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Abstract - Advanced diagnostic tools are essential for aerospace transportation sys an(Wautomotive industries and
industrial manufacturing facilities since operational efficiency requireme ty needs demand failure prediction
tools. Systems that use traditional diagnostic methods depend on centrali tegtures that show limitations regarding
scalability while being unable to overcome subsystem failure eve he research presents Gossip Neural

4

Network (GNN) as a decentralized deep learning (DL) syst emaining Useful Life (RUL) duration
in distributed mechanical engine systems. The GNN cq tional Neural Networks (CNNs) and Long short-
term Memory (LSTM) network layers to identify s lies in addition to capturing long-term sensor
degeneration patterns in sensor data. A gossip-base® ows the GNN to facilitate distributed engine subsystems

which train a shared model together through peer-to-p aborations without needing central control. The assessment
xceptional capability for RUL prediction alongside reliable

and 94.57% and RMSE results within 12.7 .87 which demonstrates its effectiveness in handling realistic operational
environments. The GNN provides an enc i tion for time-sensitive fault detection in distributed systems which
facilitates efficient predictive mainten engineering applications.

Keywords - GNN, RUL Prediction, ntralized Deep Learning, Predictive Maintenance, Fault Detection, Mechanical
Fault Detection.

I. INTRODUCTION

e critical domains of aerospace, automotive, and industrial manufacturing, and
nd for operational efficiency and safety, now make it imperative to have advanced
pting mechanical failures [1]. These systems are complex and engines found at the heart of such
ssive deterioration of life which manifests through events like bearing wear, rotor imbalance

when an engine is going to fail and therefore a failure threshold is going to be reached before that time
rventions to avoid downtime, reduce maintenance costs and increase system reliability [4]. However,
sensor diagnostic approaches frequently rely on centralized architectures that collect sensor data from
sub-systems into one processing center, which is physically limited in scale, vulnerable to data privacy, and
ailure-resilient to subsystems [5]. Additionally, the amount of multivariate time series—vibration, temperature, pressure,
and rotation speed, amongst others that must be modeled is very complex and requires very sophisticated modeling that
an capture both short-term anomalies and long-term degradation trends (Implementation of a sequence-to-sequence
stacked sparse LSTM autoencoder for anomaly detection on multivariate timeseries data of industrial blower ball bearing
unit).

DL-based fault detection and prognostics have gained significant popularity in recent years because of the incredible tools
it provides for encoding complex patterns in the high dimensional sensor data, which procure higher accuracies than
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conventional statistical and physics-based approaches and are more capable of handling varying conditions [6]. CNNs are
highly effective in extracting spatial-temporal features [7], whereas LSTM networks [8] are strong in sequential
dependencies that match the capacity of the RUL prediction [9]. However, DL has been underexplored and applied to
distributed engine systems, particularly in cases where distributed data processing is not possible for bandwidth constraints
and privacy reasons or due to the enormous scale of the networked subsystems [10]. In order to address these limitations
the GNN, a decentralized DL framework consisting of CNN and LSTM layers connected in a network of distributed nod

(i.e., each of them serves as a sensor-equipped engine subsystem) trained collaboratively using a gossip-based protocol,

proposed. The GNN forages around a decentralized network of engines by eschewing a central server to perform loc

computation and pairwise weight exchange and to achieve a unified RUL predictor in a scalable, robust RUL predj
and privacy to DL bright.

This research has great significance because it could lead to making a leap from predictive maintenance jgdist

The key contributions of this research are:

1. We introduce the GNN, a novel decentralized DL framework for predic
server, and evaluate it on power exhaust.
2.  We presented a two-stage gossip-based protocol that integrates CNN and LST

anomalies and long-term degradation patterns in multivariate sensor data.
ale networks, as an enhancement

3. We allowed distributed engine subsystems to collaborate, buildin lar
of scalability and fault tolerance.
4. We also ensured node-to-node communication if sensor data is ile model weights are shared among

nodes, thus ensuring data privacy in diagnostic systems.
5. We showed how the GNN can be used to solve
computation and decentralized aggregation toy

I en g problems by a method of both local
fault detection.

centralizel learning is reviewed in Section 2, Section 3
Prchitecture, training, and evaluation, and Section 4 reports
pplications and future directions. The work provides a solid
jability and increasing the lifetime of critical mechanical

In the rest of the paper, related work of fault dete®
outlines the method, which includes data collection, 8
results and analysis, and finally, Section 5 concludes wi
base for intelligent diagnostic systems capable of enhancingd
assets.

