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Abstract  

One of the most widely used wireless technologies in recent years has been wireless sensor 

networks (WSN), which has led to intriguing new Internet of Things (IoT) applications. 

Internet Protocol IP integration with IoT-based WSN enables any physical item with sensors  

must have widespread connectivity and transmit data in real time to the server linked to the  

gate on the internet. WSN security is still a developing area of study that falls under the  

Internet of Things paradigm.  To protect digital infrastructures, strong techniques for precise 

and effective multi-class classification are required due to the growing frequency and 

sophistication of cyber-attacks. The proposed method makes use of the CICIDS2017 and 

UNSW-NB15 datasets alongside IoT-based wireless sensor networks to enhance cyber-

security detection. In this work, Boosted Sooty Tern Optimization (BSTO) and Context-

Aware Depthwise Separable Convolutional Neural Networks (CA-DSCNN) present an 

enhanced method for classifying multi-class cyber-security attacks. To guarantee consistent 

feature scaling, the proposed approach starts by applying Min-Max Scaler Normalization to 

preprocess the raw attack data. There is a feature selection stage that comes afterwards that 

uses Banyan Tree Growth Optimization (BTGO) combined with Augmented Snake 

Optimizer (ASO) to efficiently find and choose the most relevant characteristics to improve 

classification performance. Because of its strong feature extraction capabilities and 

computational efficiency, the CA-DSCNN is used; depthwise separable convolutions are 

used to strike a compromise between processing needs and accuracy. This architecture 

enhances the ability to extract complicated characteristics from the data and to comprehend 

those characteristics in context. BSTO is used to optimize the neural network's parameters, 

improving classification efficiency and accuracy in order to further enhance model 

performance. By lowering computational expenses and over-fitting, the proposed 

methodology which integrates IoT-based wireless sensor networks enhances cyber-security 

attack classification, exhibiting improved accuracy 99.5% and high PDR 99%.  

Keywords: multi-class cyber security attack, IoT-based WSN, Min-Max Scaler 

Normalization, Context-Aware Depthwise Separable Convolutional Neural Networks, 

Banyan Tree Growth Optimization, Augmented Snake Optimizer, and Boosted Sooty Tern 

Optimization. 

1. Introduction 

Cyber-security threats are becoming an increasing issue for everyone in today's society, 

where the internet plays a major role, including individuals, businesses, and governments. 

These are attacks that are specifically created to breach, compromise, or penetrate data, 

networks, or machines. The number of linked gadgets and the Internet of Things (IOT) has 

increased risk and created a new attack surface due to the exponential growth of internet 
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access [1-5].  The decentralized structure of WSNs (wireless sensor networks) makes security 

a significant worry. Data and security are frequently compromised by these networks because 

of the high frequency of security assaults based on node capture and node hacking. The risks 

to WSNs are also relevant to and dangerous for IoT networks since they are made up of 

sensor-based networks. 

Malware, phishing, denial-of-service (DoS) assaults, and other tactics are some of the ways 

that cyber security attacks might appear. Significant financial losses, data breaches, and 

reputational harm can all be brought on by these evil operations [6-8]. Advanced strategies 

for identifying, categorizing, and mitigating these threats must be developed and put into 

action since attackers are always improving their techniques. 

Cyber-attacks are becoming more harmful due to the advancement of internet technologies. 

Hackers are increasingly focusing their attacks on Cyber-Physical Systems (CPS) rather than 

traditional systems. Cyber-attacks targeting intelligent transportation and intelligent homes 

are growing faster each year. A self-driving car's serious flaws were discovered in 2005 by 

two security experts [9-13].They were able to stop a self-driving Jeep on a highway by 

remotely controlling the vehicle's major functions. Cyber-attack methods are evolving into 

increasingly potent and advanced forms. State-sponsored hackers, as well as individual 

hackers, are actively planning cyber-attacks. With the use of offensive cyber-security 

technology, cybercriminals carry out complex attacks. The term "offensive cyber-security" 

describes a hacking method that targets a system rather than a protection mechanism [14].  

Even in the face of unanticipated threats or external attacks, vital facilities like ICS (Internet 

Industrial Control Systems) and SIPS (Sensitive Industrial Plants and Sites) must continue to 

function and be dependable. The communication layers, data management, and control are 

among the systems that are susceptible to cyber-attacks [15-17]. These levels provide 

malicious individuals with access to sensitive data that they can steal or alter, possibly 

destroying physical assets and resulting in significant losses. Malicious users have the ability 

to alter crucial metrics used for managing or observing infrastructure components. 

Fighting malicious software is necessary for cyber-security, as it can remain dormant while 

monitoring compromised assets and infrastructure [18]. The swift advancement of technology 

such as, IoT and cloud computing boosts confidence in cyber-security. Due to the volume of 

encrypted traffic and dynamic port allocation, traditional methods of network intrusion 

detection are no longer effective. Instead, machine learning techniques have replaced port 

inspection as the method of choice [19-20]. Network anomaly detection in a variety of cloud 

environments can be addressed with machine learning and deep learning.The study's main 

contributions are: 

• The proposed method uses Min-Max Scaler Normalization to reduce the effect of 

different feature ranges and normalize feature scales, which improves the model's 

capacity to learn from the data. The model's capacity to learn efficiently from a 

variety of IoT-based wireless sensor network data is improved by this 

standardization.  

