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Abstract - Advanced diagnostic tools are essential for aerospace transportation systems and automotive industries and 

industrial manufacturing facilities since operational efficiency requirements and safety needs demand failure prediction 

tools. Systems that use traditional diagnostic methods depend on centralized architectures that show limitations regarding 

scalability while being unable to overcome subsystem failure events effectively. The research presents Gossip Neural 

Network (GNN) as a decentralized deep learning (DL) system which determines Remaining Useful Life (RUL) duration 

in distributed mechanical engine systems. The GNN combines Convolutional Neural Networks (CNNs) and Long short-

term Memory (LSTM) network layers to identify short-term sensor anomalies in addition to capturing long-term sensor 

degeneration patterns in sensor data. A gossip-based protocol allows the GNN to facilitate distributed engine subsystems 

which train a shared model together through peer-to-peer collaborations without needing central control. The assessment 

of the proposed framework using CMAPSS data proves its exceptional capability for RUL prediction alongside reliable 

accuracy and low error rates. The GNN demonstrated excellence in different datasets through R² results between 92.43% 

and 94.57% and RMSE results within 12.77 to 12.87 which demonstrates its effectiveness in handling realistic operational 

environments. The GNN provides an encouraging solution for time-sensitive fault detection in distributed systems which 

facilitates efficient predictive maintenance across large engineering applications. 

Keywords - GNN, RUL Prediction, Decentralized Deep Learning, Predictive Maintenance, Fault Detection, Mechanical 

Fault Detection. 

 

I. INTRODUCTION 

 

In modern engineering systems, the critical domains of aerospace, automotive, and industrial manufacturing, and 

particularly the relentless demand for operational efficiency and safety, now make it imperative to have advanced 

diagnostic tools for preempting mechanical failures [1]. These systems are complex and engines found at the heart of such 

systems are prone to progressive deterioration of life which manifests through events like bearing wear, rotor imbalance 

lubrication failure and catastrophic failure is possible if these progressive degradation of life phenomena are not addressed 

proactively [2]. The idea of RUL prediction has grown in importance as a foundation for predictive maintenance [3], and 

is best at predicting when an engine is going to fail and therefore a failure threshold is going to be reached before that time 

and guiding interventions to avoid downtime, reduce maintenance costs and increase system reliability [4]. However, 

conventional sensor diagnostic approaches frequently rely on centralized architectures that collect sensor data from 

distributed sub-systems into one processing center, which is physically limited in scale, vulnerable to data privacy, and 

failure-resilient to subsystems [5]. Additionally, the amount of multivariate time series—vibration, temperature, pressure, 

and rotation speed, amongst others that must be modeled is very complex and requires very sophisticated modeling that 

can capture both short-term anomalies and long-term degradation trends (Implementation of a sequence-to-sequence 

stacked sparse LSTM autoencoder for anomaly detection on multivariate timeseries data of industrial blower ball bearing 

unit). 

 

DL-based fault detection and prognostics have gained significant popularity in recent years because of the incredible tools 

it provides for encoding complex patterns in the high dimensional sensor data, which procure higher accuracies than 
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conventional statistical and physics-based approaches and are more capable of handling varying conditions [6]. CNNs are 

highly effective in extracting spatial-temporal features [7], whereas LSTM networks [8] are strong in sequential 

dependencies that match the capacity of the RUL prediction [9]. However, DL has been underexplored and applied to 

distributed engine systems, particularly in cases where distributed data processing is not possible for bandwidth constraints 

and privacy reasons or due to the enormous scale of the networked subsystems [10]. In order to address these limitations, 

the GNN, a decentralized DL framework consisting of CNN and LSTM layers connected in a network of distributed nodes 

(i.e., each of them serves as a sensor-equipped engine subsystem) trained collaboratively using a gossip-based protocol, is 

proposed. The GNN forages around a decentralized network of engines by eschewing a central server to perform local 

computation and pairwise weight exchange and to achieve a unified RUL predictor in a scalable, robust RUL predictor, 

and privacy to DL bright. 

This research has great significance because it could lead to making a leap from predictive maintenance in distributed 

mechanical systems to one where diagnostics need to be made online, in real-time, while also preserving patient privacy. 

Moreover, the proposed GNN not only resolves the technical challenges of decentralized learning but also fulfills the 

practical requirements of today’s engineering applications typical of modern engineering applications, e.g., fleet-wide 

aircraft engine monitoring or industrial turbine networks with subsystems independently but interdependently working. 

The key contributions of this research are: 

1. We introduce the GNN, a novel decentralized DL framework for predicting RUL in engines without a central 

server, and evaluate it on power exhaust. 

2. We presented a two-stage gossip-based protocol that integrates CNN and LSTM layers to both model short-term 

anomalies and long-term degradation patterns in multivariate sensor data. 

3. We allowed distributed engine subsystems to collaborate, building for large-scale networks, as an enhancement 

of scalability and fault tolerance. 

4. We also ensured node-to-node communication if sensor data is kept local while model weights are shared among 

nodes, thus ensuring data privacy in diagnostic systems. 

5. We showed how the GNN can be used to solve mechanical engineering problems by a method of both local 

computation and decentralized aggregation toward intelligence fault detection. 

In the rest of the paper, related work of fault detection and decentralized learning is reviewed in Section 2, Section 3 

outlines the method, which includes data collection, GNN architecture, training, and evaluation, and Section 4 reports 

results and analysis, and finally, Section 5 concludes with implications and future directions. The work provides a solid 

base for intelligent diagnostic systems capable of enhancing reliability and increasing the lifetime of critical mechanical 

assets. 

 

II.  LITERATURE REVIEW 

 

In recent times the prediction of RUL in aircraft engines has become a prominent research focus because researchers use 

different machine learning (ML) and DL strategies to achieve better results along with increased interpretability and 

improved computational performance. Research investigates existing studies through three identified subcategories: 

Traditional ML Approaches, DL-Based Approaches and Hybrid and Attention-Based Models. Researchers employ 

comparative analysis to identify both the advantages and drawbacks and relevant contributions of each study category.  

