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Abstract: Several epidemiological studies have been undertaken using a compartmental model 

to predict disease spread effectively. However, knowledge about the epidemiological cycle 

lacks existing techniques and fails to promote the vaccines and medications that the 

government issues to overcome the pandemic disease. Many researchers implemented a 

Susceptible-Infected-Recovered-Deceased (SIRD) based compartmental approach to 

determine the methods emphasized by the government to eradicate the spread of COVID-19. 

The traditional SIRD-based compartmental model produces high prediction errors and is time-

consuming. Hence, this article presents a novel Deep Learning (DL) based Attention-driven 

bi-directional gated recurrent unit Autoencoder (A-Bi-GRU-AE) model, which is hybridized 

with the SIRD model to enhance the system performance. The proposed approach is 

implemented in the PYTHON platform, and the publicly available covid19Italy dataset is 

utilized for the experimental process. The proposed method obtains the overall predicted
2R of 

0.97 and time complexity of 2634.01ms.  

 

Keywords: COVID-19, Italy, attention mechanism, bi-directional gated recurrent unit, 

Autoencoder, hospitalizations, compartmental models.  

 

1. Introduction: 

COVID-19 was discovered initially in Wuhan, China, in December 2019, which was then 

professed as a pandemic in March 2020 by the World Health Organization (WHO). Under the 

published real-time data by WHO, it is known that millions of people have been affected, and 

the mortality rates are increasing by the communicable disease [1]. COVID-19 has emerged, 

and some common symptoms include dry cough, appetite loss, fever and breathing difficulties, 

leading to complicated diseases like liver damage, septic shock and pneumonia [2, 3]. Due to 

this pandemic in March 2020, most countries are locked down, and strict social distancing is 

maintained to stop coronavirus transmission. This social distancing and lockdown aim to break 

the transmission chain and reduce the coronavirus. Estimating the spread over time is critical 

in healthcare management to protect lives and reduce the disease’s social and economic 

consequences [4, 5].    

 Due to the increased contagion, the confirmed cases at the initial stage are quite 

increasing. As a result, a lack of ICU and respiratory equipment arose in most developing 

countries. The spread of COVID-19 can be eradicated with isolation beds and hospital ICUs. 

However, the need for isolation beds and other medical requirements is increasing in many 

hospitals, and the knowledge about these requirements is unknown to the governmental 

organization to take necessary preventive measures. To overcome this issue, an effective 

compartmental model is highly required to learn the daily spread of COVID-19 and other 
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medical requirements in the hospital. Other countries like France, Belgium, New York, Japan, 

and South Korea report the day-to-day spread of the COVID-19 pandemic disease utilizing 

high effective compartmental model [6].  

The compartmental model is one of the mathematical models used to calculate the count 

of infectious diseases by considering different compartments in an entire population [7]. During 

the COVID-19 pandemic, the compartmental approach predicts hospital demand and ICU 

utilization [8]. The common outline of compartmental modelling is that it arranges the 

individuals based on their disease depth and infection rate [9]. The compartmental modal 

considers the extra compartments for ICU and hospitalization demand [10]. The logistic 

functions, spreading dynamics, and standardized logistic functions are required compartmental 

models with infected and susceptible states [11]. The Susceptible-Infectious-Recovered (SIR) 

and Susceptible-Exposed-Infected-Recovered (SEIR) commonly belong to the compartmental 

model [12].  

Mc Kendrick and Kermack introduced the compartmental modal in 1991 with SIR. 

Compartmental modal repeats the outbreaks of observed characteristics, like a self-limiting 

period. Compartmental epidemiological models depend on SEIR criteria and prolonged it for 

extra features consisting of ICU and health care compartments. These features are structured 

as 0 to 59, 60 to 79, and above 80 years of age. Several studies have been conducted using the 

compartmental modal, particularly in the transmission of COVID-19 in several countries, 

focusing on various features [13-15]. The SIR model is a type of compartmental approach 

consisting of three compartments: susceptible, infected and recovered [16]. In the SIR model, 

the epidemic spread signifies individually or transmits between susceptible-infected-recovered 

cases [17].   

