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Abstract 

The work proposes a fully connected neural network (FCNN) based approach for 

detecting the Carrier blocks for embedding the data in encrypted images in the cloud network. 

In a data embedding process, the determination of non-carrier pixels that provide underflow 

and overflow during the data embedding process plays a major role. The location map for the 

non-carrier blocks is usually compressed and embedded in the encrypted image along with the 

hidden data. The embedding rate and peak signal-to-noise ratio (PSNR) are limited due to the 

storage of huge location map information on the image. Therefore, the proposed approach uses 

the FCNN network to detect the Carrier blocks /non-carrier blocks which highly minimizes the 

additional location map information to be embedded. In the embedding phase, a trained FCNN 

network is utilized to detect the carrier blocks, in which the FCNN network is trained with the 

labels that are generated by trial 0’s and 1’s embedding process. Two approaches are utilized 

in training the FCNN that includes FCNN with predictor only (FCNN-PO) and FCNN with 

sub-block fully (FCNN-SF) schemes in detecting the carrier blocks. In the extraction phase, 

the same FCNN model is used to detect the carrier blocks from which the data and actual 

encrypted image can be reconstructed. The performance of the carrier detection process was 

evaluated using measures such as precision, recall, and accuracy, while the data hiding process 

was evaluated using measures such as structural similarity index measurement (SSIM), PSNR, 

and embedding rate. The FCNN-PO carrier/non-carrier classification process results in an 

average accuracy of 98.59% in detecting the carrier while providing an SSIM, PSNR, and 

embedding rate of 0.9926, 58.86dB and 1.97bpp respectively during the data embedding 

process when evaluated using the Bows-2 dataset.   

Keywords: Data Hiding, fully connected neural network, image encryption, embedding rate, 

prediction error expansion.  
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1. Introduction 

The enhanced storage capacity of cloud computing [1] has drawn a number of consumers 

and researchers. Nevertheless, there are a number of issues with cloud storage, such as integrity, 

secrecy, and authentication. Data encryption [2] and data hiding [3] are employed to address 

these issues. The pixel content is altered by the data embedding process in order to hold the 

hidden material. Through the creation of a cipher picture, data encryption is employed which 

preserves the content of the plain image. 

Schemes like difference expansion [4], integer transform [5], prediction error expansion 

[6], and histogram shifting [7] are the foundation of the widely used reversible data embedding 

technique. After data extraction, the original image cannot be recreated in the non-reversible 

approach [8], but in the reversible data hiding approach [9], both the carrier image and the 

hidden data can be recreated without any modifications. Before uploading the picture to the 

cloud, the user usually encrypts it to protect its privacy content. To stop an unauthorized 

individual from seeing the actual image content, partial or full encryption can be employed.  In 

the patch level representation [10], the original image is transformed into sparse coefficients 

based on a dictionary, providing an adequate amount of carrier for embedding the data. For the 

residual errors to be embedded, this method necessitates the use of an extra reversible data-

hiding strategy. 

Zhang et al. [11] developed two data embedding approaches in which a public 

cryptosystem is used to encrypt the images based on their homomorphic and probabilistic 

features. This approach uses non-reversible and reversible embedding mechanisms. In the 

reversible method, the homomorphic cryptosystem is utilized to encrypt the final image after 

the histogram has first been reduced. The non-reversible method uses multilayer wet paper 

coding for embedding the data on the image which was initially encrypted. From the image's 

most significant bit (MSB) planes, the block-based MSB plain rearrangement technique [12] 

calculates the highly compressible bit streams, where the author Yi et al. suggested parametric 

binary tree labeling [13], in which the data is encoded in discrete encrypted pieces. 

Two general categories can be used to categorize the process of maintaining the private 

content of an image: reserving a room before encryption (RRBE) and vacating the room after 

encryption (VRAE). According to the RRBE technique [14], the picture owner must preprocess 

the image so that encryption can take place after that some space has been left for data 

embedding. However, the owner of the VRAE technique [15], can upload the image to the 
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cloud and encrypt it without performing any additional pre-processing. To conceal the data, the 

cloud might alter the encrypted picture. The RRBE strategy can produce a higher payload than 

the VRAE approach, however, it necessitates an extra preprocessing step that adds to the 

workload for the owner of the image.  

