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Abstract—Deep Learning (DL) is revolutionizing video processing, as video is progressively key 

in daily life. Encoding and transmitting video effectively becomes challenging with fast content 

resolution and data volume. This research presents the most progressive method for Video 

Compressing (VC), using DL to enhance encoding and transmission efficiency, demonstrating the 

need for more cutting-edge methods in digital media. This work uses advanced Machine Learning 

(ML) to reduce video data size without compromising video quality, enhancing its suitability for 

high-definition streaming and videoconferencing. The algorithm uses Convolutional Neural 

Network (CNN)+Recurrent Neural Network (RNN) to improve video quality. CNN captures 

complex spatial details within each video frame, while LSTM relates across time. The proposed 

VC achieves high video quality rates compared to traditional methods like H.264 and H.265. It 

adapts in real-time and optimizes video bandwidth usage, making it useful for live streaming 

services and video conferencing. The VC has been tested extensively, demonstrating significant 

bit rate reduction while maintaining excellent video quality. It surpasses modern compression 

methods, making it a flexible solution to the increasing demands for the best video content. This 

invention in VC is expected to change digital media distribution for good. 

Keywords—Video Compression, Deep Learning, Video Encoding, Video Transmission, Bandwidth 

Optimization 

I. INTRODUCTION 

The exponential development of digital media consumption is driven by the tremendous 

popularity of streaming high-definition services and video conferencing applications. Traditional 
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Video Compression (VC) has proven successful, but balancing efficiency with quality has caused 

problems in storage and transmission, especially over networks of low bandwidth. Balancing the 

quality and efficiency of VC has always been a challenge in this area. VC algorithms are designed 

nowadays to balance both. However, the Machine Learning (ML) algorithms provide a new look 

at the VC task, leading to better results. As the drive for better video quality and smoother playback 

continues to rise, it increasingly puts pressure on effective compression methods that cope well 

with high resolutions and higher Video Frame (VF) rates. Leveraging ML in VC has excellent 

potential for this purpose, as such algorithms can be developed to learn an encoding that will be 

more effective and adapt to diverse types of video and their features.  

Classic VC standards, e.g., MPEG and AVC/H.264, HEVC/H.265, and VP9 have done a fine 

job of reducing the size of video files while maintaining quality at levels acceptable to human 

perception [1-2]. However, modern applications impose highly challenging requirements on video 

coding: higher efficiency and better adaptability to network environments in a way that traditional 

coding approaches are incapable of. Research on learning-based VC has advanced rapidly in recent 

years, and this study examines this trend in this article in which Deep Neural Networks (DNN) is 

applied for video coding. All these methodologies diminish spatial and temporal redundancies by 

looking for lower-dimensional representations of VF [3]. Therefore, they promise to enhance 

compression efficiency without deteriorating video quality [4]. 

Other previous works [5-6] laid the foundation for image codec design, where deep 

autoencoders (AEs) were used to create a trade-off between rate and distortion. Additionally, they 

proved that it could be used for latent description in a condensed signal format. Image compression 

works magic in the spatial domain, whereas VC uses the temporal link among neighboring VF. 

Recently, the possibility of using prediction using learned videos, rather than using traditional 

block-based progress prediction procedures, has become an essential part of VC based on DL. 

This paper proposes a new VC algorithm that incorporates Convolutional Neural Network 

(CNN) + Recurrent Neural Network (RNN), particularly LSTM, in such a method that these can 

improve the entire process of VC. The proposed model uses CNNs to gather complex spatial 

information from each VF and LSTMs to model the temporal dependencies among the VFs. Such 

combinations make the algorithm attain higher ratios of compression than traditional methods, 

leading to an ultimate decrease in size for data with a high level of visual quality [7]. Deep Learning 

(DL) enables dynamic parameter adaptation at runtime to optimize bandwidth use during video 
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transmission, becoming highly relevant when network environments are not constant for 

applications [8]. Extensive experimental testing proves the recommended method outperforms 

advanced compression standards regarding bitrate reduction while preserving video quality. These 

advances in VC hold out the promise of being game changers in the delivery of digital media and, 

on a large scale, the method that one adopts when responding to this greedy demand for quality 

video content. 

II. RELATED WORKS 

The desire for highly effective and controlled VC processes has driven researchers to discover 

new avenues. Many new approaches were evaluated on diverse datasets using a type of DL. DL 

techniques have significantly advanced the field of VC. VC standards have been extensively used 

to decrease video file sizes without compromising the quality that is pleasing to the human eye. 

Nevertheless, these standards frequently fail to meet the increasing requirements for improved 

efficiency and adaptability in contemporary applications. As a result, researchers are delving into 

DL to address these challenges. 

Authors explore image interpolation in VC using DL [9-10]. We used a trainable architecture. 

Initially, the key VF undergoes encoding through deep image compression, then reconstruction of 

the remaining VF using a standard U-net. To overcome this problem, methods such as optical flow 

and block motion estimates are used, as the interpolation model alone may struggle with this 

aspect. The spatial redundancy is further reduced, and compression is achieved using a comparable 

architecture and adaptive arithmetic coding technique like the one employed [11]. Furthermore, a 

hierarchical method is used to decrease the bit rate even more through image interpolation. 