A deterministic SEIR compartmental modal is highly required to effectively calculate 

the spread of COVID-19. This compartmental modal mainly depends on the individuals’ 

epidemiological status, clinical progression of COVID-19, and other intervention processes 

like treatment, quarantine, isolation etc. [18]. Due to the spread of COVID-19, SARS-CoV-2 

creates the population’s compartmental model based on the disease state level and disease 

awareness. The government imposed social distancing, reducing individual contact to diminish 

the spread of COVID-19 completely. Self-care measures are expected for each individual, 

including wearing masks, social distancing and hand washing. Nowadays, compartmental 

models are used to find epidemiological key parameters via COVID-19 clinical lessons. This 

compartmental modal gives the highest amount of diagnoses, time and attack rate for the 

highest number of COVID cases [19].  

Based on the SEIR compartmental modal, the population is set to be constant with time 

from one compartment to another under varying infection rates. The people not present in the 

compartments are determined as non-infectious cases. But in the COVID-19 case, there is 

evidence that the people exposed in the compartment are also infectious. In this case, the people 

transmit the infectious diseases to the susceptible compartments. The diagnosed carriers are 

instantly disclosed to a hospital or isolated at home for nearly 14 days. If they are not tested, 

the non-diagnosed carriers with no symptoms like cough or fever can spread COVID-19 

because they are not restricted in their movements or any social restrictions [20].  

In recent days, several mathematical models have been proposed for understanding the 

dynamic progression of COVID-19. One of the best models for understanding the epidemic is 

a compartmental model. However, the existing models failed to provide the best approximation 

for the huge COVID-19 dataset. The conventional compartmental models utilize appropriate 

estimation approaches such as Maximum Likelihood to compute the hyper-parameters. These 

models usually considered time-invariant hyper-parameters and thereby reduced the prediction 

accuracy. Hence, the hyper-parameter should be modelled with a time-dependent characteristic 

to allow the model to work under varying marginal conditions. These points motivate 
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integrating the time-dependent compartmental model with deep learning algorithms to give 

accurate long-term estimations. The major contributions of this research work are listed as 

follows: 

⮚ To propose a DL-integrated SIRD compartmental model by considering the time-

dependent parameters to eliminate the spread of COVID-19 efficiently. 

⮚ To modify the conventional compartmental model by integrating the SIRD model with 

DL algorithms.  

⮚ To give an accurate long-term prediction for the Covid-19 outbreak by introducing a 

novel A-Bi-GRU-AE-based DL technique. 

⮚ To validate the performance of the proposed model by considering the pandemic 

outbreak in Italy. 

⮚ To analyze the proposed method in PYTHON and performance measures like 

prediction
2R and time complexity are analyzed and compared with existing techniques.  

 

2. Literature survey: 

Some of the recent related works are listed as follows: 

Keeling et al. [21] defined a different compartmental mathematical model for analyzing 

the spread of COVID-19 based on quarantining and age-related issues. This compartmental 

model forecasts the spread of an epidemic using original data based on confirmed cases. Next, 

difficulties with social distance were examined based on their epidemic outcomes. Lastly, 

discovered the key biological characteristics of COVID-19 that remain unknown under 

susceptibility to varying age groups and symptoms. 

Ramezani et al. [22] established a new compartmental model SEAIRDQ (Susceptible-

Exposed- Asymptomatic-Infectious-Recovered-Deceased-Quarantined) models for the 

transition of individuals between the social awareness and the suscepted compartments. The 

SEAIRDQ model could take the nonlinear behaviour of COVID-19 pandemic for determining 

the asymptomatic infections in the individuals. This model also aids in reporting the cumulative 

infection and death rate in various states. In addition, the SEAIRDQ model calculates an 

individual’s current reproduction number and immunity level.  

Pajaro et al. [23] determined the COVID-19 pandemic unpredictability for successfully 

modelling its dynamic evolution. This method aids in determining the spread of disease by 

training the traditional compartmental models until it returns the best prediction outcome. Here, 

the chemical reaction schemes were modelled using chemical master equations and solved 

using Monte Carlo approaches. This model was effectively used for COVID-19 prediction 

during pandemic conditions in medium and small-sized municipalities. 

