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Abstract

The rapid advancement in vaccine development has become increasing|
health challenges, particularly in the wake of emerging infectious diseases. Tradj
while effective, often involve lengthy processes of trial and error, which can de
immunizations. In the pursuit of enhancing vaccine efficacy, the application of %
emerged as a transformative approach. This study presents the development and imgl

ANNSs) and Random
ploys a hybrid feature selection
jon (RFE), to identify the most

Neural Network Model (INNM), which synergistically combines Artificial Neura
Forests for predictive immune response and optimal vaccine design. T
methodology, integrating Pearson correlation with Recursive Feat
relevant immunological predictors. Implemented in a Jupyter nment, the model achieved an
impressive accuracy rate of 98.4%, demonstrating its pot ize vaccine development. This
innovative approach underscores the capability of dg redict immune responses with high precision,
paving the way for the next generation of vaccing

Keywords: Deep Learning, Predictive Immune F
Model, INNM, Artificial Neural Networks, AN
Correlation, Recursive Feature Elimination.

Random Forests, Hybrid Feature Selection, Pearson

1. Introduction

ti vaccine design are a revolutionary concept in the setting of
immunology and vaccine disc . Thr e use of sophisticated computational analytics and biological
knowledge, this field can be edict what immune responses may arise from different antigens, informing
how future vaccines shg S d in order to generate the most specific/high-affinity effects [1] [2].
owever is largely empiric in nature and involves much trial and error.
enormous data jungle of immunological sources (genetic, proteomic and
happens when the immune system reacts [3]. This in turn allows researchers to
more quickly, and to design vaccine candidates with improved accuracy.

Predictive immune resp

sions of immune response to pathogens, HLA (human leukocyte antigen) diversity being a
¥ Incorporating genetic profiles into predictive models are able to consider this variation, can
velopment of broadly effective vaccines which work across different populations and genetic
S. These models can also be used to predict side effects that the vaccines might cause, and thus improve
. Predictive immune response and the design of an ideal vaccine are far-reaching implications. This
d supports rapid vaccine design and implementation to address global pandemics, such as COVID-19 [5]
[6]. It also shows great potential for addressing longstanding problems like HIV and malaria, diseases that have
stymied conventional vaccine approaches. The promise of a new field at the intersection among bioinformatics,
systems biology and immunology is up to revolutionize vaccine development opening opportunities for more
effective as well as personalized vaccination [7].

The best vaccination strategy and optimal delivery mechanisms including adjuvants to boost immune
response also should be better elucidated. By developing computational tools that predict the interactions of
formulations with immune cells, researchers are provided detailed guidance on which combinations will be most
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effective. These models also help to predict not only the length of the immune response but its strength, assisting
in creating long-lasting vaccines [8] [9]. Designing an optimal vaccine is a complex and intricate endeavour that
combines different scientific fields to deliver not only efficacious, but also safe and affordable vaccines. The key
to this process is recognizing the most suitable antigens - substances that evoke an immune response [10] [11].
Current developments in genomics and proteomics are making it possible for researchers to have access to
pathogens from the smallest of molecular levels, identifying specific antigen targets which most probably trigger
a strong and protective immune reaction [12] [13]. The comprehensive insight into the biology of pathogens assists
in choosing antigens that can propagate immunity, rather than pathology.

Adjuvants, which are substances that can contribute to activating the immune system of a host respon
to an antigenic challenge, form part of the essential components in designing more effective vaccines. Choo
the right adjuvant (or collection of them) can increase a vaccine's effectiveness manifold because suc
boost immune response so that we need far less antigen. This means that vaccines are not only cheap
fewer associated side effects [14] [15]. Adjuvant aims to identify compounds that can specific
immunological pathways of interest and therefore direct an immune response for a more eff§
targeted pathogens. The delivery system for a vaccine is another important compg i
traditionally have been administered by injection; however, new technologies
forms of vaccines such as nasal sprays, oral tablets and microneedle pat
administration, improved patient compliance and potent mucosal immunity - crit
body via a mucous membrane - led us to investigate alternate pathways. New deliv8
help vaccines remain shelf-stable, with knock-on effects for their accessibility 0Py
settings [17] [18]. ’)

Pathogens that enter the
technologies could also
jons in low-resource

The idea of tailored vaccines is making headlines nhow. Cu cines based on specific genetic
and immunological profiles of an individual, population group giv ion giild be developed to generate the
most ideal response. The latter is especially attractivegdasthe ext 0 s such as cancer because tumour-
specific antigens can be manipulated and thus a ve ly effective treatment can be performed [19].
Optimal vaccine design also requires thoroug ‘ These are then followed by a number of
phases of clinical trials — including in vitro e and animal model testing to determine the vaccine's
safety, immunogenicity consistency/efficacy. Incre2g@@ly, computational modelling and simulations are used to
predict outcomes and improve vaccine candidates in adW@ce of clinical testing-speeding efforts while saving lives
[20]. Figure 1 shows the benefits.

Personalized

:& Vaccines
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i Higher Efficacy

Figure 1. Benefits of Predictive Immune Response



Predictive immune response is a forefront field in immunology that aims to utilize computational tools
and biological data to predict how the immune system will reply when facing different types of antigens. This
approach goes beyond traditional empirical methods based on trial and error using large datasets of genetic,
proteomic, immunological data. By better modelling the complex dynamics of immune defences, scientists can
predict more accurately how effective vaccines and therapies will be. Such predictive abilities are even more
critical for practice in emerging infectious diseases and personalized medicine that require prompt/ accurate
responses to identify a majority of effective treatments as well as prevention options. Using computational
algorithms, like predictive modelling that examines extensive immunological data-such as genetic and proteomic
information or epidemiology-a profile of the immune responses can be developed to give us a bird's eye vie
This gives researchers an edge to be able to locate antigen targets with potential and engineer vaccine candid
more accurately-faster. It is an elaborate process that entails various advantageous scientific tools, new strate
and artistic sciences to fetch in being a highly effective vaccine which should be low cost as well.
leverages genomics, adjuvant research, innovative delivery systems and personalized medig

predict the efficacy of vaccine candidates. A significant aspect of the INNM 1 ybrid feature selection
methodology, which combines Pearson correlation and Recursive Feature Eliminat RFE). This approach
ensures the selection of the most relevant features, enhancing the model's prediciig@laccUNRy.