1. Traditional ML Approaches 

ML traditional methods find broad application in RUL prediction because of their readable algorithms together with their 

computational integrity. Alomari et al. [11] developed a new framework which combines feature engineering with 

dimensionality reduction and feature selection methods including PCA and Genetic Algorithm and LASSO. The 

Aggregated Feature Importances with Cross-Validation (AFICv) method utilized by their team for C-MAPSS FD001 data 

achieved 0.91 R² accuracy metrics which validates the effectiveness of feature reduction techniques for maintaining 

prediction accuracy. Deepika et al. [12] performed an analysis of the XGBoost, Random Forest, and SVM traditional ML 

models while XGBoost delivered an RMSE of 23.8 and an R² score of 0.67. Research findings show that traditional ML 

models demonstrate strong potential for RUL estimation when such models use advanced feature selection practices with 

traditional ML models. The analysis methods encounter two primary barriers that stem from informational data reduction 

techniques plus difficulties with dataset variability. 

The assessment by Rosero et al. [13] of aircraft cooling units RUL included a combination of physics-based and data-

driven models with Health Indicators (HIs) that originated from time-frequency analysis. The researchers detected unique 

degradation steps through their approach which resulted in a 0.352 RMSE. This technique generates important failure 
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pattern information yet depends on advanced data transformation methods yet only works well with simple failure modes. 

The main benefit of traditional ML methods includes both understandable results and efficient processing but these 

advantages do not extend to sophisticated non-linear patterns found in sensor measurements. 

 

2. DL-Based Approaches 

DL models currently lead the way because they excel at identifying elaborate patterns and continuing relationships within 

sensor information. Real turbofan engine data yielded superior prediction outcomes for LSTM and CNN models compared 

to simulated data as noted in Szrama et al. [14]. The models they developed exhibit limitations in training sensitivity which 

affects their performance when applied to various engine types. Ozkat et al. [15] used LSTM to predict RUL in Unmanned 

Aircraft Systems based on sensor data resulting in RMSE values of 3.7142 Hz, 1.4831 Hz and 1.3455 Hz. The systematic 

approach shows effectiveness but its reliability depends on fixed threshold values that can lead to performance issues 

during varied vibration data assessment. 

In contrast, Dangut et al. [16] developed a hybrid DL model called AE–CNN–BGRU to detect rare failures and 

demonstrated 94% success rate in these detection tasks. The rescaled focal loss function helped address data imbalance 

while the model continues to depend on high-quality historical logs and could potentially overfit. Wang et al. [17] 

developed Bi-LSTM-AM through merging 1D CNN with Bi-LSTM for RUL prediction alongside MILP optimization of 

maintenance planning. Their strategy reduced system downtime yet encountered challenges when scaling up operations 

and when executing methods under realistic settings. Research confirms that DL models excel in analyzing complex 

datasets yet these analyses mention their computational requirements as well as their vulnerability to hyperparameter 

settings. 

 

3. Hybrid and Attention-Based Models 

Predicting RUL requires hybrid and attention-based models which unite various architectural elements to create more 

accurate and explainable forecasting systems. The combination of PSA and GHLSTM in Transformer modeling led Chen 

[18] to achieve premier results on C-MAPSS data with an FD001 RMSE of 13.14 ± 0.21. Lin et al. [19] designed CATA-

TCN which merged temporal and channel attention components to enhance prediction accuracy dealing with challenging 

operational conditions. The proposed model demonstrated better performance than previous approaches yet its processing 

efficiency and capacity to handle impaired data represented obstacles for implementation. 

Jiangyan et al. [20] created the Two-Stream Convolution Augmented Transformer (TACT) model that delivered better 

results than other advanced models by showing Score reduction of 2.71% and RMSE decrease of 3.13% against current 

top models. A major operational challenge for this computational approach exists due to its slow processing speed. Deng 

& Zhou [21] developed a CNN-LSTM-Attention model to analyze FD001-FD004 datasets which produced RMSE results 

of 15.977, 14.452, 13.907 and 16.637 respectively. The model provides accurate results but needs additional improvements 

to achieve real-time deployment capability. The iSTLSTM model by Gao et al. [22] uses specific spatiotemporal 

information along with hybrid attention systems to perform explainable RUL predictions. Performance effectiveness of 

this method depends on both the sensor data quality and operating environmental conditions. 

The developers at Zhang et al. [23] developed ATCN which combines self-attention with TCN alongside squeeze-and-

excitation mechanisms for better feature extraction and predictive performance. The proposed method delivers higher 

results than competing CNN, LSTM and Transformer-based models yet depends on the quality and consistency level of 

incoming data. The researchers from Gan et al. [24] presented DMHA-ATCN which utilizes dual-dimensional attention to 

weight features based on space and time to demonstrate enhanced prediction quality and easier interpretation. This system 

needs additional study regarding its operational flexibility within real-time domains alongside its performance across 

various engine types. 

Huang et al. [25] developed ASD-YOLO as a network solution for aircraft surface defect detection through the 

implementation of deformable convolution along with attention mechanisms. Although their model delivered 5.7% and 

3.4% mAP enhancement across two datasets the system needs optimization to handle real-world conditions and various 

defect types. Hybrid and attention-based predictive models function as the frontiers of RUL forecasting technology because 

they deliver substantial improvements in both accuracy rates and interpretation capabilities. Real-world implementation 

faces difficulties because of these methods' high complexity together with increased computational requirements. 

