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Abstract

One of the most widely used wireless technologies in recent years eless or
networks (WSN), which has led to intriguing new Internet of wT) lications.
tem with sensors
must have widespread connectivity and transmit data in real time (Sgug#”server linked to the
gate on the internet. WSN security is still a developing area of studY@hat falls under the

r iques for precise
¥ growing frequency and
p of the CICIDS2017 and
. orks to enhance cyber-
security detection. In this work, Boosted 28 ation (BSTO) and Context-
j etworks (CA-DSCNN) present an
‘ attacks. To guarantee consistent
y applying Min-Max Scaler Normalization to
preprocess the raw attack data. There is a TSg&re selection stage that comes afterwards that
uses Banyan Tree Growth Optimization GO) combined with Augmented Snake
Optimizer (ASO) to efficiently and choose the most relevant characteristics to improve
classification performance. its strong feature extraction capabilities and
computational efficiency, N is used; depthwise separable convolutions are
used to strike a compro processing needs and accuracy. This architecture
mplicated characteristics from the data and to comprehend
. BSTO is used to optimize the neural network's parameters,
iciency and accuracy in order to further enhance model
Wy computational expenses and over-fitting, the proposed
egrates loT-based wireless sensor networks enhances cyber-security

those characteristic
improving clasgifi

cyber security attack, loT-based WSN, Min-Max Scaler
tion, Context-Aware Depthwise Separable Convolutional Neural Networks,
e Growth Optimization, Augmented Snake Optimizer, and Boosted Sooty Tern

1. Introduction

Cyber-security threats are becoming an increasing issue for everyone in today's society,
where the internet plays a major role, including individuals, businesses, and governments.
These are attacks that are specifically created to breach, compromise, or penetrate data,
networks, or machines. The number of linked gadgets and the Internet of Things (IOT) has
increased risk and created a new attack surface due to the exponential growth of internet



access [1-5]. The decentralized structure of WSNs (wireless sensor networks) makes security
a significant worry. Data and security are frequently compromised by these networks because
of the high frequency of security assaults based on node capture and node hacking. The risks
to WSNs are also relevant to and dangerous for IoT networks since they are made up of
sensor-based networks.

Malware, phishing, denial-of-service (DoS) assaults, and other tactics are some of the ways
that cyber security attacks might appear. Significant financial losses, data breaches, an
reputational harm can all be brought on by these evil operations [6-8]. Advanced strate

for identifying, categorizing, and mitigating these threats must be developed and put i
action since attackers are always improving their techniques.

Cyber-attacks are becoming more harmful due to the advancement of interne
Hackers are increasingly focusing their attacks on Cyber-Physical Systems (

traditional systems. Cyber-attacks targeting intelligent transportatig’arn
are growing faster each year. A self-driving car's serious flaws @
two security experts [9-13].They were able to stop a self-driviigaleg
remotely controlling the vehicle's major functions. Cyber-attack me

increasingly potent and advanced forms. State-sponsored hackerge a
hackers, are actively planning cyber-attacks. With the ffensive cyber-security

technology, cybercriminals carry out complex attacks. M "offensive cyber-security"
describes a hacking method that targets a system rathgat rojiction mechanism [14].

Even in the face of unanticipated threats o
Industrial Control Systems) and SIPS (g
function and be dependable. The com
among the systems that are susceptibl

aN@tacks, Vital facilities like ICS (Internet
dus Plants and Sites) must continue to
layersY data management, and control are
cyber-attacks [15-17]. These levels provide
malicious individuals with access to sensi(Wg, data that they can steal or alter, possibly
destroying physical assets and resydiing in signitant losses. Malicious users have the ability
to alter crucial metrics used for ing or observing infrastructure components.

Fighting malicious softw.
monitoring compromised a

S NECESS
S an

for cyber-security, as it can remain dormant while
rastructure [18]. The swift advancement of technology
boosts confidence in cyber-security. Due to the volume of
icport allocation, traditional methods of network intrusion
grtive. Instead, machine learning techniques have replaced port
WY choice [19-20]. Network anomaly detection in a variety of cloud
ddressed with machine learning and deep learning.The study's main

osed method uses Min-Max Scaler Normalization to reduce the effect of
erent feature ranges and normalize feature scales, which improves the model's
city to learn from the data. The model's capacity to learn efficiently from a
ariety of loT-based wireless sensor network data is improved by this
standardization.