1.1 Main Contribution of the Work

The primary contribution of this work lies in the dev nd vadation of the Integrated Neural
Network Model (INNM), a novel approach that cogaines 4Qaificia Networks (ANNs) and Random
Forests to predict immune responses and optimize, i he key contributions are outlined as follows:

e The INNM synergistically integrates A
to enhance predictive accuracy. This hybrN
non-linear relationships and the Random FO
data.

e  The study introduces a hybrid e selection process that combines Pearson correlation with Recursive
Feature Elimination (RFE). Tl approach ensures the identification and retention of the most

improving the model's performance and interpretability.

ter Notebook environment, which supports reproducibility and

a detailed and transparent implementation, this work enables other

dom For®sts, leveraging the strengths of both models
oach capitalizes on the ANN's ability to model complex,
's robustness against overfitting and high-dimensional

e The INNM was imple
accessibility. By giigyi

By harnessind ive power of deep learning, the INNM offers a robust framework for
agcelerad a opment. This approach facilitates the rapid identification of promising vaccine

vements to the INNM framework.

2.Related Work

The implications for vaccine design are huge that can predict whether a peptide will be presented on
MHC class | molecules. There is already a lot of very accurate peptide presentation predictions for MHC class |
molecules that are based on deep learning. As they are black-box functions, very little is being known about the
decision-making of these MHC class I predictors. To trust these forecasters requires not only an understanding of
their rationale but also the ability to explain in a way humans can understand. AneXplainable Al (XAl) methods



is implemented to help interpret MHC class | predictor outputs in the context of input peptide features [21]. They
offered experimental data that explains the results presented by four leading MHC class | predictors on a large
dataset of MHC alleles and peptides. In addition, they evaluate the credibility of these explanations by comparing
them with observed data and testing their robustness. MHCXAI seeks to improve this confidence by offering the
most sophisticated machine leaning-based predictions through validated interpretations and enriched knowledge
in immune response domain.

TCR sequencing has recently been used to profile the immune response or immunity towards cancer.
Regrettably, most of the other research focused on quantitative indicators such as clonality and have large
ignored the complementarity-determining region 3 (CDR3) sequence. A deep learning system of algorit
DeepTCR, to find sequence that predict response to immunotherapy [22]. They demonstrated that DeepTCRw
is capable of predicting the response of a patient and use the model to infer antigenic specificities for
the predictive signature and how they evolve during therapy. Non-responses have a greater dive
tumour-specific TCRs over the course of treatment compared with responders, whereby a hi
expected antitumor antigen recognizing TCrs response prediction signature. Their findings
concept that accumulation of tumour-specific T cells undergoing treatment-mediat,
nonresponse, potentially due to the defective state of these t-cells.

The most common way by which hepatitis E virus (HEV) is transmitte -virus, thus leading to
fecal contamination of water. The disease is considered to rank as second only hea to be the largest current
public health risk in the world, especially low resource worlds; Africa being one g€ m ffected countries. An
African vaccine was expected to be essential for preventing infection with HE%silic epitope based subunit
jnkers [23]. The vaccine candidate
found to be immunogenic while
able binding efficacy, and MD
ccing Pl induce human immunological
bsequently integrated in silico into pET28 b

vaccination is employed with CTL, HTL and BL epitopes fused to agg

being non-allergenic as well as showing no signs of toxicity.
simulation indicated the same interaction preservatiga, T

conclusion, but altogether these data strongly

prophylaxis against HEV.

ps become relatively straightforward to detect somatic
mutations and develop patient-specifi ntigen cancer vaccines targeting unique tumor variations. These
vaccines have the ability to produce i erapeutic responses since they boost our immune system and

icult to determine the appropriate dose of vaccine specific for
each patient because tumours ¢ i avours. To address this challenge, a mathematical model is used
which describes the immyge e cascade in an individual due to vaccination and formulate a dosage

that across immunizati nimize total tumour burden and activated T cells relative to an alternative
repeated-dosing i ibte their approaches, they performed in silico trials on six real patients with
advance al trials. They examined the results of an appropriate dose of vaccine and how
they ¢ al one. By tweaking the vaccination schedule with higher start doses and lower final
doses

hat causes COVID-19 is the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
ke SARS-CoV-2 mutate all the time. The cost vaccine offers little or no protection against the
S-CoV-2 variant because of just how much its spike protein is mutated. Most vaccines against
-2 are also dependent on wild-type virus spike protein sequences. This increases the risk of a shift in
prus, making booster shots ineffective. Ultimately, the research will lead to a predictive vaccine and epitope
discovery that guide reverse-translational modifications of the current sequences for vaccines. In this regard,
epitopes derived from the spike proteins of wild-type, delta variant and omicron variants most probable as those
are already major circulating or potential new combination containing any one/link between each other
combinations to be emerged within these layers were employed in designing predictive vaccine by taking immune
informatic approach [25]. The vaccine was safe and induced an immune response. The vaccine antigen has been
injected for 1 month, results of the C-ImmSim simulation indicate there is a sufficient level of humoral response
and cell-mediated responses. The results suggest that the vaccine was effective and provided a sufficient level of



immunity, the study says. It is suitable for the creation of antibodies or other forms, and can then be tested
experimentally to develop a vaccine.

3. Methodology

Several key steps were taken during the development of Integrated Neural Network Model (INNM).
Comprehensive data on immunologic correlates and vaccine response outcomes were first gathered. Dataset pre-
processed - normalization, missing values treated We therefore used a hybrid feature selection approach that
combined Pearson correlation for finding linear relationships with Recursive Feature Elimination (RFE) tg
eliminate progressively less important features. The INNM combined Acrtificial Neural Networks (ANNS)
Random Forests. This is done because ANNs are able to model nonlinear complex relationships as well, and
key advantage that Random Forests offer which helps them deal with overfitting due to high-dimensiggal d
Model training and validation was performed using stratified k-fold cross-validation to ensure gengl
Figure 2 shows the architecture of proposed model.

