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Abstract

The work proposes a fully connected neural network (FC based approach for

detecting the Carrier blocks for embedding the data in encrypted iws in®he cloud network.

storage of huge location map information o’ge image. Therefore, the proposed approach uses
the FCNN network to detect the Carrier blocks M@n-carrier blocks which highly minimizes the
embedded. In the embedding phase, a trained FCNN

additional location map informaffon
carrjer @0cks, in which the FCNN network is trained with the

network is utilized to dete
labels that are generajgs 0’s and 1’s embedding process. Two approaches are utilized

in training the FC ludes FCNN with predictor only (FCNN-PO) and FCNN with

sub-blogg fu chemes in detecting the carrier blocks. In the extraction phase,
the sgne m is used to detect the carrier blocks from which the data and actual
imadW@ean be reconstructed. The performance of the carrier detection process was
measures such as precision, recall, and accuracy, while the data hiding process
ed using measures such as structural similarity index measurement (SSIM), PSNR,
edding rate. The FCNN-PO carrier/non-carrier classification process results in an
average accuracy of 98.59% in detecting the carrier while providing an SSIM, PSNR, and
embedding rate of 0.9926, 58.86dB and 1.97bpp respectively during the data embedding
process when evaluated using the Bows-2 dataset.
Keywords: Data Hiding, fully connected neural network, image encryption, embedding rate,

prediction error expansion.
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1. Introduction

The enhanced storage capacity of cloud computing [1] has drawn a number of consumers
and researchers. Nevertheless, there are a number of issues with cloud storage, such as integrity,
secrecy, and authentication. Data encryption [2] and data hiding [3] are employed to address
these issues. The pixel content is altered by the data embedding process in order to hold th
hidden material. Through the creation of a cipher picture, data encryption is employed wh

preserves the content of the plain image.

Schemes like difference expansion [4], integer transform [5], prediction

[6], and histogram shifting [7] are the foundation of the widely used rg

embedding

technique. After data extraction, the original image cannot be red e nonWeversible

approach [8], but in the reversible data hiding approach [9], both ti"garrier image and the
hidden data can be recreated without any modifications. Before upi@ndigpthe picture to the
cloud, the user usually encrypts it to protect its privac, t. To stop an unauthorized
individual from seeing the actual image content, parti encjption can be employed. In
the patch level representation [10], the origig

G

residual errors to be embedded, this meth g cessitates the use of an extra reversible data-

is transtormed into sparse coefficients

based on a dictionary, providing an adeg

t of CQier for embedding the data. For the

hiding strategy.

Zhang et al. [11] dey data embedding approaches in which a public

cryptosystem is used to ges based on their homomorphic and probabilistic

pt t
features. This approg < -reversible and reversible embedding mechanisms. In the

orphic cryptosystem is utilized to encrypt the final image after

Two general categories can be used to categorize the process of maintaining the private
content of an image: reserving a room before encryption (RRBE) and vacating the room after
encryption (VRAE). According to the RRBE technique [14], the picture owner must preprocess
the image so that encryption can take place after that some space has been left for data

embedding. However, the owner of the VRAE technique [15], can upload the image to the



cloud and encrypt it without performing any additional pre-processing. To conceal the data, the
cloud might alter the encrypted picture. The RRBE strategy can produce a higher payload than
the VRAE approach, however, it necessitates an extra preprocessing step that adds to the

workload for the owner of the image.

Ma et al. [14] presented the RRBE scheme for the first time. This method is based o

the reversible data hiding technique known as histogram shifting, in which a blank spac

3
4

10 cony

produced in order to incorporate a small number of pixels least significant bits (LS

the remaining areas are encrypted and sent to the cloud, the unoccupied space is left

method yields an embedding rate of 0.5bpp and uses the unoccupied

lane for

v
-

secret data. Puyang et al. [15] used a second MSB plane in additiog @
data embedding, modifying the predictor used in [16]. An averaS@apdPoad of 1.35bpp is
yvely from MSB to

provided by this method. Puteaux et al. [17] employ the bit planes jte
LSB, resulting in an average embedding rate of 1.84bp cCompared to a difference
expansion strategy established by Tian et al. [18], the ce of the prediction error

expansion proposed by Thodi et al. [19] delivg erio ance.