Much excitement has surrounded the latest developments in DL, particularly in the Neural 

Network (NN)-based image lossy compression field. This has involved the interest of both 

academic researchers and industry professionals. Google researchers discussing image 

compression techniques using RNN. One paper examines thumbnail compression, while the other 

delves into full-resolution image compression. In their study, [13] introduced three additional 

features to improve the previous model for lossy image compression, as mentioned in a previous 

publication. The models were developed by combining RNN + CNN components. At first, the 

network was trained using pixel-wise loss, which was evaluated based on SSIM. Furthermore, the 

recurrent architecture has undergone minor adjustments to improve spatial diffusion. As a result, 

the hidden states can now capture and propagate image information effectively. 
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The iterative analysis/synthesis is based on the model proposed [14], which includes several 

LSTM-based AE connected closely. An ongoing examination and combination of the distinctions 

between reconstruction and the desired outcome in a VC method that adjusts its rate. This model 

is better, as shown by the quantitative findings over existing codecs, and it opens new possibilities 

for future research in VC by incorporating different elements. Authors [15] presented a rapid inter-

coding unit decision algorithm incorporating DL to enhance VC using High-Efficiency Video 

Coding (HEVC).  

In their work, [16] proposed a deep CNN with wide-activated squeeze-and-excitation to 

improve the versatility of video coding. The authors improved performance by reducing the RD 

cost. In their work, [17] use a fast QuardTree partitioning method that uses Deep-CNNs to predict 

the splitting of code units. The authors improved QTBT's functionality for intra-mode coding with 

the proposed scheme. In their study [18], Zaki and his colleagues proposed CtuNet, an approach 

to DL that mimics partitioning the coding tree unit. This connects with the drastically reduced 

computational complexity of the scheme proposed by the authors. 

Similarly, research has been conducted on further integrating Neural Networks (NN) into 

traditional codecs to improve compression efficiency. Their method involves Feature Extraction 

(FE) using DL but employs conventional video encoding techniques. The method promised 

extraordinary VC rates while preserving video quality.  

Authors [19] conducted a research study applying GRUs in an AE to VC data. Based on their 

research, Region-based Convolutional Neural Networks (RCNN) can model temporal 

dependencies. Yet, finding outstanding compression rates is quite tricky because of computational 

complexity. Although some improvement has been made in DL-based VC, several problems 

remain. Training Deep Neural Network (DNN) imposes a substantial computational burden, and 

deploying such models in real-time will be challenging, with many hurdles. In addition, methods 

to maintain the quality of the VC requirement are to be constantly explored so that no distortion 

or imperfection is introduced. The future will focus on architectures designed explicitly for real-

time environments, improving efficiency. Exploring these advanced MLs will confidently open 

novel methods to improve VC algorithms. Additionally, much future potential is in advancement 

toward reducing compression objects and improving video quality, for which Generative 

Adversarial Networks (GAN) were researched [20]. 

III. METHODS AND MATERIALS 
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This study combines CNN and Long Short-Term Memory (LSTM) to develop an efficient VC. 

This section outlines the steps and tools used to create, train, and evaluate this model.  

A. Dataset 

A valuable tool for the aim of this endeavor is the Ultra Video Group (UVG) dataset, which 

features 16 unpredictable 4K (3840×2160) sample video clips. This collection of images presents 

numerous novel methods for specified training and evaluation techniques; it is recorded at 50 to 

120 Frame Per Second (FPS) and stored in 8-bit and 10-bit raw YUV (YUV stands for (Y) luma 

or brightness, (U) blue projection and (V) red projection) types. The UVG dataset's Test Video 

(HoneyBee) is highlighted in Figure 1. 

 

Fig. 1. The UVG sample features an instance of HoneyBee video footage. 

B. Pre-Processing 

The preliminary processing of the video data is key to finding the dataset suitable for training 

the recommended NN [21-25]. The preliminary processing queue, in addition to its mathematical 

models and formulas, is mapped in the sequence of operations. 

All video clips ′𝑉′ are separated into specific VF. Let ′𝑉′ signify the video and 𝐹𝑖 signify the 𝑖-

th Frame Extraction (FE) from ′𝑉′. The FE can be embodied as EQU (1) 

𝑉 =  {𝐹1, 𝐹2, … , 𝐹𝑛}           (1) 

where ′𝑛′ is the complete VF in the video clips. Individually FE as 𝐹𝑖 is reshaped to an average 

resolution 𝑅 ×  𝐶 , where ′𝑅′  is the row count, and ′𝐶′  is the column count. This ensures Auth
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standardization in input value for the NN. The reshaping function is mathematically signified as 

EQU (2) 

𝐹𝑖 → 𝐹𝑖′            (2) 

where 𝐹𝑖′ is the reshaped VF of size is 𝑅 ×  𝐶. 