The review of various RUL prediction methods appears in Table 1 with findings and results and identified limitations. 
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Table 1: Comprehensive Literature Review on RUL Prediction Models 

Reference Method/Model Findings Limitations Result Year 

Alomari et 

al. [11] 

Feature engineering, 

PCA, Genetic 

Algorithm, RFE, 

LASSO, Random 

Forest, AFICv, 

Gradient Boosting, 

Random Forest, MLP 

AFICv efficiently 

reduced features while 

maintaining prediction 

accuracy across C-

MAPSS sub-datasets 

Potential information 

loss, dataset dependency, 

no DL models tested 

0.91 R² score in 

FD001 using 

AFICv 

2023 

Rosero et 

al. [13] 

Hilbert spectrum for 

time-frequency HIs, 

physics-based + data-

driven ML models 

Cooling units follow 

normal degradation 

before an abnormal 

phase near end of life 

Failure patterns may be 

complex, requiring 

advanced 

transformations for 

detection 

0.352 Std. RMSE 

in Raw Data 
2022 

Ozkat et 

al. [15] 

Mean peak frequency 

feature, LSTM for 

RUL prediction 

LSTM effectively 

predicts RUL using 

vibration data, 

threshold-based 

estimation 

Variability in vibration 

data, reliance on 

predefined threshold, 

generalization concerns 

RUL estimates: 

4s, 10s, 10s; 

RMSE: 3.7142 

Hz, 1.4831 Hz, 

1.3455 Hz 

2023 

Dangut et 

al. [16] 

AE–CNN–BGRU 

model 

Improved rare failure 

prediction accuracy 

Data quality 

dependency, overfitting 

risk, adaptability issues 

94% of extremely 

rare failure of 

components and 

AUC = 0.864 

2023 

Wang et 

al. [17] 

1D CNN + Bi-LSTM-

AM, Bayesian 

optimization, MILP 

Improved RUL 

prediction and reduced 

maintenance time 

RUL accuracy 

dependency, scalability, 

real-world feasibility 

Efficient 

scheduling, 

minimized 

maintenance 

downtime 

2024 

Szrama et 

al. [14] 

CNN, LSTM with 

regression output 

Real data improves 

prediction accuracy 

over simulated data 

Data bias, training 

sensitivity, 

generalization issues 

Effective RUL 

estimation using 

real engine data 

2024 

Chen [18] 
Transformer with PSA 

and GHLSTM 

Improved RUL 

prediction over 

existing models 

High computational cost, 

hyperparameter 

sensitivity 

FD001 Dataset: 

Score: 220 ± 23, 

RMSE: 13.14 ± 

0.21 

FD004 Dataset: 

Score: 1420 ± 

125, RMSE: 

14.25 ± 0.25 

2024 

Lin et al. 

[19] 

CATA-TCN (Channel 

Attention & Temporal 

Attention-based 

Temporal 

Convolutional 

Network) 

Improved prediction 

accuracy, particularly 

under changeable 

operational conditions 

and complex fault 

modes. Outperformed 

existing RUL 

prediction models in 

both Score and RMSE. 

Sensitive to noisy or 

incomplete sensor data; 

higher computational 

complexity due to dual 

attention mechanism. 

Significant 

improvements in 

overall RUL 

prediction 

2024 

Jiangyan et 

al. [20] 

Two-Stream 

Convolution 

Augmented 

Transformer (TACT) 

model combining 

multi-scale CNN and 

Transformer modules 

The TACT model 

improves RUL 

prediction accuracy, 

reducing Score by 

2.71% and RMSE by 

3.13% compared to 

existing methods. 

 

The model's complexity 

increases computational 

cost and training time, 

which may hinder its 

real-time applicability in 

practical systems. 

Score reduction of 

4.54% 
2024 
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Huang et 

al. [25] 

ASD-YOLO network 

based on YOLOv5 

with DCNC3, GAM, 

CEM, and EMA-Slide 

for ASD detection. 

Incorporates 

deformable 

convolution, attention 

mechanisms, and 

sample imbalance 

solutions. 

Requires further 

optimization for real-

world scenarios and 

diverse defect types. 

mAP 

improvement by 

5.7% and 3.4% on 

two datasets 

compared to 

mainstream 

methods. 

2024 

Zhang et 

al. [23] 

Attention-based 

Temporal 

Convolutional 

Network (ATCN) with 

self-attention, TCN, 

and squeeze-and-

excitation mechanisms. 

Enhances feature 

extraction and 

improves prediction 

accuracy by weighting 

contributions from 

time steps and 

channels. 

Dependent on the quality 

and consistency of input 

data, which may affect 

generalization across 

varied conditions. 

Higher accuracy 

in RUL prediction 
2024 

Gao et al. 

[22] 

iSTLSTM: LSTM with 

Bi-ConvLSTM1D for 

feature extraction and a 

hybrid attention 

mechanism for 

interpretability. 

Enhances feature 

extraction through 

spatio-temporal 

dependencies and 

improves model 

interpretability while 

maintaining high 

prediction accuracy. 

Performance is affected 

by the quality and 

variability of sensor data, 

which could impact its 

generalization under 

diverse operating 

conditions. 

Superior RUL 

prediction 

performance 

2024 

Deepika et 

al. [12] 

ML-based RUL 

prediction using 

models like XGBoost, 

Random Forest, SVM, 

KNN, and Linear 

Regression, with 

PostgreSQL for data 

storage and Flask for 

real-time visualization. 

XGBoost achieved the 

best performance with 

an RMSE of 23.8 and 

an R² score of 0.67, 

nearly matching the 

accuracy of DL models 

while being 

computationally 

efficient. 

While XGBoost 

performed well, its 

generalizability to other 

datasets and real-time 

application may need 

further validation, 

particularly under 

varying operating 

conditions. 

RMSE of 23.8 

and an R² score of 

0.67 

2025 

Gan et al. 

[24] 

Dual-dimensional 

attention mechanism 

using DMHA for 

feature weighting and 

ATCN for adaptive 

temporal representation 

learning. 

The DMHA-ATCN 

model outperforms 

traditional TCNs in 

RUL prediction, 

improving 

interpretability and 

prediction accuracy. 

