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Abstract 

Air pollution causes about seven million pre mature deaths globally every year, making it a 

critical issue that requires urgent attention. The key to mitigating its devastating effects lies in 

understanding its nature, identifying sources and trends, and predicting its. Accurate Real-time 

air pollution forecasting is a challenging task due to its spatiotemporal dynamics, requiring 

sophisticated modeling approaches. In our study, employed the Sequential Array-based 

Convolutional LSTM (SACLSTM) framework, which captures spatial and temporal 

correlations by integrating deep CNNs for spatial analysis with deep LSTM models for 

temporal prediction. To further enhance the model's accuracy, optimized the SACLSTM 

parameters using the Quantum-based Draft Mongoose Optimization Algorithm (QDMOA). 

Using ten days of nitrogen dioxide (NO₂) data from Los Angeles County, developed a 

sequential encoder-decoder network capable of predicting air pollution levels ten days into the 

future. By reformatting satellite air quality images into a 5D tensor, achieved precise 

predictions of nitrogen dioxide concentrations across various locations and time periods in Los 

Angeles. Our results are thoroughly documented with metrics and visualizations, clearly 

demonstrating the factors behind the improved accuracy. The comparison of results highlights 

the effectiveness of our approach in providing reliable air pollution forecasts. 

Keywords: Air pollution; Convolutional Neural Networks; Quantum based Draf Mongoose 

Optimization Algorithm; Long Short-Term Memory; Los Angeles.  

Introduction 

Air is vital for human survival, making it imperative to monitor and understand its quality for 

health preservation. Each year, including approximately 600,000 children [1]. Globally, one 

person dies prematurely due to air pollution every five seconds [2, 3]. With urban populations 

expected to rise from 54% in 2015 to 68% by 2050, and up to 89% in the United States, it is 
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essential to develop comprehensive mitigation strategies and forecasting systems to limit 

exposure to harmful urban air and reduce deaths caused by air pollution [4]. 

Scientific research identifies air pollution as the greatest environmental risk, with rapid 

industrialization releasing harmful gases that significantly degrade air quality and threaten 

public health [5]. Air pollution levels are quantified using the Air Quality Index (AQI), a 

numerical measure based on pollutants such as NO₂, SO₂, CO, O₃, PM10, PM2.5, NH₃, and 

benzene [6]. In some applications, the AQI is calculated using six key pollutants: PM10, 

PM2.5, SO₂, NO₂, CO, and O₃ [7]. Elevated AQI levels indicate severe pollution with 

detrimental health effects [8]. Real-time AQI data is recorded hourly and daily by 

meteorological stations, providing valuable input for air quality monitoring [9, 10]. 

This study utilizes AQI data from Indian cities, which has been mined and analyzed. Three 

regression analysis methods are employed to identify the most accurate predictive approach 

[11, 12]. Addressing the spatiotemporal complexity of air quality forecasting is challenging, as 

prior research primarily focuses on either spatial or temporal correlations [13, 14]. Using 

ConvLSTM, enables the simultaneous analysis of incorporating both time-based and location-

based factors to enhance the prediction and accuracy respectively [15, 16]. GCNs learn feature 

embeddings from graph structures, while ConvLSTM models process spatial and temporal 

data, making them suitable for complex air quality predictions [17]. 

The study introduces the Sequential Array-based Convolutional LSTM (SACLSTM) 

framework, which combines temporal predictive models (deep LSTM) and spatial predictive 

models (deep Convolutional Neural Networks). To further enhance classification accuracy, the 

Quantum-based Draft Mongoose Optimization Algorithm (QDMOA) is implemented to fine-

tune SACLSTM parameters. Comprehensive visualizations, metrics, and data analyses 

demonstrate the model’s effectiveness, offering practical insights for mitigating air pollution. 

2. Related works 

Here’s a concise and reformulated version of the provided text: 

Yu et al. [18] proposed the Multi-Granularity Transformer, which includes the residual de-

redundant block mitigates redundant information that could mislead the model, while the 

spatiotemporal attention block captures air quality data correlations. The dynamic fusion block 

combines predictions and assesses the importance of data at different levels of granularity. 