In order to provide effective and efficient feature selection that enhances model
performance by dimensionality reduction and focusing on the most important
features, a hybrid Banyan Tree Growth Optimization with Augmented Snake
Optimization is presented. By choosing the most pertinent features from the loT-
based data, this technique reduces dimensionality and boosts model efficiency.

Th



e The proposed method uses a context-aware, depthwise separable convolutional neural
network (CA-DSCNN) to minimize computational complexity, resulting in a
classification that is more accurate and economical.

e The proposed method uses Boosted Sooty Tern Optimization (BSTO) to adjust
network parameters in order to overcome issues like over-fitting and computational
complexity and maximize the classification model's accuracy and computational
efficiency.

e A methodology for identifying multi-class cyber security assaults is made scala
and effective by the method. The suggested technique boosts speed and preC|S|on t
essential elements for quickly identifying and mitigating security threats, by
data from loT-based wireless sensor networks.

The manuscript is organized as follows: Section 1 outlines the introduci@;
investigates the literature review; Section 3 presents the proposgaigeth
presents the results and discussions; and Section 5 concludes the

2. Literature Survey

Jia Y et al. (2023) [21] have suggested the defense of cyber,
facilitated by artificial intelligence: A new approach to g
MDATA model. This research presents aninnovative arc
ACAM, using a suggested mechanism. The outlme XY, ing the MDATA model;it
describes information that is temporally and aag® more effectively than the
information graph in order to better expregfPtm ecurity knowledge.In order to reduce
false alerts and enhance multi-step at
modules for knowledge extraction, sul
detection. The suggested method's implem¢g
data, is a limitation.

ction established on the
€ for detecting attacks named

nMPconstruction, alarm correlation, and attack
gtion complexity, which necessitates significant

In 2022 Semwal P and Handa ve suggested the cyber-physical system cyber-attack
detection via supervised cg@ning.Four distinct supervised machine learning
approaches are suggestedqal this to develop representations to identify cyber-attack
activity on a CPS wategtreaNgent facility. The comparison study is carried out by comparing
the output of the f; ion models, Decision Tree (DT),Random Forest (RF),K-
Nearest Neighbor and Support Vector Machine (SVM), using evaluation

matricesgl he d's disadvantage is that it canover-fit complex datasets.

[23] have demonstrated a cyber-attack detection in a sustainability

rk traffic and improves data transmission through the use of a kernel
or classifier. Because there is less traffic, energy efficiency is improved.
sarial Bayesian belief networks are used to detect malicious attacks. Throughput,
livery ratio, data traffic analysis,end-end delay, energy efficiency, and quality of
have all been examined experimentally. The potential complexity in model
Im®ementation is the method's disadvantage.

Balta EC et al. (2023) [24] have suggested digital twin-based cyber-attack detection system
for cyber-physical systems of manufacture. This study tackles two issues related to CPMS
cyber-attack identification: the differentiation of cyber-attacks throughout transient response
and cyber-attacks from predicted abnormalities. In order to identify cyber-attacks in CPMS
through regulated transitory actions and anticipated anomalies, it suggests using a Digital



Twin (DT) paradigm. An experimental case study is offered to illustrate the usefulness of the
framework.The complexity of integration is the suggested method's drawback.

In 2022 Li Q et al. [25] have suggested the scalable categorized cyber-attack localization and
detection insystems of active dissemination.The study suggested an altered spectrum network
partitioning using clustering technique for the "coarse" localization of categorized cyber-
attacks. A standardized impact score determined by waveform statistical metrics is then
suggested as a way to further refine the cyber-attack site, obtaining a "fine" cyber assau
location by describing various waveform attributes. In summary, a thorough quantitatj
assessment involving two case studies reveals encouraging estimation outcomes for

Salam A et al. (2023) [26] have presented deep learning techniques: a nove
internet-based assault prevention in sector 5.0.This method focuses og
attacks and the recognition of abnormal behavior using DL (Dee

‘ g

intrusions in Industry 5.0 environments via a transformer-bas$ m that surpasses
conventional methods in terms of precision, recall, andaccura This ensures data
protection.The suggested method's high computing cost is a disad\?

Jullian O et al. (2023) [27]have suggested a scalable ntification framework for
cyber-attacks in loTnetworks using DL.The distribyt efork based on DL that is
ultaneously under a single

-short-term memory are two
ested on two distinct datasets (i.e.,

security mechanism. Thefeed-forward ne
distinct DL models that are assessed. Tj

the suggested approach is its high resourc€ umption and complexity of integration.