Further investigation is 

needed to assess the 

model's adaptability to 

real-time systems and its 

scalability for different 

types of engines. 

Improved 

prediction 

accuracy over 

traditional TCN, 

with enhanced 

interpretability 

through DMHA. 

2024 

Deng & 

Zhou [21] 

CNN-LSTM-Attention 

model for RUL 

prediction of aircraft 

engines. 

CNN-LSTM-Attention 

model outperforms 

CNN and LSTM, 

improving RUL 

prediction accuracy 

across all CMAPSS 

datasets with the 

attention mechanism 

enhancing feature 

extraction. 

Further optimization 

needed for real-time 

deployment and to 

handle varying 

operational conditions. 

 

 

  

RMSE for 

FD001: 15.977, 

FD002: 14.452, 

FD003: 13.907, 

FD004: 16.637; 

CNN-LSTM-

Attention model 

2024 
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III.    METHODOLOGY 

 

This section describes how the GNN proposed for predicting the RUL of engines within an intelligent diagnostic system is 

developed and evaluated. The scalability to large engine networks, robustness against node failures, and data privacy 

preserving are most beneficial when using this approach, solving several deficiencies with centralized diagnostic systems. 

In the subsequent subsections, we specify a methodology that details each of the stages; including data collection and 

preprocessing, the design of the GNN architecture, distributed training procedure, implementation specifics, and 

performance evaluation, all of which are summarized in Figure 1 to provide a complete and reproducible framework. 

 

Figure 1: Overview of the research methodology framework 

3.1   Dataset Description and Preprocessing 

This research uses the CMAPSS (Commercial Modular Aero Propulsion System Simulation) dataset which is found in 

NASA’s repository on Kaggle [26]. This data set is commonly used for prognostics and health management (PHM) 

purposes, specifically in RUL prediction of aircraft engines. Specifically, it is composed of multivariate time series data 

derived from aircraft engine sensors under varying conditions of operation. 

3.1.1 Dataset Composition 

The dataset is comprised of four sub-datasets (FD001, FD002, FD003, FD004), and four operating conditions and four 

fault modes are required to be different. For the number of engines and their complexed operating conditions, the datasets 

are distinctively varied. The whole dataset is summarized in table 2. 

Table 2: Summary of CMAPSS Dataset 

Dataset Engines Operating 

Conditions 

Fault Modes Number of 

Features 

Total 

Observations 

FD001 100 1 1 21 20,631 

FD002 259 6 1 21 53,076 

FD003 100 1 2 21 24,815 

FD004 249 6 2 21 61,918 

 

3.1.2 Data Preprocessing 

The dataset is of high quality and has no missing values since it came from NASA. But first, a preliminary analysis was 

made to ensure inconsistencies, duplicates, or corrupted records. It was confirmed that the data set had no duplicate entries 

which indicated that nonduplicate data was used. Also, there were statistical methods of outlier detection using the 

Interquartile Range (IQR) and Z score, but no real outlier was found that needed to be removed. 
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In order to derive meaningful insights from raw sensor data, feature engineering was conducted. The biggest problem in 

this process was determining the RUL for each of the engines. The RUL was identified by using the following equation 

since the training data contains full engine life cycles until failure: 

𝑅𝑈𝐿 = 𝑚𝑎𝑥(𝐶𝑦𝑐𝑙𝑒) − 𝐶𝑦𝑐𝑙𝑒 

where max(Cycle) is the last operational cycle before failure for an engine. By transforming the dataset, we were then able 

to change the dataset into a supervised learning format in which the input is sensor readings and the output is the predicted 

RUL. 

To normalize the scale of the sensor readings, Min-Max Normalization was applied which transformed the data in the range 

[0,1]. The normalization allowed all features to contribute equally to the model during training and precluded one feature 

from dominating another because not all features were given equal weight when magnitudes differed. The following 

equation was used for the normalization: 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

where 𝑋 is the original sensor reading, and 𝑋′ is the normalized value. 

The CMAPSS dataset is in the form of time series data, so it is needed to restructure the dataset into the sequence for 

modeling with LSTM networks and GNN networks. A sliding window approach was used by implementing each training 

sample in the format of 30 continuous time steps (cycles) as input, and the final RUL as the target output. The reason for 

this sequence length was based on empirical studies that show this by capturing temporal degradation trends. Then, the 

data was turned into a sequence to one by the model where the RUL is predicted with respect to the past sensor readings. 

The neural networks could learn degradation patterns in time, and make reliable predictions of the time series. Finally, to 

make sure the evaluation of the model is robust, we split the dataset into three, training set, 70%, to train the DL models, 

validation set, 15%, for hyperparameters tuning and performance monitoring during training, and test set, 15% for 

evaluating model performance on unseen data. 

3.2    Gossip Neural Network Model 

          The GNN is a decentralized DL framework proposed for the RUL prediction of engines in an intelligent diagnostic 

system. Unlike traditional centralized methods, this model pushes computation to multiple nodes, such as sensor-equipped 

edge devices or subsystems, that collaboratively train a shared DL model in a ‘decentralized’ manner without a central 

server. The local sensor data is processed by each node and model parameters (e.g. weights) are exchanged among 

neighboring nodes based on a gossip-based communication protocol. By maintaining such scalability, fault tolerance, and 

data privacy, this design is ideally suited for mechanical fault detection and prognosis in real time for dynamic distributed 

engine systems, e.g. aircraft turbines and industrial machinery. In the context of engine degradation driven by mechanical 

problems such as bearing wear and rotor imbalance, the GNN tackles a critical problem — namely, predicting the remaining 

operation time (hours or cycles) until an engine fails by using multivariate time series sensor data such as vibration, 

temperature and pressure to model degradation patterns and deriving accurate RUL estimates for predictive maintenance. 