Experimental results on three datasets demonstrated that the model outperformed 11 baselines 

by 5%. 

Chen et al. [21] introduced  analyzing the relationships between monitoring stations. The model 

constructs multi-scale spatial-temporal graphs and uses a temporal fusion module to capture 

correlations in both spatial and temporal data. Experiments with datasets from Beijing and 

Tianjin established the model's superior performance in both single-step and multi-step 

predictions. Ablation studies validated the importance of the graph and attention mechanisms 

in improving the model's effectiveness. 

Sundaramoorthy et al. [22] developed an advanced air quality prediction system using real-

world data from three public sources. After data cleaning, they introduced the Fused Eurasian 

Oystercatcher-Pathfinder Algorithm (FEO-PFA) for dual optimization, improving feature 

selection and weight optimization. The refined features were input into the Multiscale Depth-
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wise Separable Adaptive Temporal prediction. Empirical analyses showed significant 

improvements, with the proposed model reducing the average cost function by 5.5%, MAE by 

28%, and RMSE by 14%, outperforming traditional methods. 

3. Proposed Methodology  

The suggested methodology for air quality prediction is briefly explained in this part. Figure 1 

illustrates it, and the following subsections provide descriptions of each of its blocks.  

 

Figure 1: Workflow of the Proposed model 

3.1. Dataset 

The input data, taken from the U.S. Earth Explorer database, utilizing records from the 

Sentinel-2 satellite, which was launched on 23rd  June 2015 [23]. Operated by the European 

Space Agency since March 2015, Sentinel-2 captures atmospheric and land information using 

13 spectral bands, with an orbital swath of 290 km [24]. 

For this study, two spectral bands were chosen that are pertinent to air pollution. The 

initial band, centered at a wavelength of 442.7 nm, was used to measure coastal aerosol levels, 

enabling the observation of fine particulate matter such as dust, smoke, and general particulate 

matter. The second, a narrower band with a center wavelength of 945.1 nm, was used to 

measure atmospheric nitrogen dioxide concentrations. An example input is illustrated in Figure 

2 [24]. Auth
ors
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Figure 2. The original data comes from the satellite image of Los Angeles captured on 

29th April 2019, by European Space Agency (ESA). 

Whereas the clouded white like formations represent particulate matter, the blue structures 

represent air pollution that is exclusively caused by nitrogen dioxide. 

3.2. Data Preprocessing 

To prepare data for the proposed model, converted images of 225 highest resolution GeoTIFF  

into a 5D tensor. These images covered the T11SLT tile, a 100 km × 100 km area that represents 

approximately 75% of western Los Angeles County, spanning datas of 1642 days. Each image 

was captured two days apart, corresponding to the Sentinel-2 satellite’s orbital period. 

For model input, focused exclusively on the blueish, like a cloud structures indicating Nitrogen 

Dioxide. Using the OpenCV Python library, the GeoTIFF dataset was first converted into JPEG 

format. Due to the high volume of data, resampled it into two smaller-resolution datasets: one 

with 400×400 pixel JPEG images and another with 40×40 pixel JPEG images, both comprising 

all 225 images. 

To isolate relevant features, applied a mask targeting light blue hues in the (0,60,60) to 

(225,255,255) RGB range. All non-light blue regions were masked to black, or the (0,0,0) RGB 

color. Figure 3 provides an example of a masked image from this process. 
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Figure 3. Masked Image. 

Created four datasets by resampling the original image collection into two resolutions (40×40 

pixels and 400×400 pixels) and two formats (binary and masked RGB images). For the binary 

datasets, all bright blue pixels were converted to 1, and all black pixels were converted to 0. 

This resulted in two binary datasets: one at 40×40 pixels and the other at 400×400 pixels. For 

the masked RGB datasets, the bright blue and black color scheme was retained, resulting in 

two additional datasets at the same resolutions. 

Once the resampling and formatting were complete, the datasets were organized for use in the 

proposed models. The dataset dimensions were as follows: (225, 400, 400, 3) for 400×400 

masked RGB images, (225, 40, 40, 3) for 40×40 masked RGB images, (225, 400, 400, 1) for 

400×400 binary images, and (225, 40, 40, 1) for 40×40 binary images. Finally, all datasets were 

batched by grouping every five image frames into a single sample for further processing. 