and the one-dimensional (1D) prediction e stogram with the 2D approach offering a better

Ou et al. [20] introduced the t pnal prediction error histogram (PEH)

correlation between the prediction errors. 2D-% and 1D-PEH were merged by the author
Zhang et al. [21] to create an efigPtive for data embedding. According to Li et al. [22], the
picture pixel is divided int cas:ghe flat area and the rough region. The flat area can

embed two bits per pixel Me the rough area can embed one bit per pixel. The prediction

value [23] is estima agMg four neighboring pixels, which enhances the quality of the

marked j 's prediction error is shifted to the right and left, producing a
num k spots. Because of this, a higher capacity is achieved when histogram

shifti iction error expansion are combined [24].

e eme [25] uses different predictors in embedding the data. However, a
olylonal neural network model (CNN) was utilized to choose the best predictor, in which
NN model was trained by embedding the trial data using different predictors. An adaptive
approach [26] was used with a block embedding process that increases the Laplacian type
distribution in data embedding. To improve the correlation between the intra block the
encryption was done by a bit plane selection approach which improve the performance to a

certain extent. The data was embedded in a hierarchical approach [27] that classifies the pixels



of the image based on multiple linear regression. However, this approach results in huge

location map information which is compressed and embedded in the encrypted image.

Most of the data embedding approaches that are discussed above do not uses a artificial
intelligence based carrier and non-carrier detection approach that pre-determines the carrier
blocks for embedding the data. The carrier and non-carrier blocks are only detected afte
embedding the data, which results in a huge location map information. Therefore, the propo

approach uses a fully connected neural network to pre-determine the carrier blocks . '

actual embedding process. This further facilitate to pre-determine the carrier blo

data extraction process in which the data is embedded. Detection of e
@ tions@Burden

The contributions of the work are mentioned below ,

r
without the use of location map information will highly reduce tj of

the data-hiding process while improving the embedding rate.

(1) The work proposes a fully connected neural ne N) based carrier and non-

carrier classification approach which fagiftate cdfictermine the carrier blocks

before the actual embedding py@#e
(11) Two different types of carr’ga angd

FCNN with sub-block fully (FCR@-SF) and FCNN with predictor only (FCNN-

On-carriCr classification approaches namely

PO) were proposed to ct the carr®r blocks.

(111)  The approach uses redd error expansion approach to embed the data, while
in the extracti hase, rrier is again detected using either the same FCNN-
SF or FCLRe) afQkoach.

roach is utilized in the encryption/decryption process, where the

t1 Bcess involved in the proposed approach was evaluated with the

11, precision, and accuracy. The embedding process involved in the
d approach was evaluated with the measures namely, SSIM, embedding

rat®, and PSNR with the datasets namely BOWS-2 and Bossbase.

ming sections of the paper are structured as follows. A detailed description of the
sed approach is presented in Section 2, while the experimental results of the proposed

scheme are provided in Section 3. Finally, the conclusion is framed in Section 4.

2. Proposed method



The three major steps involved in the proposed data embedding approach are (i) the Data
embedding process with Carrier detection, (ii) the Data extraction process with carrier

detection, and (iii) the Training process of FCNN with label generation.
2.1 Data embedding process with Carrier detection

The illustration of the data embedding process is shown in Fig. 1. In the embedding proce

the image was initially encrypted by a block-based encryption approach.

Pr!r':.-rJ}':'I Primary
*| von-carrier [ ]
iz _ Trainad
Encryptzd J‘; Sub-block (| Lramed
image consiruction *| FCNN |-
Primary gix. ¥

classiﬁcali_ﬂn} Pix | carrier
c L

Pl V)

D, m
Data to re-embedded |—»

herping p DMarked
encrypted image

] Rz ¥
clazzification) 0.(%, )
Fig.1: F epresentation of data embedding
(a) Encryption process
Let G(x,y) represen image having a size of /] X K. The image G (x,y) is initially
grouped into sub-b having a size of 3 X 3. Thus, the total number of sub-blocks be
N, = ¢ key that is used to perform encryption. The key A= {A;, A,} has
two C . TheXey A; is used to perform the inter-block permutation process, while the

d tfoperform the intra-block permutation process.