• In order to provide effective and efficient feature selection that enhances model 

performance by dimensionality reduction and focusing on the most important 

features, a hybrid Banyan Tree Growth Optimization with Augmented Snake 

Optimization is presented. By choosing the most pertinent features from the IoT-

based data, this technique reduces dimensionality and boosts model efficiency. 
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• The proposed method uses a context-aware, depthwise separable convolutional neural 

network (CA-DSCNN) to minimize computational complexity, resulting in a 

classification that is more accurate and economical. 

• The proposed method uses Boosted Sooty Tern Optimization (BSTO) to adjust 

network parameters in order to overcome issues like over-fitting and computational 

complexity and maximize the classification model's accuracy and computational 

efficiency. 

• A methodology for identifying multi-class cyber security assaults is made scalable 

and effective by the method. The suggested technique boosts speed and precision, two 

essential elements for quickly identifying and mitigating security threats, by utilizing 

data from IoT-based wireless sensor networks. 

The manuscript is organized as follows: Section 1 outlines the introduction; Section 2 

investigates the literature review; Section 3 presents the proposed methods; Section 4 

presents the results and discussions; and Section 5 concludes the manuscript. 

2. Literature Survey  

Jia Y et al. (2023) [21] have suggested the defense of cyber-security for smart cities 

facilitated by artificial intelligence: A new approach to threat detection established on the 

MDATA model. This research presents aninnovative architecture for detecting attacks named 

ACAM, using a suggested mechanism. The outline is built regarding the MDATA model;it 

describes information that is temporally and spatially dynamic more effectively than the 

information graph in order to better express the cyber security knowledge.In order to reduce 

false alerts and enhance multi-step attack recognition capabilities, the framework includes 

modules for knowledge extraction, sub-graph construction, alarm correlation, and attack 

detection. The suggested method's implementation complexity, which necessitates significant 

data, is a limitation.  

In 2022 Semwal P and Handa A [22] have suggested the cyber-physical system cyber-attack 

detection via supervised machine learning.Four distinct supervised machine learning 

approaches are suggested in this study to develop representations to identify cyber-attack 

activity on a CPS water treatment facility. The comparison study is carried out by comparing 

the output of the four classification models, Decision Tree (DT),Random Forest (RF),K-

Nearest Neighbors (KNN), and Support Vector Machine (SVM), using evaluation 

matrices.The suggested method's disadvantage is that it canover-fit complex datasets. 

Prabakar D et al. (2023) [23] have demonstrated a cyber-attack detection in a sustainability 

smart city using energy management and IoT with AI.The study describes a traffic analysis 

that reduces network traffic and improves data transmission through the use of a kernel 

polynomial vector classifier. Because there is less traffic, energy efficiency is improved. 

Next, adversarial Bayesian belief networks are used to detect malicious attacks. Throughput, 

packet delivery ratio, data traffic analysis,end-end delay, energy efficiency, and quality of 

service have all been examined experimentally. The potential complexity in model 

implementation is the method's disadvantage. 

Balta EC et al. (2023) [24] have suggested digital twin-based cyber-attack detection system 

for cyber-physical systems of manufacture. This study tackles two issues related to CPMS 

cyber-attack identification: the differentiation of cyber-attacks throughout transient response 

and cyber-attacks from predicted abnormalities. In order to identify cyber-attacks in CPMS 

through regulated transitory actions and anticipated anomalies, it suggests using a Digital 
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Twin (DT) paradigm. An experimental case study is offered to illustrate the usefulness of the 

framework.The complexity of integration is the suggested method's drawback.   

In 2022 Li Q et al. [25] have suggested the scalable categorized cyber-attack localization and 

detection insystems of active dissemination.The study suggested an altered spectrum network 

partitioning using clustering technique for the "coarse" localization of categorized cyber-

attacks. A standardized impact score determined by waveform statistical metrics is then 

suggested as a way to further refine the cyber-attack site, obtaining a "fine" cyber assault 

location by describing various waveform attributes. In summary, a thorough quantitative 

assessment involving two case studies reveals encouraging estimation outcomes for the 

suggested framework when contrasted with traditional and cutting-edge techniques. 

Salam A et al. (2023) [26] have presented deep learning techniques: a novel approach for 

internet-based assault prevention in sector 5.0.This method focuses on the classification of 

attacks and the recognition of abnormal behavior using DL (Deep Learning) methods like 

CNNs, RNNs, and transformer models. Deep learning has proven to be useful in identifying 

intrusions in Industry 5.0 environments via a transformer-based system that surpasses 

conventional methods in terms of precision, recall, andaccuracy. This ensures data 

protection.The suggested method's high computing cost is a disadvantage. 

Jullian O et al. (2023) [27]have suggested a scalable attack identification framework for 

cyber-attacks in IoTnetworks using DL.The distributed framework based on DL that is 

utilized in this study prevents several sources of vulnerability simultaneously under a single 

security mechanism. Thefeed-forward neural network and long-short-term memory are two 

distinct DL models that are assessed. The networks are tested on two distinct datasets (i.e., 

BoT-IoT and NSL-KDD) for both performance and attack type identification. A drawback of 

the suggested approach is its high resource consumption and complexity of integration. 

Raghunath KK (2022) [28]have introduced the Regression Classifier XGBoost (XRC) model 

for Inception V4-based cyber-attack identification and categorization.The suggested 

hybridized classifier, which is utilized in Inception V4 to further develop and evaluate the 

model, integrates the ideas of both XGBoost and Logistic classifiers. The proposed XRC 

classifies and predicts a number of prevalent network cyber-attacks, such as phishing, 

distributed denial of service (DDoS), Internet of Things (IoT), and cross-site scripting (CS). 