Raghunath KK (2022) [28]have introduced theN@egression Classifier XGBoost (XRC) model

for Inception V4-based cyb ck identification and categorization.The suggested
hybridized classifier, which js @il Inception V4 to further develop and evaluate the
model, integrates the ide b oost and Logistic classifiers. The proposed XRC
classifies and predicts a ber prevalent network cyber-attacks, such as phishing,
distributed denial of g 0S), Internet of Things (IoT), and cross-site scripting (CS).

To reduce the erro and boost efficacy, the hybridized classifier uses the sigmoidal
function as a ator.One of the methods' shortcomings is its computationally
intensi Prementation.

(2022) [29]have recommended using machine learning to
SaNQlts in Industry 4.0 CPPSs.The suggested approach makes use of network
was obtained from an actual semiconductor manufacturing facility. For the
instruction and evaluation of machine learning models, the suggested approach
eral labeled datasets and extracts 45 bidirectional network flow features. The
d approach examines eleven distinct unsupervised and semi-supervised algorithms
valuates their efficacy using inclusive simulations. The resultsestablish that supervised
algorithms perform better in terms of finding performance than both unsupervised and semi-
supervised ones.The suggested method's limitation is restricted to a particular manufacturing
setting.

In 2023 Alaca Y and Celik Y [30] have suggested employing lightweight DL algorithms to
identify cyber-attacks using QR code descriptions.Initially, substantial data with several
classes was produced as QR code images in this investigation. Next, ShuffleNet CNN and



MobileNetV2algorithms were employed for instruction images of QR codes. Following the
extraction of features from the training images using Deep CNN models, the Harris Hawk
Optimization (HHO) was used to ascertain which characteristics would be most useful for
classification. The recommended method's increased computing complexity is a limitation.
Table 1 displays the comparison of existing methods.

Table 1: Comparison of existing approaches

References Method Advantages Disadvan
oy | ACAM mmenorcwin | e e
MDATA model detection
[22] KNN, SVM, DT, and RF | T8y to Interpret 2
visualize
Kernel quadratic vector High throughput, Potential complexity
[23] discriminant + adversarial improved energy in model
Bayesian belief networks efficieg mplementation
Real-ti 20 | Complexity in
[24] Digital twin framework omplexity
integration.
. detecting Complexity in
25 Deep learning gnd Spec i’ing minor | implementation and
clusterin
g computation
[26] CNNs, RNNs, Transforme® Enhanced accuracy High computational
models. cost
High accuracy, Complexity in
[27] Distributed dgp | comprehensive integration and high
vulnerability resource
protection consumption
righ accuracy, | ERCR
[28] effective threat P . ’
. computationally
detection . .
intensive
tachine Learnin High accuracy, real- Limited to specific
g world data usage factory environment
brid HHO, MobileNetV2 Ff']ﬂgh accf”racy’ Increased |
; ’ efficient feature computationa
and ShuffleNet CNN selection complexity

roblem Statement

Cyber-security attacks represent significant risks to digital infrastructure; thus, identifying
and reducing such hazards requires reliable and precise categorization techniques. The
current techniques for classifying cyber-security attacks into many classes have a number of
shortcomings, such as difficult implementation, substantial data requirements, over-fitting
vulnerability, and expensive computing expenses. These difficulties make it difficult to use
them practically, particularly in intricate settings. This research proposes a novel method



utilizing a context-aware, depth-wise separable convolutional neural network framework and
advanced Boosted Sooty Tern optimization techniques to address these problems. The results
include better classification accuracy, lower computational overhead, and increased
adaptability in a variety of environments. Furthermore, it uses sophisticated regularization
algorithms to prevent over-fitting and reduce the requirement for large amounts of data. The
proposed method effortlessly fits into a variety of operational scenarios by optimizing
computational efficiency.

3. Proposed Methodology

Snake Optimizer (ASO). By effectively finding and choosing the
combination lowers dimensionality and raises classification
enhanced features are fed into a Context-Aware Depthwise Sepa™galg
Network (CA-DSCNN), which takes advantage of depthwise sepd

minimize computational complexity and maximize feature extractj ]
improve classification performance, network parameters j@8led using Boosted Sooty
Tern Optimization, which further optimizes the model. d provides a scalable and
effective way to identify and classify various cy, gure 1 shows the block
schematic illustrates the proposed methodolg




MinMax Scalér
Normalization based
Preprocessing

loT-based wireless sensor
networks

Boosted Sooty Tern
Optimization

Performance Evaluation

accuracy Network Lifetime,
precision, End-to-End I_Delay,
recall, Packer Delivery
MAPE Ratio ,

RMSE’ Throughput

MSE Fault Tolerance.