Intra blocks permutation
_TW_ (Using key A,)

Inter blocks permutation
(Using key A;)

Fig. 2: Inter-block and intra-block permutation-based

In the proposed encryption process, two permutation process volved namely (i)

Inter-block permutation and (ii) intra-block permutation. In the inter-bloq@germutation process
N; number of random sequences between 1 and N, is gengaate
inter-block random sequence be represented by S;. With e gfudce S;, the position of each

block is shuftled. Let the sub-blocks after shuffli e reuuggtd as G,(x,y). In the intra-
t

block permutation, the key A, is used ber of intermediate keys using the

pseudo-random sequence whose values Cen 1 and 8. Using the intermediate keys the
pixels in the sub-blocks are scrambled to perN

2.

g intra-block permutation as illustrated in Fig.

(b) Data embedding

Let P(x,y) e image that was encrypted by the user (image that was

uploaded to the clog

each bl
he trfed FCNN categorizes the sub-blocks either as primary non-carriers
i

class 10
P&y T carriers P.(x,y). Let the 3 X 3 neighborhood pixels with center pixel h be
epresgied bY the matrix
91 92 Y3
A=19s h 95] &)
9de 97 UYs
From the neighbor pixels p = {g1, 95 .- - gs}, the predictor @ is estimated. The

proposed predictor is derived from the predictor ¢ used in [25] which has the following

age P(x,y) was partitioned into non-overlapping blocks where

3. Each sub-blocks are fed to the trained FCNN for primary

relations.



min(yy,¥2)  ¥1 = max(gs,¥2)

Predictor ¢ = {max(y;,¥2)  ¥1 = min(g;,¥>) @)
g7+ V2= 72 otherwise
Where’ V1; = l%J, and ]/2 = lm]

For the determination of the proposed predictor @, the pixels p = {g41, 92 --- --- Js} 1s sorted 4
ascending order. The sorted pixel sequence is represented as f = {by, by, b3, by, bs, bg, b,
After sorting, three different boundary values are estimated. The first boundary 6 5

estimated from the alternate sorted values starting from the first value b,

. (by+ b3+ bs+b)

R 3)
The second boundary value is estimated from the alternate sorted es started from the
second value b, ,

. (b+ by+ bg+bg)

P, = [Pt tetle) @)

The third boundary represents the media hi8@gan be estimated by

. byt
V3 = [( . (5)
Using the three boundaries 74, 7 73 the predictor can be estimated as,
17 V3 = max(¥y,¥2)
ax(,) V3 = min(yy, 72) (6)

V2 — 73 otherwise

t prediction error is estimated using the predictor ¢ and the centre

§=h—¢ (7

e erT: can be expanded using the relation,

25+ p if &€ (p,)
5§=325-p if 6€ (—,—p) (8)
D+ 28 if 6€(—p,p)

Here D represent the data and the embedding capacity can be controlled by the parameter p.

Utilizing the expanded error and the predictor value @, the marked pixel can be obtained as



h=¢+46 ©)
The primary carrier blocks P.(x, y) is used to embed the data D to obtain the data embedded
carrier blocks Q(x,y). The data-embedded carrier blocks @Q(x,y) is checked for

overflow/underflow. This overflow/underflow detection categorizes the data-embedded blocks

as secondary non-carriers Q,.(x,y) or secondary carriers Q.(x,y). The secondary carricg

overflow/underflow. The primary non-carrier blocks P,.(x,y), secondary non- carn ‘

Q,.c(x,y), and secondary carrier blocks Q.(x,y) are merged to obtain the ma

image. Eventhough, the secondary non-carriers also hold the secret dg ion, { ata
@ er loSgyon. The

\ lded in the marked

yhly reduced since

blocks does not have any overflow/underflow, while the secondary non-carrier blocks ha

embedded in this non-carrier are re-embedded (Data D;) in ayg
location map of secondary non-carrier blocks is compressed and
encrypted image. However, the number of location map informatiogajs
the majority of the non-carrier can be detected by the F ﬁits location map in the

extraction phase. Let the resultant marked encrypted ygga repisented as R(x, y).