RATURE REVIEW

ircraft engines has become a prominent research focus because researchers use
Drategies to achieve better results along with increased interpretability and
M Research investigates existing studies through three identified subcategories:
®d Approaches and Hybrid and Attention-Based Models. Researchers employ
the advantages and drawbacks and relevant contributions of each study category.

In recent times the prediction g
different machine learning
improved computational pd
Traditional ML Ap
comparative a i

1.

d broad application in RUL prediction because of their readable algorithms together with their
. Alomari et al. [11] developed a new framework which combines feature engineering with
duction and feature selection methods including PCA and Genetic Algorithm and LASSO. The

R2 accuracy metrics which validates the effectiveness of feature reduction techniques for maintaining
accuracy. Deepika et al. [12] performed an analysis of the XGBoost, Random Forest, and SVM traditional ML
odels while XGBoost delivered an RMSE of 23.8 and an R? score of 0.67. Research findings show that traditional ML
models demonstrate strong potential for RUL estimation when such models use advanced feature selection practices with
aditional ML models. The analysis methods encounter two primary barriers that stem from informational data reduction
techniques plus difficulties with dataset variability.

The assessment by Rosero et al. [13] of aircraft cooling units RUL included a combination of physics-based and data-
driven models with Health Indicators (HIs) that originated from time-frequency analysis. The researchers detected unique
degradation steps through their approach which resulted in a 0.352 RMSE. This technique generates important failure




pattern information yet depends on advanced data transformation methods yet only works well with simple failure modes.
The main benefit of traditional ML methods includes both understandable results and efficient processing but these
advantages do not extend to sophisticated non-linear patterns found in sensor measurements.

2. DL-Based Approaches

DL models currently lead the way because they excel at identifying elaborate patterns and continuing relationships withi
sensor information. Real turbofan engine data yielded superior prediction outcomes for LSTM and CNN models compz
to simulated data as noted in Szrama et al. [14]. The models they developed exhibit limitations in training sensitivit
affects their performance when applied to various engine types. Ozkat et al. [15] used LSTM to predict RUL in U
Aircraft Systems based on sensor data resulting in RMSE values of 3.7142 Hz, 1.4831 Hz and 1.3455 Hz. The
approach shows effectiveness but its reliability depends on fixed threshold values that can lead to pe
during varied vibration data assessment.

In contrast, Dangut et al. [16] developed a hybrid DL model called AE-CNN-BGR
demonstrated 94% success rate in these detection tasks. The rescaled focal loss functj d a s data imbalance
while the model continues to depend on high-quality historical logs and could g erfit. ng et al. [17]
developed Bi-LSTM-AM through merging 1D CNN with Bi-LSTM for RUL predi
maintenance planning. Their strategy reduced system downtime yet encountered chall¥ when scaling up operations
and when executing methods under realistic settings. Research confirms that DL modeWg@excel in analyzing complex
datasets yet these analyses mention their computational requirements as well as t ulrebility to hyperparameter
settings.

3. Hybrid and Attention-Based Models

Predicting RUL requires hybrid and attention-based g ic jte various architectural elements to create more
PSA GHLSTM in Transformer modeling led Chen

this method d g ®Or data quality and operating environmental conditions.
The devel 23] developed ATCN which combines self-attention with TCN alongside squeeze-and-
excitation r better feature extraction and predictive performance. The proposed method delivers higher

results t N, LSTM and Transformer-based models yet depends on the quality and consistency level of
incoming archers from Gan et al. [24] presented DMHA-ATCN which utilizes dual-dimensional attention to
sed on space and time to demonstrate enhanced prediction quality and easier interpretation. This system

al. [25] developed ASD-YOLO as a network solution for aircraft surface defect detection through the
implementation of deformable convolution along with attention mechanisms. Although their model delivered 5.7% and
4% mAP enhancement across two datasets the system needs optimization to handle real-world conditions and various
defect types. Hybrid and attention-based predictive models function as the frontiers of RUL forecasting technology because
they deliver substantial improvements in both accuracy rates and interpretation capabilities. Real-world implementation
faces difficulties because of these methods' high complexity together with increased computational requirements.

The review of various RUL prediction methods appears in Table 1 with findings and results and identified limitations.



