Journal Pre-proof

Hybrid Quantum Convolutional Neural Network for CNC Machine
Bearing Fault Detection using Vibration and Acoustic Signals

Nallabariki Praveen Kumar, Swetha G, Lakshmanarao A, Gururaj L.
Kulkarni, Sreenivasulu Gogula and Koti Reddy M

DOI: 10.53759/7669/jmc202505067
Reference: JMC202505067

Journal: Journal of Machine and Computing.

Received 07 May 2024
Revised form 11 July 2024
Accepted 19 February 2025

Please cite this article as: Nallabariki Praveen Kumar, Swetha G, Lakshmanarao A, Gururaj L. Kulkarni,
Sreenivasulu Gogula and Koti Reddy M, “Hybrid Quantum Convolutional Neural Network for CNC Machine
Bearing Fault Detection Using Vibration and Acoustic Signals”, Journal of Machine and Computing. (2025).
Doi: https:// doi.org/10.53759/7669/jmc202505067

This PDF file contains an article that has undergone certain improvements after acceptance. These
enhancements include the addition of a cover page, metadata, and formatting changes aimed at enhancing
readability. However, it is important to note that this version is not considered the final authoritative version of

the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,
typesetting, and comprehensive review. These processes are implemented to ensure the article's final form is
of the highest quality. The purpose of sharing this version is to offer early visibility of the article's content to

readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be
identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal remain in

effect.

© 2025 Published by AnaPub Publications.

@ AnaPub



Hybrid Quantum Convolutional Neural Network
for CNC Machine Bearing Fault Detection Using
Vibration and Acoustic Signals

!Nallabariki Praveen Kumar, 2Swetha G, *A.Lakshmanarao ,*Gururaj L. Kulkarni, Sreenivasulu Gogu
5M Koti Reddy

!Department of CSE, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad
2Computer Science and Engineering, R R Institute of Technology, Chikbanavara, Bangalore,
3Department of Information Technology, Aditya University, Surampalem, Indi

Davangere,Karnataka,India.

SDepartment of Information Technology, Vardhaman College of Engingg
*Department of ECE, Universal College of Engineering and Technology, &
Ipraveenkumar_n@vnrvjiet.in , 2Swetha.ganganala@gmail.com,lax

Abstract - Flexible manufacturing systems (FMS) rely heavily on Is, and the machines' failure can be
attributed to bearing failure. Bearing fault detection is critical in downtime and expediting expensive
repair work. To enhance the precision of CNC machiggeg re detection via vibration and sound signals, the
present research suggests a Hybrid Quantum Convol
SOA). For enhanced defect classification, the
convolutional networks. Preprocessing of signals is 8
without distorting fault-related patterns. The Inception

d using the SWVO-RKF to eliminate noise and outliers
Avolutional Vision Transformer (ICVT) model is used for
feature extraction to capture local and temporal dependen Hybrid QCNN is employed to classify features that are
extracted. A classical fully connected layer i loyed for cl3sification after employing quantum gates for convolution
and encoding of the signal. With an erro 8%, the proposed method achieves 99.2% accuracy, 99.6% recall,
98.7% precision, and 99.1% F1-score.

Keywords - Bearing Fault DeteC Ince Convolutional Vision Transformer, Robust Kalman Filter, Skill
Optimization Algorithm, Qua 0 tional Neural Network.

I. INTRODUCTION

erical control (CNC) are essential to contemporary manufacturing systems,
ing Systems (FMS), where extremely high precision and adaptability are essential. Many

he production can be severely compromised. Bearing failure is one of the primary causes of
nce costs in CNC machines; hence early diagnosis is critical in maintaining operational integrity

defects must be detected early. Vibrations and sound signals produced during operation offer
mation for this purpose. In spite of the minimal size, bearings operate in challenging conditions and are

harm may prevent further dangerous defects from emerging by triggering strange vibrations and sound emissions.
owever, the early-stage symptoms of bearing faults are subtle and often buried in noise, making detection a difficult
sk. The signals generated by defective bearings are typically weak and easily masked by background noise from other
machine components, complicating traditional fault diagnosis approaches. Moreover, the unpredictable operational
conditions in CNC machines, including varying load conditions, speed fluctuations, and external disturbances, further
increase the difficulty of accurately identifying faults.

Nonetheless, diagnosing such a fault is not an easy procedure. The noises caused by other mechanisms within the
equipment often swamp the signals given out by defective bearings. In addition, bearing failures can occur in non-linear,
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time-varying, and non-stationary forms as a result of the complexity of modern CNC machine tools, which operate under
different load conditions and speeds [4].