Figure 1: Block diagram of the proposed methodology
1 Da™@et
T datasets used in the proposed method, UNSW-NB15 and CICIDS2017, are well

n for their ability to classify cyber-security attacks into multiple classes. Additionally
the "method uses data from the IoT- based wireless sensor networks. These datasets offer a
broad variety of attack scenarios, allowing a comprehensive evaluation of the method's
efficacy in identifying and categorizing various cyber-threats. Preprocessing based on Min-
Max Scaler Normalization is applied to the datasets to provide uniform scaling across
features. By minimizing the bias caused by different feature scales, this step improves the
performance of the classification that comes next.



3.2 MinMax scaler normalization based Preprocessing

The datasets are fed into Min-Max Scaler Normalization-based preprocessing to efficiently
scale and normalize the feature values, ensuring consistency and relevance for accurate
analysis. The normalization procedure ensures that each item of data in the database has a
comparable range. When the data has no structure and has a wide range of values, this
becomes crucial. Normalization with MinMax scaler is beneficial for high-dimensional data.
The feature values in cyber-security might differ greatly because of the variety of attac
methods and data sources. Model training may become challenging as a result of t
variation. A normalization method called MinMax scaler raises every feature's value t
range of 0 to 1, which enhances the stability and performance of the model. Equatio

(2) describe the MinMax scaler normalizing algorithm [31].

_ (1-1.Min) )
% (1.Max—1.Min)
lsueg = lig *(1.Max —1.Min)+ 1.Min )

The lowest and highest feature values for the dataset under cons;%t'
the min and max values in Equations (1) and (2). The s are normalized in the
dataset through preprocessing, guaranteeing consiste een various data points.
Equations (1) and (2) offer the normalized values gpr ndi@@ to every feature. Before
being used for model training and testing, these n lize are fit and transformed for
the full dataset.The relevant features are e feeding the preprocessed data into
the feature selection process.

[72]

3.3 Hybrid Banyan tree growth optim
feature selection

on and Augmented Snake optimizer based

The important aspects are chg rom the preprocessed data using feature selection. To
optimize feature subsets, anyan Tree Growth Optimization (BGTO) and
Augmented Snake OptigRer ased feature selection techniques combine the
advantages of both algoritn™Nga Whereas ASO improves the search by concentrating heavily
on favorable region nds and grows branches in the solution space to examine a
variety of feature Aons. By combining exploration and exploitation, this hybrid
ection that is more precise and effective. In order to promote
feature count, the fitness function utilized balances predictive
re subset size. As a consequence, a strong feature selection procedure

ee growth optimization (BTGO) [32]

ancili® species of tropical and subtropical plants known as banyan trees, with their many
ots and expansive canopies, served as inspiration. They are sensitive to
pronmental elements such as water, nutrients, and light and have a strong capability for
growth and adaptation. Growth hormones in the tree direct its trunks toward locations with
more resources, enabling it to develop in that direction. The concept of optimization is
present in the unique growth style of the banyan tree and offers suggestions for remedies.
There are several cycles in the growth process, as new leaves and branches emerge and
withering branches break down.



3.3.2 Augmented Snake optimizer (ASO) [33]

The behavior of snakes mating in low-temperature environments and in the presence of food
serves as the model for the Snake Optimization concept. To improve the global's efficiency,
this procedure includes transitional phases. When it's hot outside, snakes concentrate on
consuming the food that is accessible. Mating takes place in pairs in cold weather, and
females may lay eggs that develop into baby snakes while they are in the search area.

e Initialization

The hybrid initialization averages random variables within predefined constrg
combining the BTGO and ASO approaches. For better optimization exploration, t
guarantees a variety of well-balanced starting locations throughout the solution gga

+ RandBTGO x (X b,max Xb,min )+ Xmin + Rar]dASO X( ) (3)

a, b,min

X b:%[x

Where X

maximum value for b —th dimension, Randg,., is the random;/? TGO, x
minimum value for solution space, x_, maximum value
the random value for ASO.

represents the minimum value for b—th dimens denotes the

b,min b,min

min 1S the
n space, and Rand,g, is

e Fitness function

The fitness function of the hybrid BG TR gitimiZ%@on approach was recently proposed
is shown in Equation (4).

Fitness(X )= 4)

1+ Error(X)

odel error with selected features, |X| is counts the

Where Error(X) denotes
number of selected featu Ninax otes the maximum allowable feature count, and A4
represents the balar@ d feature count.

in BTGO has been established in order for the algorithm to retain
ly. Equations display the phase of exploration (5)—(6).