Table 1: Comprehensive Literature Review on RUL Prediction Models

Reference Method/Model Findings Limitations Result Year
Feature engineering,
PCA, Genetic AFICv efficiently
Alomari et Algorithm, RFE, reduced features while | Potential information 0.91 R2score in
al. [11] LASSO, Random maintaining prediction |loss, dataset dependency,| FDO001 using (2023
' Forest, AFICv, accuracy across C- no DL models tested AFICv
Gradient Boosting, MAPSS sub-datasets
Random Forest, MLP
Hilbert spectrum for  [Cooling units follow Eg:rllurleefa:éergisrir:ay be
Rosero et |time-frequency Hls, normal degradation plex, req g 0.352 Std. R
. advanced )
al. [13] physics-based + data- |before an abnormal . in Raw [Qat
: - transformations for
driven ML models phase near end of life -
detection
LSTM effectively L
Mean peak frequency |predicts RUL using Va”ab'l.'ty in vibrg
Ozkat et S data, reliance on
al. [15] feature, L$T_I\/I for vibration data, oredefined thresho 2023
' RUL prediction threshold-based eneralization concer z,1.4831 Hz,
estimation g | 3455 Hz
W% of extremely
Dangut et |AE-CNN-BGRU Improved rare failure rare failure of
L 2023
al. [16] model prediction accuracy Ues components and
AUC=0.864
Efficient
Wang et 1D CNN + Bi-LSTM- [Improved RU scheduling,
al [197] AM, Bayesian prediction g minimized 2024
' optimization, MILP maintena real-wowId feasibility maintenance
downtime
Szramaet |CNN, LSTM with Real_da}ta impro Data_ t_na_ls, training Eff_ectl\_/e RU!_
- prediction accurac sensitivity, estimation using 2024
al. [14] regression output AT .
oV, ulated data generalization issues real engine data
FDO001 Dataset:
Score: 220 + 23,
Impr UL High computational cost, RMSE: 13.14 £
Chen [18] Transformer w diction over hyperparameter 0.21 2024
e @ting models sensitivity FD004 Dataset:
Score: 1420 +
125, RMSE:
14.25+£0.25
Improved prediction
accuracy, particularly
under changeable Sensitive to noisy or -
. . : .| Significant
operational conditions |incomplete sensor data; |. .
. : improvements in
and complex fault higher computational 2024
. overall RUL
modes. Outperformed |complexity due to dual rediction
existing RUL attention mechanism. P
prediction models in
both Score and RMSE.
Two-Stream The TACT model
. improves RUL The model's complexity
Convolution -~ . :
prediction accuracy, increases computational
. Augmented . L .
Jiangyan et Transformer (TACT) reducing Score by cost and training time,  [Score reduction of 2024
al. [20] N 2.71% and RMSE by |which may hinder its 4.54%
model combining ; T
: 3.13% compared to real-time applicability in
multi-scale CNN and . .
existing methods. practical systems.
Transformer modules




Huang et
al. [25]

ASD-YOLO network
based on YOLOvV5
with DCNC3, GAM,
CEM, and EMA-Slide
for ASD detection.

Incorporates
deformable
convolution, attention
mechanisms, and
sample imbalance
solutions.

Requires further
optimization for real-
world scenarios and
diverse defect types.

mAP
improvement by
5.7% and 3.4% on
two datasets
compared to
mainstream
methods.

2024

Zhang et
al. [23]

Attention-based
Temporal
Convolutional
Network (ATCN) with
self-attention, TCN,
and squeeze-and-
excitation mechanisms.

Enhances feature
extraction and
improves prediction
accuracy by weighting
contributions from
time steps and
channels.

Dependent on the quality
and consistency of input
data, which may affect
generalization across
varied conditions.

Higher
in RY

iSTLSTM: LSTM with
Bi-ConvLSTM1D for

Enhances feature
extraction through
spatio-temporal

Performance is a
by the quality and

. ) variability of sensor gata} erior RUL
Gao et al. |[feature extraction and a |dependencies and . . i
. - . which could impa pr&diction 2024
[22] hybrid attention improves model .
- . o . general ! r performance
mechanism for interpretability while di
) - S d iversg ?
interpretability. maintaining high
prediction accuracy.
ML-based RUL XGBoost achie
prediction using best perfor
models like XGBoost, [an RMSE
Deeika et Random Forest, SVM, [an RZscore'N datasets and real-time RMSE of 23.8
al [EZ] KNN, and Linear nearly matchiri application may need and an R? score of | 2025
' Regression, with accuracy of DL further validation, 0.67
PostgreSQL for data  [while being particularly under
storage and Flask for tionally varying operating
real-time visualization. conditions.
Dual-dimensional MHAWATCN . T Improved
. . Further investigation is s
attention mechanis erforms prediction
. needed to assess the
using DMHA {g ditional TCNs in : - accuracy over
Gan et al. . - model's adaptability to .
feature weig prediction, . .. |traditional TCN, |2024
[24] . . real-time systems and its | .
ATCN for improving o, . with enhanced
. - scalability for different |. -
interpretability and tvnes of enaines interpretability
prediction accuracy. yp gines. through DMHA.
CNN-LSTM-Attention
model outperforms Further optimization
CNN and LSTM, needed for real-time Elg/IOSOElfi!rS 977
improving RUL deployment and to FDOOZ: 14'452’
prediction accuracy handle varying FDOOS: 13'907’ 2024

across all CMAPSS
datasets with the
attention mechanism
enhancing feature
extraction.

operational conditions.