To reduce the erroneous ratio and boost efficacy, the hybridized classifier uses the sigmoidal 

function as a supportive activator.One of the methods' shortcomings is its computationally 

intensive and complex implementation. 

Saghezchi FB (2022) [29]have recommended using machine learning to 

identifyDDoSassaults in Industry 4.0 CPPSs.The suggested approach makes use of network 

traffic data that was obtained from an actual semiconductor manufacturing facility. For the 

purpose of instruction and evaluation of machine learning models, the suggested approach 

creates several labeled datasets and extracts 45 bidirectional network flow features. The 

suggested approach examines eleven distinct unsupervised and semi-supervised algorithms 

and evaluates their efficacy using inclusive simulations. The resultsestablish that supervised 

algorithms perform better in terms of finding performance than both unsupervised and semi-

supervised ones.The suggested method's limitation is restricted to a particular manufacturing 

setting. 

In 2023 Alaca Y and Celik Y [30] have suggested employing lightweight DL algorithms to 

identify cyber-attacks using QR code descriptions.Initially, substantial data with several 

classes was produced as QR code images in this investigation. Next, ShuffleNet CNN and 
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MobileNetV2algorithms were employed for instruction images of QR codes. Following the 

extraction of features from the training images using Deep CNN models, the Harris Hawk 

Optimization (HHO) was used to ascertain which characteristics would be most useful for 

classification.  The recommended method's increased computing complexity is a limitation. 

Table 1 displays the comparison of existing methods. 

 

Table 1: Comparison of existing approaches 

References Method Advantages Disadvantages 

[21] 
ACAM framework with 

MDATA model 

Reduces false alarms, 

improves multi-stem 

detection 

Implementation 

complexity, requires 

extensive data 

[22] KNN, SVM, DT, and RF 
Easy to interpret and 

visualize 

Prone to over-fitting 

with complex 

datasets 

[23] 

Kernel quadratic vector 

discriminant + adversarial  

Bayesian belief networks 

High throughput, 

improved energy 

efficient 

Potential complexity 

in model 

implementation 

[24] Digital twin framework 

Real-time detection 

during system 

transients 

Complexity in 

integration. 

[25] 
Deep learning and spectral 

clustering 

Effective at detecting 

and localizing minor 

attacks 

Complexity in 

implementation and 

computation 

[26] 
CNNs, RNNs, Transformer 

models. 
Enhanced accuracy 

High computational 

cost 

[27] 
Distributed deep learning 

framework 

High accuracy, 

comprehensive 

vulnerability 

protection 

Complexity in 

integration and high 

resource 

consumption 

[28] 

XGBoost Regression 

Classifier (XRC) with 

Inception V4 

High accuracy, 

effective threat 

detection 

Complexity in 

implementation, 

computationally 

intensive 

[29] Machine Learning 
High accuracy, real-

world data usage 

Limited to specific 

factory environment 

[30] 
Hybrid HHO, MobileNetV2, 

and ShuffleNet CNN 

High accuracy, 

efficient feature 

selection 

Increased 

computational 

complexity 

 

2.1 Problem Statement  

Cyber-security attacks represent significant risks to digital infrastructure; thus, identifying 

and reducing such hazards requires reliable and precise categorization techniques. The 

current techniques for classifying cyber-security attacks into many classes have a number of 

shortcomings, such as difficult implementation, substantial data requirements, over-fitting 

vulnerability, and expensive computing expenses. These difficulties make it difficult to use 

them practically, particularly in intricate settings. This research proposes a novel method 
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utilizing a context-aware, depth-wise separable convolutional neural network framework and 

advanced Boosted Sooty Tern optimization techniques to address these problems. The results 

include better classification accuracy, lower computational overhead, and increased 

adaptability in a variety of environments. Furthermore, it uses sophisticated regularization 

algorithms to prevent over-fitting and reduce the requirement for large amounts of data. The 

proposed method effortlessly fits into a variety of operational scenarios by optimizing 

computational efficiency. 

3. Proposed Methodology  

The proposed method for multi-class cyber-security attack classification initiates with a 

preprocessing step that uses Min-Max Scaler Normalization to standardize feature scales and 

improve model performance on raw data. Following normalization, the data is analyzed using 

feature selection and Banyan Tree Growth Optimization (BTGO) combined with Augmented 

Snake Optimizer (ASO). By effectively finding and choosing the most pertinent features, this 

combination lowers dimensionality and raises classification accuracy. After that, the 

enhanced features are fed into a Context-Aware Depthwise Separable Convolution Neural 

Network (CA-DSCNN), which takes advantage of depthwise separable convolutions to 

minimize computational complexity and maximize feature extraction efficiency. In order to 

improve classification performance, network parameters are adjusted using Boosted Sooty 

Tern Optimization, which further optimizes the model. This method provides a scalable and 

effective way to identify and classify various cyber-threats. Figure 1 shows the block 

schematic illustrates the proposed methodology. 
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MinMax Scaler 

Normalization based 

Preprocessing 

Hybrid Banyan tree growth optimization and Augmented 

Snake optimizer based feature selection 

Classified Outcomes 

Boosted Sooty Tern 

Optimization 

UNSW-NB15 and 

CICIDS2017

Datasets 

 

Context-aware depth wise separable 

convolutional neural network 

Performance Evaluation

 

IoT-based wireless sensor 

networks +

+

accuracy 

precision, 

recall, 

MAPE, 

RMSE  

MSE 

Network Lifetime, 

End-to-End Delay,

Packer Delivery 

Ratio ,

Throughput

 Fault Tolerance.