3.1 Dataset: Immune Response Dataset (IRD)

resu om 86,723
¥ that ca pact and
ines, HLA types and

Immune Response Dataset (IRD),this dataset provides detailed immug
individuals as well as the vaccine administration data. The data supports an al
be used to evaluate vaccines as well the ensuing immune responses. Details
demographic information such as age/gender are part of the dataset that lists ecNg@entry. The dataset also
documents the quantity of antibodies discovered, and how badly subjects experien ny<@je effects. IRD phases
have been rigorously worked through with a combination of clinical trjg leaalth records and laboratory
data. The data themselves undergo exhaustive preprocessing in ordg e they are clean and correct. The
preprocessing consisted of dealing with missing values, scaling nwm4

induced immune responses

Immune responses differ in various pg
and gender playing a crucial role. Addition o
understanding personalized vaccine responses. Inf0

€s contributes towards genetic diversity and aids in
on such as the type of vaccine, antigen and adjuvant is
crucial to predicting how distinct components in differSgavaccines formulations influence immune function. The
immune response, measured by antibody leyels that indic® how well the vaccine works, is the primary outcome
variable. The degree of these side-effe Iso captured in order to evaluate vaccine safety.

3.2 Data Preprocessing

We conducted preproce steps
as follows:

e able to analyze and model the Immune Response Dataset (IRD)

3.2.1 Data Cleaning:

S was started by handling missing values which is a very important step to take
remains reliable and we are able to further use this dataset. Some common possibilities

0 mean, therefore furnishes a more sturdy measure of central tendency. The missing values in
| variables by using mode. By doing this the categorical data remained close to most of the other

ackage both the size of dataset and prevented further analyses or machine learning models from having
n their data. Median Imputation of Missing Value for Numerical Columns:

Ximputed = Median(x) (1
Mode Imputation for Categorical Variables:

Cimputed = Mode(C) 2)



3.2.2 Data Standardization and Normalization:

N\
?“0

/

Data Collection

Y
Data Preprocessing

( Data Cleaning )
C Standardization )

C Normalization ) One-Hot Encoding

7

A 4
7
| Encoding Categorical Variables \

v
( Feature Engineering

|

(DimensionalityReduction ]

PCA

—— — —— —— —_—— e — — —

< Evaluation and Validation >

Figure 2. Architecture of Proposed Model
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Z-score normalization was carried out to standardize the numerical features for analysis. This normalization
changes the numerical data such as age, and antibody levels to have a mean of zero and Standard Deviation 1.
Normalization of numerical features is important as it allows every feature to be equally significant in the analysis,
not letting those with larger scales have an undue favoring over them. In datasets where features differ
considerably in scale (e.g., from age measured via years vs. antibodies measure with arbitrary units), models like
k-nearest neighbors or neural networks may be biased towards larger-scale characteristics. Z-score standardization
was applied to the numerical data in order that they were all on comparable scale, and then fed into machine
learning algorithms for improved accuracy. This step also helped to have gradient-decent based optimization
algorithms converge faster and more reliably, helping the overall training process. Z-Score Normalization:

3)

relationships to the categories and there is no such thing between those labels i
vaccine categories, as an illustration, are unique classes not having any implied set. ¥
represented as a separate binary variable (0 or 1), the model could learn from al se
any incorrect assumptions about their relationships. This increased the digaag ie% dataset because it converted
all categorical data into One Hot encoded instead but left us with ma timensionality. This step becomes
crucial for algorithms such as linear regression, support vector gac pect numerical number. Binary
vector representation:

ase. The HLA types or
ause each category was

pe with antigen), these two way interactions might be included
ow various blends of vaccine constituents and genetic factors
ypes might interact with an antigen in such a way that the immune
r much less strong and this is crucial for predicting which vaccines will

could impact the immune respon
response would be eitherg
work. These interactio
to the data set. This stepgded mol features to the dataset that might now benefit in providing a better prediction.

o check for outliers using the Interquartile Range(IQR) method which is one way to
in data that differs greatly from most of it The IQR method consists of calculating a band
egornts (from median) from there forth, as outliers if such data lie below Q1-1.5*IQR or above
ce the outliers had been identified, they were clipped to a maximum threshold so as their
not over power the analysis. This capping method was useful for keeping the distortion that extreme

eing robust, which guaranteed that models trained on this data would be more dependable and less
ted by outliers since we capped them out.

3.2.6 Balancing the Dataset:

This step involved checking to see if there was any class imbalance in the dataset, mainly regarding
categorical variables (e.g., our target or severity of side effects). An imbalanced dataset might cause the model to
be biased and perform well on majority class while it works poorly near the minority. SMOTE (Synthetic Minority
Over-sampling Technique) was used to handle this. SMOTE constructs examples on existing minority class
examples by interpolating the feature space. It does so by balancing the dataset in a way that is more general than
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simply duplicating instances of the minority class which could result in overfitting. SMOTE generated synthetic
data points to have fair representation of the minority classes so that model was able to learn from all sides. This
was an important step to improve the performance of our classification algorithms and handle predictions in a fair
and accurate manner across classes. Synthetic data generation:

Xsynthetic = Xi +A1- (xnn - xi)(s)
3.3 Dimensionality Reduction:

PCA (Principal Component Analysis) was used in this case to reduce the number of dimensions s
that most of the variance is preserved. PCA is used to transform original features into a set of new orthog
components by ordering them from the one which explains more variance in data. This reduction in dimensiona
simplified the models, and decreased computational complexity by virtue of gleaning informatio
identifying principal components that account for most of the variance. In the meantime, this also se
more data and reduce multi-collinearity among features. This dataset in particular was suited
significantly improved the interpretability and functionality of basic machine learnin
redundant or uninformative features. Projection onto Principal Components

Xreduced = XVk (6)

3.4 Data Augmentation:

We generated the synthetic data for under-represented class using di? Ki f data augmentation
techniques, in particular SMOTE. This step was important since the i is unbalanced and we need to
make sure that enough examples are provided for all classes so our § e trained it properly. Generating
synthetic data tackled the extremely low examples of certain coggi iversified training set to expose
model more scenarios. The augmentation allowed the ine odels to be more robust and
generalization capability was increased, then boostj cu of predictions.

d

3.5 Splitting the Dataset:

d test sets in the usual 70%, 15% and 15%. The model
elationships. The validation set was used to optimize