FDO004: 16.637;
CNN-LSTM-
Attention model




1. METHODOLOGY

This section describes how the GNN proposed for predicting the RUL of engines within an intelligent diagnostic system is
developed and evaluated. The scalability to large engine networks, robustness against node failures, and data privacy
preserving are most beneficial when using this approach, solving several deficiencies with centralized diagnostic system
In the subsequent subsections, we specify a methodology that details each of the stages; including data collection al
preprocessing, the design of the GNN architecture, distributed training procedure, implementation specifics, an
performance evaluation, all of which are summarized in Figure 1 to provide a complete and reproducible framework.

GNN Architecture

1. Gossip Protocol
2. Input Layer
3. CMM & LSTM Layer
4. Output Layer

Data
Preprocessing

Data Collection

Novel-level
Model
MAE
RMSE
RE
Loss

Figure 1: Overview of tj ology framework
3.1 Dataset Description and Preprocessing

This research uses the CMAPSS (Commercial Modular %@o Propulsion System Simulation) dataset which is found in
NASA’s repository on Kaggle [26]. This data set is comi@aly used for prognostics and health management (PHM)
purposes, specifically in RUL prediction of ggligeft engines. Specifically, it is composed of multivariate time series data
derived from aircraft engine sensors underfryi ditions of operation.

3.1.1 Dataset Composition

The dataset is comprised of fg b- ets (FD0O1, FD002, FD003, FD004), and four operating conditions and four
fault modes are required to pgitte e number of engines and their complexed operating conditions, the datasets
are distinctively varied. Theflivhole dajllet is summarized in table 2.

Table 2: Summary of CMAPSS Dataset

Enggpes Operating Fault Modes Number of Total

Conditions Features Observations
FR0 100 1 1 21 20,631
FD 259 6 1 21 53,076
100 1 2 21 24,815
004 249 6 2 21 61,918

Preprocessing

The dataset is of high quality and has no missing values since it came from NASA. But first, a preliminary analysis was
ade to ensure inconsistencies, duplicates, or corrupted records. It was confirmed that the data set had no duplicate entries
which indicated that nonduplicate data was used. Also, there were statistical methods of outlier detection using the
Interquartile Range (IQR) and Z score, but no real outlier was found that needed to be removed.



In order to derive meaningful insights from raw sensor data, feature engineering was conducted. The biggest problem in
this process was determining the RUL for each of the engines. The RUL was identified by using the following equation
since the training data contains full engine life cycles until failure:

RUL = max(Cycle) — Cycle

where max(Cycle) is the last operational cycle before failure for an engine. By transforming the dataset, we were then a
to change the dataset into a supervised learning format in which the input is sensor readings and the output is the predicte
RUL.

To normalize the scale of the sensor readings, Min-Max Normalization was applied which transformed the data in tj
[0,1]. The normalization allowed all features to contribute equally to the model during training and precluded on€
from dominating another because not all features were given equal weight when magnitudes differed
equation was used for the normalization:
X — Xmin
~ Xmax — Xmin

where X is the original sensor reading, and X' is the normalized value.

The CMAPSS dataset is in the form of time series data, so it is needed to restructur
modeling with LSTM networks and GNN networks. A sliding window approach was use implementing each training
sample in the format of 30 continuous time steps (cycles) as input, and the flnal R%he et output. The reason for
this sequence Iength was based on empirical studies that show this by cap o te@oral degradation trends. Then, the
gith respect to the past sensor readings.

ataset into the sequence for

The neural networks could learn degradation patterns in time, and e
make sure the evaluation of the model is robust, we split the data; tot
validation set, 15%, for hyperparameters tuning and
evaluating model performance on unseen data.

3.2 Gossip Neural Network Model

The GNN is a decentralized DL framework propos the RUL prediction of engines in an intelligent diagnostic
system. Unlike traditional centralized methods, this model pu computation to multiple nodes, such as sensor-equipped
edge devices or subsystems, that collabor train a shared DL model in a ‘decentralized’ manner without a central
server. The local sensor data is process ode and model parameters (e.g. weights) are exchanged among
i tion protocol. By maintaining such scalability, fault tolerance, and
cal fault detection and prognosis in real time for dynamic distributed
engine systems, e.g. alrcraft tu dustrial machinery. In the context of engine degradation driven by mechanical
i ance, the GNN tackles a critical problem — namely, predicting the remaining
hn engine fails by using multivariate time series sensor data such as vibration,
adation patterns and deriving accurate RUL estimates for predictive maintenance.