 

Figure 1: Block diagram of the proposed methodology 

3.1 Dataset 

The two datasets used in the proposed method, UNSW-NB15 and CICIDS2017, are well 

known for their ability to classify cyber-security attacks into multiple classes. Additionally 

the method uses data from the IoT- based wireless sensor networks. These datasets offer a 

broad variety of attack scenarios, allowing a comprehensive evaluation of the method's 

efficacy in identifying and categorizing various cyber-threats. Preprocessing based on Min-

Max Scaler Normalization is applied to the datasets to provide uniform scaling across 

features. By minimizing the bias caused by different feature scales, this step improves the 

performance of the classification that comes next. 
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3.2 MinMax scaler normalization based Preprocessing  

The datasets are fed into Min-Max Scaler Normalization-based preprocessing to efficiently 

scale and normalize the feature values, ensuring consistency and relevance for accurate 

analysis.  The normalization procedure ensures that each item of data in the database has a 

comparable range. When the data has no structure and has a wide range of values, this 

becomes crucial. Normalization with MinMax scaler is beneficial for high-dimensional data. 

The feature values in cyber-security might differ greatly because of the variety of attack 

methods and data sources. Model training may become challenging as a result of this 

variation. A normalization method called MinMax scaler raises every feature's value to a 

range of 0 to 1, which enhances the stability and performance of the model. Equations (1) and 

(2) describe the MinMax scaler normalizing algorithm [31].  

( )
( )MinIMaxI

MinII
I Std

..

.

−

−
=                                                                                                            (1) 

( ) MinIMinIMaxIII StdScaled ... +−=                                                                                  (2) 

The lowest and highest feature values for the dataset under consideration are represented by 

the min and max values in Equations (1) and (2). These attributes are normalized in the 

dataset through preprocessing, guaranteeing consistency between various data points. 

Equations (1) and (2) offer the normalized values corresponding to every feature. Before 

being used for model training and testing, these normalized values are fit and transformed for 

the full dataset.The relevant features are then chosen by feeding the preprocessed data into 

the feature selection process. 

3.3 Hybrid Banyan tree growth optimization and Augmented Snake optimizer based 

feature selection  

The important aspects are chosen from the preprocessed data using feature selection. To 

optimize feature subsets, the hybrid Banyan Tree Growth Optimization (BGTO) and 

Augmented Snake Optimizer (ASO)-based feature selection techniques combine the 

advantages of both algorithms. Whereas ASO improves the search by concentrating heavily 

on favorable regions, BGTO expands and grows branches in the solution space to examine a 

variety of feature combinations. By combining exploration and exploitation, this hybrid 

strategy produces feature selection that is more precise and effective. In order to promote 

both high accuracy and low feature count, the fitness function utilized balances predictive 

performance with feature subset size. As a consequence, a strong feature selection procedure 

is produced that makes use of the advantages of both optimization techniques. 

3.3.1 Banyan tree growth optimization (BTGO) [32] 

The ancient species of tropical and subtropical plants known as banyan trees, with their many 

aerial roots and expansive canopies, served as inspiration. They are sensitive to 

environmental elements such as water, nutrients, and light and have a strong capability for 

growth and adaptation. Growth hormones in the tree direct its trunks toward locations with 

more resources, enabling it to develop in that direction. The concept of optimization is 

present in the unique growth style of the banyan tree and offers suggestions for remedies. 

There are several cycles in the growth process, as new leaves and branches emerge and 

withering branches break down. 
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3.3.2 Augmented Snake optimizer (ASO) [33] 

The behavior of snakes mating in low-temperature environments and in the presence of food 

serves as the model for the Snake Optimization concept. To improve the global's efficiency, 

this procedure includes transitional phases. When it's hot outside, snakes concentrate on 

consuming the food that is accessible. Mating takes place in pairs in cold weather, and 

females may lay eggs that develop into baby snakes while they are in the search area.   

• Initialization  

The hybrid initialization averages random variables within predefined constraints by 

combining the BTGO and ASO approaches. For better optimization exploration, this method 

guarantees a variety of well-balanced starting locations throughout the solution space. 

( ) ( ) minmaxminmin,max,min,,
2

1
xxRandxXXRandXX ASObbBTGObba −++−+=                    (3) 

Where min,bX represents the minimum value for thb −  dimension, min,bX  denotes the 

maximum value for thb −  dimension, 
BTGORand  is the random value for BTGO, minx  is the 

minimum value for solution space, 
maxx maximum value for solution space, and 

ASORand  is 

the random value for ASO.   

• Fitness function  

The fitness function of the hybrid BGTO-ASO optimization approach was recently proposed 

is shown in Equation (4). 

max)(1

1
)(

n

X

XError
XFitness −

+
=                                                                                   (4) 

Where )(XError  denotes the measures model error with selected features, X  is counts the 

number of selected features, 
maxn  denotes the maximum allowable feature count, and 

represents the balance accuracy and feature count. 

• Exploration 

The exploration phase in BTGO has been established in order for the algorithm to retain 

diversity more efficiently. Equations display the phase of exploration (5)–(6). 