The ability to distinguish between these weak fault signals and noise is the key challenge in detecting bearing failure,
especially under fluctuating operating conditions. Initial bearing degradation typically takes the form of slight, mostly
imperceptible vibration and acoustic signal changes [5]. Frequency domain-based faults have been identified throug
traditional methods like Fast Fourier Transform (FFT)and Time-Synchronous Average (TSA). Yet, due to the fact t
they may not be able to sufficiently represent the transient, non-stationary nature of initial bearing degradation, the
methods often fail to detect incipient failures. Newer methods like Empirical Mode Decomposition (EMD), Short-Ti
Fourier Transform (STFT) and Wavelet Transform (WT), have been employed in a bid to get over this limitation [

However CNNs
asets increases
features from
vibration signals, reducing their overall effectiveness in noisy environments. EXisti ¥els encounter challenges in
effectively learning local and temporal features from signals, leading to limitations in W@l detection and classification
accuracy for CNC machines. Additionally, they struggle with noise robustness and jonal efficiency, affecting
overall model performance. In order to address the issue of fault detection ig fleanu acturing systems this study
suggests a hybrid quantum CNN model for bearing failure diagnostics. dynamic in nature, detecting faults
at the earliest possible stage. Quantum computing offers significant by leveraging quantum parallelism,
which allows for efficient processing of high-dimensional data an n recognition. Integrating quantum
principles into CNN architectures enhances their ability to capture@iliricatcQQuig?ns in fault signals, leading to superior
detection accuracy.

Novelty and Contribution,
e For detecting bearing issues in CNC mac
convolutional neural network with skill optimiz
e The SWVO-RKEF is applied to remove noise and o s for more effective fault identification.
e The Inception Convolutional Visi nsformer (ICVT) is utilized to learn local and temporal features from
signals using convolutional layer ead attention mechanisms.
e Quantum gates are used for ution, and pooling, and a classical fully connected layer for fault
classification to enhance d

rough vibration and acoustic inputs, a hybrid quantum
algorithm (QCNN-SOA) is proposed.

accuracy.
e  The new method d
eep learning models.

d in the study: A summary of the literature on this topic is provided in Section 2.
Section 3 offe of the methods employed. The results of employing these strategies are illustrated in
earch are corroborated by the explanations analyzed in Section 5.

Il. LITERATURE SURVEY

red to traditional diagnostic methods when assessing bearing faults in CNC machines according to
testing results. The CNN-based method far outperformed the performance of Artificial Neural Networks
ANN) and other traditional machine learning techniques. The results confirm the efficacy of the CNN-based fault
detection approach, rendering it a potential candidate for early fault diagnosis in CNC machine bearings Igbal et al. [20]
2024 introduced a new framework for the identification of bearing faults in CNC machines to tackle previous
challenges. The technique consists of an experimental setup to obtain raw vibration and acoustic signals, which are
converted into time-frequency maps via the STFT. The CNN extracts advanced features from maps that get used to train
an MSVM based fault classifier. Research results demonstrated that the method achieved peak classification precision
through the combination of vibration and acoustic signals. The approach delivered superior results compared to existing




cutting-edge methods by enhancing classification precision and processing efficiency for CNC machine-bearing fault
diagnosis.

Igbal and Madan[21] introduced a vibration-based smart condition and fault diagnosis method to determine bearing
faults of CNC machines. The procedure incorporates experimental vibration analysis to obtain the structure of defect
monitoring and defect classification for the bearing defects. By applying Hybrid Signal Decomposition, the vibratio
signal undergoes decomposition before unnecessary characteristics are eliminated through the use of Princi
Component Analysis (PCA). The selected attributes proceed for classification through Gentle AdaBoost and Discre
AdaBoost. The experimental results reveal Discrete AdaBoost to deliver superior performance than Gentle AdaBoost a
well as other machine learning techniques. The method demonstrates strong potential to stop unexpected CNC maghiias

CNC machine tool faults. Making and confirming the CNC machine tool's digital twin model is the first ste
procedure. A collection of twin models is created, which includes many models in various defective state

detection and operation monitoring.