 

Figure 2: GNN Architecture 
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The GNN has multiple nodes, (Node 1), (Node 2), ….., (Node N), each of which has an analogous DL model for dealing 

with time series data. The base network architecture starts with an input layer that takes multivariate sensor data of shape 

(100, 10), for example, the vibration amplitude, oil pressure, and rotational speed, and feeds that into it for processing. It 

contains 1D CNN layers followed by LSTM layers. Temporal features are extracted spatial features from sensor signals 

through the convolution operation of CNN with 32 filters, kernel size of 3, and ReLU activation on non-linearity to reduce 

dimensionality, preserving the fault-related patterns. These features are then passed through LSTM layers with 64 neurons 

to model the long-term temporal dependencies of engine degradation occurring over time. The architecture then ends with 

an output layer consisting of a fully connected layer of a single neuron and a linear activation, predicting RUL in hours or 

cycles in a continuous way, and making a quantitative prognosis about engine health. 

As shown in Figure 2, the distributed training mechanism of the GNN is realized through a decentralized process on the N 

nodes. The node conducts a local training process over its dataset of time series sensor data that have RUL labels and 

locally optimized its local weights. This means that backpropagation is used to minimize the MSE loss function using an 

optimizer such as Adam, where vertical arrows are labeled “Training” on the local data to the weights for each node. Nodes 

perform local updates and, after local updates are complete, nodes engage in a gossip-based parameter exchange with 

neighbors pairwise: From (Node 1) to (Node 2) and (Node N), (Node 2) to (Node N-1) and (Node N-1) to (Node N) with 

a bidirectional arrow labeled “Gossip Exchange” and specifying which weights are transferred every 5 local epochs. In 

addition, each local weight is then aggregated with the local weights received, balancing local and external contributions, 

through downward arrows onto the updated local weights. Below are the loss and aggregation processes formalized. 

i. Input Layer 

For the GNN, the input at each node is a multivariate time-series sensor data, which allows initial feature extraction 

and temporal modeling forming the input, but which represents the groundwork for the system. However, this layer accepts 

data that has a matrix structure of 100 timesteps and 10 features into which the 100 timesteps cover a temporal window in 

which the engine has been operated, and the 10 features are important variables like vibration amplitude, oil temperature, 

exhaust pressure, shaft speed, fuel flow, coolant temperature, ambient pressure, torque, power out, and oil debris. Together 

these features represent a collection of engine operational state, instant and time-varying measurements, which are 

important to indicate degradation patterns predictive of imminent failure. The first layer of the network (input layer) does 

not do any transformation, only format properly the data and normalize it, usually divided by a constant to normalize the 

data to the range of [0, 1] to standardize inputs across nodes so that we can mitigate differences from the viewer or sensor 

variations or environmental conditions. In this layer, its output is directly passed to the CNN layers as a robust, high-

dimensional representation of the engine health to be further processed. The input can mathematically represented as: 

𝑋𝑖 ∈ 𝑅100𝑥10 

where 𝑋𝑖 is the sensor data matrix for node 𝑖 with 100 timesteps and 10 features. 

 

ii. CNN Layer 

The input layer is followed by the CNN layer which uses the multivariate sensor data to extract its spatial and temporal 

features to be used in identifying local patterns related to mechanical faults by GNN. This 1D CNN layer is configured 

with 32 filters, kernel size 3, a stride of 1, and ReLU activation, and is run with 32 filters to attempt to detect short-term 

anomalies (sudden vibration spikes, pressure drops, temperature gradients, etc) that indicate degradation but is relative to 

the temporal dimension of the input matrix. The 32 filters end up generating a feature map of size 98×32, sacrificing the 

temporal dimension: 100−3+1=98, to allow each filter to learn different patterns and thus enable the model to distinguish 

fault signatures from noisy sensor data. With ReLU activation function, this nonlinearity provides, that is only positive 

feature response are kept while the noise is suppressed and the signal gets amplified. This layer helps reduce the dimension 

of the raw input by preserving important spatial temporal relationships, resulting in a compact representation but is 

informative enough for the subsequent LSTM layer to perform temporal analysis. The function of the CNN layer can be 

mathematically described as: 

ℎ𝑡 = 𝑅𝑒𝐿𝑈(𝑊𝐶𝑁𝑁 ∗ 𝑋𝑡 + 𝑏𝐶𝑁𝑁) 

where 𝑊𝐶𝑁𝑁 ∈ 𝑅32𝑥3𝑥10 is the filter weight tensor (32 filters, kernel size 3, 10 input channels), ∗ denotes 1D 

convolution, 𝑏𝐶𝑁𝑁 ∈ 𝑅32 is the bias, and ℎ𝑡 ∈ 𝑅98𝑥32 is the output feature map. 

 

iii. LSTM Layer 

After the CNN layer, to model long-term temporal dependencies of the extracted features which is necessary for RUL 

prediction is the LSTM layer. This layer is configured with 64 units which process the CNN output sequence (reshaped to 

98×32 per timestep) with hidden state and cell state that change over 98 timesteps to learn patterns like gradual wear, 

cumulative stress (or stress accumulation), or recurring anomalies appearing within the input window. Specifically, the 
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LSTM is composed of forget, input, and output gates and is used selectively to recall or discard information from steps of 

previous timesteps to prevent vanishing gradient problems common in regular recurrent nets and to focus on important 

degradation trends as shown in Figure 3. 

 
Figure 3: Gating Mechanism of LSTM Networks 

 

The LSTM has 64 nodes and the output produces a hidden state sequence of size 98×64, which is the temporal context 

that is needed for the estimation of RUL in the final timestep. Since LSTMs have been demonstrated to be effective for 

engine RUL prediction, namely for tasks where understanding long-term dependencies is crucial, but computational 

efficiency might be important, the choice of LSTMs is driven, and alternatives like GRUs or TCNs might be considered. 