( )1,0nBB ii +=                                                                                                            (5) 

Where ( )1,0n  indicates the Gaussian distribution's random numbers and   denotes the 

exploration factor. This is computed using Equation (6). 

1max

max
1

+−
−

= fiter

iter

eRandStep                                                                                             (6) 

Where itermax represents the greatest quantity of repetitions, f is the current generation, and 

the variable that corresponds to the search space’s breadth is the parameter .Step  
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• Exploitation 

Exploitation in the Snake Optimizer is similar to locating and taking advantage of food 

sources in that it involves a thorough search around recognized high-quality solutions. By 

focusing on areas that show promise, this phase improves the search's refinement and 

increases convergence efficiency and accuracy of the solutions. 

( )minmaxmin, SSRandSS Mworst −+=                                                                                (7) 

( )minmaxmin, SSRandSS Fworst −+=                                                                                (8) 

Where MworstS ,  is the worst member in the male group, FworstS , is the worst member in the 

female group, Metaheuristic algorithms that optimize agent direction can make random 

position adjustments thanks to the flag direction operator, also called the diversity factor. 

• Termination  

After every step, the termination condition of the hybrid optimization is established by 

increasing the number of iterations 1+= tt .The hybrid BGTO and ASO feature selection 

method combines the advantages of both techniques to explore and refine feature subsets in 

an effective manner. In an attempt to streamline the model and improve model performance, 

this method selects the most important features from the dataset. Following feature selection, 

a context-aware depthwise separable convolutional neural network is employed in the 

classification stage to categorize the multi-class cyber-security attack based on its optimum 

properties. 

3.4 Context-Aware Depth Wise Separable Convolution Neural Network (CA-

DSCNN) 

The next step for the feature selection is classification. The proposed method uses Context-

Aware Depthwise Separable Convolutional Neural Network (CA-DSCNN): This neural 

network effectively captures contextual and spatial information with low computational 

overhead, improving multi-class cyber-security threat categorization. Figure 2 shows the 

architecture of proposed CA-DSCNN. 
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Figure 2: Architecture of CA-DSCNN 

3.4.1 Depth wise separable convolutional neural network 

Decomposition of depth-wise separable convolution yields two different forms: depth-wise 

convolution and 1x1 convolution, which is also referred to as point-by-point convolution. If 

point-by-point convolution combines feature maps from several channels in a normal 1x1 

convolution process, depth-wise convolution retrieves spatial characteristics on each 

dimension [34].   

Convolutional kernel size H is hh for the input feature maps ,I  which have a size of 

.ff CC  inpN indicates the quantity of input channels and outN  indicates the quantity of 

output channels. The output feature map O has a size of gg CC  . The definition of a standard 

convolutional operation is as follows: 
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.,...,2,1,
1

outy

y

xx

N

x

y NyaHIO
inp

=+=
=

                                                                          (9) 

Where 
xI is the thx − map in ,I xO is the thx − map in ,O and y

xH is the thx − portion in the 

thy −  kernel. The bias of the output map 
xO is ya . Moreover, the notation   represents the 

convolution operator. Assume that, in a typical convolution process, 1Fp  represents the 

amount of floating-point computations and 1Tp  represents the total number of trainable 

parameters (ignoring bias parameters). Equations (10) and (11) can be used to compute them: 

,1 outinp NNhhTp =                                                                                                 (10) 

ggoutinp CCNNhhFp =1                                                                                 (11) 

The parameter 2Tp  and the floating-point computation 2Fp  for a depth-wise separable 

convolution process are the total of the depth-wise and 1x1 point-wise convolutions. 2Tp and

2Fp  can therefore be computed using the methods provided in Equations (12) and (13) 

respectively: 

,2 outinpinp NNNhhTp +=                                                                                       (12) 

.2 outinpgginpgg NNCCNCChhFp +=                                                      (13) 

Equations (14) and (15) display the ratios of Equations (10) and (12) and Equations (11) and 

(13): 

,
11

2

1

2

hNTp

Tp

out

+=                                                                                                           (14) 

,
11

2

1

2

hNFp

Fp

out

+=  (15) 

It is apparent that the depth-wise separable convolution's parameters and computations are 

just
2

11

hNout

+  times larger than those of the conventional convolution. This significantly 

lowers the model's parameter and computing expense. 

3.4.2 Context-aware attention network  

A module for attention transfer and a module for context learning make up the proposed 

context-aware attention network. Each module has three peeks that use completely 

convolution and sigmoid layers to forecast an attention map and are tuned for convergence 

using softmax classification loss [35].   

𝑝(𝑋) = 𝑒 (𝑓(𝑋)⨀𝑔(𝑓(𝑋))),(16) 

Where X  denotes the input,⨀represents the way the element-wise product works.Having a 

layer of softmax to further transform the feature vector into probabilities is also included, 
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)(e  represents fully linked layers that are used to convert convolutional features into feature 

vector that might be matched the submissions in each category. 

Context learning module  

Cyber security attack classification relies heavily on context, and studies in computer 

networks indicate that accurately modeling context might improve attack comprehension and 

classification algorithms. The creation of a module for context transfer that transmits 

contextual details in the right, left, down, and up directions is necessary for effective 

contextual information learning. The process of context transfer can be written as follows: 

( )0,max ,,1,1,

up

ba

up

ba

up

ba

up

ba DDVD += −−                     (17) 

The transmission processing is depicted in the above equation in an upward direction; 

comparable operations are carried out in the other directions. In equation (17)  
up

baD , is one of 

the input map of features cells, and updating it is the aim.
up

baV ,1− is a transference parameter 

that has a range of 0 to 1. Rather of being manually set, the parameter
up

baV ,1−  is learning. For 

cyber-attack classification, context feature maps ( )DownUpRightLeft DDDDconcatXf ,,,)( =

comprise both transmitted and original convolution features. 