Ma et al. [14] presented the RRBE scheme for the first time. This method is based on 

the reversible data hiding technique known as histogram shifting, in which a blank space is 

produced in order to incorporate a small number of pixels least significant bits (LSB). While 

the remaining areas are encrypted and sent to the cloud, the unoccupied space is left intact. This 

method yields an embedding rate of 0.5bpp and uses the unoccupied region to conceal the 

secret data. Puyang et al. [15] used a second MSB plane in addition to the first MSB plane for 

data embedding, modifying the predictor used in [16]. An average payload of 1.35bpp is 

provided by this method. Puteaux et al. [17] employ the bit planes iteratively from MSB to 

LSB, resulting in an average embedding rate of 1.84bpp. When compared to a difference 

expansion strategy established by Tian et al. [18], the performance of the prediction error 

expansion proposed by Thodi et al. [19] delivers a superior performance.  

Ou et al. [20] introduced the two-dimensional (2D) prediction error histogram (PEH) 

and the one-dimensional (1D) prediction error histogram with the 2D approach offering a better 

correlation between the prediction errors. 2D-PEH and 1D-PEH were merged by the author 

Zhang et al. [21] to create an effective map for data embedding. According to Li et al. [22], the 

picture pixel is divided into two areas: the flat area and the rough region. The flat area can 

embed two bits per pixel, while the rough area can embed one bit per pixel. The prediction 

value [23] is estimated by averaging four neighboring pixels, which enhances the quality of the 

marked image. The histogram's prediction error is shifted to the right and left, producing a 

number of zero and peak spots. Because of this, a higher capacity is achieved when histogram 

shifting and prediction error expansion are combined [24].  

The scheme [25] uses different predictors in embedding the data. However, a 

Convolutional neural network model (CNN) was utilized to choose the best predictor, in which 

the CNN model was trained by embedding the trial data using different predictors. An adaptive 

approach [26] was used with a block embedding process that increases the Laplacian type 

distribution in data embedding. To improve the correlation between the intra block the 

encryption was done by a bit plane selection approach which improve the performance to a 

certain extent. The data was embedded in a hierarchical approach [27] that classifies the pixels 
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of the image based on multiple linear regression. However, this approach results in huge 

location map information which is compressed and embedded in the encrypted image. 

Most of the data embedding approaches that are discussed above do not uses a artificial 

intelligence based carrier and non-carrier detection approach that pre-determines the carrier 

blocks for embedding the data. The carrier and non-carrier blocks are only detected after 

embedding the data, which results in a huge location map information. Therefore, the proposed 

approach uses a fully connected neural network to pre-determine the carrier blocks before the 

actual embedding process. This further facilitate to pre-determine the carrier blocks during the 

data extraction process in which the data is embedded. Detection of carrier and non-carrier 

without the use of location map information will highly reduce the computational burden of 

the data-hiding process while improving the embedding rate. 

The contributions of the work are mentioned below 

(i) The work proposes a fully connected neural network (FCNN) based carrier and non-

carrier classification approach which facilitate to pre-determine the carrier blocks 

before the actual embedding process. 

(ii) Two different types of carriers and non-carrier classification approaches namely 

FCNN with sub-block fully (FCNN-SF) and FCNN with predictor only (FCNN-

PO) were proposed to detect the carrier blocks. 

(iii) The approach uses a prediction error expansion approach to embed the data, while 

in the extraction phase, the carrier is again detected using either the same FCNN-

SF or FCNN-PO approach. 

(iv)  A block-based approach is utilized in the encryption/decryption process, where the 

classification process involved in the proposed approach was evaluated with the 

metrics recall, precision, and accuracy. The embedding process involved in the 

proposed approach was evaluated with the measures namely, SSIM, embedding 

rate, and PSNR with the datasets namely BOWS-2 and Bossbase. 

The upcoming sections of the paper are structured as follows. A detailed description of the 

proposed approach is presented in Section 2, while the experimental results of the proposed 

scheme are provided in Section 3. Finally, the conclusion is framed in Section 4. 

2. Proposed method 
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The three major steps involved in the proposed data embedding approach are (i) the Data 

embedding process with Carrier detection, (ii) the Data extraction process with carrier 

detection, and (iii) the Training process of FCNN with label generation.  

 2.1 Data embedding process with Carrier detection 

The illustration of the data embedding process is shown in Fig. 1. In the embedding process, 

the image was initially encrypted by a block-based encryption approach.   