The pixel values of each VF are as 𝐹𝑖′ are normalized to the range [0, 1]. If ′𝑃′ denotes the pixel 

value, the normalization is performed using the following EQU (3): 

 𝑃′ =
𝑃

255
              (3) 

Here, 𝑃′ represents the normalized pixel value. To enhance model robustness and prevent 

overfitting, various data augmentation techniques are applied: 

Each VF as 𝐹𝑖′ can be flipped horizontally with a probability ′𝑝′. Let ‘𝐻′ denote the horizontal 

flipping operation EQU (4) 

 𝐹𝑖′′ =  𝐻(𝐹𝑖′)            (4) 

VF are randomly cropped to a specified size. Let ′𝐶′ denote the cropping operation EQU (5) 

𝐹𝑖′′′ =  𝐶(𝐹𝑖′)            (5) 

VF are rotated by a random angle 𝜃. Let 𝑅𝜃 represent the rotation operation EQU (6) 

𝐹𝑖′′′′ =  𝑅𝜃(𝐹𝑖′)           (6) 

These preliminary steps ensure that the test dataset is well-prepared and standardized for NN 

training. This meticulous process guarantees that the input data remains consistent in format and 

mixed enough to boost the model's effectiveness during training. 

C. Network Architecture 

First, the input VF generally is raw VF from the original video sequence. At these initial steps, 

the general preprocessing the VF goes through includes FE, resizing, normalizing, and data 

augmentation, preparing them for usage as the input of an NN. Following this is an encoder 

involving convolutional and Max-Pooling layers to capture spatial features in a less-dimensional 

space of the input VF. After that follows the dense bottleneck layer, which will compress encoded 

features further in a lower-dimension space; these compressed features pass through the LSTM. 

This network has layers of LSTM that capture dependencies between VF in time and, through this 

mechanism, allow significant improvement in compression efficiency. A block diagram for VC is 

exposed in Figure 2. 

After encoding the temporal features, the decoder compresses them and reconstructs them to 

the original VF dimensions using deconvolutional and upsampling layers. The result is output 

Auth
ors

 Pre-
Proo

f



VF—the produced reconstructed VF. These VF results are at the end of the entire process of 

compression and decomposition, thereby proving the effectiveness and usefulness of an NN in 

bringing forth positive results on video data. The following scenario provides a high-level 

overview of how data flows over the proposed pipeline model for VC and decompression and 

illustrates how each constituent element contributes toward overall functionality. 

 

Fig 2. Overall processing block diagram for the VC 

(i) Autoencoder 

This VC has an integrated AE that contains an encoder, an LSTM, and a decoder to form an 

end-to-end system capable of compressing and reconstructing video sequences. The primary layer, 

the network layer, and the input layer receive video pixel sequences and transmit the data to the 

encoder or channel, which then records spatial features and reduces the degree of dimensionality. 

An LSTM has been trained to record temporal relationships using the encoder's output; the 

NN analyses the encoded VF and provides a sequence of hidden state data. The final process is for 

the decoder to employ these hidden states to reassemble the beginning VF in the video. The final 

result's images originate from a decoder that progressively restores spatial dimensions using 

several deconvolutional and upsampling layers. This hybrid method allows a high VC ratio and 

improved VF duration while rapidly reducing and restoring videos using temporal and spatial data. Auth
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In this regard, the AE model encapsulates the whole process to provide a robust model for modern 

challenges in VC. 

(ii) Encoder Design 

The encoder in this proposed VC is designed to effectively capture spatial features from each 

VF while reducing the dimensionality of the input data. Here is how it works, with some 

mathematical rules. Figure 3 shows the model diagram of the encoder. Let us start with the input 

VF as 𝐹, which has dimensions 𝐻 ×  𝑊 ×  𝐶 (Height, Width, Channels). The first step is to apply 

a convolutional layer with 𝑘1 filters of size 3 × 3 to the input VF, EQU (7). 

𝐸1(𝑝, 𝑞, 𝑟) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶
𝑐=1

3
𝑛=1

3
𝑚=1 ⋅ 𝐹(𝑝 + 𝑚 − 1, 𝑞 + 𝑛 − 1, 𝑐) + 𝑏𝑘  (7) 

Here, 𝑊𝑚𝑛𝑐𝑘  are the weights of the filters, 𝑏𝑘 is the bias term, and 𝐸1(𝑝, 𝑞, 𝑟) is the output of 

the convolution operation at position (𝑝, 𝑞) for the 𝑘-th filter. Next, we apply a ReLU activation 

function to introduce non-linearity EQU (8) 

𝐸′
1(𝑝, 𝑞, 𝑟) = 𝑚𝑎𝑥(0, 𝐸1(𝑝, 𝑞, 𝑟))         (8) 

After that, this study uses a max-pooling layer to reduce the spatial dimensions by half EQU 

(9) 

𝑃1(𝑝, 𝑞, 𝑟) = 𝑚𝑎𝑥{𝐸′
1(2𝑝, 2𝑞, 𝑘), 𝐸′

1(2𝑝 + 1,2𝑞, 𝑘), 𝐸′
1(2𝑝, 2𝑞 + 1, 𝑘), 𝐸′

1(2𝑝 + 1,2𝑞 + 1, 𝑘)}  (9) 

Several layers repeat this process. For the 2nd convolutional layer, with 𝑘2  filters EQU (10) to 

EQU (12). 