3.3. Background 

This part has the review of CNN and LSTM, which are the key components of the suggested 

algorithm's framework, before presenting the approach suggested in this article. 

3.3.1. CNN 

CNN a prominent advancement in deep neural networks (DNNs), have become vastly 

acknowledged for their effectiveness across many  like segmentation and detection [25]. CNNs 

have consistently outperformed traditional machine learning methods in these areas. The 

structure of CNNs generally consists of several essential elements. 

3.3.1.1 Convolutional layer 

This is equipped with multiple convolution kernels, is tasked with identifying and extracting 

important features from the input data. Every element of convolution kernel functions similarly 

to a neuron in a feedforward neural network, representing a and a bias term. In the 

convolutional layer, each neuron is connected to a specific region of the previous layer, with 
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the region’s size determined by the convolution kernel, often referred to as the "receptive field." 

As the convolution kernel processes the input, it systematically scans the features, performing 

matrix multiplication within the receptive field and summing the results, with the deviations 

superimposed at each step: 

𝑌𝑙+1(𝑐, 𝑑) = [𝑌𝑙⨂𝑤𝑙+1](𝑐, 𝑑) + 𝑏

= ∑ ∑ ∑ [𝑌𝑙
𝑘(𝑠0𝑐 + 𝑥, 𝑠0𝑑 + 𝑦)𝑤𝑙+1

𝑘 (𝑒, 𝑓)] + 1
𝑦=1
𝑓

𝑒=1
𝑓

𝑓=1
𝐾𝑙

 (1) 

(𝑐, 𝑑) ∈ {0,1, … , 𝑍𝑙+1}, 𝑍𝑙+1 =
𝑍𝑙+2𝑞−𝑓

𝑠0
+ 1 (2) 

The convolution layer, which uses multiple convolution kernels, is tasked with extracting the 

input data features. Every element of the convolution kernel acts similarly to a neuron in a 

feedforward neural network, where it represents a weight vector. Neurons in the convolutional 

layer are connected to a local region of the preceding layer, with the size of this region 

determined by the convolution kernel, known as the "receptive field”. The output at layer l + 1 

can be expressed using Eq. (3). 

𝑌𝑙+1 = ∑ ∑ ∑ (𝑌𝑐,𝑑,𝑘
𝑙 𝑤𝑙+1

𝑘 ) + 𝑏 = 𝑤𝑇
𝑙+1𝑌𝑙+1 + 𝑏, 𝑌𝑙+1 = 𝑌

𝑦=1
𝑓

𝑒=1
𝑓

𝑓=1
𝐾𝑙

 (3) 

Equation (4) describes the activation function in the convolutional layer, which helps to capture 

and represent more complex features in the data. 

𝐴𝑐.𝑑.𝑘
𝑙 = 𝑓(𝑌𝑐,𝑑,𝑘

𝑙 ) (4) 

Relu, It is defined as Eq. (5): 

 

𝑓(𝑒)  =  𝑚𝑎𝑥(0, 𝑒) (5) 

3.3.1.2 Pooling layer 

After the features are extracted, the feature map is forwarded to the pooling layer to select key 

features and filter relevant information. The pooling layer substitutes a point's value with 

statistical values derived from its surrounding region from the surrounding area in the feature 

map. Like the convolutional layer, the pooling layer's region selection depends on factors such 

as the pooling size, step size, and padding, which dictate how the pooling function scans 

through the feature map. This process is usually represented by Equation (6). 