The final prediction step needs this layer’s output as a rich temporal representation. The update functions of forget, input, 

and output gate can be expressed as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡 . 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

ℎ𝑡 = 𝑜𝑡  . tanh (𝑐𝑡) 

where 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜, 𝑊𝑐 ∈ 𝑅64(64+32) are weight matrices (32 from CNN output size), 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜, 𝑏𝑐 ∈ 𝑅64 are biases, 

𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 are gate activations, 𝑐 is the cell state, and ℎ𝑡 ∈ 𝑅64 is the hidden state at timestep 𝑡. 

 

iv. Output Layer 

The node-level architecture ends with the output layer, which turns the LSTM’s temporal representation into a single 

continuous RUL prediction. The last part of the architecture consists of a single fully connected neuron with linear 

activation, takes the final hidden state from LSTM (size 64 at time t=98), and linearly transforms it to obtain the predicted 

RUL, 𝑦̂𝑖, expressed in hours or cycles remaining until engine failure. This gives the linear activation for the output to ensure 

unconstraint of the output as the RUL values are continuous (imminent failure to thousands of hours or cycles of the engine 

condition and operational context). In contrast to the simple structure, this layer serves to consolidate the hierarchical 

features computed from the CNN, and then model this into a practical prognostic metric that is easily usable for 

maintenance decision-making. During local training, local weights and biases of this layer are tuned to minimize prediction 

error, such that the output matches the ground truth RUL labels given in the training data. The prediction mechanism of 

this layer can be defined as: 

𝑦̂𝑖 = 𝑊𝑜𝑢𝑡 . ℎ𝐿𝑆𝑇𝑀 + 𝑏𝑜𝑢𝑡 

where 𝑊𝑜𝑢𝑡 ∈ 𝑅1𝑥64 is the weight vector, 𝑏𝑜𝑢𝑡 ∈ 𝑅 is the bias, ℎ𝐿𝑆𝑇𝑀 ∈ 𝑅64 is the final LSTM hidden state, and 𝑦̂𝑖 is 

the predicted RUL. 

 

v. Distributed Training and Gossip Mechanism 

As shown in Figure 4, their GNN’s distributed training mechanism allows for collaborative refinement of the RUL 

predictor across a network by integrating the node-level DL model into a decentralized gossip Protocol. By each node local 

training on its private dataset (i.e., local sensor data 𝑋𝑖 and local RUL labels 𝑦𝑖) with mean square error loss function (MSE) 

as a cost function using Adam optimizer (learning_rate = 0.0001) for learning and fitted weights as parameters to the CNN, 

LSTM and output layers on the forward and backward pass respectively. According to the Figure 4, the weights of nodes 

are then exchanged in a gossip manner via a ring topology after 5 local epochs, where (Node 1) exchanges 𝑊1 with (Node 

4) and with (Node 2), (Node 2) with (Node 3) and (Node 3) with (Node 4). It is a lightweight exchange that broadcasts 
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only model parameters and performs a weight aggregation step such that each node computes its weights by mixing local 

and received weights to encourage network-wide consistency. Its cycle repeats until convergence in order to produce a 

single model with accurate RUL inference at any node. The loss function to determine the RUL can be described as: 

𝐿𝑖 =
1

𝑁𝑖

∑ (𝑦̂𝑖

𝑁𝑖

𝑗=1
, 𝑗 − 𝑦, 𝑗)2 

where 𝑁𝑖 is the number of samples in 𝐷𝑖 , 𝑦̂𝑖 , 𝑗 is the predicted RUL, and 𝑦𝑖 , 𝑗 is the ground-truth RUL. 

 

 

 
 

Figure 4: Gossip Mechanism between Different Nodes in Predicting RUL. 

 

And the weight aggregation mechanism can be defined as: 

𝑊𝑖 ← (1 − 𝛼)𝑊𝑖 + 𝛼𝑊𝑗 

where 𝑊𝑗 is the weight from a neighboring node, and 𝛼 = 0.5 is the mixing coefficient. 

 

IV. RESULT AND DISCUSSION 

This section analyzed how our model performs in forecasting engine RUL using FD001 to FD004 dataset information. The 

evaluation uses R² together with Mean Absolute Error (MAE) Loss along with Root Mean Squared Error (RMSE) as key 

performance metrics. We check the training and validation outcomes against each engine by comparing predicted RUL 

results to actual RUL results while assessing how well the model tracks the degradation patterns of the components. Our 

research evaluates the model performance through an examination of state-of-the-art solutions for benchmarking purposes. 

This analysis enables us to discuss both the positive aspects and existing constraints as well as opportunities to boost 

accuracy levels in predicting RUL. 

 

4.1   Experimental Setup 

        We employed the proposed GNN in developing models from the FD001 to FD004 dataset collection. We used Google 

Colab Pro subscription service because its advanced computational strength enabled us to complete the intensive tasks for 

model training. The large complexity of our models together with extensive dataset sizes demanded the use of V100 GPUs 

for achieving maximum efficiency. The pre-processor segment included a process that split the data into separate training 

and validation groups. The model training phase consumed 70% of data but the remaining 30% served as the testing data. 

The succeeding sections include an evaluation of different models and their ability to predict engine lifetime remaining. 

 

4.2   Evaluation Metrics 

        The assessment of DL model performance matters for understanding their capability to forecast RUL of engines. We 

used essential metrics to measure both the predictive accuracy and model prediction capabilities for our assessment 

purpose. The performance evaluation of the model relies on R² and RMSE and MAE and Loss as individual metrics that 

measure different aspects. 
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1) 𝑹𝟐(Coefficient of Determination): 𝑅2 represents the proportion of engine RUL variable variance which can be 

predicted based on the studied independent variables. The model fit evaluation relies on this measurement because 

it describes the data-model compatibility. The formula for 𝑅2 is: 

𝑅2 = 1 −
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦)2
 

A higher value of R² shows that the model performs well in predicting RUL variance. 

2) RMSE (Root Mean Squared Error): The RMSE value represents the mathematical square root of all predicted 

and actual value differences which have been squared and averaged. Lower RMSE values indicate better 

prediction accuracy because they show the extent of error magnitude. The formula is: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2

𝑛

𝑖=1

 

Improved prediction accuracy relates to RMSE values decreasing. 