Sharov et al. [24] introduced the SIR-modified model for COVID-19 transmission to 

calculate the efficiency of lockdown methods during a pandemic situation. The input of this 

method was COVID-19 epidemiological data collected from other countries using certified 

information. The output parameters were considered as formation time and immunity level of 

that particular diseased individual. These parameters were then used as an effective indicator 

to determine the day-to-day analysis of the suspected cases effectively.  

Rainisch et al. [25] determined the SEIR compartmental model to analyze the local 

pandemic transmission. This SEIR method uses the input of health care resources, case counts, 

and evaluates the intrusion strategies. The output includes the infection patients count, death 

rate, critical isolation beds, and ventilators relative to current capacity. This method shows that 

aggressive interventions can stop the extensive diseases and death rate from coronavirus. This 

SEIR method permits the fast calculation of locally applicable states and improves the outcome 

when the current information becomes more accurate and clear.  
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Wang et al. [26] defined an asymptomatic infected compartmental model by extending 

the proliferation rate of COVID-19. Also, this study utilized LSTM to improve prediction 

accuracy by updating the compartmental model parameters. Compagni et al. [27] integrated 

the compartmental model with a Feed-Forward Neural Network (FFNN) to increase prediction 

accuracy and forecast ICU occupancy. 

 

2.1 Problem definition  

In literature, some methods used feed-forward neural networks and the LSTM model to predict 

the patients’ future trajectories. However, the feed-forward neural networks will not consider 

the temporal relations between the historical data. However, RNN can consider the temporal 

relations between the input sequences. RNN has a superior ability to encapsulate sequential 

information over time. Some existing approaches like LSTM have also been contemplated 

because RNN can’t handle the gradient vanishing and long-distance dependencies problem. 

Hence, an effective DL model is highly required that can integrate with a compartmental model 

to utilize both the past and upcoming spread of the COVID-19 pandemic disease  

The traditional SIRD model predicts its outcome with high error due to varying time 

intervals. Recently, many techniques have been integrated with the SIRD model for accurate 

prediction. But those techniques are highly suffered due to time complexity and error. Hence, 

an effective hybrid technique is required to address the drawbacks faced by the existing 

techniques for accurate prediction. To the best of the knowledge, the proposed method 

addresses all the problems arising in the existing technique and effectively provides an 

outstanding prediction outcome.  

 

3. Proposed method 

This paper proposes a new modified compartmental model with deep learning algorithm for 

predicting the COVID-19 outbreak and hospitalizations. Initially, the population is divided into 

four compartments: susceptible (S), infectious (I), recovered (R), and dead (d). Here, the 

infectious (I) compartment will consider the isolated patients at home, in the hospital and the 

intensive care unit. Here a dynamic transfer between each compartment is considered to show 

the time dependence. Then, the contact rate, recovery rate, and deceased rate will be estimated 

using the number of people hospitalized with symptoms, isolated patients at home and in the 

hospital, ICU admissions, recovered, and death data from the dataset. However, this model will 

not provide accurate long-term estimations. To tackle this issue, a hybridized DL-based A-Bi-

GRU-AE will be integrated with the SIRD model for learning and correcting the estimated 

error created by the SIRD model. Here, the estimated results of the SIRD model will be given 

as input to the hybrid A-Bi-GRU-AE, and the real hospitalizations/data will be used as the 

target while training the A-Bi-GRU-AE model. In addition, the proposed model will introduce 

a similarity measure to compute the similarity between the training and the testing time series 

to predict the COVID-19 outbreak and hospitalization accurately. Also, the predicted contact 

and recovery rates are used to detect the epidemic progression (i.e. the reproduction number). 

 

3.1 Prediction using hybrid SIRD with A-Bi-GRU-AE 

For predicting the COVID-19 outbreak and hospitalizations, the conventional SIRD model is 

utilized. In the conventional SIRD model, the population M can be divided into four 

compartments, namely ( )S , ( )I , ( )R and ( )D is determined based on varying time intervals v . 