()

1) indicates the Gaussian distribution's random numbers and e denotes the
on factor. This is computed using Equation (6).

max iter

11—
e= Stepx Rand xe M-+ (6)

Where max iter represents the greatest quantity of repetitions, f is the current generation, and
the variable that corresponds to the search space’s breadth is the parameter Step.



e Exploitation

Exploitation in the Snake Optimizer is similar to locating and taking advantage of food
sources in that it involves a thorough search around recognized high-quality solutions. By
focusing on areas that show promise, this phase improves the search's refinement and
increases convergence efficiency and accuracy of the solutions.

Sworst,M = Smin + Rand x (Smax - Smin) (7)
Sworst,F = Smin +Rand x (Smax - Smin)
Where S, v is the worst member in the male group, S, is the worst me

female group, Metaheuristic algorithms that optimize agent direction can, @hak®
position adjustments thanks to the flag direction operator, also called

e Termination

After every step, the termination condition of the hybrid optimiz is established by
increasing the number of iterationst =t+1.The hybrid BGTO angyp AN feature selection
method combines the advantages of both techniques to exajs refine feature subsets in
an effective manner. In an attempt to streamline the mog @ aprove model performance,
this method selects the most important features fro e et. @ollowing feature selection,

a context-aware depthwise separable convgluti ne work is employed in the
classification stage to categorize the muljg y ecurity attack based on its optimum
properties.

3.4 Context-Aware Depth Wise able Convolution Neural Network (CA-

DSCNN)

The next step for the feature s is classification. The proposed method uses Context-
Aware Depthwise Separab nal Neural Network (CA-DSCNN): This neural
network effectively capt cont and spatial information with low computational
overhead, improving mult\@ass cyber-security threat categorization. Figure 2 shows the
architecture of prop - NN.

&
O
v



Depth-wise convolution 1x1 convolution

out

Se Z >

Input Convolutio

Convolution CyxCyx Ny Ix1x N
Cf><Cf><NinID hxhxN. XLIX N,
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Attention Maps ,

Context Feature

N N Mans
P gy
+ReLU
ﬁ Bdule

e ) FC,FC W Softmax

igure 2: Architecture of CA-DSCNN

d 1x1 convolution, which is also referred to as point-by-point convolution. If
int convolution combines feature maps from several channels in a normal 1x1

nsion [34].

Convolutional kernel size H is hxhfor the input feature maps |, which have a size of
C; xC;. N, indicates the quantity of input channels and N, indicates the quantity of
output channels. The output feature map O has a size of C; xC, . The definition of a standard
convolutional operation is as follows:



oyzzi I, HY+a, y=12..,Ny,. )
Where 1, is the x—thmap inl, O, is the x—-thmap inO,and H) is the x—thportion in the
y —th kernel. The bias of the output map O,isa,. Moreover, the notation - represents the
convolution operator. Assume that, in a typical convolution process, Fp, represents the
amount of floating-point computations and Tp, represents the total number of traina
parameters (ignoring bias parameters). Equations (10) and (11) can be used to compute the

TplthhXNianNout' Q
FplthhXNianNouthgXCg .

The parameter Tp, and the floating-point computation Fp, @ -wise@eparable
convolution process are the total of the depth-wise and 1x1 point- gnvolutions. Tp, and
Fp, can therefore be computed using the methods provided in Eqi@ons (12) and (13)
respectively: ;

Tp, =hxhx Nip + Nipp x N (12)

out ?

Fp, =hxhxC xC,xN; +C xC/ xN, (13)

Equations (14) and (15) display the ra Btions () and (12) and Equations (11) and

(13):
T, 1 1 (14)
Tpl Nout h2 1

are attention network

or attention transfer and a module for context learning make up the proposed
are attention network. Each module has three peeks that use completely
olution and sigmoid layers to forecast an attention map and are tuned for convergence
using softmax classification loss [35].

p(X) = e (F(NOg(F(X))),(16)

Where X denotes the input,©represents the way the element-wise product works.Having a
layer of softmax to further transform the feature vector into probabilities is also included,



e (-) represents fully linked layers that are used to convert convolutional features into feature
vector that might be matched the submissions in each category.