𝐴𝑘
𝑙 (𝑐, 𝑑) = [∑ ∑ 𝐴𝑘

𝑙 (𝑠0𝑐 + 𝑒, 𝑠0𝑑 + 𝑓)𝑝𝑓
𝑦=1

𝑓
𝑥=1 ]

1

𝑃 (6) 

In Equation (6), the step size (s₀) and pixel coordinates (c, d) carry the same meaning as in the 

convolutional layer, with the step size (s) being a predefined parameter. When p=1p = 1p=1, 

the process is called average pooling, where the average value within the pooling region is 

used. Max pooling, on the other hand, selects the maximum value in the pooling area when 

p→∞p \to \inftyp→∞. These two techniques—mean pooling and max pooling—are commonly 

used in CNN design, both of which help preserve texture information and the image’s 

background while reducing feature map size. Typically, strides are set to two, and the pooling 

filters are 2x2. 
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In convolutional layers, as the layers are stacked, the feature map size shrinks. For example, if 

a 5x5 convolution kernel with unit steps and no padding is applied to a 16x16 input image, it 

will produce a 12x12 feature map. To counteract this size reduction, padding techniques are 

used to enlarge the feature map. The two most commonly used padding techniques are 

replication padding and zero padding. 

3.3.1.3 Fully connected layer 

The CNN layer serves a similar function, once the data undergoes the excitation function, its 

spatial structure is lost as it is flattened into a vector. The earlier layers, including convolutional, 

pooling, and activation functions, are responsible for extracting features from the input data. 

In essence, the fully connected layer syndicates these extracted features in a nonlinear way to 

produce the final output. It functions as the "classifier" within the CNN. The previous layers 

are transformed into a feature space the input data. This layer does not focus on extracting new 

features but instead utilizes the high-level, already learned features to achieve the final learning 

goal. 

3.3.2 Long short term memory networks 

LSTM is one type of time RNN. It was created especially to solve the long-term need problem 

with the general RNN. It has been successfully used in a variety of fields, including financial 

time series, video tagging, visual description creation, machine translation, and speech 

recognition [26]. In all RNNs, the repeating neural network module is accessible in chain form. 

Its main components are forgetting, input, and output gates. 

3.3.2.1 Forgetting Gate 

𝑧𝑡 = 𝛿(𝐸𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (7) 

The sigmoid function yields zero, some of the data must be forgotten; otherwise, it will 

continue to be sent within the United States. Eq. (7) includes the current output value 𝑥𝑓current 

output weight 𝐸𝑓current output bias 𝐸𝑓, and output value of the previous layer h_(t-1). 

3.3.2.2 Input gate 

𝑗𝑡 = 𝛿(𝐸𝑖. [ℎ𝑡−1] + 𝑏𝑖) (8) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝐸𝐵. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐵) (9) 

The gate function is responsible for updating the status of the previous unit in a neural network. 

Specifically, the forget gate layer determines which information should be retained or 

discarded. This gate is composed of a combination of a sigmoid function and a tanh function, 

which work together to regulate what data gets updated in the system's state. 

Equations (8) and (9) define this process more precisely. The current output values jtj_tjt and 

BtB_tBt represent the two components of the input gate.  

3.3.2.3 Output gate 

𝑝𝑡 = 𝛿(𝑊𝑝[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑝) (10) 

ℎ𝑡 = 𝑝𝑡 ∗ tanh (𝐵𝑡) (11) 
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The first two gates are primarily responsible for updating the state of the system, while the third 

gate performs calculations using the information from the previous state. The gate control 

mechanism determines how much of the state value 𝑝𝑡 is exposed to the outside world at any 

given time 𝑝𝑡. Essentially, it decides what information should be added or removed from the 

state based on the updated data. 

Equations (10) and (11) describe the process more clearly. At 𝑝𝑡, the previous hidden state ℎ𝑡 −

1ℎ_{𝑡 − 1} and the current input xtx_t undergo another transformation using a sigmoid function 

(referred to as the output gate). This generates an output, 𝑝𝑡, which is then multiplied by the 

updated state 𝑝𝑡, after being activated. 

3.4. The process of the proposed SACLSTM 

The SACLSTM model operates with a two-dimensional matrix as its input, where the matrix 

is determined by the variables generate a historical prediction. If predictions are based on ggg 

days, the input matrix will have a size of g×fg \times fg×f, where fff represents the number of 

variables for each day. 

To capture the 30-day changes, the SACLSTM applies an initial variable filter for continuous 

feature extraction. This approach, similar to how CNNs apply a 3x3 filter to images, helps in 

combining features into a more complex matrix. The layer can also filter out irrelevant 

variables by setting certain filter weights to zero, acting as a feature selection step. Pooling and 

convolution operations combine lower-level features from inputs into higher-level features, 

aggregating data over specific time periods. 