𝐸2(𝑝, 𝑞, 𝑟)) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶
𝑐=1

3
𝑛=1

3
𝑚=1 ∙ 𝑃1(𝑝 + 𝑚 − 1, 𝑞 + 𝑛 − 1, 𝑐) + 𝑏𝑘  (10) 

𝐸2′(𝑝, 𝑞, 𝑟) = 𝑚𝑎𝑥 (0, 𝐸2(𝑝, 𝑞, 𝑟))         (11) 

𝑃2(𝑝, 𝑞, 𝑟)   =  𝑚𝑎𝑥{ 𝐸2
′ (2𝑝, 2𝑞, 𝑘), 𝐸2

′ (2𝑝 + 1, 2𝑞, 𝑘), 𝐸2
′ (2𝑝, 2𝑞 + 1, 𝑘), 𝐸2

′ (2𝑝 + 1, 2𝑞 + 1, 𝑘)}  (12) 
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Fig 3. Model diagram of the encoder 

And again, for the 3rd and 4th layers  EQU (14) to EQU (18). 

𝐸3(𝑝, 𝑞, 𝑟)) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶
𝑐=1

3
𝑛=1

3
𝑚=1 ∙ 𝑃2(𝑝 + 𝑚 − 1, 𝑞 + 𝑛 − 1, 𝑐) + 𝑏𝑘   (13) 

𝐸3′(𝑝, 𝑞, 𝑟) = 𝑀𝑎𝑥 (0, 𝐸3(𝑝, 𝑞, 𝑟))        (14) 

𝑃3(𝑝, 𝑞, 𝑟)   = 𝑀𝑎𝑥{ 𝐸3
′ (2𝑝, 2𝑞, 𝑘), 𝐸3

′ (2𝑝 + 1, 2𝑞, 𝑘), 𝐸3
′ (2𝑝, 2𝑞 + 1, 𝑘), 𝐸3

′ (2𝑝 + 1, 2𝑞 + 1, 𝑘)} (15) 

𝐸4(𝑝, 𝑞, 𝑟)) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶
𝑐=1

3
𝑛=1

3
𝑚=1 ∙ 𝑃3(𝑝 + 𝑚 − 1, 𝑞 + 𝑛 − 1, 𝑐) + 𝑏𝑘   (16) 

𝐸4′(𝑝, 𝑞, 𝑟) = 𝑀𝑎𝑥 (0, 𝐸4(𝑝, 𝑞, 𝑟))        (17) 

𝑃4(𝑝, 𝑞, 𝑟)   =  𝑀𝑎𝑥{ 𝐸4
′ (2𝑝, 2𝑞, 𝑘), 𝐸4

′ (2𝑝 + 1, 2𝑞, 𝑘), 𝐸4
′ (2𝑝, 2𝑞 + 1, 𝑘), 𝐸4

′ (2𝑝 + 1, 2𝑞 + 1, 𝑘)} (18) 

After these layers, this study flatten the final pooling layer 𝑃4 into a one-dimensional vector EQU 

(19) 

𝐹′ = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃4)           (19) 

Finally, this flattened vector goes through a dense layer, producing the encoded representation 

EQU (20) 

𝐸 = 𝑀𝑎𝑥(0, 𝑊 ⋅ 𝐹′ + 𝑏)          (20) 

where 𝑊 and 𝑏 are the weights and biases of the dense layer, correspondingly. 

The model starts with an input layer that accepts VF of a specified shape. The first layer is a 2D 

convolutional layer with 64 filters, each size 3 × 3, and uses the ReLU activation function. This 

layer applies these filters across the entire input VF to essential FE, while the 'same' padding 

ensures that the output maintains the exact spatial dimensions as the input. Following the 

convolution, a max-pooling with a pool size 2 × 2 is used. This layer keeps the most relevant 

elements by halving the spatial dimensions while removing the rest. This process is repeated 

through multiple convolutional and pooling layers to capture more complex features at different 

levels of abstraction progressively. 

The second convolutional layer has 128 filters again with a 3×3 kernel and ReLU activation. 

Then, there was another max pooling. The third convolutional layer will increase the filters to 256 

and the 4th to 512; use a 3×3 kernel with ReLU activation followed by max-pooling each time. 

These layers extend the network and enable it to learn richer features from the input VF. Following 

the last pooling layer, this output is flattened into a 1-D vector, effectively transitioning from 

spatial to fully connected layers. This vector is next passed through a further dense layer of 1024 

units with ReLU activation, which more heavily compresses the data into a smaller illustration 

while still holding on to relevant data required in steps that follow in compression. 
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This ensures that the encoder is dimensionality-reducing on the input VF and captures a rich 

set of spatial features; this component becomes especially important in the overall VC pipeline. 

The resulting model is named 'encoder' and could be ready to be integrated with the rest of the 

compression architecture. 

(iii) Long Short-Term Memory (LSTM) 

This proposed VC model includes an LSTM layer that enables the modelling of temporal 

dependencies between consecutive VF; it thus plays a vital role in efficient VC. This layer 

processes sequences of encoded VF from the encoder and learns temporal correlations in the video 

sequence. An LSTM is a series of memory cells linked recurrently, wherein the processing happens 

through several gates. These gates are needed to flow data and enable the network to maintain 

long-term dependencies. 