Kumar, P. et al.[23] developed a fault identification model for Direct-Shift Gearlyg
machine tool faults. This model uses a Convolutional Neural Network (CNN) wi
(VMD) techniques. The kurtosis values for each VMD mode were 2.95, 3.02, 11.9% y
VMD is that it requires careful tuning of parameters, such as the number of decomp modes and penalty factors.
Kale, A. P., et al.[24] developed a Deep Belief Network for tool fault recognition to (Sg@tify variations in the milling
operation that lead to tool faults. The network learns from the STFT spectrogram w)o gditions and classifies the

recognized pattern into one of six classes. The classification accuracy is 90.83% cross=validation mode. Limited
i pl Al approach utilizing a deep belief
o cnhance the network’s structural

optimization, a genetic algorithm was employed. The proposed
99, 26% for rolllng bearmgs and 100% for gearboxes. Howe

The main CNC machine maintenance challenge lies I'"g@rly detection and fault diagnosis of the bearings, one of the
prevalent machine failure causes. If these faults go undeg
efficiency and reliability during production paired. Con entlonal methods of detecting faults tend to be maccurate
and do not translate to real-time impleme enario that discourages bearing-type failure prevention within CNC
machines. This problem calls for the a sophisticated diagnostic method capable of accurately detecting
and diagnosing bearing faults in r ime Trom ation and acoustic signals to allow CNC machine tools to keep
operating smoothly.

PROPOSED METHODOLOGY

e bearing faults through Hybrid Quantum Convolutional Neural Network with
N-SOA) requires the acquisition of vibration and sound signals using two
lled radially on the outer race, while the second is axially fixed and rotates along with the

Skill Optimi
acceleromggers.

al layers together with multi-head attention processes to identify temporal along with local
ignals. Lastly, the features extracted are fed into a Hybrid Quantum CNN for classification, where
employed for signal encoding, convolution, and pooling, and then a classical fully connected layer for
tion, yielding enhanced fault detection accuracy. To optimize the Hybrid QCNN hyperparameters, Skill
jon Algorithm (SOA) is employed. The proposed architecture is described in figure 1.
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Initially, two accelerometers were used to gather the vibraiNg@and sound signals from the CNC machining center. The
external accelerometer mounted radially outS|de race of the bearing received placement while the internal
accelerometer attached axially to the pla Data was acquired during the CNC _process with variable torque
loading of 30, 50, and 70 Nm while
signals were sent to preprocessing,

The Sliding Window Var
application singe it ¢

lier-Robust Kalman Filter (SWVO-RKF) [13] can be quite helpful in this
s and noise from the signals while still generating precise state predictions. This
omplex, noisy, and outlier-prone vibration and acoustic data derived from CNC

machine b, KF method increases the sensitivity of fault identification by employing a variational
Bayesian t iteratively refines the state estimates using a sliding window of data and models noise as heavy-
tailed distri . tudent's t-distribution serves as the noise generation model to replicate field signals with
outliers ccturacy of the monitoring system as shown in equation (1).

r z||z|_1,Sm):éU(zl;lel_l,Sm,a))

= _[O(z,;H,zH,Sm IENE 0l2,012)f
r(b |z, .. W, )= &u(b; E 2, W,,, )
= [O(b;E 2, W, /41 (4:912,912) 4,

he system state at time M, represented by hidden states and noisy vibration measurements, is modeled by the transition
matrix H, and the measurement matrix | . The noise covariance matrices S, and E, are updated adaptively using

).

Inverse Wishart distributions for dynamic noise estimation during detection, as described in equation (2).
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Iteratively adapting to changing noise conditions in CNC machines, the Inverse Wishart ( J@ ) distribution is utilized
update previous noise covariance beliefs for vibration and auditory inputs. This adaptive estimator takes operating st
changes into account to enhance fault identification. The system states and bearing problems get assessment wit
variational inference through an approximate distribution of system states and noise parameters. This method facilitates
efficient computing by using a factorized approximation of the joint posterior, as described in equation (3).

AT E A S CHY ) S ERIIR S AV

represents the set of all variables, which includes the auxiliary noise variables & ang

).

Where, ®

parameters (Sm), (Tr ) and the system states (Zm M: m) These components' factorized distributions a represe
the variational approximation S . The SWVO-RKF effectively uses variational inference to
distribution of the states and noise parameters.

C. Feature extraction using Inception Convolutional Vision Tr.

m

The Inception Convolutional Vision Transformer (ICVT) model [14] initiates exploroNg of features in vibration and
acoustic inputs through soft split token embedding (SSTE). To extract local spatial iv

Ij—l X XJ._1 X Dj_l is processed through a convolutional layer. The f S output size is calculated using
equation (4).

(4).

j

., -T+2
={%qJ+1,xj —

Following the convolution, the new spatial dimensj

mputed using this equation. Training is then

stabilized by using layer normalization once the feat
dimension is increased and the sequence length is dec

as been flattened to a 1D vector. By doing this, the feature
d, creating a bigger receptive field for complicated signal
patterns. The depth-wise convolutional transformer block en used. A depth-wise convolution applies to the 2D map
using kernel sizet xt after input tokens a e this transi®mation. The flattened tokens proceed to the multi-head
attention module before they are converte form. The expression is described in equation (5).

yj"" = pe2D(y; ) t) ©).