Attention transfer module  

The method creates an attention transfer model, generating attention maps through several 

looks, each containing a unique attention region, demonstrating reasoning relations between 

these regions.Maps with context feature )(Xf  are produced by the indicated module for 

context learning and input into the module for attention transfer to produce the predicted 

attention map. 

( )( )

))(()(

1)()( 11

XENlXAN

XANXENXEN

tt

ttt

=

−= −−
                                                                                 (18) 

Where the tht − glimpses created attention map is ),(XAN t
 and the input feature maps are 

shown by )(XEN t
. The attention weight of every input pixel appears on an attention map that 

the network creates a pixel-by-pixel mask. An inhibition approach is applied for every peek, 

producing three attention maps from three snapshots, each of which represents a distinct 

attention zone.Following classification, the neural network is input into an optimization phase 

wherein its parameters are changed to improve accuracy and performance. By ensuring that 

the model converges to the most accurate response, optimization raises the model's overall 

effectiveness and detection capacity.    

3.5 Boosted Sooty Tern Optimization (BSTO) 

Sooty terns, also known as Onychoprion fuscatus, are sea birds with diverse species. They are 

omnivorous birds that eat various animals, including insects, reptiles, amphibians, fish, and 

earthworms. They are colonial creatures that locate and hunt prey with intelligence. Sooty 

terns migrate seasonally to find abundant food sources, grouping together to avoid collisions 

[36]. They use a flapping mode in flight for air attacks, updating initial positions based on the 

fittest found sooty tern.Effective error rate minimization is achieved by the use of BSTO. 

Figure 3 shows the flowchart of BSTO.  
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Figure 3: Flowchart of the BSTO 

The process for classifying cyber security attacks stated in this proposed method starts with 

pre-processing the data using min-max scaler normalization. Important features are then 

selected from the complete set utilizing advanced hybrid optimization techniques. The cyber 

security attack is then classified by running these chosen features through a CA-DSCNN. To 

raise efficiency and accuracy in the classification of cyber-security attacks, the BSTO is 

utilized. 

4. Results and Discussion 

This section compares the proposed method with the existing approaches using the UNSW-

NB15 and CICIDS-2017 datasets. Additionally the method uses data from the IoT- based 

wireless sensor networks. Regarding validated performance, the proposed method attains 
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superior accuracy, ultra precision, flawless recall, and MAPE, RMSE and MSE efficiency, 

network lifetime, end-to-end delay, packer delivery ratio (PDR), and throughput and fault 

tolerance. When it comes to classifying cyber-security attacks into many classes and 

managing unbalanced datasets, the proposed method regularly performs better than standard 

models. Incorporating pre-processing, feature selection, and technique optimization into the 

model-building process is another way to improve stability and reliability. Furthermore, the 

approach doesn't suffer from a lack of generalization for the categorization of multi-class 

cyber security attacks and demonstrates its effectiveness. In general, it computes more 

quickly and has better detection accuracy than the earlier models.Python is used to execute 

the proposed method. 

4.1 Dataset Description  

• UNSW-NB15 dataset [37] 

The UNSW-NB15 dataset encompasses 10 classes (Normal, Fuzzers, Analysis, Backdoors, 

DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms) and contains 42 

characteristics (labels excluded).More accurate data for assessing cyber-attack detection 

systems is intended to be provided by the dataset. With 82,332 examples in the testing set 

(which includes both attack and normal data), the training set has 175,341 occurrences. The 

UNSW-NB15 dataset has certain limitations, even though it provides better coverage than its 

predecessors. These include a small number of network assaults and some obsolete packet 

information.A comparison of the different forms of data in Table 2 shows the distribution of 

data from the UNSW-NB15 dataset.  

Table 2: Distributed data for the UNSW-NB15 dataset 

Data Types Description Number of records 

Normal Typical network information 2,218,761 

Fuzzers 

Utilizing data feeding that is 

created at random to suspend 

applications 

24,246 

Analysis 

Includes assaults such port 

scans, spam, and HTML 

page penetration. 

2677 

Backdoors 
Method for getting around 

system security 
2329 

DoS Denial of service attack 16,353 

Exploits 
Making use of the 

acknowledged security flaws 
44,525 

Generic 
Method that attacks every 

block cipher 
215,481 

Reconnaissance 
Attack-simulating strikes to 

obtain information 
13,987 

Shellcode 

Snippet of code used to take 

advantage of software 

vulnerabilities 

1511 

Worms 

In order to infect other 

computers, worms duplicate 

themselves. 

174 
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• CICIDS2017 dataset  [38] 

The Canadian Institute for Cyber-security created the dataset. The dataset includes some 

modern multi-stage attacks, including DoS assaults and Heartbleed. A range of contemporary 

protocols are also included.  CICIDS2017 simulates seven different attack families, including 

brute force, heart bleed, botnet, denial-of-service, web, and infiltration attacks. It is designed 

for use in intrusion detection and network security applications.A comparison of the different 

forms of data in Table 3 shows the distribution of data from the CICIDS-2017 dataset.  