 

Fig.1: Flow representation of data embedding  

(a) Encryption process 

Let 𝐺(𝑥, 𝑦) represents the actual image having a size of 𝐽 × 𝐾. The image 𝐺(𝑥, 𝑦) is initially 

grouped into sub-blocks each having a size of 3 × 3. Thus, the total number of sub-blocks be 

𝑁𝑡 =
𝐽×𝐾

9
. Let ∆ represent the key that is used to perform encryption. The key ∆= {∆1, ∆2} has 

two components. The key ∆1 is used to perform the inter-block permutation process, while the 

key ∆2 is used to perform the intra-block permutation process. 
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Fig. 2: Inter-block and intra-block permutation-based encryption 

In the proposed encryption process, two permutation processes are involved namely (i) 

Inter-block permutation and (ii) intra-block permutation. In the inter-block permutation process 

𝑁𝑡 number of random sequences between 1 and 𝑁𝑡 is generated utilizing the key ∆1. Let the 

inter-block random sequence be represented by 𝑆1. With the sequence 𝑆1, the position of each 

block is shuffled. Let the sub-blocks after shuffling be represented as 𝐺1(𝑥, 𝑦). In the intra-

block permutation, the key ∆2 is used to derive 𝑁𝑡 number of intermediate keys using the 

pseudo-random sequence whose values lie between 1 and 8. Using the intermediate keys the 

pixels in the sub-blocks are scrambled to perform intra-block permutation as illustrated in Fig. 

2.    

(b) Data embedding 

Let 𝑃(𝑥, 𝑦) represents the image that was encrypted by the user (image that was 

uploaded to the cloud). The image 𝑃(𝑥, 𝑦) was partitioned into non-overlapping blocks where 

each block has size of 3 × 3. Each sub-blocks are fed to the trained FCNN for primary 

classification, the trained FCNN categorizes the sub-blocks either as primary non-carriers 

𝑃𝑛𝑐(𝑥, 𝑦)or primary carriers 𝑃𝑐(𝑥, 𝑦). Let the 3 × 3 neighborhood pixels with center pixel ℎ be 

represented by the matrix  

𝜆 = [

𝑔1 𝑔2 𝑔3
𝑔4 ℎ 𝑔5
𝑔6 𝑔7 𝑔8

]      (1) 

From the neighbor pixels 𝑝 = {𝑔1, 𝑔2……𝑔8}, the predictor �̂� is estimated. The 

proposed predictor is derived from the predictor 𝜑 used in [25] which has the following 

relations. 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝜑 = {

min(𝛾1, 𝛾2)         𝛾1 ≥ max(𝑔7, 𝛾2)

max(𝛾1, 𝛾2)         𝛾1 ≥ min(𝑔7, 𝛾2)
𝑔7 + 𝛾2−𝛾2                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2) 

Where, 𝛾1, = ⌊
(𝑔1+ 𝑔2+𝑔3)

3
⌋, and 𝛾2 = ⌊

(𝑔4+ 𝑔5+ 𝑔6)

3
⌋      

For the determination of the proposed predictor �̂�, the pixels 𝑝 = {𝑔1, 𝑔2……𝑔8} is sorted in 

ascending order. The sorted pixel sequence is represented as 𝑓 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8}. 

After sorting, three different boundary values are estimated. The first boundary values are 

estimated from the alternate sorted values starting from the first value 𝑏1 

𝛾1 = ⌊
(𝑏1+ 𝑏3+ 𝑏5+𝑏7)

4
⌋      (3) 

The second boundary value is estimated from the alternate sorted values started from the 

second value 𝑏2 

𝛾2 = ⌊
(𝑏2+ 𝑏4+ 𝑏6+𝑏8)

4
⌋      (4) 

The third boundary represents the median values which can be estimated by 

𝛾3 = ⌊
( 𝑏4+ 𝑏5)

2
⌋       (5) 

Using the three boundaries 𝛾1, 𝛾2 and 𝛾3 the predictor can be estimated as, 

 �̂� = {

min(𝛾1, 𝛾2)         �̂�3 ≥ max(𝛾1, 𝛾2)

max(�̂�1, 𝛾2)         𝛾3 ≥ min(𝛾1, 𝛾2)
𝛾1 + 𝛾2 − 𝛾3                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (6) 

During the data embedding the prediction error is estimated using the predictor �̂� and the centre 

pixel ℎ as, 

𝛿 = ℎ − �̂�      (7) 

The error 𝛿 can be expanded using the relation, 

𝛿 = {

2𝛿 + 𝜌               𝑖𝑓   𝛿 ∈ (𝜌,∞) 
2𝛿 − 𝜌          𝑖𝑓   𝛿 ∈ (−∞,−𝜌)
𝐷 + 2𝛿             𝑖𝑓   𝛿 ∈ (−𝜌, 𝜌)

    (8) 

Here 𝐷 represent the data and the embedding capacity can be controlled by the parameter 𝜌. 