(i) Data extraction process with Carrier

Bz

Marked R Sub-block
encrypted image | construgg

Primary | Bx.y)

Secondary Dnel(x¥)
fon-Carrier l
Secondary Dhata IR 2construction of
carrier |3 | exfraction enerypted image
RS

l By
Eeconstructad
encrypied image
Blx,v)
Fig. 3: Flow representation of data extraction

During the data extraction process, the cloud server will extract the data that was

embedded in the marked encrypted image and reconstruct the actual encrypted image which
was uploaded to the cloud by the user. The marked encrypted image R(x,y) is initially

partitioned into sub-blocks where each block has a size of 3 X 3. From the marked encrypted



image, the additional location map information regarding the secondary non-carriers is initially
extracted as illustrated in Fig. 3. The trained FCNN is utilized to classify the sub-blocks into
primary carrier and non-carrier classes. From the extracted location map information, the
secondary carrier blocks Q.(x,y), and secondary non-carrier blocks Q,,-(x, y) are identified.
The secondary non-carrier blocks Q,,.(x,y) which are identified by location map information
are not considered for data extraction, since it does not hold data. The data from the second

carrier blocks are extracted using the prediction error expansion approach using the pgagos

predictor provided in equation (6). Let the predictor estimated from the 3x3 sub-b
while h represents the marked center pixels. Using the predictor ¢ and ce PixN

expanded error can be estimated as

0=h—-¢
(10) /
Using the expanded error &, the hidden data D agtual center pixel h can be
reconstructed [28]. The same procedure is followe al ks to obtain the encrypted

h 4

Carrier/'non-
carrier label
generation Labels

L 4

I—Edder[ilaj.-'a's

Fig. 4: Flow diagram representation of training process in FCNN model.



For the training of the FCNN [29], the labels are initially generated. In the FCNN with sub-
block fully (FCNN-SF) approach the FCNN uses the number of input layers as 9, while in the
FCNN with predictor only (FCNN-PO) approach the FCNN uses the number of input layers as
8. In the FCNN-PO approach the pixels that are utilized for the predictor estimation are used
for training, while in the FCNN-SF approach the complete pixels in the 3X3 sub-blocks are
used for training. The labels are generated by embedding the trial data on the center pixels.
sub-block is considered to have carrier as label, if the block does not result in over oW
underflow while embedding trial 0’s and 1’s during data embedding. Conversely,

considered to have non-carrier as label if it results in overflow or underflow dug

-blocks as

1’s during data embedding. The FCNN is model is trained using the

he
the input and generated labels as the actual labels as illustrated in e FCNN input is

normalized between -1 to 1 before the actual training/ classification pr&g@ss. The pixel input x

(x—128)

to the input layer is normalized using the relation X = U results in both positive

and negative values. The proposed FCNN uses the LCL 10f function [30] which gives
. Th

equal weightage to both positive and negatiye val uses 2 hidden layers each

having 12 neurons in both the FCNN-SE

proach.

Linear region
(Right)
Cosine Region
(middle)

» Width oo,

Fig. 5: Representation of LCL activation function

The structure of the LCL activation function is illustrated in Fig. 5 which contains a cosine
region between two linear regions. Let &, and €z represents the amplitude or height of the
middle cosine and linear regions respectively. The width of the mid-cosine region is represented

as o,,. The output of the activation function y,..(x) for input x can be represented as



&nCOS <271' (0.75 + o;m)) —O0p S Xx <0y

Yace (%) = " (11)
“ ELRX + yact(am) — ELROm X > oy
ELRX + yact(_o-m) + ELROm X< —0np

The use of the LCL activation function bounds the values between -1 to 1 while training or
classifying the model. In the proposed approach the activation function uses the factors ¢

0.6, .g = 0.4 and a,,, = 0.6. The next section provides the experimental results of the FC

SF and FCNN-PO data hiding schemes.
3. Experimental Results
/ i

The images of these two databases are 8 bit grayscale images each ha asizeof 512 X 512.
Each dataset has 10,000 images, where a few sample images are i?at N
the carrier block, the FCNN is trained with 60% of s from each dataset. The

Two databases such as BOWS-2 [31] and Bossbase databases td for W@aluation.

o Fig. 6. To detect

remaining 40% of the images are used to test the carg tiogibrocess and the actual data

embedding. The tool MATLAB 2018a is ugg 1 ment ata embedding algorithm.