In this case, y} stands for the to

. ise convolution (Conv2D) model is more efficient since it reduces the
pcal’context. By capturing both local features and intricate temporal patterns, the
ibratiog

bnd acoustic signal data efficiently before applying it to classification.

Compared to linear projectj
number of parameters whilg
ICVT model is able to hand

I11. D. Classification using hybrid quantum CNN

| time-series signal, represented as t,1,,..t, over time, is the input to the Hybrid QCNN [15]
."Usually, a small window is created from the signal, and each window is analyzed separately.
ate, each signal value tj acts as a parameter. Qubits are initialized by applying the signal values as
ich encodes the signal. The encoding procedure for a signal is represented by equation (6).

) = |00) + |01) + #[10) + 51.1) ©).
plex numbers, which stand for the probability amplitudes of various basis states, are &, 3, ¥ ando . The

quantum state is altered by unitary operations performed on the quantum system after the signal data has been encoded.
ogether with their transformation capabilities the alterations function within random as well as variational quantum

circuits. After the system is subjected to a unitary gateV , the quantum state can be represented using equation (7).
V]y)=V(a]00) + 5|01)) (7).

Where, a parameterized quantum circuit could define the unitary transformation, denoted by V . The quantum system
functions on tiny portions of the signal data at the quantum convolution layer. Apply the quantum convolution on a



2 x 2 quantum window for a signal. Applying quantum gates to the qubits performs the quantum convolution operation.
The computation of each convolution operation is done using equation (8).

|w) = |00)+ B[0%) ®.
A new quantum state is subsequently created by mapping the convolution result to the learned properties of the signal

The application of the quantum convolution process is followed by a quantum pooling operation, which is analogous
max-pooling in CNNs. The quantum state is lowered in this method by measuring certain qubits and extracti

expectation values. Assume that the output of the quantum convolution is |I’0ut>. Apply a measurement A on th
quantum state to pool the data, as indicated in equation (9).

F= <l//0ut |A|l//0ut>

Where, A is operator. The expectation value F represents the result of the pooling procedure, which c3
important characteristics of the signal. Measurement introduces nonlinearity into quantum systems. Q
state has evolved, it is broken into one of its foundation states via a measurement. The meas
classical results. Additional classification through analysis takes place after data procegalg b "
convolutional and pooling layers by sending the expectation values to a classical fully d r. The OUtput from
the quantum layers is described by equation (10), which is a vector of expectation va

F= <‘/’signa| ’V " (Al Ao )NV (91 ¥ out >

A classical fully connected layer receives the expectation values F from the quantum
Unitary operations V(¢9) and W', as well as measurement operators A,..A,, awd

values. These features are subsequently mapped to certain fault categories trdgftional fully connected layer, which
categorize the fault.

(10).

olutional and pooling layers.
mpute these expectation

I11.E. Hyperparameter optimizing S ti tion

Hyperparameter tuning is an important process of Al Quantum CNN models for better performance.
g erparameters efficiently by considering them

as decision variables in the search space. A candid®

function measures their efficacy in terms of model % acy or loss. SOA seeks the search space in two phases:

every candidate solution learns from an expert (a higher

hyperparameter adjustment to further enh erformance. Through this iterative cycle, a trade-off between global
is maintained. The algorithm chooses the optimal performing
hyperparameter setting after a specj iterations. Leveraging SOA, optimization of hyperparameters

becomes more effective, avoiding
SOA.

hm 1. Hyperparameter Optimization using SOA

in given hyperparameter search space

function G for each candidate solution Yj

Acquisition from Experts (Exploration)
idate solution Y do:

tify the set of better solutions (experts set)
Randomly select an expert FJ- from this set (not necessarily the best)
Update position:
YQL,. =Y. +SX(Fj,e —-Jx yj’e)
If new position improves objective function:
Yj —->YQ1 i
#Phase 2: Skill Improvement through Practice (Exploitation)




for each candidate solution YJ- do:

Update position based on local search:
if $<0.5:
YQ2,, =Y, +(1-2s)/u)xy,,
else:
YQZj,e = yj,e +((mck _ZS)IU)X yj,e
If new position improves objective function:
YJ- =YQ2 i
Update the best and worst candidate solutions

Increment iteration counter U
Return the best candidate solution as the optimal hyperparameter set
IV. RESULT
Performance evaluation of the proposed Hybrid QCNN-SOA method for CNC mag

e bear
Pythog
10 operating system.

vibration and acoustic signals takes place in this part. The entire research operated
IV.A. Data description ,

a CNC machining center to evaluate
12 CNC machine equipment which

) fau tection through
.7.14 und®r the Windows

operated its 1.5KW spindle-style AC induction motor at a rate of rch took place on the X-axis of the
machine through its combination of an AC motor togeth gearbox and bearings. Two types of
accelerometers were utilized: an internal acceleromete pary in the axial direction and revolved together
with the planet carrier, and a radial accelerometer t ard on the outer race. The procedure consisted

table 1 summarizes the test conditions.