Context learning module

Cyber security attack classification relies heavily on context, and studies in computer
networks indicate that accurately modeling context might improve attack comprehension and
classification algorithms. The creation of a module for context transfer that transmi
contextual details in the right, left, down, and up directions is necessary for effectj
contextual information learning. The process of context transfer can be written as follows:

D¥ = max (%, D¥,, +D™,0) (17)

The transmission processing is depicted in the above equation in g
comparable operations are carried out in the other directions. In eg
the input map of features cells, and updating it is the aim.V,"”
that has a range of 0 to 1. Rather of being manually set, the paramet™@L", , is learning. For
cyber-attack classification, context feature maps f(X) :conwLef, Right e DD°W”)
comprise both transmitted and original convolution featu

Attention transfer module

The method creates an attention transfergf00e
looks, each containing a unique attenti @
these regions.Maps with context featurSRQ

context learning and input into the modul®
attention map.

geMQaating attention maps through several
demoMgrating reasoning relations between
are produced by the indicated module for

gr attention transfer to produce the predicted

EN,(X)=EN,,(X)*(1- AN, X

(18)
AN, (X) = I(EN (X))

Where the t —thglig e attention map is AN, (X), and the input feature maps are

jon weight of every input pixel appears on an attention map that

the net @y -pixel mask. An inhibition approach is applied for every peek,
ion maps from three snapshots, each of which represents a distinct
g classification, the neural network is input into an optimization phase
ters are changed to improve accuracy and performance. By ensuring that
rges to the most accurate response, optimization raises the model's overall
ss and detection capacity.

ed Sooty Tern Optimization (BSTO)

terns, also known as Onychoprion fuscatus, are sea birds with diverse species. They are
omnivorous birds that eat various animals, including insects, reptiles, amphibians, fish, and
earthworms. They are colonial creatures that locate and hunt prey with intelligence. Sooty
terns migrate seasonally to find abundant food sources, grouping together to avoid collisions
[36]. They use a flapping mode in flight for air attacks, updating initial positions based on the
fittest found sooty tern.Effective error rate minimization is achieved by the use of BSTO.
Figure 3 shows the flowchart of BSTO.



Fitness function= Min(MSE)

Set the S solution population's initial value at
random.

Update the best
available solution

Optimal
Solution

Prepare Phase

Isan
improved
version of the
present
solution

Figure 3: Flowchart of the BSTO

assifying cyber security attacks stated in this proposed method starts with
SSI he data using min-max scaler normalization. Important features are then
the complete set utilizing advanced hybrid optimization techniques. The cyber
ttack is then classified by running these chosen features through a CA-DSCNN. To
iciency and accuracy in the classification of cyber-security attacks, the BSTO is

4. Results and Discussion

This section compares the proposed method with the existing approaches using the UNSW-
NB15 and CICIDS-2017 datasets. Additionally the method uses data from the 10T- based
wireless sensor networks. Regarding validated performance, the proposed method attains



superior accuracy, ultra precision, flawless recall, and MAPE, RMSE and MSE efficiency,
network lifetime, end-to-end delay, packer delivery ratio (PDR), and throughput and fault
tolerance. When it comes to classifying cyber-security attacks into many classes and
managing unbalanced datasets, the proposed method regularly performs better than standard
models. Incorporating pre-processing, feature selection, and technique optimization into the
model-building process is another way to improve stability and reliability. Furthermore, the
approach doesn't suffer from a lack of generalization for the categorization of multi-class
cyber security attacks and demonstrates its effectiveness. In general, it computes mo
quickly and has better detection accuracy than the earlier models.Python is used to exec
the proposed method.

4.1 Dataset Description

e UNSW-NB15 dataset [37]

The UNSW-NB15 dataset encompasses 10 classes (Normal, Fu
DoS, Exploits, Generic, Reconnaissance, Shellcode, and and contains 42
characteristics (labels excluded).More accurate data for assessind\@ber-attack detection
systems is intended to be provided by the dataset. With 82,332 a?n in the testing set
5
ides

(which includes both attack and normal data), the training h ,34T occurrences. The
UNSW-NB15 dataset has certain limitations, even thoug better coverage than its
predecessors. These include a small number of net It@and some obsolete packet

shows the distribution of

r
information.A comparison of the different forms o a
data from the UNSW-NB15 dataset.
Table 2: Distributed§g@a e UNSW/-NB15 dataset

Data Types Number of records
Normal 2,218,761
Fuzzers random to suspend 24,246

pplications
InCdes assaults such port
Analysis scans, spam, and HTML 2677
page penetration.
Method for getting around 9399

system security

Denial of service attack 16,353

Making use of the

acknowledged security flaws 44,525
Method that a'gtacks every 215 481
block cipher
B Connaissance Attack-simulating strikes to 13.987

obtain information

Snippet of code used to take
Shellcode advantage of software 1511
vulnerabilities

In order to infect other
Worms computers, worms duplicate 174
themselves.




e CICIDS2017 dataset [38]

The Canadian Institute for Cyber-security created the dataset. The dataset includes some
modern multi-stage attacks, including DoS assaults and Heartbleed. A range of contemporary
protocols are also included. CICIDS2017 simulates seven different attack families, including
brute force, heart bleed, botnet, denial-of-service, web, and infiltration attacks. It is designed
for use in intrusion detection and network security applications.A comparison of the different
forms of data in Table 3 shows the distribution of data from the CICIDS-2017 dataset.