Feature Extraction Temporal Modeling RUL Prediction

Gossip
Exchange
Local Training Lo

}~ — —» Update Weight, W,

Input Layer CNN Layer LSTM Layer Output Layer 1

e \
Gossm
Exchange
- >

— - R — Update Weight, W;
Local Tralmng N
- J

L S
Gossm
Excha r| ge }>
- —»

cal Data, D;

Node N N P Update Weight, W,
1

— — — —_—
Lucal Training
.

Figure 2: GNN Architecture

Local Data, D"




The GNN has multiple nodes, (Node 1), (Node 2), ....., (Node N), each of which has an analogous DL model for dealing
with time series data. The base network architecture starts with an input layer that takes multivariate sensor data of shape
(100, 10), for example, the vibration amplitude, oil pressure, and rotational speed, and feeds that into it for processing. It
contains 1D CNN layers followed by LSTM layers. Temporal features are extracted spatial features from sensor signals
through the convolution operation of CNN with 32 filters, kernel size of 3, and ReLU activation on non-linearity to redu
dimensionality, preserving the fault-related patterns. These features are then passed through LSTM layers with 64 neuro
to model the long-term temporal dependencies of engine degradation occurring over time. The architecture then ends wit
an output layer consisting of a fully connected layer of a single neuron and a linear activation, predicting RUL in hours or
cycles in a continuous way, and making a quantitative prognosis about engine health.

As shown in Figure 2, the distributed training mechanism of the GNN is realized through a decentralized process d
nodes. The node conducts a local training process over its dataset of time series sensor data that have B )
locally optimized its local weights. This means that backpropagation is used to minimize the MSE loss §
optimizer such as Adam, where vertical arrows are labeled “Training” on the local data to the weights,

to (Node N) with
a bidirectional arrow labeled “Gossip Exchange” and specifying which weights arc g s ocal epochs. In

through downward arrows onto the updated local weights. Below are the loss and agg

i Input Layer
For the GNN, the input at each node is a multivariate time-series sensor data, w alloWs initial feature extraction

and temporal modeling forming the input, but which represents the ground hE system. However, this layer accepts

data that has a matrix structure of 100 timesteps and 10 features into whi esteps cover a temporal window in
ibration amplitude, oil temperature,
e, power out, and oil debris. Together
nt and time-varying measurements, which are
e first layer of the network (input layer) does
brmalize it, usually divided by a constant to normalize the
data to the range of [0, 1] to standardize inputs across n8 o0 that we can mitigate differences from the viewer or sensor
variations or environmental conditions. In this layer, its CWgat is directly passed to the CNN layers as a robust, high-
dimensional representation of the engine heal be further pM¥cessed. The input can mathematically represented as:
Xi € RlOOxlO

imesteps and 10 features.

important to indicate degradation patterns predictivg
not do any transformation, only format properly the 8

where X; is the sensor data matrix for

ii. CNN Layer
The input layer is followeg
features to be used in identj
with 32 filters, kernel size g
anomalies (sugden vidil

ayer which uses the multivariate sensor data to extract its spatial and temporal
s related to mechanical faults by GNN. This 1D CNN layer is configured
1, and ReLU activation, and is run with 32 filters to attempt to detect short-term

feature r hile the noise is suppressed and the signal gets amplified. This layer helps reduce the dimension
serving important spatial temporal relationships, resulting in a compact representation but is

hy = ReLUWeyy * Xt + benn)
Wenn € R32¥3%10 s the filter weight tensor (32 filters, kernel size 3, 10 input channels), = denotes 1D
onvolution, bcyy € R3? is the bias, and h, € R%8*32 is the output feature map.

LSTM Layer

After the CNN layer, to model long-term temporal dependencies of the extracted features which is necessary for RUL
prediction is the LSTM layer. This layer is configured with 64 units which process the CNN output sequence (reshaped to
98x32 per timestep) with hidden state and cell state that change over 98 timesteps to learn patterns like gradual wear,
cumulative stress (or stress accumulation), or recurring anomalies appearing within the input window. Specifically, the



LSTM is composed of forget, input, and output gates and is used selectively to recall or discard information from steps of
previous timesteps to prevent vanishing gradient problems common in regular recurrent nets and to focus on important
degradation trends as shown in Figure 3.

hy

Cey Ce

|
|

1
:

|| tanh || ¢ |

g

—
: |
hey . T

v

(x

Figure 3: Gatihg Mechanism of LSTM Netw:

The LSTM has 64 nodes and the output produces a hidden state sequence of size 98X hich is the temporal context
that is needed for the estimation of RUL in the final timestep. Since LSTMSs have P?de strated to be effective for
R

engine RUL prediction, namely for tasks where understanding long-term depen les is Trucial, but computational
P Us or TCNs might be considered.
The final prediction step needs this layer’s output as a rich temporal rep he update functions of forget, input,

and output gate can be expressed as follows:

i;=a0 Xt
0; = I x| +
€t = fe-Co-1 + W e - [he-1,%e] + be)
h, =Ng@tanh (c;)
where Wy, W;, W, W, € R®*(®**32) are weight matrices from CNN output size), by, b;, b,, b, € R®* are biases,
ft, s, 0, are gate activations, c is the cell sta h, € R%* is the hidden state at timestep t.
iv.  Output Layer
The node-level architecture end «Qalth the ayer, which turns the LSTM’s temporal representation into a single
continuous RUL prediction. The las t of the architecture consists of a single fully connected neuron with linear
activation, takes the final hidg .. () TM (size 64 at time t=98), and linearly transforms it to obtain the predicted

RUL, ¥;, expressed in hours aining until engine failure. This gives the linear activation for the output to ensure
unconstraint of the out ues are continuous (imminent failure to thousands of hours or cycles of the engine
condition an contrast to the simple structure, this layer serves to consolidate the hierarchical
features cqmpu NN, and then model this into a practical prognostic metric that is easily usable for
maintenan isi ing. During local training, local weights and biases of this layer are tuned to minimize prediction

error, such matches the ground truth RUL labels given in the training data. The prediction mechanism of

y\i - Wout- hLSTM + bout
R1*64 is the weight vector, b,,; € R is the bias, h; ¢y, € R* is the final LSTM hidden state, and 9; is

uted Training and Gossip Mechanism

As shown in Figure 4, their GNN’s distributed training mechanism allows for collaborative refinement of the RUL
redictor across a network by integrating the node-level DL model into a decentralized gossip Protocol. By each node local
raining on its private dataset (i.e., local sensor data X; and local RUL labels y;) with mean square error loss function (MSE)
as a cost function using Adam optimizer (learning_rate = 0.0001) for learning and fitted weights as parameters to the CNN,
LSTM and output layers on the forward and backward pass respectively. According to the Figure 4, the weights of nodes
are then exchanged in a gossip manner via a ring topology after 5 local epochs, where (Node 1) exchanges W, with (Node
4) and with (Node 2), (Node 2) with (Node 3) and (Node 3) with (Node 4). It is a lightweight exchange that broadcasts



only model parameters and performs a weight aggregation step such that each node computes its weights by mixing local
and received weights to encourage network-wide consistency. Its cycle repeats until convergence in order to produce a
single model with accurate RUL inference at any node. The loss function to determine the RUL can be described as:

L, = L ZNi 5. i 2
TN, jzl(Yi'] )]

where N; is the number of samples in D;, ¥;, j is the predicted RUL, and y;, j is the ground-truth RUL.

Nede 1 Nede 2 Nede 3 Nede 4

‘_:'w1 ‘j- Training Wz Training W3 Training
Local Data, Dy Local Data, Dy Local Data, Dy

Local Data, Dy
[ [ [ ' [ '

(wy)

1 I R .

F- - F- ~, F-

Gossip Gossip Gossip
(W) — (wy) (wy)

\ / \ s " __

¥ v v

Update Weight, W, Update Weight, W; Update Weight,

Figure 4: Gossip Mechanism between Diffegen

And the weight aggregation mechanism can be defing
Ww; +
where W; is the weight from a neighboring node'\gga is the ing coefficient.

This section analyzed how our model perf asting engine RUL using FD0O01 to FD004 dataset information. The
evaluation uses R? together with Meal (MAE) Loss along with Root Mean Squared Error (RMSE) as key
performance metrics. We check th ini dation outcomes against each engine by comparing predicted RUL

results to actual RUL results while g how well the model tracks the degradation patterns of the components. Our

This analysis enables us to the positive aspects and existing constraints as well as opportunities to boost

accuracy levels in predd

imum efficiency. The pre-processor segment included a process that split the data into separate training
roups. The model training phase consumed 70% of data but the remaining 30% served as the testing data.

4.2 Evaluation Metrics

The assessment of DL model performance matters for understanding their capability to forecast RUL of engines. We
used essential metrics to measure both the predictive accuracy and model prediction capabilities for our assessment
purpose. The performance evaluation of the model relies on R?2 and RMSE and MAE and Loss as individual metrics that
measure different aspects.