Let ′𝑥𝑡′ to input into the LSTM cell at step 𝑡 in time, ′ℎ𝑡′ the hidden state, and ′𝐶𝑡′ the cell state. 

The LSTM cell updates are ruled by the following EQU (21): 

𝑓𝑣𝑡  = 𝜎(𝑊𝑓𝑣 ⋅  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑓𝑣)         (21) 

      The Forget Gate (FG) determines what fraction of the previous cell state 𝐶𝑡−1  should be 

retained. Here, 𝑊𝑓𝑣  and 𝑏𝑓𝑣 are the weights and biases for the FG, and 𝜎 is the sigmoid activation 

function EQU (22) to EQU (24). 

𝑖𝑣𝑡  = 𝜎(𝑊𝑖𝑣 ⋅  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑖𝑣)        (22) 

𝐶𝑣�̃� = tanh (𝑊𝑐𝑣 ⋅  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑐𝑣)       (23) 

The Input Gate (IG) selects how much of the new data from the input ′𝑥𝑡′ should be added to 

the cell state. 𝑊𝑖𝑣 and 𝑏𝑖𝑣 are the weights and bias for the IG, while 𝑊𝑐𝑣 and 𝑏𝑐𝑣 are for the 

candidate cell state. The 𝑡𝑎𝑛ℎ is the hyperbolic tangent function (Figure 4) 

𝐶𝑣𝑡  = 𝑓𝑣𝑡 ⋅  𝐶𝑣𝑡−1  + 𝑖𝑣𝑡 ∙ 𝐶𝑣�̃�         (24)  

The new cell state 𝐶𝑣𝑡 is a combination of the previous cell state 𝐶𝑣𝑡−1 and the new candidate's 

cell state 𝐶𝑣�̃�, modulated by the FG and IG denoted in EQU (25) and EQU (26) 

𝑜𝑣𝑡  = 𝜎(𝑊𝑜𝑣 ⋅  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑜𝑣)         (25) 

ℎ𝑣𝑡  = 𝑜𝑣𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑣𝑡 )          (26) 

The Output Gate (OG) determines the output of the LSTM cell current step. 𝑊𝑜𝑣 and 𝑏𝑜𝑣 are 

the weights and biases of the OG. In this model, the LSTM layer processes a sequence of encoded 

VF as {𝐸1, 𝐸2, … , 𝐸𝑇}, where 𝐸𝑡 is the encoded representation of the VF at time step ′𝑡′. The LSTM 
Auth

ors
 Pre-

Proo
f



layer produces a sequence of hidden states {ℎ1, ℎ2, … , ℎ𝑇}, capturing the temporal dependencies 

across the VF. 

(iv) Decoder  

The decoder in this proposed VC is designed to reconstruct the compressed features back into 

the original VF dimensions. It mirrors the encoder's functionality but operates in reverse, using 

deconvolutional (transposed convolution) layers to upsample the data and reconstruct the spatial 

dimensions of the VF. 

 

Fig 4: LSTM Model 

The first step in the decoder is to transform the compressed feature vector back into a spatial 

format. This is done using a dense layer followed by a reshape operation. Let 𝑧 be the compressed 

feature vector from the bottleneck layer. The dense layer expands this vector into a more significant 

feature map, EQU (27). 
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𝑧′ = 𝑚𝑎𝑥(0, 𝑊𝑑 ⋅ 𝑧 + 𝑏𝑑)          (27) 

where 𝑊𝑑and 𝑏𝑑) are the weights and biases of the dense layer. This output 𝑧′ is then reshaped 

into a 3D tensor, EQU (28). 

𝑍 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑧′)           (28) 

where 𝑍 has the size 𝐻′ ×  𝑊′ ×  𝐶′, which formulates the problem for the deconvolutional layers. 

The deconvolutional (transposed convolution) layers up-sample the feature maps back to the 

original VF dimensions. For each deconvolutional layer, the operation can be expressed as EQU 

(29). 

𝐷𝑙(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝑊𝑚𝑛𝑐𝑘
𝐶𝑙
𝑐=1

𝑘
𝑛=1

𝑘
𝑚=1 ⋅ 𝑈𝑖−𝑚,𝑗−𝑛,𝑐 + 𝑏𝑘      (29) 

where 𝐷𝑙 is the output of the 𝑙-th deconvolutional layer, 𝑊𝑚𝑛𝑐𝑘 are the weights, 𝑏𝑘 is the bias, 𝐾 

is the kernel size, and 𝑈 is the upsampled input to this layer. The ReLU activation function is then 

applied EQU (30) 

𝐷′𝑙(𝑖, 𝑗, 𝑘) = 𝑀𝑎𝑥(0, 𝐷𝑙(𝑖, 𝑗, 𝑘))         (30) 

After each deconvolutional layer, an upsampling operation doubles the spatial dimensions of 

the feature maps. This can be stated as EQU (31). 