Utilizing the expanded error and the predictor value �̂�, the marked pixel can be obtained as  

Auth
ors

 Pre-
Proo

f



ℎ̂ = �̂� + 𝛿      (9) 

The primary carrier blocks 𝑃𝑐(𝑥, 𝑦) is used to embed the data 𝐷 to obtain the data embedded 

carrier blocks 𝑄(𝑥, 𝑦). The data-embedded carrier blocks 𝑄(𝑥, 𝑦) is checked for 

overflow/underflow. This overflow/underflow detection categorizes the data-embedded blocks 

as secondary non-carriers 𝑄𝑛𝑐(𝑥, 𝑦) or secondary carriers 𝑄𝑐(𝑥, 𝑦). The secondary carrier 

blocks does not have any overflow/underflow, while the secondary non-carrier blocks have 

overflow/underflow. The primary non-carrier blocks 𝑃𝑛𝑐(𝑥, 𝑦), secondary non-carriers blocks 

𝑄𝑛𝑐(𝑥, 𝑦), and secondary carrier blocks 𝑄𝑐(𝑥, 𝑦) are merged to obtain the marked encrypted 

image. Eventhough, the secondary non-carriers also hold the secret data information, the data 

embedded in this non-carrier are re-embedded (Data 𝐷1) in another carrier location. The 

location map of secondary non-carrier blocks is compressed and embedded in the marked 

encrypted image. However, the number of location map information is highly reduced since 

the majority of the non-carrier can be detected by the FCNN without its location map in the 

extraction phase. Let the resultant marked encrypted image be represented as 𝑅(𝑥, 𝑦). 

(ii) Data extraction process with Carrier detection 

 

Fig. 3: Flow representation of data extraction  

During the data extraction process, the cloud server will extract the data that was 

embedded in the marked encrypted image and reconstruct the actual encrypted image which 

was uploaded to the cloud by the user. The marked encrypted image �̂�(𝑥, 𝑦) is initially 

partitioned into sub-blocks where each block has a size of 3 × 3. From the marked encrypted 
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image, the additional location map information regarding the secondary non-carriers is initially 

extracted as illustrated in Fig. 3. The trained FCNN is utilized to classify the sub-blocks into 

primary carrier and non-carrier classes. From the extracted location map information, the 

secondary carrier blocks �̂�𝑐(𝑥, 𝑦), and secondary non-carrier blocks �̂�𝑛𝑐(𝑥, 𝑦) are identified. 

The secondary non-carrier blocks  �̂�𝑛𝑐(𝑥, 𝑦) which are identified by location map information 

are not considered for data extraction, since it does not hold data. The data from the secondary 

carrier blocks are extracted using the prediction error expansion approach using the proposed 

predictor provided in equation (6). Let the predictor estimated from the 3x3 sub-blocks be �̂�, 

while ℎ̂ represents the marked center pixels. Using the predictor �̂� and center pixel ℎ̂, the 

expanded error can be estimated as  

𝛿 = ℎ̂ − �̂�      

 (10) 

Using the expanded error 𝛿, the hidden data 𝐷 and the actual center pixel ℎ can be 

reconstructed [28]. The same procedure is followed in all sub-blocks to obtain the encrypted 

image and the complete data 𝐷. The reconstructed encrypted image �̂�(𝑥, 𝑦) is decrypted using 

the same inter-intra permutation approach to obtain the actual image by the user. The same key 

∆ must be used in the decryption process for the exact reconstruction of plain image. 