1) R?*(Coefficient of Determination): R? represents the proportion of engine RUL variable variance which can be
predicted based on the studied independent variables. The model fit evaluation relies on this measurement because
it describes the data-model compatibility. The formula for R? is:

_ Z(yactual - Ypredicted)z

RZ=1 —
Z(yactual - y)z

A higher value of R2 shows that the model performs well in predicting RUL variance.

2) RMSE (Root Mean Squared Error): The RMSE value represents the mathematical square root of all preg
and actual value differences which have been squared and averaged. Lower RMSE values indicatg
prediction accuracy because they show the extent of error magnitude. The formula is:

n
1
RMSE = ;Z(yactual,i - ypredicted,i)z

i=1

Improved prediction accuracy relates to RMSE values decreasing.

Plute valu®errors between
ent mechanism. The method
kate for real-world prediction

3) MAE (Mean Absolute Error): This methodology computes the mean av®
predicted results versus actual observed data to provide an easy accuracy mea
stands out because it detects errors less easily than RMSE which makes it appr®
scenarios. The formula is:

n

1
MAE = Zz |yactual,i -
i=1
The accuracy of a predictive model regarding actual RUL i
4) Loss: The true values determine how much errordias
loss function to both direct the training prog
performs more effectively with lower val
MAE metrics combined when used for pred

AE decreases.

ctionsy ¥in prediction results. We deployed the
while optimizing its accuracy rate. The model
y, the loss function includes both RMSE and

4.3 Sensor Trend Analysis and Feature Relevance

All sensor measurements for engine unit n 4 depicted 1h Figure5 towards failure while showing their time-series
patterns in the next subsection. The differeflfoperaidmmal settings and sensor measurements from engine performance trends
appear as subplots across the recorded

The listed sensors including sensor al
during the entire engine operagjg

rtain parameters 1, 5, 6, 10, 16, 18, and 19 demonstrate minimal variations
The studied features show minimal potential to deliver useful information for
rs may fail to detect patterns related to engine failure or degradation states.
This behavioral consistency\@ould be Jrified using standard deviation analysis of these sensors throughout the complete

engine set. The sta e oo

48-40 the RUL values demonstrate stable behavior while maintaining low variability. The RUL displays
iability between weeks 30 and 10 because the system performance becomes increasingly unpredictable as it
eaches its failure point. The rising variability creates signs that problems may begin to affect the system. The RUL values
show a rising pattern with growing dispersion during the last weeks (1-0) because system behavior noticeably changes
rior to failure. The threshold or critical EWMA value depicted by the dashed horizontal line differentiates between regular
system operation and dangerous operating states. The depicted picture provides essential insights into RUL pattern
development which allows experts to evaluate EWMA reliability for warning indications of system failures.

4.4 Model Performance Evaluation



Table 3: Performance Metrics for Engine RUL Prediction across Different Datasets
Dataset R? Loss MAE RMSE
FDO001 93.30% 354.85 11.67 12.77
FDO002 94.57% 356.14 11.54 12.87
FDO003 92.91% 354.45 11.71 12.77
FD004 92.43% 353.71 11.76 12.87
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igure 5: Sensor readings over engine cycles for engine unit 4 where each sensor value changes as the engine progresses
toward failure

The RUL prediction model received evaluation through Table 3 by employing FDOO1 through FD004 datasets. The
performance evaluation of the model utilizes R? Loss MAE and RMSE values as multifaceted assessment tools. A high
share of 92.43% to 94.57% establishes that the model efficiently identifies engine RUL changes in all recorded datasets.



The model proves its capability to identify hidden degradation patterns in engines during its operational cycle. The
predictions show an error range of 353.71 to 356.14 Loss values that represent the difference between estimated and actual
RUL measurements. The model shows stable performance through its steady loss values across different datasets. The
MAE metrics span between 11.54 and 11.76 which measures the absolute difference between actual and predicted RUL
predictions. The model maintains high consistency when predicting RUL because these values display minimal variation
between them. The RMSE values demonstrate the size of prediction error through their range from 12.77 to 12.87. T
model shows accurate prediction capabilities because the RMSE values demonstrate stable RUL evaluation throughout
the tested datasets. The model demonstrates reliable RUL prediction capabilities with minor error margins throughout a
four datasets because of its effective and consistent performance.
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The analysis of Figure 7 provides vital knowledge about the model's func
validation Ioss curves and Mean Absolute Error (MAE) curves for,

model demonstrates effectlve pattern detection by shoy ive i ator. Validation loss curves offer deeper
idation loss together with training Ioss indicates
that the model successfully applies learned knowled
declining training loss patterns indicates that the dev#
generalize beyond training instances.
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Figure 7: Training and Validation Loss and MAE curves showing learning progress and generalization performance
Table 3: Precision, Recall, and F1-Score for Each Model

The evaluation process becomes more powerful through the addition of MAE curves since they show direct assessment of
prediction accuracy. A progressive reduction of MAE during epochs shows better prediction accuracy and this precision
stands essential when estimating RUL in predictive maintenance applications. The model displays enhanced predictive



accuracy according to the steady decline of MAE in FD001 dataset. The modeling of datasets FD003 as well as FD004
experiences performance variations in the MAE metric which implies difficulties in processing complex and noisy data
and could benefit from additional parameter adjustments.