𝑈(𝑖, 𝑗, 𝑘) = 𝐷′
𝑙(𝑖/2, 𝑗/2, 𝑘)          (31) 

The process is repeated through multiple layers to reconstruct the spatial dimensions of the VF 

progressively. The final layer in the decoder outputs the recreated VF with the exact dimensions 

as the original input VF. This layer uses a sigmoid activation function to ensure the pixel values 

are in the range [0, 1] EQU (32). 

�̂�(𝑖, 𝑗, 𝑐) = 𝜎(𝑊𝑓 ⋅ 𝑈𝑖,𝑗,𝑐 + 𝑏𝑓)        (32) 

where ‘ 𝜎′  is the sigmoid function, ′𝑊𝑓′ and ′𝑏𝑓′  are the weights and biases of the final 

deconvolutional layer. 

This VC's decoder transforms compressed features into actual sizes for accurate VF restoration. 

A shape-compressed feature vector is inputted at the origin point through a data input layer. The 

first step is to use a dense layer to expand the compressed feature vector, resulting in a more evident 

feature map. This dense layer has 512 × 8 × 8  units and uses the ReLU activation function, 

permitting the system to learn a novel set of features. The final resultant of this dense layer is then 

resized into a 3-D tensor with the size of 8 × 8 × 512 . Following the resize function, 

deconvolutional (transposed convolution) layers are functional. The primary deconvolutional layer 

applied 512 filters with a kernel of 3 × 3 and ReLU activation, ensuring that compound features 
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are captured and spatial size starts to rise. To further expand the spatial size, an upsampling layer 

with a pool of 2 × 2 is used, successfully replication the height and width of the feature map. 

This procedure iteratively experiences different phases. Layer two of the deconvolutional 

method uses 256 filters, and the third layer is an added upsampling layer. After two additional 

upsampling layers, the final deconvolutional layer employs 128 filters, and the final layer uses 64 

filters, following an identical layout. These layers maintain the learned features while gradually 

rebuilding the spatial accuracy. A deconvolutional layer with three filters, reflecting the RGB 

colors of the initial VF, serves as the final layer of the algorithm for decoding. This layer practices 

a kernel size 3 × 3 and a sigmoid activation function, verifying that the restored VF's video pixels 

are within the range [0, 1]. The decoder's layout provides accurate upsampling and restoration of 

compressed features into video of superior quality VF. An efficient and secure VC is developed 

by using all layers to restore the spatial dimensions but preserving the minor details of the actual 

source images. 

IV. RESULT AND DISCUSSION 

This investigation exploited the UVG sample to verify the AE-based VC that was provided 

previously. The possibility to significantly reduce video size is one of the model's most significant 

successes. The CR, measuring how much the video has shrunk from its original size, was precise 

and ranged consistently from 10:1 to 20:1. This gives an idea of how the proposed model can 

compress videos down to a fraction of their initial size without loss in quality. Entailing such 

impressive VC ratios shows the model's effectiveness at handling high-motion and static scenes. 

Two metrics, the Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) 

are used to ensure the quality of VC. This model attained an average of 35 dB for PSNR values, 

which proves that specifics were well-preserved in the reconstructed VF and looked like the 

original VF. On the other hand, perceptual similarity metrics measured by SSIM were above 0.90. 

This indirectly shows that the recreated VF maintained its models, remaining visually appealing 

from the original content. 

The Compression Ratio (CR) measures how much the original video size is reduced after VC. 

It is the ratio of the original video size. 𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 to the VC of 𝑆Compressed, EQU (33). 

𝐶𝑅 =
𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑆compressed
          (33) Auth
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One method to evaluate the quality of the recreated VF compared to the original image is using 

PSNR. It is defined as EQU (34). 

𝑃𝑆𝑁𝑅 = 10 ⋅ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)         (34) 

where, 𝑀𝐴𝑋𝐼  is the highest feasible image pixel value (for 8-bit images, this is 255). MSE is the 

Mean Squared Error among the original and recreated VF,  EQU (35). 

The MSE is calculated as: 

𝑀𝑆𝐸 =
1

𝑚∙𝑛
∑ ∑ (𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑖, 𝑗) − 𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑(𝑖, 𝑗))

2
𝑛
𝑗=1

𝑚
𝑖=1      (35) 

where, 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the pixel value of the original VF at position (𝑖, 𝑗). 𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑  is the pixel 

value of the recreated VF at position (𝑖, 𝑗). ′𝑚′ and ‘𝑛′ are the dimensions of the VF.  To determine 

how comparable the original and rebuilt VF are, one uses the SSIM. Alterations to structural data, 

brightness, and contrast are considered. The SSIM index between two VF as ′𝑥′ and ‘𝑦′ is given 

by EQU (36). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
    (36) 

where, ′𝜇𝑥′ is the average of VF as ′𝑥′. ‘𝜇𝑦′  is the average of VF as ′𝑦′. 𝜎𝑥
2 is the change of VF as 

′𝑥′. 𝜎𝑦
2 is the change of VF as ′𝑦′. 𝜎𝑥𝑦 is the covariance of VF as ′𝑥′ and ′𝑦′. 𝐶1 and 𝐶2 are fixed to 

maintain division stability when denominator values are low. These formulas provide a 

quantitative test of the accuracy of this AE in terms of compression effectiveness and the quality 

of the recreated VF. 