Table 3: Distributed data for the CICIDS-2017 dataset

Data Types Description Number of re
Normal Typical network information 2,35
Attempt to guess FTP
Brute Force Attack passwords using a brute force 79
attack.
Employing openSSL exploits
Heart Bleed Attack to inject malicious data into 11
openSSL memory ’
Use of the victim systemg
Botnet the Botnet network a 1966
Denial-of-Service (DoS) 5499
Web Attack 1707
Infiltration Attack through the use of 36

struggents and penetration
techniques

e loT-based

@ nsor networks data

nsor networks provide the raw data that is utilized to evaluate the
s dataset captures the intricacies of network traffic and device
passing a broad spectrum of attack scenarios pertinent to 10T systems. A

rity risks unique to loT-based contexts is made possible by the utilization of 10T-
d sej®r data.



4.2 Performance comparison with existing approaches

Performance comparison on the UNSW-NB15 Dataset
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Figure 4: Distribution of Attack Frequencies in the UNS? ataset

Figure 4 shows the prevalence of various attack types, s kdoors, fuzzers, exploits,
and reconnaissance, across all training and testing setg | , @ categories "Exploit" and
"Generic" are shown with comparatively higher fr n artigflarly in the training set. It
helps to perceive the distribution of attackg " t phaSes of the model's development.

G

Table 4: Data Distribution for Trai alidation Sets on UNSW-NB15

dataset

Label Training Dataset Testing Dataset Validation Dataset
Normal data 289,777 144,899
Attack data 45,071 22,535

Table 4 provides sta mation on normal and attack data instances in the UNSW-
NB15 dataset's traj validation sets. The training set consists of 1,014,221
normal training dat and 157,748 attack data records. There are 289,777 records of
routine §gsti ecords of attacks in the testing set. The validation set consists of
22,5 ords and 144,889 normal validation data records.

Precision(%) [ Recall(%0) F1-Score Detection
(%) rate (%)
97.94 97.86 98.76 97.92
99.43 99.46 99.44 98.65
99.16 75.21 76.60 80.12
99.09 99.30 99.12 98.51
99.01 98.86 98.85 97
ANN 99.28 99.37 99.28 99.17 98.02
Proposed 99.51 99.49 99.51 99.46 99.33
CA-DSCNN




Table 5 presents a comparison of the performance evaluation results for various methods on
the UNSW-NB15 dataset. In comparison with existing models, the proposed CA-DSCNN
performs better. CA-DSCNN is the best at classifying multi-class cyber-security attacks, with
the highest accuracy (99.51%), precision (99.49%), recall (99.51%), F1-score (99.46%), and
detection rate (99.33%).
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system in terms of many classes, guch as DoSWAttack Category, Shellcode, etc., as well as
regular traffic classes include , precision, recall, and F1 score. Every indicator
displays high values, with t ; ceeding 98%, suggesting that the model is accurate
in characterizing and classg i yber-attacks.
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Figure 6: Cyber-security Attack Frequency in the CICIDS 2017 Dataset.




The figure 6 depicts the frequency of cyber security attacks in the CICIDS 2017 dataset on a
logarithmic scale. This enables us to clearly see the representation of these types of attacks in
relation; for example, "Benign," ”Bot,” and "Dos attack-Hulk“are all included, making it
available for cyber-- security analysis. This visualization enables us to see and prioritize a
selection of the most common cyber-attacks. Moreover, it emphasizes the necessity of
focusing on both ordinary and rare attack vectors in order to guarantee strong security
measures.