The dataset was split into training, validal
was trained on the training set to learn these patterns
the model and tune hyperparameters, whilebeing preven

on new, unseen data. The fact that strategy was used to avoid overfitting, this way they are
performance metrics based on d odel has not been seen at all.

gune refonse indicators and hence ranked. The strength of correlation between each
g asured using Pearson correlation coefficients. Given this, we prioritize features

e use wrapper methods (e.g.: Recursive Feature Elimination) on top of that. RFE is
approaches consisting of training a model (e.g., Random Forest, SVM) iteratively shrinking
rtant features. This process iterates until an optimal feature set is selected on the basis of
etrics like accuracy or area under ROC curve. RFE can help reducing feature interactions and
-linear relationships that might be missed with correlation analysis. Calculate Pearson correlation

between each feature X; and the target variable Y:
Conv(X;,Y)

X, V) =——21"2(7

p(X;.Y) ox;0y @)

Where Conv(X;,Y) is the covariance between X; and Y, ox; is the standard deviation of X;, and oy is
the standard deviation of Y.

The feature selection process is then combined with the embedded methods like regularization techniques
(ex: Lasso Regression, Ridge Regression). Adding a regularization term to the objective function simply penalizes
odd features by way of reducing their coefficient during model training. This acts as an incentive for the model to
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select features that do the most (or least) in minimizing complexity while improving prediction. This is particularly
useful into high-dimensional samples or with features that are relevant to only a few attributes of the dataset. The
correlation, RFE and regularization feature selection methods are used to arrive at a good model for automatic
feature extraction. This framework might default to models that perform the best on shared top ranking features
or those with highest importance scores in ensemble techniques like Random Forest. This combination makes
sure that the resulting features were significant by itself and together, they improved not just model performance
but also interpretability.

Implement RFE with a machine learning algorithm M that evaluates feature importance, iterative
eliminating less significant features until the optimal subset S* is selected:

S* = argmax Performance (M(S)) (8)
SCS{X1,X2,...Xn}

Apply regularization methods like Lasso Regression, which minimizes the objegiivegs

incorporating a regularization term /125.’=1|ﬁj| to penalize unnecessary features: K
It is important to validate the subset of features that are chosen in ordera?to w if they help achieve
a generalized model or not. Cross-validation techniques, like k-fold 4 ation, are used to validate the
feature subset on several data splits. This step simply ensures that theff 2 chose actually are valid in other
subsets of our data and thus has less overfitting, which is suppo gi” ithow well this model generalizes
into new situations. This may lead to fine-tuning, a process, 3 ure subset selected by changing
’ ation gain from decision trees) over learned
hich satisfies the defined selection criterion
hod) is then shown as an optimal set. This

on the test set so that only those features are selected
ithout increasing unnecessary computational burden.

n p 2 p

B=arg;nin Z Yi_BO_Z.Binj +AZ|-

i=1 j=1 j=1

(e.g. consensus or weighted average of individ¥
subset is then employed for model training and eve
which best help to predict immune response indicato

Combining the strengths of muli
feature subsets. This improvement r
response prediction frameworks.
relevance allows the low bias-{g

eature selectfon methods, essentially hybrid approach leads to better
ch better and more repeatable predictive models for immune
w from various angles in terms of feature importance and
ma to be observed, and thus reduce it. The powerful feature
the datasets and different scenarios. Selecting interpretable yet
the underlying mechanism of immune response. Understanding exactly
es against each other-is essential for interpreting model predictions into
earch and the development of vaccines. This combines multiple diverse

advianced technique for classification problems, especially immune response indicators in the paper
INNM, through integrating back-propagation ANNs and a random forest. This method seeks to

andom Forests. Because ANNSs can learn complex patterns and relationships through the layers of neurons
that build up a functional network, they should naturally be suitable to model intricate non-linear interactions
among many different factors affecting induction immune responses. Random Forests, on the other hand, work
by bootstrapping multiple decision trees and averaging all of their predictions. This method results in a more
stable model and one that makes predictions which are generalizable, as it is not overly biased by noise and
variation of immunological datasets. The ANN computes activations a®® in each layer [ using:

a® =g(z0) = s(W®a? + p®)(10)
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Where o is the activation function (e.g., ReLU, sigmoid), W ® is the weight matrix, b is the bias vector
and a® = X.

The INNM needs time-consuming data setup. This includes processing steps like final feature selection
using powerful methods including hybrid with correlation analysis, Recursive Feature Elimination (RFE), and
regularization. This is because these steps help the model to consider only features most relevant for training itself,
increasing prediction accuracy on immune response outcomes. During the model training phase, we will
independently optimize ANN and Random Forest parts. The ANN is trained via the backpropagation using
suitable loss functions and optimizers, whereas Random Forest parameters are tune to suit this specific set
features as well as Dataset characteristics. Therefore, the combined training fashion of INNM enables capturj
relationships within our complex data set while maintain generalization power that is mandatory for accu
prediction in immune classes. For a Random Forest ensemble with T trees, the prediction is aggregat

R 1%
For (D) =2 ) £:00 (1)

Where f,(X) is the prediction from the t — th decision tree.

Here, an ensemble integration is performed during which predictions de m both components of
ANN and Random Forest are combined to provide the final classification output. Th ans usually a voting for
classification tasks or an averaging for regression tasks will be implemented t m the different model
components and make use of their complementary strengths to improve aII%tion accuracy.

Performing an evaluation and validation of the INNM ar determining its comparability.
Information like accuracy, precision, recall and F1 score along to make the model more robust

in immunology and health care. Note that it prg
It is interpretable, so researchers and healthcare
responses. Insights like this one can help guide va
where well-informed interventions are essential.

s could understand the components driving immune
development, precision medicine, and diagnostics areas

Algorithm: Integrated Neural Netwi odel (INNM)

InpUt: IRD' train‘ratio' ANNpa‘ra TS’ para lers ) [NNMparamete‘rs

Output: performance oty

Data Preprocessing

/I Replace missing values with the median

/I Replace missing values with the mode
//Standardize numerical features using z-score normalization.
ly one-hot encoding to categorical features
Xinteraction = Xi X X; I/l Generate interaction terms by combining relevant features

IQR = Q3 — Q4 /I ldentify outliers using the IQR method.
Cap outliers at a maximum threshold