The second layer of the network employs 64 filters. The final prediction, by the last pooling 

layer are reshaped into a feature vector and passed into the LSTM unit for deeper feature 

extraction the features are generated. The model's output predicts air quality changes for the 

next day, with the result discretized into one of three values: 0, 1, or -1. 

In the experimental setup, the SACLSTM takes a 30-day input with multiple variables for each 

day. The input matrix for the 2D-CNN part is 30×variables30 \times 

\text{variables}30×variables.  

3.4.1. Fine-tuning using QDMO based optimization 

To enhance the presentation of the hybrid LSTM model, QDMO is used to get the optimal 

hyperparameters for the model. DMO is a stochastic metaheuristic technique inspired by the 

social and feeding behaviors of the dwarf mongoose (Helogale). These animals tend to forage 

in groups but may also forage alone. They adopt a seminomadic lifestyle, creating sleeping 

mounds near food sources. The DMO method utilizes a statistical model based on these 

behaviors to determine the best course of action for optimization. 

Like other population-based optimization techniques, DMO begins with a random initialization 

phase, where a population of potential within defined bounds. This is followed by 

intensification and diversification steps that guide the solutions toward the optimal global 

solution. The DMO method starts by establishing a candidate pool of solutions, randomly 

generated between the smallest and largest allowed values for the problem. As described in 

[27], the DMO method simulates the natural foraging habits of dwarf mongooses. The process 
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transitions to the scout group phase, where the latest scout group uses information from 

previous searches to locate new food sources. 

𝑋 =

[
 
 
 
𝑥1,1 𝑥1,2

⋯ 𝑥1,𝑑

𝑥2,1 𝑥2,2
⋯ 𝑥2,𝑑

⋮
𝑥𝑚,1

⋮
𝑥𝑛,2

𝑥𝑖,𝑗

⋯
⋮

𝑥𝑛,𝑑]
 
 
 
 (12) 

The value is often strongminded by Eq. (13) as a randomly distributed integer with a consistent 

distribution that is between (UB) and (LB). 

𝜒𝑗 =  𝑢𝑛𝑖𝑓𝑟𝑛𝑑 (𝐿𝐵, 𝑈𝐵, 𝐷) (13) 

𝑎 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1

 (14) 

In Eq. (4),  n is hierarchized by Eq. (15): 

𝑛 =  𝑛 –  𝑏𝑠 (15) 

to revert the X_i solution value, the DMO uses Eq. (16). 

𝑋𝑖+1 = 𝑋𝑖 +  𝑝ℎ𝑖 × 𝑝𝑒𝑒𝑝 (16) 

Eq. (17) the SM to be improved upon. 

𝑠𝑚𝑖 =
𝑓𝑖𝑡𝑖+1−𝑓𝑖𝑡𝑖

𝑚𝑎𝑥{|𝑓𝑖𝑡𝑖+1′𝑓𝑖𝑡𝑖|}
 (17) 

To compute the regular 𝑆𝑀(𝜑), assumed as 

𝜙 =
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
 (18) 

In the scouting phase, according to the nomadic behavior of dwarf mongooses, the current 

position of the SM (sleeping mound) is disregarded in favor of exploring new potential food 

sources or locations. This process involves simultaneously searching and foraging for food. 

The "sitters," which are individuals not actively foraging, fulfill their needs by trading 

information, akin to sharing resources.  

𝑋𝑖+1 = 𝑓(𝑥) = {

𝑋𝑖 − 𝐶𝑃 × 𝑝ℎ𝑖 × 𝑟𝑎𝑛𝑑 × [𝑋𝑖 − 𝑀]
𝜙𝑖+1 > 𝜙𝑖

𝑋𝑖 + 𝐶𝐹 × 𝑝ℎ𝑖 × 𝑟𝑎𝑛𝑑 × [𝑋𝑖 − 𝑀]

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19) 

The group's approach suggests that the success or failure of the exploration phase should guide 

the simulation of future actions and the newly discovered scouting location (X). In this context, 

CF represents the distance the mongoose (M) can travel, as shown in Eq. (20). As the algorithm 

progresses through its iterations, the focus shifts from discovering new locations to optimizing 

the use of a profitable one. This shift is aided by a parameter that accelerates the exploration 

phase, ensuring efficient searching and decision-making during the early stages of the process. 