(iii) Training process of FCNN with label generation 

 

Fig. 4: Flow diagram representation of training process in FCNN model. 
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For the training of the FCNN [29], the labels are initially generated. In the FCNN with sub-

block fully (FCNN-SF) approach the FCNN uses the number of input layers as 9, while in the 

FCNN with predictor only (FCNN-PO) approach the FCNN uses the number of input layers as 

8. In the FCNN-PO approach the pixels that are utilized for the predictor estimation are used 

for training, while in the FCNN-SF approach the complete pixels in the 3×3 sub-blocks are 

used for training. The labels are generated by embedding the trial data on the center pixels. The 

sub-block is considered to have carrier as label, if the block does not result in overflow or 

underflow while embedding trial 0’s and 1’s during data embedding. Conversely, the block is 

considered to have non-carrier as label if it results in overflow or underflow during trial 0’s and 

1’s during data embedding. The FCNN is model is trained using the pixels of the sub-blocks as 

the input and generated labels as the actual labels as illustrated in Fig. 4.  The FCNN input is 

normalized between -1 to 1 before the actual training/ classification process. The pixel input 𝑥 

to the input layer is normalized using the relation �̂� =
(𝑥−128)

128
 which results in both positive 

and negative values. The proposed FCNN uses the LCL activation function [30] which gives 

equal weightage to both positive and negative values. The FCNN uses 2 hidden layers each 

having 12 neurons in both the FCNN-SF and FCNN-PO approach.  

 

Fig. 5: Representation of LCL activation function 

The structure of the LCL activation function is illustrated in Fig. 5 which contains a cosine 

region between two linear regions. Let 𝜀𝑚 and 𝜀𝐿𝑅 represents the amplitude or height of the 

middle cosine and linear regions respectively. The width of the mid-cosine region is represented 

as 𝜎𝑚. The output of the activation function 𝑦𝑎𝑐𝑡(𝑥) for input 𝑥 can be represented as 
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𝑦𝑎𝑐𝑡(𝑥) =

{
 
 

 
 𝜀𝑚𝑐𝑜𝑠 (2𝜋 (0.75 +

0.25𝑥

𝜎𝑚
))     − 𝜎𝑚 ≤ 𝑥 ≤ 𝜎𝑚

𝜀𝐿𝑅𝑥 + 𝑦𝑎𝑐𝑡(𝜎𝑚) − 𝜀𝐿𝑅𝜎𝑚                       𝑥 > 𝜎𝑚
𝜀𝐿𝑅𝑥 + 𝑦𝑎𝑐𝑡(−𝜎𝑚) + 𝜀𝐿𝑅𝜎𝑚                  𝑥 < −𝜎𝑚

             (11) 

The use of the LCL activation function bounds the values between -1 to 1 while training or 

classifying the model. In the proposed approach the activation function uses the factors 𝜀𝑚 =

0.6, 𝜀𝐿𝑅 = 0.4 and 𝜎𝑚 = 0.6. The next section provides the experimental results of the FCNN-

SF and FCNN-PO data hiding schemes. 

3. Experimental Results 

Two databases such as BOWS-2 [31] and Bossbase databases [32] are used for evaluation. 

The images of these two databases are 8 bit grayscale images each having a size of 512 × 512. 

Each dataset has 10,000 images, where a few sample images are illustrated in Fig. 6. To detect 

the carrier block, the FCNN is trained with 60% of the images from each dataset. The 

remaining 40% of the images are used to test the carrier detection process and the actual data 

embedding. The tool MATLAB 2018a is used to implement the data embedding algorithm. 

 

 (a) 

 

 (b) 

Fig. 6: Sample images used for analysis (a) Bows-2 dataset (b) Bossbase dataset 
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Let the true positives, false negatives, true negatives, and false positives be represented by the 

variables 𝜌𝑡𝑝, 𝜌𝑓𝑛, 𝜌𝑡𝑛 and 𝜌𝑓𝑝 respectively. The performance of the proposed fully connected 

network-based carrier detection process was evaluated using measures such as precision, recall, 

and accuracy which can be estimated with the relations that are provided below, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝜌𝑡𝑝

𝜌𝑡𝑝+𝜌𝑓𝑝
                (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝜌𝑡𝑝

𝜌𝑡𝑝+𝜌𝑓𝑛
                (13) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝜌𝑡𝑝+𝜌𝑡𝑛

𝜌𝑡𝑝+𝜌𝑡𝑛+𝜌𝑓𝑝+𝜌𝑓𝑛
               (14) 

The performance of the proposed data hiding approach was evaluated with the parameters 

namely structural similarity index measurement (SSIM), embedding rate, and peak signal-to-

noise ratio (PSNR) that can be estimated using the following relations. 