Z=XWw /I PCA to reduce dimensionality

11



Train Artificial Neural Network (ANN)

a) = f(W®al - 1) +bD) /I Weighted sum & apply activation functions
L= %Z?L Ly, %) /I Loss using a loss function
vw® = afvil) /1 Gradients of the loss with respect to weights and biases
vp® = a(zil)
wO:=w® —yrw® /I Update the weights and biases using gradient d t
Train Random Forest (RF)
for eachtreet in T:
Sample data with replacement (bootstrap sample).
Build the tree by selecting the best split at each node based on a criterion (e purity, entropy).
Integrate Models into INNM
Extract features from the trained ANN and RF models. ,
Concatenate Features
Xeompinea = [Xann, Xrr) /I ANN a a sigifle feature vector

Evaluate INNM
Predict on test set
Calculate performance metrics

returnper formanceotrics

End Algorithm

3.8 Novelty of the Work

The novelty o
specifically tailored fo
Networks (ANNs

esign. Unlike traditional approaches that rely on either Artificial Neural
Bts independently, this study introduces the Integrated Neural Network Model
@ combines the strengths of both models. This novel integration not only enhances
also provides a more robust analysis of complex immunological data. Additionally,

nd Discussions

The proposed Integrated Neural Network Model (INNM) has been executed in Jupyter Notebook with
Python, using TensorFlow, Keras and Scikit-learn libraries for constructing model training and evaluation. It does
it on a powerful windows setup with an Intel® Core™ i9-12900K Processor (30M Cache,up to 5.20 GHz) so that
the execution of computational tasks is fast and efficient enough. This powerful hardware is specifically able to
handle the intensive calculations associated with training neural networks and constructing Random Forests which
can result in fast data processing and increased productivity. This helps in making sure that the predictions of
immune response indicators are reliable and accurate. She used the Integrated Neural Network Model (INNM),
which incorporates features of Artificial Neural Networks (ANNs) and Random Forest, to achieve a complex

12



approach towards predictive modelling. This method combines the deep learning aspect of ANNs and ensemble
learning ability of Random Forests, which makes it possible to improve both predictive power and understand
ability in predicting immunological readouts. The pipeline is highly structured, starting from initial extensive data
pre-processing to model training, integration and evaluation etc.

Table 1. Dataset Sample

Immune
Subject HLA Vaccine . . Response
ID Age Gender Type Type Antigen | Adjuvant (Antibody
Level)
HLA- . Antigen | Adjuvant
1 25 M A02 Vaccine A X 1 120
HLA- . Antigen | Adjuvant
2 34 F B*07 Vaccine B Y 2 95
HLA- . Antigen | Adjuvant
3 45 M C*08 Vaccine A 7 1 0
HLA- . Antigen | Adju
4 29 F A*03 Vaccine C X 3 0 evere
HLA- . Antigen | Adjuvan
5 37 M B*15 Vaccine B Y 5 85 None
86719 31 F ';I;ZA? Vaccine A Antigen 125 None
86720 | 28 M 'é,':OA7 Vaccine B 115 Mild
HLA-
86721 39 F A*29 140 Severe
HLA- Adjuvant
86722 42 M A*11 3 130 Moderate
HLA- Adjuvant .
86723 50 F c*04 1 100 Mild

ady resource. The dataset covers in depth immune response to
des demographic variables, genetic elements as well vaccine
, if the missing values are here in this dataset it might compromise
erical missing values are imputed with median as it is robust to outliers
filled by most frequent category because the presence of null should not
numerical features are standardized by applying z-score normalization to
levels from raw counts into mean-centered values with standard deviation 1.

Immune Response Dataset (IRD)
different vaccines in 86,723 ingi
specific info. The first most step
with any algorithm finding
and all other categoricalfa i
affect any data consis

convert things li tibg
This step
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Immune Response (Antibody Level) Distribution
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Interaction teri\g@ betwee@mportant features are also created to account for non-linear relationships and
other integgctio . or example, the combination of certain HLA types with antigens interact in a
" Aue perspective on vaccine responses. The IQR (Interquartile Range) method is used to
ot to distort the analysis. The dataset is also balanced more by the Synthetic Minority
ique (SMOTE), creating artificial examples of under-represented classes. Dimensionality is
al Component Analysis PCA that preserves variance and reduces dimension requiring
lower computational complexity. Figure 4 shows the correlation matrix
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Correlation Matrix

Age

Immune Response (Antibody Level)

Immune Response (Antibody 1Y

Figure4. Correlation Matrix

After pre-processing, the data is split into training, validatio {for fair evaluation. The hyper-
parameters are optimized for the ANN and Random Forest separa he training phase. The ANN is
created with some parameters, trained by backpropagation - a ss fgmpredictions and loss to measure
the errors; backward pass captures gradients which are u in w ates iteratively improving error
prediction. Such a deep learning method enables 4 par plex patterns and data relationships. At the
same time, train the Random Forest model thg anta its ensemble learning ability to create a
number of decision trees using different data sull ree participates in voting on the final prediction, thus
reducing overfitting and dealing with noise and varr$ in a dataset leading to strong models that are competent
enough.

e 2. Feature Selection Comparison

mber of Model Computational
cted Features | Accuracy (%) Time (s)

50 98.33 150
60 88.7 20
55 89.9 45
53 90.5 30
58 89.2 35
omponent Analysis 40 91.5 25
utual Information 52 87.8 40
Chi-Square Test 48 86.9 15
ANOVA F-test 47 88.1 22
Information Gain 50 89.3 28
Embedded Method (Tree-based) 45 90 32

In Table 2 and Figure 5, 6,7 stating that feature selection is one of the key steps used to build predictive
models and consists mainly into which features are relevant (most important) so only these help on improving
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model accuracy while speeding up computational time. In this analysis, we evaluate different feature selection
methods and analyze in terms of model accuracy with number of features selected, time required to build the final
prediction/model. The Proposed Model (INNM) Hybrid method is the optimal one with an accuracy of 98.33%
for selecting fifty features at a maximum computational time when performing, over and above all methods
introduced. This indicates that this INNM hybrid method has strong ability of extracting the most effective
features, and at the same time computational expensive. This large computational expense might be acceptable in
scenarios where model accuracy is of the upmost importance.