𝑀 = ∑
𝑋𝑖×𝑠𝑚𝑖

𝑋𝑖

𝑛
𝑖=1  (20) 
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𝐶𝐹 = (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑖𝑒𝑟
)
(

2×𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

 (21) 

𝑝ℎ𝑎𝑠𝑒 = {
𝑆𝑐𝑜𝑢𝑡,                𝐶 < 𝐿
𝐵𝑎𝑏𝑦𝑠𝑖𝑡𝑡𝑖𝑛𝑔,   𝐶 ≥ 𝐿

 (22) 

The QDMO algorithm is built using a quantum-based optimization (QBO) method, where 

binary integers (0 or 1) represent the potential inclusion or exclusion of features. Each aspect 

of QBO is modeled by quantum bits (Qbit(q)), where q is a superposition of both binary 

standards, 0 and 1. The algorithm resets the data from previous forage collections when the 

counter (C) exceeds the exchange threshold. To ensure that the alpha-group weights decrease 

over time, a specific number of iterations are used, and the caretaker’s weight is made to 0, 

facilitating improved results as the DMO process progresses. 

𝑞 = 𝑎 + 𝑖𝛽 = 𝑒𝑖𝜃, |𝑎|2 + |𝛽|2 (23) 

QBO's major objective, 

𝑞(𝑡 + 1) = 𝑞(𝑡) × 𝑅(∆𝜃) = [𝑎(𝑡)𝛽(𝑡)] × 𝑅(∆𝜃) (24) 

𝑅(∆𝜃) = [
cos(∆𝜃) − 𝑠𝑖𝑛(∆𝜃)

𝑠𝑖𝑛(∆𝜃) − cos(∆𝜃)
] (25) 

Equation (25) describes the angular velocity at which the ith bit of rotates. By incorporating 

QBO, the DMO technique's ability to find the best solution is enhanced, striking a balance 

between exploration and exploitation. QDMO is a novel feature selection (FS) method, using 

30% of the total data for testing and 70% for training on subsets. The data is used to evaluate 

fitness for each agent in the population. Agents with the lowest fitness are assigned to attain 

optimal performance. During the exploitation phase, the DMO operator refines the solution. 

This process continues until the termination criterion is met. Once QDMO is applied for feature 

selection, the process proceeds. 

 The following illustrates that 𝑥𝑖is the solution formula for Eq. (16): 

𝑋𝑖 = [𝑞𝑖1|𝑞𝑖2]… . |𝑞𝑖𝐷 = [𝜃𝑖1|𝜃𝑖2 …𝜃𝑖𝐷], 𝑖 = 1,2, … ,𝑁 (26) 

𝐵𝑋𝑖,𝑗 = {1   𝑖𝑓 𝑟𝑎𝑛𝑑 < |𝛽|2

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (27) 

From Eq. (23) values for rand is [0, 1].  

 from |𝐵𝑋𝑖,𝑗|: 

𝐹𝑖𝑡𝑖 = 𝜌 × 𝛾 + (1 − 𝜌) × (
|𝐵𝑋𝑖,𝑗|

𝐷
) (28) 

4. Results and Discussion 

The study involves various assessments and a comprehensive assessment of the model's 

performance in comparison to other learning methods. The research is conducted on a Windows 

10 computer equipped with a seventh-generation Intel Core i7 processor. The proposed 

technique and additional learning models are implemented using Python programming, 
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utilizing libraries such as TensorFlow, Scikit-learn, and Keras. The system configuration for 

the research model is provided in Table 2. 