The results of the recommended AE model are summarized in Table 1 for VC, highlighting the 

key metrics: CR, PSNR, and SSIM. These values are averaged across the UVG dataset. 

TABLE 1. PERFORMANCE OF PROPOSED AE FOR VC 

Metric Value Range Average Value 

CR 10:1 - 20:1 15:1 

PSNR 30 dB - 40 dB 35 dB 

SSIM 0.85 - 0.95 0.95 

Figure 5 presents the quality assessment of this proposed VC, illustrating the relationship 

between the CR (Bits Per Pixel (BPP)) and the average VF of SSIM. It shows how effectively this 

model maintains video quality as compression becomes more aggressive. As we observe the graph, 

the CR starts from 0.01 BPP and increases to 0.12 BPP. Correspondingly, the average VF as SSIM 
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values range from 0.62 to 0.956. The trend indicates a significant improvement in SSIM with an 

increasing CR, highlighting the model's ability to maintain high visual quality even at higher 

compression levels. 

At very low CRs, e.g., 0.01 BPP, the SSIM already reaches 0.62. That is slightly smaller in 

value than 0.65, indicating that despite the perfect effect of reducing the file size, its quality issues 

are caused by noticeable degradation. However, with an increased CR of 0.02 and 0.03 BPP, the 

SSIM values drastically return to approximately 0.75 and 0.88. This rapid development proves the 

model's efficiency in preserving fine VF details at slightly higher BPP. Farther on the curve, it 

achieves an SSIM of 0.90 at 0.04 BPP. From here onward, all SSIM values continue to improve 

gradually, indicating that the model consistently improves on visual quality with more BPP added. 

For example, at 0.05 BPP, the SSIM is 0.92; for 0.06 BPP, it becomes 0.93. These values indicate 

that for quite aggressive VC rates with the proposed model, most of the details and originality can 

still be maintained for the VF. 

 

Fig 5. Quality Assessment of Proposed VC (SSIM) 

The SSIM values flatten out to approximately 0.945–0.956 ranges as the CR increases from 

0.07 to 0.12 BPP. This means there is a point of diminishing return for the model: further increasing 

BPP confers very marginal improvements in the quality of visuals. Specifically, at 0.10 BPP, SSIM 
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comes out to be 0.95; its slight increases to 0.11 and 0.12 BPP return SSIM values close to each 

other—0.952 and 0.956, respectively. 

This proposed LSTM-based AE network guaranteed excellent smoothness and continuity for 

the VF. Visual examination of the reconstructed videos revealed minimal traces of temporal 

artifacts, like flickering changes between consecutive VF. This confirms that this model maintains 

temporal consistency so that the videos are played back smoothly and naturally. Training an AE 

required substantial computational resources, including NVIDIA Tesla V100 GPUs and Intel Xeon 

processors. During training, the algorithm passed through all examples in the dataset several times, 

and early stopping was used to avoid overfitting. This model was computationally expensive but 

showed good real-time performance during the inference phase, making it very applicable to video 

streaming and conferencing. 

 

Fig 6. Quality assessment of proposed VC (PSNR) 

Figure 6 presents the performance of this VC in detail by showing the CR against the average 

VF as PSNR. This graph shows how well the proposed model holds up with higher CR levels.  At 

the low end, at a CR of 0.01 BPP, start with a PSNR of 20 dB; this is about what one would expect 

from such a low value: a tiny video size, visibly harsh, and many CRs. As the CR returns to the 
Auth

ors
 Pre-

Proo
f



0.02 and 0.03 BPP settings, this work refers to a quickly rising characteristic curve to 25 and 30 dB 

PSNR, respectively. This rapid improvement proves the model can significantly enhance visual 

quality with just a tiny bit of extra data allocated per pixel. 

Moving further in the graph, at a CR of 0.04 BPP, it goes up to 32 dB, while at another ratio of 

0.05 BPP, it hits 34 dB. These values indicate that this model reduces file sizes and maintains 

quality by ensuring the VF is viewed consonantly with the original. Still, with further increases in 

CR, the PSNR values drop very slowly. The PSNR values increase to 35  and 36 dB for 0.06 and 

0.07 BPP. This shows a diminishing return condition where additional BPP still improves the quality 

to a smaller extent. This plateau effect can be seen at higher CRs—some examples are as follows: 

at 0.10 BPP, PSNR is 39 dB, gradually increasing to 41 dB at 0.12 BPP. 

A. Comparison with Traditional Methods 

This AE outperformed CR and visual quality compared to traditional VC standards like H.264 

and HEVC. Traditional methods frequently introduce objects and degrade quality, especially at 

higher CR. In contrast, the DL dynamically learns and adapts to the content, resulting in better 

compression efficiency and higher-quality reconstructions. 

To highlight the efficiency of the proposed VC, we compare it with traditional compression 

methods such as H.264 and HEVC. Table 2 presents the overall values for CR, PSNR, and SSIM, 

showcasing how this model outperforms these traditional methods in maintaining video quality 

while achieving high CRs. 