Table 3: Distributed data for the CICIDS-2017 dataset 

Data Types Description Number of records 

Normal Typical network information 2,358,036 

Brute Force Attack 

Attempt to guess FTP 

passwords using a brute force 

attack. 

7938 

Heart Bleed Attack 

Employing openSSL exploits 

to inject malicious data into 

openSSL memory 

11 

Botnet 

Use of the victim system in 

the Botnet network and 

trojan-based attacks 

1966 

Denial-of-Service (DoS) 

Excessive use of HTTP get 

requests in order to limit 

HTTP use 

5499 

Web Attack 

Using a brute force method to 

extract personal ID numbers 

from webpages 

1707 

Infiltration  Attack 

unauthorized access to the 

system through the use of 

instruments and penetration 

techniques 

36 

  

• IoT-based wireless sensor networks data  

IoT-based wireless sensor networks provide the raw data that is utilized to evaluate the 

proposed method. This dataset captures the intricacies of network traffic and device 

interactions, encompassing a broad spectrum of attack scenarios pertinent to IoT systems. A 

thorough evaluation of the approach's effectiveness in identifying and categorizing different 

cyber security risks unique to IoT-based contexts is made possible by the utilization of IoT-

based sensor data. 
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4.2 Performance comparison with existing approaches  

Performance comparison on the UNSW-NB15 Dataset 

 

Figure 4: Distribution of Attack Frequencies in the UNSW-NB15 Dataset 

Figure 4 shows the prevalence of various attack types, such as backdoors, fuzzers, exploits, 

and reconnaissance, across all training and testing sets. Initially, the categories "Exploit" and 

"Generic" are shown with comparatively higher frequency, particularly in the training set. It 

helps to perceive the distribution of attacks at different phases of the model's development. 

Table 4: Data Distribution for Training, Testing, and Validation Sets on UNSW-NB15 

dataset 

Label Training Dataset Testing Dataset Validation Dataset 

Normal data 1,014,221 289,777 144,899 

Attack data 157,748 45,071 22,535 

 

Table 4 provides statistical information on normal and attack data instances in the UNSW-

NB15 dataset's training, test, and validation sets. The training set consists of 1,014,221 

normal training data records and 157,748 attack data records. There are 289,777 records of 

routine testing and 45,071 records of attacks in the testing set. The validation set consists of 

22,535 assault data records and 144,889 normal validation data records. 

Table 5: UNSW-NB15 dataset performance evaluation outcomes 

Methods Accuracy(%) Precision(%) Recall(%) F1-Score 

(%) 

Detection 

rate (%) 

DNN 98.8 97.94 97.86 98.76 97.92 

CNN 99.47 99.43 99.46 99.44 98.65 

SVM 75.21 99.16 75.21 76.60 80.12 

RF 99.30 99.09 99.30 99.12 98.51 

NB 98.86 99.01 98.86 98.85 97 

ANN 99.28 99.37 99.28 99.17 98.02 

Proposed 

CA-DSCNN 

99.51 99.49 99.51 99.46 99.33 
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Table 5 presents a comparison of the performance evaluation results for various methods on 

the UNSW-NB15 dataset. In comparison with existing models, the proposed CA-DSCNN 

performs better. CA-DSCNN is the best at classifying multi-class cyber-security attacks, with 

the highest accuracy (99.51%), precision (99.49%), recall (99.51%), F1-score (99.46%), and 

detection rate (99.33%).  

 

Figure 5: Performance Measures for Classifying Cyber Security Attacks into Multiple 

Classes Using UNSW-NB15 Dataset 

Figure 5 presents the performance metrics of a multi-class cyber security attack classification 

system in terms of many classes, such as DoS Attack Category, Shellcode, etc., as well as 

regular traffic classes include accuracy, precision, recall, and F1 score. Every indicator 

displays high values, with the majority exceeding 98%, suggesting that the model is accurate 

in characterizing and classifying various cyber-attacks. 

Performance comparison on the CICIDS 2017 Dataset. 

Figure 6: Cyber-security Attack Frequency in the CICIDS 2017 Dataset. 

Auth
ors

 Pre-
Proo

f



The figure 6 depicts the frequency of cyber security attacks in the CICIDS 2017 dataset on a 

logarithmic scale. This enables us to clearly see the representation of these types of attacks in 

relation; for example, "Benign," ”Bot,” and "Dos attack-Hulk“are all included, making it 

available for cyber-- security analysis. This visualization enables us to see and prioritize a 

selection of the most common cyber-attacks. Moreover, it emphasizes the necessity of 

focusing on both ordinary and rare attack vectors in order to guarantee strong security 

measures. 

Table 6: Data Distribution for Training, Testing, and Validation Sets on CICIDS-2017 dataset 

Label Training Dataset Testing Dataset Validation Dataset 

Normal data 318,014 90,861 45,431 

Attack data 7,800 2,229 1,114 

 

Table 6 provides statistics on normal and attack data instances from the CICIDS2017 

dataset's training, test, and validation sets. There are 7,800 assault data records and 318,014 

regular training data records. There are 2,229 test set-based attack data records and 90,861 

normal testing data records. There are 1,114 validation set-based attack data records and 

45,431 normal validation data records. 