3) MAE (Mean Absolute Error): This methodology computes the mean average of absolute value errors between 

predicted results versus actual observed data to provide an easy accuracy measurement mechanism. The method 

stands out because it detects errors less easily than RMSE which makes it appropriate for real-world prediction 

scenarios. The formula is: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖|

𝑛

𝑖=1

 

The accuracy of a predictive model regarding actual RUL increases when MAE decreases. 

4) Loss: The true values determine how much error the loss functions define in prediction results. We deployed the 

loss function to both direct the training process of the model while optimizing its accuracy rate. The model 

performs more effectively with lower value loss results. Typically, the loss function includes both RMSE and 

MAE metrics combined when used for prediction tasks. 

4.3   Sensor Trend Analysis and Feature Relevance 

All sensor measurements for engine unit number 4 depicted in Figure5 towards failure while showing their time-series 

patterns in the next subsection. The different operational settings and sensor measurements from engine performance trends 

appear as subplots across the recorded cycles. 

The listed sensors including sensor and certain setting parameters 1, 5, 6, 10, 16, 18, and 19 demonstrate minimal variations 

during the entire engine operational period. The studied features show minimal potential to deliver useful information for 

assessments of RUL. These unchanging sensors may fail to detect patterns related to engine failure or degradation states. 

This behavioral consistency should be verified using standard deviation analysis of these sensors throughout the complete 

engine set. The standard deviation results validate the idea that several sensors show no meaningful contribution to 

predictive modeling since their values remain zero or extremely close to zero. Enhancing the model performance becomes 

possible through implementing feature selection methods that strip away uninformative sensors from analysis. 

Again, analysis of RUL occurs through the box plot in Figure 6, evaluation of risky Exponentially Weighted Moving 

Average (EWMA) performance for each week. The Weekly Prediction Time is shown on the x-axis which starts at week 

48 and ends at week 0 while the y-axis displays the EWMA values. The color gradient transforms as time goes by to show 

modifications in the RUL distribution before the system fails. 

During weeks 48–40 the RUL values demonstrate stable behavior while maintaining low variability. The RUL displays 

greater variability between weeks 30 and 10 because the system performance becomes increasingly unpredictable as it 

reaches its failure point. The rising variability creates signs that problems may begin to affect the system. The RUL values 

show a rising pattern with growing dispersion during the last weeks (1–0) because system behavior noticeably changes 

prior to failure. The threshold or critical EWMA value depicted by the dashed horizontal line differentiates between regular 

system operation and dangerous operating states. The depicted picture provides essential insights into RUL pattern 

development which allows experts to evaluate EWMA reliability for warning indications of system failures. 

4.4 Model Performance Evaluation 

Auth
ors

 Pre-
Proo

f



 

 
 

Table 3: Performance Metrics for Engine RUL Prediction across Different Datasets 

Dataset 𝑹𝟐 Loss MAE RMSE 

FD001 93.30% 354.85 11.67 12.77 

FD002 94.57% 356.14 11.54 12.87 

FD003 92.91% 354.45 11.71 12.77 

FD004 92.43% 353.71 11.76 12.87 

 

 

Figure 5: Sensor readings over engine cycles for engine unit 4 where each sensor value changes as the engine progresses 

toward failure 

The RUL prediction model received evaluation through Table 3 by employing FD001 through FD004 datasets. The 

performance evaluation of the model utilizes R² Loss MAE and RMSE values as multifaceted assessment tools. A high 

share of 92.43% to 94.57% establishes that the model efficiently identifies engine RUL changes in all recorded datasets. 
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The model proves its capability to identify hidden degradation patterns in engines during its operational cycle. The 

predictions show an error range of 353.71 to 356.14 Loss values that represent the difference between estimated and actual 

RUL measurements. The model shows stable performance through its steady loss values across different datasets. The 

MAE metrics span between 11.54 and 11.76 which measures the absolute difference between actual and predicted RUL 

predictions. The model maintains high consistency when predicting RUL because these values display minimal variations 

between them. The RMSE values demonstrate the size of prediction error through their range from 12.77 to 12.87. The 

model shows accurate prediction capabilities because the RMSE values demonstrate stable RUL evaluation throughout all 

the tested datasets. The model demonstrates reliable RUL prediction capabilities with minor error margins throughout all 

four datasets because of its effective and consistent performance. 

 

 

Figure 6: RUL for risky EWMA per week 

The analysis of Figure 7 provides vital knowledge about the model's functioning through its presentation of training versus 

validation loss curves and Mean Absolute Error (MAE) curves for FD001 to FD004 datasets. All datasets demonstrate 

declining training loss patterns because the model successfully learns to minimize errors throughout the training data. The 

model demonstrates effective pattern detection by showing this positive indicator. Validation loss curves offer deeper 

insights regarding generalization than other metrics do. The decrease of validation loss together with training loss indicates 

that the model successfully applies learned knowledge to new unseen data patterns. A rapid increase in validation loss with 

declining training loss patterns indicates that the developed model achieves excellent training performance but failed to 

generalize beyond training instances. 

 

 
Figure 7: Training and Validation Loss and MAE curves showing learning progress and generalization performance 

Table 3: Precision, Recall, and F1-Score for Each Model 

The evaluation process becomes more powerful through the addition of MAE curves since they show direct assessment of 

prediction accuracy. A progressive reduction of MAE during epochs shows better prediction accuracy and this precision 

stands essential when estimating RUL in predictive maintenance applications. The model displays enhanced predictive 

Auth
ors

 Pre-
Proo

f



 

 
 

accuracy according to the steady decline of MAE in FD001 dataset. The modeling of datasets FD003 as well as FD004 

experiences performance variations in the MAE metric which implies difficulties in processing complex and noisy data 

and could benefit from additional parameter adjustments. 