TABLE 2. COMPARISON WITH TRADITIONAL METHODS 

Method 
CR 

(BPP) 

Average VF 

PSNR (dB) 

Average 

VF SSIM 

H.264 0.08 32 0.85 

HEVC 0.06 34 0.88 

Proposed Model 0.05 35 0.93 

The comparison Table 2 shows that our proposed VC outperforms traditional methods, such as 

H.264 and HEVC. Checking on the CR, in its best form, this model gives a ratio of 0.05 BPP, 

better than H.264 at 0.08 BPP and HEVC at 0.06 BPP. This validates the effectiveness of this 

model in VC data more efficiently to attain lower storage and bandwidth while preserving quality. 

This model achieves, on average, an amazingly great PSNR of 35 dB concerning the quality 

measurement of the reconstructed video. This represents an improvement of 32 dB achieved by 
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H.264 and 34 dB by HEVC. One of the results, most notably on the SSIM metric quantifying 

perceptual video quality and structural integrity of videos, has a vast improvement for the proposed 

model. This work achieved an SSIM of 0.95, significantly outperforming the H.264 and HEVC 

scores of 0.85 and 0.88. Then, since this SSIM value is tremendous, it is recommended that the 

model perfectly keeps the details of the visuals and structure from the original video so that the 

VC will be almost fuzzy from the original in terms of visual quality. 

To thoroughly evaluate the recommended VC algorithm, this study presents the results for 

several videos, including Beauty, Bosphorus, HoneyBee, Jockey, ReadySetGo, ShakeNDry, and 

YachtRide. Table 3 summarizes the comparison of the CR, PSNR, and SSIM for each video, 

illustrating how this model performs across different types of content. 

TABLE 3. RESULTS FOR A TYPE OF VIDEO FROM THE DATASET 

Video Method 
CR 

(BPP) 

Average VF PSNR 

(dB) 

Average VF 

SSIM 

Beauty 

H.264 0.08 33 0.86 

HEVC 0.06 35 0.89 

Proposed Model 0.05 36 0.96 

Bosphorus 

H.264 0.08 31 0.84 

HEVC 0.06 33 0.87 

Proposed Model 0.05 34 0.94 

HoneyBee 

H.264 0.08 32 0.85 

HEVC 0.06 34 0.88 

Proposed Model 0.05 35 0.95 

Jockey 

H.264 0.08 30 0.83 

HEVC 0.06 32 0.86 

Proposed Model 0.05 33 0.93 

ReadySetGo 

H.264 0.08 29 0.82 

HEVC 0.06 31 0.85 

Proposed Model 0.05 32 0.92 

ShakeNDry 

H.264 0.08 30 0.83 

HEVC 0.06 32 0.86 

Proposed Model 0.05 33 0.93 

YachtRide 

H.264 0.08 31 0.84 

HEVC 0.06 33 0.87 

Proposed Model 0.05 34 0.94 
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Results show that the proposed VC does not rely on high variability in VF with many detail 

sequences. On Beauty, it comes up with an excellent compressibility of 0.05 BPP at a PSNR of 36 

dB and SSIM of 0.96, incredibly outperforming traditional methods like H.264 and HEVC. In the 

Bosphorus video, quality is maintained with a PSNR of 34 dB and an SSIM of 0.94. HoneyBee 

further depicts the superiority of this model with a PSNR of 35 dB and an SSIM of 0.95, which 

shows that our model retains quality and the structure of details. 

This model holds a PSNR of 33 dB and an SSIM of 0.93 on more dynamic Jockey videos, 

further showing how excellent it is at footage containing fast motion. This model provided an 

average of 32 dB PSNR and 0.92 SSIM on the very fast ReadySetGo, allowing it to handle such 

brutal sequences with high fidelity. On ShakeNDry, it reaches 33 dB in PSNR and 0.93 in SSIM 

for better visual quality and structural details than traditional methods. This model on YachtRide, 

with smooth motion, has a PSNR of 34 dB and an SSIM of 0.94 for high-quality reform at an 

efficient CR. 

While the performance of the AE was very competitive, several limitations have still to be 

considered. In this respect, one of the barriers to deployment is the computational complexity of 

the model, especially when considering resource-constrained environments. Follow-up efforts will 

thus be focused on optimizing the architecture and revisiting techniques—like model quantization 

and pruning—radically enough to reduce computational requirements. Another critical avenue for 

future work could concern an extension of the model that can handle different resolutions and VF 

rates much more gracefully, hence being more applicable to other VC scenarios. 

V. CONCLUSION AND FUTURE WORK 

The proposed Video Compression (VC) significantly improves compression efficiency and 

reconstructed video quality compared to traditional methods. It uses CNN for spatial feature 

extraction and LSTM for temporal dependencies. The model has a low CR of 0.05 BPP, allowing 

for compact video data storage without loss of visual reliability, making it an ideal solution for 

modern VC problems. Looking ahead, some exciting avenues for further enhancement and 

exploration include optimizing the calculation effectiveness, determining the program completion 

time and required resources to enable its application in resource-constrained scenarios, and 

implementing methods such as model quantization and pruning to reduce the model's size and 

improve inferencing speed for real-time VC applications. Additionally, extending the model's Auth
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capabilities to accommodate different resolutions and VF rates will increase its versatility across 

different video scenarios. 
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