Table 6: Data Distribution for Training, Testing, and Validation Sets on CICIDS-2017 dat

Label Training Dataset Testing Dataset Validation

Normal data 318,014 90,861

45,
Attack data 7,800 2,229 ]
Table 6 provides statistics on normal and attack data instang e CNDS2017

dataset's training, test, and validation sets. There are 7,800 assau ords and 318,014
regular training data records. There are 2,229 test set-based attack (%@
normal testing data records. There are 1,114 validation set-basedggtto®
45,431 normal validation data records. }

Methods Accuracy Precisio all F1-Score Detection
rate
DNN 97.02 96: 96. 96 92.80
CNN 98.22 98.23 98.21 98.20 94.65
SVM 73.41 96.78 73.99 74.55 75.88
RF 98.15 . 98.66 98.54 97.64
NB 96.78 96.68 96.58 94
ANN 98.49 98.60 98.11 97.66
Proposed 99.48 99.15 99.66 99.13
CA-DSCNN
Table 74sho -2017 dataset performance evaluation outcomes. The higher

-Score (99.66%) are attained by the proposed CA-DSCNN, which
e existing approaches. Additionally, it outperforms techniques like
terms of precision (99.23%) and recall (99.15%). Its effectiveness and
onstrated by the 99.13% detection rate, which emphasizes the way well it
tifying situations when compared to other models.



4.3 Comparative analysis of the proposed method's performance with existing
approaches
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Figure 7: accuracy and precision performance co( etug¥en proposed and existing
S
The performance of the following cybt attack'Whodels is compared in the figure 7:
DNN, SVM, CNN, RF, NB, ANN, %@ -DSCNN (proposed). It showsshows98%

ored bars for each model. In terms of both
ms similarly to alternative models.

NB [ CA-DSCNN(Proposed)
ANN

Recall F1-Score

Figure 8: Recall and F1-Score performance comparison between proposed and existing
methods



Figure 8 shows the Recall and F1-Score performance comparison between proposed and
existing methods. Various algorithms, such as DNN, SVM, NB, CNN, RF, ANN, and the
proposed CA-DSCNN, are compared with respect to recall and F1-Score performance. The
proposed CA-DSCNN achieves the highest recall (99%) and F1-score (99.5%). However,
other models have F1-Score and recall values that range from 80% to 95%, indicating that the
CA-DSCNN technique performs better in cyber-security attack classification tasks.
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The Mean Absolute Percentage (MAPE) and computational time metrics are used in the

figure 9 to compare the existing@y ck methods. Although it does not have the shortest
computation time (1.0s), t SCEIN (Proposed) model has the lowest MAPE 5%,
suggesting the maximum racy ariety of other models exhibit different performance

utational Time ~ 0.8s, MAPE ~ 12%, SVM Computational
%0®NB Computational Time ~ 0.7s, MAPE ~ 18%, RF
APE ~ 10%, and ANN Computational Time ~ 0.85s, MAPE ~

levels, including the o8
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Figure 10: RMSE and MSE performance comparis t osed and existing methods
nreON the figure 10: DNN, RF, CNN, NB,
SE

The following algorithms' performances z

SVM, and ANN. With an RMSE of 0.4 @ .6%, the CA-DSCNN (proposed)
method performs the best. RMSE valUSgag#sistently exceed MSE for every algorithm,
indicating a larger degree of error in RMSE:

Table 8: Comparing Cyb urity DeteCtion Techniques' Performance in 10T

e less Sensor Networks
Packer
Methods E_etwor ‘ E De|;;End Delivery Throughput Tollzéirlg;[lce
Y| Ratio (PDR)
EESC-SSP 120 ms 92% 200 kbps High
110 ms 90% 190 kbps Medium

25 hours 130 ms 88% 180 kbps High

32 hours 115 ms 91% 210 Kbps High

29 hours 105 ms 93% 195 kbps High
posed 35 hours 100 ms 99% 220 Kbps Very High

The table 8 compares various cyber security detection methods for loT-based wireless sensor
networks across five key metrics: network lifetime, end-to-end delay, packet delivery ratio,
throughput, and fault tolerance. The results show that the proposed method is superior to
other methods both in security and performance metrics, including longest network lifetime



(35 hours), lowest delay (100 ms), highest PDR (95%), best throughput (220 kbps), and
superior fault tolerance.

5. Conclusion

The use of cutting-edge methodologies has greatly improved threat detection's accuracy and
efficiency in the field of multi-class cyber-security attack categorization. Pre-processing has
used Min-Max scaler normalization through reshaping of the data in order to enhance th
contribution rate of the features in the classification process, thus enhancing the performa

of the model. BTGO, along with an ASO for the feature selection process, has enhanced
degree of relevance of the input features; these modifications improve the models’ v

done well in enhancing detection performance and thereby presentS
further research and extension of practical use in the future. Futurw .
to encompass a wider variety of attack types and real-w ef@rios, which will facilitate
the creation of more broadly applicable models.
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