Number of Selected Features by Feature Selection Method

4

55.0 .
52.5 .

50.0 .
47.5 .

45.0

Number of Selected Features

42.5

40.0

ponent Analysis .

idge Regression

Pearson Correlation
Recursive Feature Elimination
Lasso Regression

Information Gain

Proposed Model (INNM) Hybrid
Embedded Method (Tree-based)

Figure 5. Number of Selected Feat®ps by Feature Selection Method

Pearson Correlation selects 6@n odel accuracy of - with computational time as low as (seconds)
although this is a simple and fast owsIth reglect to more advanced methods it sacrifices accuracy. It finishes
with an 89.9% accuracy and ta ound time, selecting 55 features using Recursive Feature Elimination
(RFE). While not as accurg n Correlation, the RFE method is more costly now costs execution time to
compute so it remains 40 many applications. It takes Lasso Regression 30 seconds to select the
53 features that lead tqa y of 90.5%. Lasso is efficient on feature selection; it allows at one time

sparseness. to the el ) accuracy and computational costs just like that.
\ Model Accuracy Distribution by Feature Selection Method

9 o]
0 |

8
6

Model Accuracy (%)

Methods
Feature Selection Methods
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Figure 6. Model Accuracy Distribution by Feature Selection Method

Ridge Regression has been able to select 58 features with an accuracy of 89.2% in a time interval of right
around 35 seconds. Following the same as Lasso, it does not give sparse solutions and can select all features.
Feature set reduction done by PCA from 63 to 40, and it yields accuracy of only 91.5% which is computed with
in time limit(25 seconds) PCA is a method to reduce dimensions while keeping the accuracy relatively high and
its computational complexity at the lower end. Mutual Information 52 features (87.8%, 40 seconds) it is a method
of measuring the dependency between variables, thus striking an optimal balance between feature usefulness and
computational effort.

Computational Time (s) by Feature Selection Method

Lasso Regression
Recursive Feature Elimination

Ridge Regression

Pearscn Correlatn

Principal Component Analysis

C?M)

et ree-based)

Mutual Information

Chi-Square Test

The 48 Chi-Square Test feat
of the duration. It is the fastest, b
selection step. ANOVA F-test
E-U includes trade-offs between computational efficiency and
feature selection effectivg ) it a practical choice for many datasets. Information Gains: 50 features,
making it up to 89.3% putational time of 28s It is helpful in understanding the importance of
t show SIMPLE approach like Pearson correlation. Embedded Method Tree-

ork capacity that balances between both speed (or computational cost) as well as

utation compared to simpler methods such as Pearson Correlation and Chi-Square test which
eed albeit with lower accuracies. They typically lie somewhere between Lasso, RFE or PCA which

The integration of ANN and Random Forest models with the INNM is a mandatory intermediate phase.
We combine both in concatenation to produce a single arbitrary feature set where the former retains complex
patterns that have been identified by the ANN and the latter generalizes robustly like a RF. The combined features
are then used as initialization for the integrated model, which is trained with them. Similarly, the training
procedure for INNM is similar to ANN which consists of iterative forward pass, loss computation and backward
pass & weight updates. This integration provides a balanced combination of the ANN deep learning strengths and
the Random Forest ensemble advantages this way, not only maintaining model simplicity but also keeping
generalization indexing high.
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Table 3. Comparison of Models

Model Accuracy (%)
Logistic Regression 85.45
Decision Tree 87.9
Support Vector Machine 89.6
K-Nearest Neighbors 84.75
Naive Bayes 82.3
Random Forest 91.5
Gradient Boosting Machine 93.2
XGBoost 945
LightGBM 95
Artificial Neural Network 97.1
Proposed Model (INNM) 98.

By examining the range of performance levels displayed in Table 3 and Fig , our introduction to a
number of these predictive models exposed both strengths and weaknesses in t specific algorithms.
Logistic Regression It is a basic and most popular model with an acg 45%. It is simple, and easily
interpretable but it may not capture the complex patterns in data as gog @ e gther fancy models. The Decision
Tree model, an accuracy of 87.9%, gives a better result than L % reslN having finer decision-making

d 2L fCal order becomes more accurate
consequentially tend to overfit and therefore
ter performance than KNN and DT SVMs

pecially text classification (that I already published about here)
es the limitation of a strong independence assumption between
features. Random Forest: Ra
combination of several decjsi that can stabilize them and prevent overfitting, it make good approaches

with a computati CO!
being ma

N\
?“0
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ANN

LightGBM
Proposed

The optimized ensemble method gradient boosting impl oost with achieves an accuracy
sult it will tremendously help to
rest algorithms which shall make it
other gradient boosting variant, LightGBM

. mes using less memory while maintaining
the same performance. By learning to model comp odonships within multiple layers of interconnected nodes,
ANNSs achieved an accuracy approaching 97.1%. ANGg@ are very flexible and expressive but computing them is

process bigger data sets & complex patterns in co
very effective. Another slight improvement in ac

INNM reaches the highest ac @k 98.33%. This means that the INNM model uses some advanced
techniques, which contribute to sjgi ving its predicting accuracy and make it superior over other
conventional and top models. i
they are less powerful in terms ediction accuracy than more advanced models such as Random Forests /
Gradient Boosting Machg®a eural Networks. The benchmark comparison is topped by the Proposed
Model (INNM) which § jes that novel methods can surpass existing results.

ting it iteratively. Cross-validation is necessary in modelling to confirm that the performance
to the dataset are consistent and reliable across different subset of data.

able 4 and Figure 9, 10 provides that the models were also evaluated based on performance metrics
s precision, recall and F1-score to gain a more meaningful understanding of their strength and weaknesses
apart from only accuracy Table 4. Logistic Regression: 85.6% Precision, 85.3% Recall and an F1 of score at
85.45%. While a solid model, it tends to fall short on more complex data patterns and is considered less robust.
Decision Tree gives better results on these metrics with precision- 88%, recall-87.8% and fl-score - against
Logistic Regression above we know Decision Trees can capture non-Linear relationships which are not possible
for Logistic Regression giving it an upper edge. But the issue with them is that they overfit a lot but we can
mitigate this using something like pruning or ensemble techniques.
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Table 4. Performance Metrics of Models