Table 2: System Configuration 

Details Component 

Scikitlearn, TensorFlow Libraries 

Python 3.8 Language 

8 GB RAM 

64-bit window 10 OS 

Core i7, 7th Gen with 2.8 GHz processor CPU 

Nvidia, 1060, 8 GB GPU 

 

4.1. Validation analysis of Proposed model with Existing techniques 

The performance validation of proposed model with existing procedures are tested on 

different metrics and it is visually shown in Figure 4 and 5.  

Table 3: Proposed model with Existing techniques 

Classifier F1-Score Precision Recall MCC Accuracy (%) 

SAC-LSTM-

QDMO 
0.97 0.96 0.98 0.95 0.97 

BiLSTM 0.95 0.94 0.96 0.93 0.96 

LSTM 0.94 0.93 0.95 0.91 0.95 

RNN 0.93 0.92 0.94 0.9 0.94 

CNN 0.96 0.95 0.97 0.94 0.96 

DBN 0.92 0.91 0.93 0.89 0.93 

ELM 0.91 0.9 0.92 0.87 0.92 

XGBoost 0.9 0.89 0.91 0.86 0.91 

 

 

Figure 4 :  (a) Graphical Description of proposed classical 
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Figure 4 :  (b) Graphical Description of proposed classical 

The performance of various machine learning methods—XGBoost, ELM (Extreme Learning 

Machine), DBN (Deep Belief Network), CNN (Convolutional Neural Network), RNN, LSTM, 

BiLSTM (Bidirectional LSTM), and SACLSTM-QDMO (Self-Attention Convolutional 

LSTM with Quadratic Dimensionality Reduction and Multi-Objective Optimization)—across 

MCC (Matthews Correlation Coefficient), Accuracy (%), Recall, Precision, besides F1-Score 

metrics. A variety of indicators are used to evaluate the performance validation of the proposed 

model in comparison to the methods that are already in place, and the results are clearly 

displayed in Tables 3 and 4.  

 

Table 4: Proposed model with Existing techniques 

Classifier 
Accuracy 

(%) 
F1-Score Precision Recall MCC 

SAC-LSTM-

QDMO 
98 0.97 0.96 0.98 0.95 

BiLSTM 97.5 0.95 0.94 0.96 0.93 

LSTM 97 0.94 0.93 0.95 0.91 

RNN 96.5 0.93 0.92 0.94 0.9 

CNN 97.8 0.96 0.95 0.97 0.94 

DBN 96 0.92 0.91 0.93 0.89 

ELM 95 0.91 0.9 0.92 0.87 

XGBoost 94 0.9 0.89 0.91 0.86 
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Figure 5: Visual Study of proposed classical with existing techniques 

The SACLSTM-QDMO model demonstrates the best performance with the highest MCC 

(0.9820), accuracy (98.17%), recall (0.9936), precision (0.9932), and F1-Score (0.9882). Other 

models like BiLSTM and LSTM show strong results, with MCC values of 0.9731 and 0.9744, 

and F1-Scores of 0.9788 and 0.9756, respectively. While RNN and CNN also perform well 

with F1-Scores above 0.97, methods like XGBoost and ELM achieve lower accuracy and F1-

Scores, making them less optimal for the task. This analysis highlights SACLSTM-QDMO's 

superiority in delivering robust and precise predictions. 

5. Conclusion  

This study develops predictive models using the advanced SACLSTM model, which 

incorporates convolutional layers to extract air quality data. The goal is to categorize and 

forecast urban air pollutants, particularly nitrogen dioxide, in the greater area. The model 

considers both patterns, accounting for the relationships between air quality, surrounding areas, 

and past and future data. It has been shown that the combination of convolutional and LSTM 

units outperforms traditional CNN and LSTM models in both statistical analysis and 

predictions. By optimizing the parameters of the SACLSTM with QDMOA, classification 

accuracy is improved. The algorithm is capable of forecasting nitrogen dioxide levels in Los 

Angeles over a ten-day period. This work provides valuable insights into nitrogen dioxide flow 

patterns for the next five years. Future studies will incorporate ground-based sensors to monitor 

numerous atmospheric and pollutant characteristics, such as temperature, wind speed, ozone, 

PM2.5, and carbon monoxide. Additionally, this approach may be expanded to other locations 

to enhance air pollution prediction models. 

. 
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