𝑆𝑆𝐼𝑀(𝑃, 𝑅) =
(2𝜎𝑃,𝑅+𝜔1)(2𝜇𝑃𝜇𝑅+𝜔2)

(𝜎𝑃
2+𝜎𝑅

2+𝜔1)(𝜇𝑃
2+𝜇𝑅

2+𝜔2)
              (15) 

In the above equation of SSIM 𝜎𝑃
2 and 𝜎𝑅

2 represents the variance of the encrypted and marked 

encrypted image respectively, while 𝜇𝑃 and 𝜇𝑅 represents the mean of the encrypted and 

marked encrypted image respectively. 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑍

𝐽×𝐾
               (16) 

In above equation 𝑍 represents the total number of bits embedded and 𝐽 × 𝐾 represents the size 

of the image 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
2552

𝜏
               (17) 

Where 𝜏 resembles the mean square error estimated using the encrypted image 𝑃(𝑥, 𝑦) and the 

marked encrypted image 𝑅(𝑥, 𝑦) as 

𝜏 =
1

𝐽×𝐾
∑ ∑ [𝑃(𝑥, 𝑦) − 𝑅(𝑥, 𝑦)]𝐾

𝑦=1
𝐽
𝑥=1              (18) Auth
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Fig. 7: Results obtained by the proposed approach in carrier detection on plain images (a) 

Input images (b) Encrypted images (c) Carriers detected by FCNN-SF (d) Carriers detected 

by FCNN-PO 

Fig. 7 illustrates the results obtained by the proposed approach in detecting the carriers and the 

non-carriers on the plain images without encryption. The red color indication shows the non-

carrier blocks which are detected by the FCNN-SF and FCNN-PO approach. Both the FCNN-

SF and FCNN-PO approach almost detect an equal number of non-carriers. This non-carrier 

block indicates that these blocks will overflow or underflow if the data either 0 or 1 is 

embedded.  
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Fig. 8: Results obtained during the proposed approach (a) Input images (b) Encrypted images 

(c) Carriers detected by FCNN-SF (d) Carriers detected by FCNN-PO 

Fig. 8 illustrates the results obtained by the proposed approach in detecting the carriers and the 

non-carriers on the encrypted images. The red color indication shows the non-carrier blocks 

that are detected by the FCNN-SF and FCNN-PO on the encrypted images. For this 

implementation, in both the schemes FCNN-SF and FCNN-PO the plain images are encrypted 

with the same key to compare the location of the FCNN-SF and FCNN-PO non-carriers.  Both 

the FCNN-SF and FCNN-PO approach almost detect an equal number of non-carriers. This 

non-carrier block indicates that these blocks will overflow or underflow if the data either 0 or 

1 is embedded. 
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Fig. 9: Confusion matrices obtained during the classification of carrier and non-carrier (a) 

Input image (b) FCNN-SF (c) FCNN-PO 

Fig. 9 (b) and (c) show the confusion matrices obtained by the FCNN-SF and FCNN-PO 

schemes respectively in the classification of carrier and non-carrier. In this confusion matrices 

the class ‘0’ represents the non-carrier blocks while the class ‘1’ represents the classified carrier 

blocks. 

  
(a)             (b) 

 

(c)            (d) 
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Fig. 10: Accuracy and loss comparison for the two approaches FCNN-SF and FCNN-PO 

during the training process (a) Accuracy plot in Bossbase dataset (b) Loss plot in Bossbase 

dataset (c) Accuracy plot in Bows-2 dataset (b) Loss plot in Bows-2 dataset 

Fig. 10 illustrates the accuracy and loss curves obtained during the training of the model by the 

FCNN-SF and FCNN-PO approaches. The FCNN model was trained with 50 epochs. The 

accuracy and loss almost stabilize as the number of epochs reaches 25. The training accuracy 

obtained while training with the Bows-2 dataset is less than the Bossbase dataset. Also, the loss 

obtained while training with the Bows-2 dataset is higher than the Bossbase dataset.  

Table I: Performance comparison of the FCNN-SF and FCNN-PO schemes in the 

classification of carrier and non-carrier. 