Model Precision (%0) Recall (%) F1-Score (%0)
Logistic Regression 85.6 85.3 85.45
Decision Tree 88 87.8 87.9
Support Vector Machine 89.7 89.5 89.6
K-Nearest Neighbors 84.9 84.6 84.75
Naive Bayes 82.5 82.1 82.3
Random Forest 91.6 91.4 91.5
Gradient Boosting Machine 93.3 93.1 93.2
XGBoost 94.6 94.4 94.5
LightGBM 95.1 94.9 95
Artificial Neural Network 97.2 97 921
Proposed Model (INNM) 98.4 98.25 .32

Model Precision Comparison
100.0

®
97.5
®
95.0
92.5

90.0

Precision (%)

87.5

85.0

82.5

80.0

Support Vector Machine

K-Nearest Neighbors
Naive Bayes ———¢@

Random Forest

Gradient Boosting Machine

XGBoost

LightGBM

Artificial Neural Network

Proposed Model (INNM)

Model

Figure 9. Model Precision Comparison

The Support Vector Machine (SVM) shown 89.7%, and the F1-Score of it is 89.5% with also an F1-
score of 84%. SVM is good when it comes to working with high-dimensional spaces but in the same time, SVM
can handle both linear and non-linear data by varying its Kernel function implementation. So they provide a rich
set of functionality at cost of complexity which leads also to computational burden due the optimization process
behind. K-Nearest Neighbours (KNN): Precision: 84.9%, Recall: 84.6% and F1-Score: 84.75% Simple to
understand and easy implement, KNN is seemingly promising but has its drawbacks- it a hyperparameter k which
needs attention in tuning; therefore, does not perform well with noisy or high-dimension data such as text because
the number of features increase quite quickly. Responsive for data like text, approaches with efficiency and
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scoreNaive Bayes: 82.5% precision: 82.1% recallF1-score: 82.3%. It is generally not as applicable to more
complex data, due to its assumption of feature independence.

The Random Forest improves the performance considerably again with a precision of 91.6% and recall
0f 91.4%, leading to an F1-score at approximately 91.5%. Random Forest, one the ensemble methods that provides
good predictive accuracy and feature selection capabilities by combining multiple decision trees resulting in
reducing overfitting. This these figures are then improved on using Gradient Boosting Machine (GBM) with a
93.3% precision, 93.1 recall and an F1-score of 93.2%. The difference between GBM and random forests is that
GBM iteratively builds the Model correcting for errors of previous iterations, which leads to higher performang
models at the cost longer training times. The Gradient Boosting: XGBoost model attains 94.6% precision, 94.4
recall and an F1-score of 0.945 XGBoost is one of the most efficient and powerful model available for runn
on a large dataset with high computational and complex patterns.

Recall and F1-Score by Model

Recall
K-Nearest Neighbors F1-Score

Support Vector Machine

! / Decision Tree
1
3
/

52

Naive Bayes

Random Forest \

Gradient Boosting MASHING /

XGBoost

[ 4
\ 4

Ropsed Model (INNM)

Artificial Neural Network

s wlth a precision of 97.2%, recall at about ~97% and an F1-score close to
e of modelling complex relationships via multiple layers, and neurons -
. ive; however, this requires a lot of computational power to train as well fine-
I (INNM) outperforms all existing models on precision 98.4%, recall 98.25% and f1-

uch as Random Forest, Gradient Boosting, or Neural Network give significantly better
II-F1score. The Proposed Model (INNM) shows the best performance which is a successful result

Sensitivity, specificity, ROC-AUC, and log loss shown in Table 5 and Figure 11, 12, provide one with
other insights to determine performance on other grounds in predictive modelling. Our Proposed Model (INNM)
has a sensitivity of 98.2%, specificity of 98.45%, ROC-AUC of 99%, and log loss of 0.02. Sensitivity suggests
how correctly the positive cases are identified, specificity ensures how correctly it identifies true negative cases,
ROC-AUC represents the ability of the model to distinguish between positive and negative classes, and a log loss
of the model depicts the error rate in predictions. From the above metrics, the INNM model can effectively identify
positive cases, differentiate between classes and will have a minimal prediction error rate. Logistic Regression

21



gave a sensitivity of 85%, specificity of 85.9%, ROC-AUC at 87, and log loss at 0.5. Although Logistic regression
has a good coverage performance on this dataset, data that complicate these linear issues, will perform badly.

Table 5. Comparison of Models - Sensitivity, Specificity, ROC-AUC, Log Loss

Model Sensitivity (%) | Specificity (%) ROC-AUC (%) Log Loss
Proposed Model (INNM) 98.2 98.45 99 0.02
Logistic Regression 85 85.9 87 0.5
Decision Tree 88 87.8 89.5 0.45
Support Vector Machine 89.5 89.7 0.4
K-Nearest Neighbors 84.5 84.8
Naive Bayes 82.1 82.6
Random Forest 91.4 91.6
Gradient Boosting Machine 93.1 93.3
XGBoost 94.4 94.6
LightGBM 94.9 95.1
Artificial Neural Network 97 97.2
The decision tree model, on the other hand, had little impact % tiity of 88%, specificity of 87.8%,
ROC-AUC of 89.5%, and log loss of 0.45. For Decision Trees j @sily Macticed and implemented, it can
capture nonlinear relationships, but it is vulnerable to 4 ggronce on SVM from sensitivity of
89.5%, specificity of 89.7%, ROC-AUC of 90.8%# ' f 0.4. The SVMs have been able to handle

overlapping data as well as a high-dimensional
sensitivity had an 84.5%, specificity of 84.8%; .1%, and log loss of 0.55. It does not require
training and is easy to implement, but it is more co
attained obtained a sensitivity of about 82.1%, a speci
The efficiency here depends on the data. Even with stro
specific datasets.