T 1. Bearing teSt circumstances

Test No. ad (Nm) Input Shaft Speed (Hz)

1 30 14
2 30 14
3 30 14
4 50 14
5 50 14
6 50 14
7 70 14

70 14

70 14

IV.B. Performance analysis

s assessed and contrasted with a number of current techniques for CNC machine bearing defect
Ng as CNN [9], MSVM [10], AdaBoost [11], and CART [12]. Performance assessment of models
several metrics including accuracy and precision and recall alongside Fl-score and error rate. A
aluation of diagnostic and classification ability for bearing defect detection utilizes vibration and acoustic
ugh these metrics.
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The accuracy (a) and loss (b) over training iterations are the two graphs in t ded figure 2. Good model
performance is indicated by the accuracy graph, which shows that both training and valgon accuracy rise quickly and
stabilize between 95 and 100% after about 100 iterations. Both training and validatiggo ibit a sharp reduction in
the loss graph, stabilizing close to zero after roughly 200 cycles, indicatin succﬁ learMing. Nonetheless, the tiny
variations in loss and accuracy could be a sign of noise or overfitting. T js'useful for classification jobs since it
performs well with little loss. Additional regularization might make stabi
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Figure 3. Frequency Spectrum Comparison of Bearing Conditions

son of the frequency spectrums of a "Bad Bearing" and a "Good Condition™" is shown in the figure 3.
(g rms) is indicated on the y-axis, while frequency (Hz) is represented on the x-axis. Significant peaks with
agnitudes of roughly 0.12 g, 0.1 g, and 0.16 g may be seen in the "Good Condition" example at roughly 2000 Hz, 5000
Hz, and 9000 Hz. In contrast, the vibration levels in the "Bad Bearing" instance are lower and more uniformly
istributed. The "Good Condition" data indicates resonance at particular frequencies due to the presence of identifiable
eaks.
Table 2. Performance Comparison of Different Models for Machine Bearing Fault Detection

Model Accuracy (%) Recall (%) Precision (%0) Error Rate (%) F1-Score (%)

CNN [9] 98.5 99.2 97.8 15 98.5
MSVM [10] 96.4 97.0 94.5 3.6 95.7




AdaBoost [11] 95.1 96.5 92.3 4.9 94.3

CART [12] 92.8 94.0 90.2 7.2 92.1
DBN [24] 90.8 925 94.9 1.0 93.7
Proposed Method 99.2 99.6 98.7 0.8 99.1

The performance of some models for vibration and acoustic signal-based CNC machine bearing defect classificati
is represented in table 2. The CNN [9] delivered an accuracy rate of 98.5% which included precision levels of 97.8% al
recall of 99.2% and F1-score of 98.5% and an error rate of 1.5%. The MSVM [10] exhibited slightly lower performanc
than other models with 96.4% accuracy and 3.6% error rate and precision of 94.5% and 97.0% recall. The accuracy Jams
of AdaBoost [11] reached 95.1% yet CART [12] stood at only 92.8%. The new method exceeded existing mode
on accuracy (99.2%) and precision (98.7%), recall (99.6%) and F1-score (99.1%) as well as error rate (0.8%).

V. CONCLUSION
The suggested Hybrid Quantum Convolutional Neural Network with Skill Optimization Alg POA)
¥oh the
combination of quantum convolutional neural networks and the Skill Optimization ), the technique
obust Kalman
s withou¥sacrificing key
ision Transformer (ICVT),

Filter (SWVO-RKF) is utilized for preprocessing, which efficiently removes nois8
fault-related patterns. Feature extraction is accomplished using the Inception Convol
which captures both local and temporal relationships among the signals. The Hybrid NN is utilized for the last
classification step, with quantum gates applied to signal encoding, convolution, g, and a classical fully
connected layer for categorization. The approach operates at outstanding pe aﬁf 99.2% accuracy, 99.6% recall,

i at” fault detection, its computational
ill investigate scalability for larger
machine monitoring.
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