 

The contrasting performance between datasets (FD001 to FD004 reveals that researchers must treat each dataset uniquely. 

The convergence patterns of both loss and MAE for datasets demonstrate varying speeds because data complexity and 

operational conditions affect results differently. Diverse database analysis during performance model evaluation remains 

essential because it minimizes uncertainties about application reliability in real-world environments. The alignment or 

separation between training and validation metrics serves as a decision-making tool for early stopping, hyperparameter 

tuning and regularization implementation to prevent overfitting and enhance generalization. 

 

4.5 Predicted vs Actual RUL 

The Figure 8 depicts RUL predictions resulting from the Graph Neural Network (GNN) model assessment of three engines 

(12, 61, and 84) during their operational periods. The Actual RUL values serve as ground truth to evaluate how well the 

predicted RUL matches them throughout each subgraph. The predictions for engine-12 span 200 operational cycles and 

engine-61 as well as engine-84 need 160 and 175 operational cycles respectively. Model performance confirms strong 

results from these plots because Actual RUL tracks Predicted RUL throughout most operational cycles. The examined 

regions show minor inconsistencies that indicate possible improvement opportunities for model refinement. The Figure 8 

demonstrates that the proposed GNN model effectively determines RUL durations as per aviation's predictive maintenance 

requirements. 

 

Figure 8: Proposed GNN model RUL predictions over time for engines (12, 61, 84) 

 

a) FD001      b) FD002 
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c) FD003      d) FD004 

Figure 9: Model's performance in predicting RUL 

Multiple data points from Figure 9a, 9b, 9c and 9d enable readers to study how the model forecasts RUL on datasets across 

various operational scales. The Expected RUL chart in Figure 9a declines from 175 to 0 while the Predicted RUL follow 

this pattern but exhibits noticeable deviations in the middle operational period. The Time-plot in Figure 9b displays greater 

Expected and Predicted RUL alignment through its 0 to 250 scale while achieving better performance accuracy at longer 

operation periods. At 0–100 expected RUL in Figure 9c the predicted RUL properly follows the general pattern although 

it shows deviations particularly in the lower part while displaying challenges for making precise predictions near RUL 

zero. The model demonstrates effective modeling capabilities of extended operational durations because Figure 9d shows 

predictable alignment between Expected RUL and Predicted RUL while showing minimal deviations throughout the 0–

300 scale. These figures demonstrate that the model operates optimally during long operational periods as shown in Figure 

9b and 9d but shows limitations when analyzing shorter or more detailed operational intervals as shown in Figure 9a and 

9c mainly affecting predictions for medium-range and low-RUL scenarios. The comparison demonstrates a need for 

tailored dataset capabilities together with model improvement methods in order to boost predictive maintenance accuracy 

and reliability for different operational conditions. 

 

4.4   Comparative Analysis and Discussion 

        The C-MAPSS dataset evaluation for different RUL prediction models appears in Table 4. The proposed GNN-based 

model received performance evaluation from FPCA-TCN, CNN-GRU, and ESO-BP methodologies. The performance 

analysis assesses different methods through their R² and RMSE values that evaluate both predictive accuracy and error 

margin rates. 

Table 4: Comparative Analysis of RUL Prediction Models on the C-MAPSS Dataset 

Reference Model Result 

Chen et al. [27] FPCA-TCN RMSE of 15.56 

Sun et al. [28] CNN-GRU 𝑅2 of 0.91 

Zhang et al. [29] ESO-BP 𝑅2 value of 0.931 on FD001 

Ours GNN 
𝑅2 of 0.93.3 on FD001, RMSE of 

12.77 

 

A comparative study between various RUL prediction methods proves the high performance of our proposed Graph Neural 

Network (GNN)-based method. Chen et al. [27] implemented FPCA-TCN which delivered an RMSE of 15.56 yet Sun et 

al. [28] accomplished R² value of 0.91 through CNN-GRU model implementation. Zhang et al. [29] developed ESO-BP 

model technology to enhance prediction accuracy to reach an R² value of 0.931 when examining the FD001 dataset. Either 

R² of 93.3% or RMSE of 12.77 from our proposed GNN model outperforms current methods thereby providing exceptional 

predictive accuracy and minimal error for FD001. The use of graph-based learning methods with sensor data dependency 

structures improves RUL prediction models so our solution proves to be a promising predictive maintenance alternative. 

 

VII. CONCLUSION AND FUTURE DIRECTIONS 

The proposed GNN provides a decentralized DL approach to RUL engine prediction in distributed mechanical systems 

while solving traditional centralized diagnostic obstacles. Using CNNs as well as LSTM structure allows the GNN to detect 

quick anomalies and observe extended degradation patterns in multivariate sensor information. The GNN produces 

excellent results when tested against CMAPSS data by reaching accurate predictions along with minimal errors. Real-time 

fault detection and preventive maintenance for aircraft engines and industrial turbines can be achieved through the potential 

applications of the GNN system. 

Auth
ors

 Pre-
Proo

f



 

 
 

The research can be expanded through multiple potential directions which aim to improve the capabilities of GNN. Model 

optimization needs to concentrate on parameter adjustment together with sophisticated attention methods to achieve better 

interpretation alongside improved prediction results. GNN performance needs to be tested through real-time applications 

in aircraft fleets as well as industrial turbine networks to prove its operational effectiveness. Extensive testing across various 

domains should enable the GNN to support diagnostic applications in healthcare and energy systems along with its current 

use in aerospace systems. The system performance will improve by implementing data quality improvements and sensor 

feature selection methods for both removing unhelpful data sensors and finding delicate degradation patterns more easily. 

By integrating the GNN with other architectures like Transformers and Graph Neural Networks (GNNs) the model can 

achieve better handling of sensor data containing complex and non-linear relationships. Research into network scalability 

along with fault tolerance for larger systems will establish robust operation of the GNN during node failures and network 

disruptions. 
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