Eind computationally demanding. The Naive Bayes model
kv of 82.6%, ROC-AUC of 83.5%, and a log loss of 0.6.
independence assumptions, the model is useful with

Senivity, Specificity, and ROC-AUC
= Sensitivity (%)
0.06 3 specificity (%)
30 ROC-AUC (%)

%0 110
Percentage (%)

Figure 11. Sensitivity, Specificity and ROC-AUC

Finally, we notice excellent performance using Random Forest, which encompasses a sensitivity of
91.4%, specificity of 91.6%, ROC-AUC of 92%, and log loss 0.35. This model is developed by combining
multiple decision trees, thereby reducing overfitting and promoting performance. Another performance
improvement accounted for the tested GBM, which is accompanied by a sensitivity of 93.1%, specificity of 93.3%,
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ROC-AUC of 94%, and log loss 0.3. Different from Random Forest is that GBM constructs models to correct the
errors made by its predecessor, offering high accuracy at increasingly computational values. XGBoost is also
efficient and exhibits a satisfied performance that can be expressed using a sensitivity: 94.4%, specificity of
94.6%, ROC-AUC of 95.5%, and log loss 0.25. This model is designed to handle larger datasets and complicated
patterns, and thus, it is highly used in many areas.

Although slightly enhanced, LightGBM shows a sensitivity of 94.9%, which is a specificity of 95.1%,
ROC-AUC of 96%, and additional decline in log loss to 0.2. This is a high-speed model that is thus for training
due to high rates and necessity rehab to improve memory consumption but not delete others. ANNs boa
excellent metrics, such as 97%, which is specificity of 97.2%, ROC-AUC of 98%, and log loss down to 0.1.
model provides excellent control and is easy to use for complex modelling since it employs relays betw
multiple tries that could be used in parallel planes. However, it is significantly time-consuming tg
models and prove the simulator’s speed. Other than logistic regression and Naive Bayes models ar
we have used more advanced models to increase the performance of our model.

Log Loss Distribution by Model

XGBoost Gradient Boosti e

LightGBM

Artificial Neural Network
Proposed Model (INNM) Random Forest
6.7%  g1%
5.4%
2.7%
0.5%
Logistic Regression
13.4%

16.1% E
Naive Bayes

14.8%
Decision Tree 10.8%

K-Nearest Neighbors
PRl Vector Machine

Figure 12. Log Loss Distribution by Model

works based on a well-tuned pipeline that includes data preprocessing, model training and
r evaluation of the adapted models. The preprocessing steps ensure data is clean and can continue to
the analysis, while running a separate optimization for ANN, Random Forest allows both models
t. By strategically combining these models into the INNM, the final model can leverage both ANN's

ctive performance as well as an increased interpretability, which is of utmost importance for immunology

research and vaccine implementation. INNM is durable which generates robust predictions that are essential for
personalized medicine and optimizing healthcare informed choices.
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Table 6. Comparison of Models - AUC, Training Time, Computational Efficiency

pucon | T [ Comltone S
Proposed Model (INNM) 99 150 5000
Logistic Regression 87 10 4000
Decision Tree 89.5 5 3000
Support Vector Machine 90.8 50 3500
K-Nearest Neighbors 85.2 15 2000
Naive Bayes 83.5 3 4500
Random Forest 92 30
Gradient Boosting Machine 94 40
XGBoost 955 35
LightGBM 96 20 3800
Artificial Neural Network 98 100 4800

Table 6 and Figure 13, 14, 15 allows to compare the models using AUCying e, and computational

efficiency which proves it overall delivery. The Proposed Model (INNI ax AUC of 99 %, which means
it is fantastic in distinguishability between classes. It has also the hig @f igg time with 150 seconds, which
is logical because of its complexity. The high computational deggasn ]

?LMode\s

Figure 13. AUC Distribution by Model

An AUC of 89.5% for the Decision Tree model with a training time as less as 5 seconds only with 3000
operations per second, however, it allows for an extremely fast interpretable solution that can potentially overfit.
SVM: 90.8% AUC, training time of 50 seconds. It achieves a computational efficiency of only 3500
operations/second, which means that it is computationally expensive but works well with high-dimensional
spaces. K-Nearest Neighbors (KNN): 85.2% AUC, trained in 15 seconds. It is less computationally efficient at
2000 operations per second, indicating both its simplicity and also inability to scale up with larger datasets.
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Training Time by Model
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Model

tions per second, which is high
urthglanalysis will require even more
4 raining time is 30 seconds the
computational efficiency is 3200 operations/secong the strong and balanced model with ensemble
method to prevent overfitting. GBM additiona an AUC of 94% and executing in about
40 seconds. The 3700 operations per second repW ariety of predictive models built through an iterative
process, machine learning. XGBoost, which is a pd ul optimization and inherent speed-based algorithm can
reach the AUC of 95.5% at about 35 s training time As Yg@&omputational efficiency is 3600 operations per second,
this model can be used very successfully efficiently {8%a lot of applications.

Figure 14. Training Time
The fastest learner in this case is Naive Bayes which for exag @ {ds 3 seconds to be trained and
Q

Computational Efficiency by Model

Artificial Neural Networ]

LightGBM

Logistic Regression
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Figure 15. Computational Efficiency

This model LightGBM, focused on speed and scalable has trained with 20 seconds gives a AUC of 96%
It does 3800 operations per second, which makes it really fast in comparing to other models for large datasets due
to its speed during training. Artificial Neural Networks (ANNS) gives 98% AUC, and takes only a training time
of 100 seconds. It means their modelling ability is very strong (they are 4800 ops/second computationally
efficient), but they require a lot of resources and tuning. Though, the more advanced models such as Random
Forests and Gradient Boosting and Neural Networks provide significant improvement in AUC over simpler ones
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with a trade-off of having long training times. The Proposed Model (INNM) displays the best AUC and
computational efficiency, although with longer training times indicating a trade-off between model complexity
against performance.

5. Conclusion and Future Work

In conclusion, this study demonstrates the significant potential of leveraging deep learning techniques
for vaccine design through the development of the Integrated Neural Network Model (INNM). By synergistically
combining Artificial Neural Networks (ANNSs) and Random Forests, and employing a hybrid feature selection
methodology that integrates Pearson correlation with Recursive Feature Elimination (RFE), the INNM achie
an impressive predictive accuracy of 98.4%. This high level of precision underscores the model's capabilit
revolutionize the process of vaccine development, enabling more rapid and accurate predictions of Jda

immunologists and biologists will be essential in translating these computatiorn§g@e ements into practical,
real-world vaccine solutions. Through continued innovation and interdisciplinary cONgRoration, the full potential
of deep learning in vaccine design can be realized, leading to more effective and timely Y@Ronses to global health
challenges. }
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