@

Fig. 6: Sample images used for analysis (a) Bows-2 dataset (b) Bossbase dataset



Let the true positives, false negatives, true negatives, and false positives be represented by the
variables pgy,, Prn, Pen and py, respectively. The performance of the proposed fully connected
network-based carrier detection process was evaluated using measures such as precision, recall,

and accuracy which can be estimated with the relations that are provided below,

.. p
Precision = —2 (1
PtptPfp

p

Recall = —2
PtptPfn
Pep+p

Accuracy = oo

PtptPtntPrp*TPfn

The performance of the proposed data hiding approach was eva h the parameters

O

namely structural similarity index measurement (SSIM), embedding r&@ and peak signal-to-

noise ratio (PSNR) that can be estimated using the following relatw

SSIM(P,R) = ~2& s (15)

encrypted image respectively, while p @ ¥ represents the mean of the encrypted and

marked encrypted image respectively.

Z
rate = <K (16)

Eg@be
In above equation Z repres% number of bits embedded and J X K represents the size

of the image

PSNR = 10l0g;o 2> (17)

s the mean square error estimated using the encrypted image P(x, y) and the

Wher se
marf @l en d image R(x,y) as
‘ T = e Skt D5 [P(6 ) — R(x, )] (18)



Fig. 7: Results obtained by the proposed approach in c3 ? ection on plain images (a)
Input images (b) Encrypted images (c) Carriers detegie @ [-SF (d) Carriers detected
by FCNN-
Fig. 7 illustrates the results obtained by tj @ bd a ach in detecting the carriers and the
»

non-carriers on the plain images withou

1on. The red color indication shows the non-

carrier blocks which are detected by the FC F and FCNN-PO approach. Both the FCNN-

SF and FCNN-PO approach al etect an equal number of non-carriers. This non-carrier
block indicates that these erflow or underflow if the data either 0 or 1 is
embedded.

N
v



Fig. 8: Results obtained during the prop oach (a) Input images (b) Encrypted images
(c) Carriers detected by FCNN-N@&(d) Carriers detected by FCNN-PO

Fig. 8 illustrates the results obtainggaby the prop®ed approach in detecting the carriers and the
non-carriers on the encrypted. ifla e red color indication shows the non-carrier blocks
that are detected by tho@ECNN- d FCNN-PO on the encrypted images. For this
es FCNN-SF and FCNN-PO the plain images are encrypted

implementation, in bg

O approach almost detect an equal number of non-carriers. This

tes that these blocks will overflow or underflow if the data either O or



- a302 4 99.4% - 52535 43 992%

: 18.3% Q1% 15% - 18.3% Q1% Q5%
] i
a L

o, 18 25545 99.9% (3] bl 25557 3%

3 0.1% B1.5% 01% 37w &1.8% ai%
3 3

M7 .9 359.8% 395 ] 39.68%

03% 01% hF- 055 1% ams

o n o .,
TargetClass TargetClass
Fig. 9: Confusion matrices obtained during the classification of carrier and g¥h-ca

Input image (b) FCNN-SF (c) FCNN-PO

Fig. 9 (b) and (c) show the confusion matrices obtained by th and FCNN-PO

schemes respectively in the classification of carrier and non-carrier. In confusion matrices

the class ‘0’ represents the non-carrier blocks while the class ‘1’ repynts tMe classified carrier

—+—— FCNN-SF
——<e—— FCNN-PO

o
o

Accuracy
o o
£ »

epochs

(b)

