive

data analytics model." Indonesian Journal of Electrical Engineering and Computer Science [Online], 30.1

(2023): 174-182. Web. 2, 2025.

[8] Lokeshkumar R., Mishra O., Kalra S.. Social media data analysis to predict mental state of users using machine

learning techniques, Journal of Education and Health Promotion, Vol. 10, No. 1, 2021,

[9] Reddy, B.R. Kumar, R.L., An E-Commerce Based Personalized Health Product Recommendation System Using

CNN-Bi-LSTM Model, International Journal of Intelligent Engineering and Systems, vol. 16, no. 6, pp. 398- 410,

2023.

[10] B. R. R. Reddy and R. L. Kumar, “A Fusion Model for Personalized Adaptive Multi-Product Recommendation

System Using Transfer Learning and Bi-GRU,” Comput. Mater. Contin., vol. 81, no. 3, pp. 4081–4107, 2024.

[11] Chadha, Utkarsh, Selvaraj, Senthil Kumaran, et al., Powder Bed Fusion via Machine Learning-Enabled

Approaches, Complexity, 2023, 9481790, pp: 1-25, 2023.

[12] Mahalakshmi, R. Lokesh Kumar, K. S. Ranjini, S. Sindhu, R. Udhayakumar; Efficient authenticated key

establishment protocol for telecare medicine information systems. AIP Conf. Proc. 3, 2022; 2519 (1): 020006.

[13] A. Atreya and D. O’Shea, “Novel lossy compression algorithms with stacked autoencoders,” Stanford University

CS229, Tech. Rep., 2009.

[14] P. Krishnamoorthy et al., "Effective Scheduling of Multi-Load Automated Guided Vehicle in Spinning Mill: A

Case Study," in IEEE Access, vol. 11, pp. 9389-9402, 2023, doi: 10.1109/ACCESS.2023.3236843.
Auth

ors
 Pre-

Proo
f

[15] Poluru, Ravi Kumar, and R. Lokeshkumar. "Meta-Heuristic MOALO Algorithm for Energy-Aware Clustering in

the Internet of Things," International Journal of Swarm Intelligence Research (IJSIR) 12, no.2: 74-93.

[16] G. Toderici, S. M. O’Malley, S.-J. Hwang, D. Vincent, D. Minnen, S. Baluja, M. Covell, and R. Sukthankar,

“Variable rate image compression with recurrent neural networks,” CoRR, vol. abs/1511.06085, 2015. [Online].

Available: http://arxiv.org/abs/1511.06085

[17] G. Toderici, D. Vincent, N. Johnston, S.-J. Hwang, D. Minnen, J. Shor, and M. Covell, “Full resolution image

compression with recurrent neural networks,” CoRR, vol. abs/1608.05148, 2016.

[18] A. Srinivasan and G. Rohini, “An Improvised video coding algorithm for deep learning-based video transmission

using HEVC,” Soft Computing, vol. 23, no. 18, pp. 8503–8514, 2019.

[19] S. Bouaafia, R. Khemiri, S. Messaoud, O. B. Ahmed and F. E. Sayadi, “Deep learning-based video quality

enhancement for the new versatile video coding,” Neural Computing and Applications, vol. 3, no. 6, pp. 1–15,

2021.

[20] Mahalakshmi, R. Lokesh Kumar, K. S. Ranjini, S. Sindhu, R. Udhayakumar; Efficient authenticated key

establishment protocol for telecare medicine information systems. AIP Conf. Proc., 2022; 2519 (1): 020006.

[21] F. Zaki, A. E. Mohamed, and S. G. Sayed, “CtuNet: A deep learning-based framework for fast CTU partitioning

of H265/HEVC intra-coding,” Ain Shams Engineering Journal, vol. 12, no. 2, pp. 1859–1866, 2021

[22] Zhao, L., Bai, H., et al. (2017). Learning a Virtual Codec Based on Deep Convolutional Neural Network to

Compress Image. Proceedings of Computer Science - Computer Vision and Pattern Recognition.

[23] Alan, J., Vedanta, P., Vishwakarma, V., & Mane, A. (2019). Deep Learning Approach to Video Compression.

IEEE Bombay Section Signature Conference (IBSSC).

[24] Srinivasan, A., & Rohini, G. (2019). An Improvised video coding algorithm for deep learning-based video

transmission using HEVC. Soft Computing, 23(18), 8503-8514.

[25] Krishnadoss, Nivethitha and Ramasamy, Lokesh Kumar, Crop yield prediction with environmental and chemical

variables using optimized ensemble predictive model in machine learning, Environmental Research

Communications, Vol. 6, No. 10, 2024.

Auth
ors

 Pre-
Proo

f

http://arxiv.org/abs/1511.06085