Database Class 
FCNN-SF FCNN-PO 

Precision Recall Accuracy Precision Recall Accuracy 

Bossbase 

Carrier 98.73 98.12 98.46 99.12 98.96 99.24 

Non-carrier 98.23 98.04 98.54 98.96 98.74 99.01 

Average 98.48 98.08 98.50 99.04 98.85 99.13 

Bows-2 

Carrier 98.21 97.96 98.37 98.76 98.43 98.74 

Non-carrier 98.01 97.58 97.91 98.54 98.26 98.43 

Average 98.11 97.77 98.14 98.65 98.35 98.59 

 

Table I illustrates the performance comparison of the FCNN-SF and FCNN-PO schemes in 

detecting the carrier and non-carrier. For the evaluation of the FCNN-SF, the FCNN model is 

trained with the complete sub-blocks before and after embedding the data. Therefore, the 

performance was evaluated on the complete sub-block before and after embedding the data. 

The FCNN-SF approach results in an average precision, recall, and accuracy of 98.48%, 

98.08%, and 98.50% respectively when evaluated using Bossbase dataset. The same approach 

results in precision, recall, and accuracy of 98.11%, 97.77%, and 98.14% respectively using 

Bows-2 dataset. For the evaluation of the FCNN-PO approach, the FCNN model is trained with 

only the predictor pixels without including the pixel in which the data is embedded. The FCNN-

PO approach results in an average precision, recall, and accuracy of 99.04%, 98.85%, and 

99.13% respectively when evaluated using the Bossbase dataset. The same approach results in 

precision, recall, and accuracy of 98.65%, 98.35%, and 98.59% respectively when evaluated 

using the Bows-2 dataset.  Auth
ors
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(a)                 (b) 

Fig.11: Performance comparison for the proposed schemes FCNN-SF and FCNN-PO in the 

classification of carrier and non-carrier (a) Bossbase database (b) Bows-2 database 

Fig. 11 illustrates the graphical comparison of the proposed schemes FCNN-SF and FCNN-PO 

approach in both the Bossbase and Bows-2 dataset. The FCNN-PO approach results in higher 

precision, recall, and accuracy of 0.56%, 0.77%, 0.63% respectively in Bossbase dataset. The 

FCNN-PO approach results in higher precision, recall, and accuracy of 0.54%, 0.58%, 

0.45% respectively in Bows-2 dataset. 

Table II: Performance comparison of FCNN-SF and FCNN-PO approach with recent data-

hiding approaches 

Methods SSIM PSNR (dB) ER (bpp) 

Efficient prediction [16] 0.9988 60.84 1.42 

EPE approach [17] 0.9909 55.63 1.81 

Binary tree [13] 0.9871 51.36 1.92 

Extended Run-length 

[12] 
0.9892 53.47 1.93 

Recursive RDH [33] 0.9921 57.81 1.7 

CNN-Predictor [25] 0.9915 55.82 1.95 

FCNN-SF (BossBase) 0.9929 58.97 1.99 

FCNN-SF (Bows-2) 0.9923 58.42 1.98 

FCNN-PO (BossBase) 0.9931 59.01 1.99 

FCNN-PO (Bows-2)  0.9926 58.86 1.97 

 

The comparison interms of SSIM, PSNR, and ER for the proposed approach was made with 

other data hiding schemes such as efficient prediction [16], EPE approach [17], Binary tree 

[13], Extended Run-length [12], Recursive RDH [33], and CNN-predictor approach [25]. The 

data was embedded by selecting the carrier using the two proposed carrier selection processes 

namely FCNN-SF and FCNN-PO. The performance of the proposed FCNN-PO is better when 

compared to the FCNN-SF approach in both the Bossbase and Bows-2 datasets as illustrated 
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in Table II. In case of the BossBase dataset, the FCNN-PO results in SSIM, PSNR, and 

embedding rates of 0.9931, 59.01𝑑𝐵 and 1.99𝑏𝑝𝑝 respectively. In case of the Bows-2 dataset, 

the FCNN-PO results in SSIM, PSNR, and embedding rate of 0.9926, 58.86dB, and 1.97𝑏𝑝𝑝 

respectively. The proposed FCNN-PO approach results in higher performance than the 

traditional schemes including the FCNN-SF approach.  

 

 

Fig.12: Variation of PSNR at different embedding rates for the proposed two approaches 

FCNN-SF and FCNN-PO 

Fig. 12 illustrates the variation of PSNR at different embedding rates between 0.02bpp to 2bpp. 