—+— FCNN-SF
———FCNN-PO| |

—+—— FCNN-SF
——o—— FCNN-PO

10 20 30 40 50
epochs epochs

(c) (d)



Fig. 10: Accuracy and loss comparison for the two approaches FCNN-SF and FCNN-PO
during the training process (a) Accuracy plot in Bossbase dataset (b) Loss plot in Bossbase
dataset (c) Accuracy plot in Bows-2 dataset (b) Loss plot in Bows-2 dataset

Fig. 10 illustrates the accuracy and loss curves obtained during the training of the model by the
FCNN-SF and FCNN-PO approaches. The FCNN model was trained with 50 epochs. The
accuracy and loss almost stabilize as the number of epochs reaches 25. The training accurag
obtained while training with the Bows-2 dataset is less than the Bossbase dataset. Also, the 1

obtained while training with the Bows-2 dataset is higher than the Bossbase dataset.

Table I: Performance comparison of the FCNN-SF and FCNN-PO sche n
classification of carrier and non-carrier.

Database Class __FCNN-SF . PO
Precision | Recall | Accuracy | Precisli ecall | Accuracy
Carrier 98.73 | 98.12 98.46 : 8.96 99.24
Bossbase | Non-carrier 98.23 | 98.04 98.54 , 74 99.01
Average 98.48 | 98.08 : 98.85 99.13
Carrier 98.21 | 97.96 p.76 | 98.43 98.74
Bows-2 | Non-carrier 98.01 | 97.58 54 | 98.26 98.43
Average 98.11 98.65 | 98.35 98.59

dl

of the FCNN-SF and FCNN-PO schemes in
ation of the FCNN-SF, the FCNN model is

Table I illustrates the performance com
detecting the carrier and non-carrier. For the €%
trained with the complete subJ#foc efore and after embedding the data. Therefore, the
performance was evaluated

The FCNN-SF approach r

omyfete sub-block before and after embedding the data.

ts in an average precision, recall, and accuracy of 98.48%,

ults in an average precision, recall, and accuracy of 99.04%, 98.85%, and
pectively when evaluated using the Bossbase dataset. The same approach results in
, recall, and accuracy of 98.65%, 98.35%, and 98.59% respectively when evaluated
using the Bows-2 dataset.



# FCNN-SF (Carrier) FCNN-SF (Non-Carrier) 98.8
FCNN-PO (Carrier) FCNN-PO (Non-Carrier)

99.2
98.7

§os2

97.7

97.4 = = =
Accuracy Precision Recall Accuracy

97.2
Precision

Fig.11: Performance comparison for the proposed schemes FCNN-SF and FCNN-
classification of carrier and non-carrier (a) Bossbase database (b) Bows-2

Fig. 11 illustrates the graphical comparison of the proposed schemes F
approach in both the Bossbase and Bows-2 dataset. The FCNN-Pg#pproag
Ossbase dataset. The

0.54%, 0.58%,

precision, recall, and accuracy of 0.56%, 0.77%, 0.63% respectively
FCNN-PO approach results in higher precision, recall, and a?c
0.45% respectively in Bows-2 dataset.

Table II: Performance comparison of FCNN-SF a -POgbproach with recent data-

Methods PSNR (dB) | ER (bpp)
Efficient prediction [16] 60.84 1.42
EPE approach [1 55.63 1.81
Binary tree [1 0.9871 | 51.36 1.92
0.9892 |53.47 1.93

0.9921 [57.81 1.7

0.9915 |[55.82 1.95
0.9929 |58.97 1.99
0.9923 |[58.42 1.98
CNN-PO (BossBase) | 0.9931 | 59.01 1.99
NN-PO (Bows-2) 0.9926 |58.86 1.97

arison interms of SSIM, PSNR, and ER for the proposed approach was made with
data hiding schemes such as efficient prediction [16], EPE approach [17], Binary tree
[13], Extended Run-length [12], Recursive RDH [33], and CNN-predictor approach [25]. The
data was embedded by selecting the carrier using the two proposed carrier selection processes
namely FCNN-SF and FCNN-PO. The performance of the proposed FCNN-PO is better when
compared to the FCNN-SF approach in both the Bossbase and Bows-2 datasets as illustrated



in Table II. In case of the BossBase dataset, the FCNN-PO results in SSIM, PSNR, and
embedding rates of 0.9931, 59.01dB and 1.99bpp respectively. In case of the Bows-2 dataset,
the FCNN-PO results in SSIM, PSNR, and embedding rate of 0.9926, 58.86dB, and 1.97bpp
respectively. The proposed FCNN-PO approach results in higher performance than the
traditional schemes including the FCNN-SF approach.