The contrasting performance between datasets (FD001 to FD004 reveals that researchers must treat each dataset uniquely
The convergence patterns of both loss and MAE for datasets demonstrate varying speeds because data complexity al
operational conditions affect results differently. Diverse database analysis during performance model evaluation remai
essential because it minimizes uncertainties about application reliability in real-world environments. The alignment
separation between training and validation metrics serves as a decision-making tool for early stopping, hyperpara
tuning and regularization implementation to prevent overfitting and enhance generalization.

4.5 Predicted vs Actual RUL

The Figure 8 depicts RUL predictions resulting from the Graph Neural Network (GNN) model asses

Pdel refinement. The Figure 8
bon's predictive maintenance

regions show minor inconsistencies that indicate possible improvement opportunities 18
demonstrates that the proposed GNN model effectively determines RUL durations as per a
requirements.
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Figure 9: Model's performance in predicting RUL

this pattern but exhibits notlceable deviations in the middle operational period. The Time 9b disprays greater
Expected and Predicted RUL alignment through its 0 to 250 scale while achieving bg curacy at longer
operation periods. At 0-100 expected RUL in Figure 9c the predicted RUL proper
it shows deviations particularly in the lower part while displaying challenges for nTSgao
zero. The model demonstrates effective modeling capabilities of extended operational dSgRons because Figure 9d shows
predictable alignment between Expected RUL and Predicted RUL while showing minj *
ﬁ‘ Periods as shown in Figure

intervals as shown in Figure 9a and

300 scale. These figures demonstrate that the model operates optimally during Iong )
9b and 9d but shows limitations when analyzing shorter or more detailed g
9c¢c mainly affecting predictions for medium-range and low-RUL scen
tailored dataset capabilities together with model improvement methqogg i
and reliability for different operational conditions.

@ omparison demonstrates a need for
R to Most predictive maintenance accuracy

4.4 Comparative Analysis and Discussion

The C-MAPSS dataset evaluation for different F
model received performance evaluation from FPCA-TN
analysis assesses different methods through their R? and F@ISE values that evaluate both predictive accuracy and error
margin rates.

Table 4: Comparative A of RUL Prediction Models on the C-MAPSS Dataset
Reference Result
Chen et al. [27 RMSE of 15.56
Sun et al. [28] R* 0f0.91
ESO-BP R? value of 0.931 on FD001
2
GNN R“ 0f 0.93.3 on FD001, RMSE of
12.77

12.77 from our proposed GNN model outperforms current methods thereby providing exceptional
y and minimal error for FD0O01. The use of graph-based learning methods with sensor data dependency
s RUL prediction models so our solution proves to be a promising predictive maintenance alternative.

VII. CONCLUSION AND FUTURE DIRECTIONS

The proposed GNN provides a decentralized DL approach to RUL engine prediction in distributed mechanical systems
hile solving traditional centralized diagnostic obstacles. Using CNNs as well as LSTM structure allows the GNN to detect
quick anomalies and observe extended degradation patterns in multivariate sensor information. The GNN produces
excellent results when tested against CMAPSS data by reaching accurate predictions along with minimal errors. Real-time
fault detection and preventive maintenance for aircraft engines and industrial turbines can be achieved through the potential
applications of the GNN system.



The research can be expanded through multiple potential directions which aim to improve the capabilities of GNN. Model
optimization needs to concentrate on parameter adjustment together with sophisticated attention methods to achieve better
interpretation alongside improved prediction results. GNN performance needs to be tested through real-time applications
in aircraft fleets as well as industrial turbine networks to prove its operational effectiveness. Extensive testing across various
domains should enable the GNN to support diagnostic applications in healthcare and energy systems along with its curre
use in aerospace systems. The system performance will improve by implementing data quality improvements and sen
feature selection methods for both removing unhelpful data sensors and finding delicate degradation patterns more easily
By integrating the GNN with other architectures like Transformers and Graph Neural Networks (GNNs) the model can
achieve better handling of sensor data containing complex and non-linear relationships. Research into network sca

along with fault tolerance for larger systems will establish robust operation of the GNN during node failures and w
K T otic pulators:

disruptions.
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