As the bpp is increased, the PSNR gradually reduces in both the approaches namely FCNN-SF 

and FCNN-PO. This characteristic is almost linear in using both the BossBase and Bows-2 

dataset. While comparing the FCNN-SF and FCNN-PO schemes, the FCNN-PO approach 

results in higher PSNR performance at different embedding rates.  

Let 𝑇𝑐,𝑒𝑚, 𝑇𝑑,𝑒𝑚, and  𝑇𝑙,𝑒𝑚,  be the time of classification, data embedding, and location 

map embedding respectively during the data embedding process. Thus, the total time during 

the embedding phase is 

 𝑇𝑡,𝑒𝑚 = 𝑇𝑐,𝑒𝑚 + 𝑇𝑑,𝑒𝑚 + 𝑇𝑙,𝑒𝑚            (19) 

Let 𝑇𝑐,𝑒𝑥, 𝑇𝑑,𝑒𝑥, and  𝑇𝑙,𝑒𝑥,  be the time of classification, data extraction, and location 

map extraction respectively during the data extraction process. Thus, the total time during the 

extraction phase is 
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 𝑇𝑡,𝑒𝑥 = 𝑇𝑐,𝑒𝑥 + 𝑇𝑑,𝑒𝑥 + 𝑇𝑙,𝑒𝑥               (20) 

Table III: Time complexity of the schemes FCNN-SF and FCNN-PO 

Dataset Scheme 

Time complexity (s) 

Embedding phase  Extraction phase  

𝑇𝑐,𝑒𝑚 𝑇𝑑,𝑒𝑚 𝑇𝑙,𝑒𝑚 𝑇𝑡,𝑒𝑚 𝑇𝑐,𝑒𝑥 𝑇𝑙,𝑒𝑥 𝑇𝑑,𝑒𝑥 𝑇𝑡,𝑒𝑥 

Bossbase 
FCNN-SF 0.478 0.597 0.397 1.472 0.416 0.423 0.341 1.18 

FCNN-PO 0.517 0.623 0.439 1.579 0.452 0.463 0.387 1.302 

Bows-2 
FCNN-SF 0.493 0.612 0.413 1.518 0.431 0.448 0.368 1.247 

FCNN-PO 0.526 0.647 0.451 1.624 0.479 0.495 0.408 1.382 

 

Table III illustrates the time complexity comparison of the proposed approach when evaluated 

using the Bossbase and Bows-2 datasets. The total time in the embedding phase by the FCNN-

SF and FCNN-PO approach when evaluated in the Bossbase dataset is estimated as 1.472s and 

1.518s respectively. The total time in the extraction phase by the FCNN-SF and FCNN-PO 

approach when evaluated in the Bossbase dataset is estimated as 1.18s and 1.302s respectively. 

In both the Bossbase and Bows-2 datasets the FCNN-PO approach has a higher computation 

time than the FCNN-SF approach as illustrated in Fig. 13. 

 

Fig.13: Graphical comparison of time complexity in proposed data embedding 

Even though the FCNN-PO approach provides a higher computation time, its performance is 

higher in both the Bossbase and Bows-2 datasets.  
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4. Conclusion 

The work proposed a data hiding approach along with a carrier/ non-carrier detection process. 

Two different carrier detection process namely FCNN-SF and FCNN-PO are proposed that 

uses fully connected neural networks. The FCNN-SF differentiates the carrier and non-carrier 

blocks with the complete information from the sub-block including the pixel in which the data 

is embedded. The FCNN-PO uses only the predictor pixels without considering the pixel that 

is used to embed data. The performance of the FCNN-SF and FCNN-PO approach in 

classifying the carrier and non-carrier was evaluated using the measures such as precision, 

recall, and accuracy while the performance of the FCNN-SF and FCNN-PO data embedding 

process was evaluated using the measures such as SSIM, embedding rate and PSNR. The 

proposed FCNN-SF-based carrier detection process results in precision, recall, and accuracy 

of 98.48%, 98.08%, and 98.50% respectively, while the FCNN-PO-based carrier detection 

results in precision, recall, and accuracy of 99.04%, 98.85%, 99.13% respectively when 

evaluated in Bossbase dataset. In the process of data hiding the FCNN-PO results in SSIM, 

PSNR, and embedding rate of 0.9931, 59.01dB, and 1.99bpp respectively which is better than 

the FCNN-SF approach and other recent data embedding schemes. 
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