80
—*— FCNN-SF (BossBase)
;‘ —%—— FCNN-SF (Bows-2)
75 1 FCNN-PO (BossBase) | |
—*—— FCNN-PO (Bows-2)

Fig. 12 illustrates the variatio different embedding rates between 0.02bpp to 2bpp.
As the bpp is increased, thQ@SNR lly reduces in both the approaches namely FCNN-SF
and FCNN-PO. Thi
dataset. While co

tCNQkic 1S almost linear in using both the BossBase and Bows-2
FCNN-SF and FCNN-PO schemes, the FCNN-PO approach

ormance at different embedding rates.

Ty em>and T .., be the time of classification, data embedding, and location
mapQube Qg respectively during the data embedding process. Thus, the total time during

emb@ing phase is
Ttem = Teem + Taem + Trem (19)

Let T, ox, Tgex, and Ty ey, be the time of classification, data extraction, and location
map extraction respectively during the data extraction process. Thus, the total time during the

extraction phase is



Tt,ex = Tc,ex + Td,ex + Tl,ex (20)

Table III: Time complexity of the schemes FCNN-SF and FCNN-PO

Time complexity (s)

Dataset Scheme Embedding phase Extraction phase

Tc,em Td,em Tl,em Tt,em Tc,ex Tl,ex Td,ex Tt,e

FCNN-SF | 0478 | 0.597 | 0397 | 1.472 | 0.416 | 0.423 | 0.341

Bossbase

FCNN-PO | 0.517 | 0.623 | 0.439 | 1.579 | 0.452 | 0.463

FCNN-SF | 0.493 | 0.612 0.413 1.518 | 0.431
Bows-2

FCNN-PO | 0.526 | 0.647 | 0.451 | 1.624 | 0.4 1.382

Table III illustrates the time complexity comparison of the proposed gypr&@gh when evaluated
ding phase by the FCNN-
SF and FCNN-PO approach when evaluated in the Bogsb tasj is estimated as 1.472s and
se e FCNN-SF and FCNN-PO

using the Bossbase and Bows-2 datasets. The total time i

1.518s respectively. The total time in the ¢ 0 a
approach when evaluated in the Bossba, @ esti d as 1.18s and 1.302s respectively.
In both the Bossbase and Bows-2 datasctSg@adF CNN-PO approach has a higher computation

time than the FCNN-SF approach as illustrateSqa Fig. 13.
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m FCNN-SF (Bosshase) ® FCNN-PO (Bosshase) ® FCNN-SF (Bows-2) ® FCNN-PO (Bows-2)

Fig.13: Graphical comparison of time complexity in proposed data embedding

Even though the FCNN-PO approach provides a higher computation time, its performance is

higher in both the Bossbase and Bows-2 datasets.




4. Conclusion

The work proposed a data hiding approach along with a carrier/ non-carrier detection process.
Two different carrier detection process namely FCNN-SF and FCNN-PO are proposed that
uses fully connected neural networks. The FCNN-SF differentiates the carrier and non-carrier

blocks with the complete information from the sub-block including the pixel in which the dat,

is embedded. The FCNN-PO uses only the predictor pixels without considering the pixel t

ccall, and accuracy

of 98.48%, 98.08%, and 98.50% respectively, while the FCNN?b d carrier detection
gl

results in precision, recall, and accuracy of 99.04%, 9 3% respectively when
evaluated in Bossbase dataset. In the process of data hi ¢ @CNN-PO results in SSIM,

PSNR, and embedding rate of 0.9931, 59.01dB, an:

99
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