Table 7:  CICIDS-2017 dataset performance evaluation outcomes 

Methods Accuracy Precision Recall F1-Score Detection 

rate 

DNN 97.02 96.99 96.6 96 92.80 

CNN 98.22 98.23 98.21 98.20 94.65 

SVM 73.41 96.78 73.99 74.55 75.88 

RF 98.15 97.88 98.66 98.54 97.64 

NB 96.78 96 96.68 96.58 94 

ANN 98.49 98.55 98.60 98.11 97.66 

Proposed 

CA-DSCNN 

99.48 99.23 99.15 99.66 99.13 

 

Table 7 shows the CICIDS-2017 dataset performance evaluation outcomes. The higher 

accuracy (99.48%) and F1-Score (99.66%) are attained by the proposed CA-DSCNN, which 

performs better than the existing approaches. Additionally, it outperforms techniques like 

CNN and ANN in terms of precision (99.23%) and recall (99.15%). Its effectiveness and 

reliability are demonstrated by the 99.13% detection rate, which emphasizes the way well it 

performs in identifying situations when compared to other models. 
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4.3 Comparative analysis of the proposed method's performance with existing 

approaches 

 

Figure 7: accuracy and precision performance comparison between proposed and existing 

methods 

The performance of the following cyber-security attack models is compared in the figure 7: 

DNN, SVM, CNN, RF, NB, ANN, and CA-DSCNN (proposed). It showsshows98% 

accuracy and almost 97% precision, with colored bars for each model. In terms of both 

measures, the proposed CA-DSCNN model performs similarly to alternative models. 

 

Figure 8: Recall and F1-Score performance comparison between proposed and existing 

methods 
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Figure 8 shows the Recall and F1-Score performance comparison between proposed and 

existing methods. Various algorithms, such as DNN, SVM, NB, CNN, RF, ANN, and the 

proposed CA-DSCNN, are compared with respect to recall and F1-Score performance. The 

proposed CA-DSCNN achieves the highest recall (99%) and F1-score (99.5%). However, 

other models have F1-Score and recall values that range from 80% to 95%, indicating that the 

CA-DSCNN technique performs better in cyber-security attack classification tasks. 

 

Figure 9: Computational time and MAPE performance comparison between proposed and 

existing methods 

The Mean Absolute Percentage Error (MAPE) and computational time metrics are used in the 

figure 9 to compare the existing cyber attack methods. Although it does not have the shortest 

computation time (1.0s), the CA-DSCNN (Proposed) model has the lowest MAPE 5%, 

suggesting the maximum accuracy. A variety of other models exhibit different performance 

levels, including the DNN Computational Time ~ 0.8s, MAPE ~ 12%, SVM Computational 

Time ~ 1.2s, MAPE ~ 15%, NB Computational Time ~ 0.7s, MAPE ~ 18%, RF 

Computational Time ~ 0.9s, MAPE ~ 10%, and ANN Computational Time ~ 0.85s, MAPE ~ 

14%. 

Auth
ors

 Pre-
Proo

f



 

Figure 10: RMSE and MSE performance comparison between proposed and existing methods 

The following algorithms' performances are compared in the figure 10: DNN, RF, CNN, NB, 

SVM, and ANN. With an RMSE of 0.8% and an MSE of 0.6%, the CA-DSCNN (proposed) 

method performs the best. RMSE values consistently exceed MSE for every algorithm, 

indicating a larger degree of error in RMSE.   

Table 8: Comparing Cyber security Detection Techniques' Performance in IoT 

based Wireless Sensor Networks 

Methods 
Network  

Lifetime 

End-to-End 

Delay 

Packer 

Delivery 

Ratio (PDR) 

Throughput 
Fault 

Tolerance 

EESC-SSP 

[39] 

30 hours 120 ms 92% 200 kbps High 

HR-

MOPSO-

IDS [40] 

28 hours 110 ms 90% 190 kbps Medium 

SG-IDS [41] 25 hours 130 ms 88% 180 kbps High 

ESWI [42] 32 hours 115 ms 91% 210 kbps High 

ASP-WSN 

[43] 

29 hours 105 ms 93% 195 kbps High 

Proposed 35 hours 100 ms 99% 220 kbps Very High 

 

The table 8 compares various cyber security detection methods for IoT-based wireless sensor 

networks across five key metrics: network lifetime, end-to-end delay, packet delivery ratio, 

throughput, and fault tolerance. The results show that the proposed method is superior to 

other methods both in security and performance metrics, including longest network lifetime 
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(35 hours), lowest delay (100 ms), highest PDR (95%), best throughput (220 kbps), and 

superior fault tolerance. 

5. Conclusion  

The use of cutting-edge methodologies has greatly improved threat detection's accuracy and 

efficiency in the field of multi-class cyber-security attack categorization. Pre-processing has 

used Min-Max scaler normalization through reshaping of the data in order to enhance the 

contribution rate of the features in the classification process, thus enhancing the performance 

of the model. BTGO, along with an ASO for the feature selection process, has enhanced the 

degree of relevance of the input features; these modifications improve the models’ accuracy 

and resilience. CA-DSCNN has been employed to identify more complex patterns of 

relations between different data elements as well as more effectively classify these patterns 

by minimizing the number of computations. Also, BSTO has been used to optimize the model 

parameters and enhance the classification accuracy of the result. In general, the use of these 

methodologies has contributed to the development of a diverse and efficient way of 

categorizing various types of cyber-security attacks. The above-mentioned methods have 

done well in enhancing detection performance and thereby presented a good avenue for 

further research and extension of practical use in the future. Future work will expand datasets 

to encompass a wider variety of attack types and real-world scenarios, which will facilitate 

the creation of more broadly applicable models.  
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