Figure 1 determines the structure of the SIRD-based compartmental model. Auth
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Figure 1: Structure of SIRD-based compartmental model 

 

The mathematical interpretation of the SIRD model is explained in the upcoming section. The 

total population M can be formulated as, 

 

vvvv DRISM +++=                                        (1) 

          Here, vvvv DandRIS ,,  indicates the suspected cases, infected cases, recovered cases 

and deceased cases under different time intervals, respectively. The alterations that take place 

in the total cases can be formulated as,  

vvvv DRIA ++=                                               (2) 

           The obtained outcome from equation (1) always remains constant. The outcomes 

obtained in each compartment are depicted in detail below:  









−=+
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
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                                            (3) 
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II v 


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


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


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IRRv +=+1                                             (5) 

IDDv +=                                             (6) 

            Here,  determines the contact rate,  signifies the recovery rate and  depicts the 

death rate. In the first phase, the susceptible ( )S cases are equal to the total population M . The 

increasing rate of growth ( ) for each day and the primary reproductive number ( )nR can be 

mathematically interpreted as,  

( ) +−=                                        (7) 





+
=nR

                                          (8) 

           When ( )01  nR
, the epidemic disease is generated and in the reverse case, the 

epidemic disease gets eradicated.  

 

3.1.1 Calculation of epidemic after several measures taken by the government  
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Let us consider the regular change in suspected cases as vv SSS −= +1
ˆ

. Similarly, the constant 

change in infected, recovered and deceased cases can be mathematically formulated as,  


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
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 −
=
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SI
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ˆ

                                        (9) 

II
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−−




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


=ˆ

                                (10) 

IR =ˆ
                                            (11) 

      ID =ˆ
                                            (12) 

          The above interpretations are also referred to as transmission coefficients, recovery rate, 

and death rate.  

          In the past few years, the dataset vvvv DRIA ++= is very less while differentiating from 

the total population. The total population M is very near to the vS , then consider IA /ˆ= for a 

huge amount of data.  

Finally, the obtained contact rate , recovery rate  and, the deceased rate can be 

mathematically interpreted as,  

( )AMM
I

A
−









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


= /

ˆ


                                 (13) 

I

R̂
=

                                             (14) 

I

D̂
=

                                             (15) 

         Here, Â represents the number of daily changes in the SIRD compartment, A indicates 

the total changes under different cases, R̂ indicates the change in daily recovered cases, D̂

denotes the changes in daily death cases.  

         The obtained outcome from vA is very high, and an accurate outcome is still required to 

predict the compartment cases efficiently. In addition, the existing SIRD model does not show 

accurate number of cases due to varying time intervals. Hence, this research introduces a novel 

A-Bi-GRU-AE technique using the conventional SIRD model. The outcome of the 

conventional SIRD model is given as input to the proposed A-Bi-GRU-AE technique.  

 

3.1.2 Proposed A-Bi-GRU-AE technique 

The entire operation in the proposed model undergoes two major stages, namely offline SIRD 

compartmental curve library construction and online SIRD-based COVID-19 prediction 

estimation during the testing process. In the offline stage, embedding vectors are initially 

developed based on attention and skip connection (AS) with the AE model. The continuous 

variation of SIRD cases is evaluated by changes that have occurred in the embedding vectors 

during machine operations. During the training process, the curve is obtained to form the SIRD 

compartmental curve library. 
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Figure 2: Architecture of A-Bi-GRU-AE model 

 

          Figure 2 depicts the architecture of the A-Bi-GRU-AE model. The proposed system 

works based on time series, and the curve must be smoothed to eliminate overfitting and other 

irreversible processes. In addition, the proposed method introduces the Linear Regression (LR) 

model to understand the mapping of actual and predicted outcomes from the network model. 

For the online phase, the test outcome is given to the trained LR model as an input for 

constructing the testing curve. Finally, the similarity is estimated between the offline training 

curve and the online testing curve for an accurate SIRD prediction.  

 
(A). Bi-GRU with AS 

The Bi-GRU consists of double GRUs having forward and backward directions that can extract 

time series from the input dataset. After the completion of encoding process, the hidden vector 

state sh is utilized for the prediction process. The encoder having an output vector sy gets added 

with sh that can act as the input to the attention layer. Under varying time steps, the weight 

vector attW is determined in the attention layer and it is concatenated with the output of encoder 

to generate an attention output vector. At the decoder phase, the attention vector output is 

delivered as the input to the Bi-GRU decoder. Finally, the decoded Bi-GRU outcome is 

obtained by the skip connection and overcomes the computational complexity by proving 

feature vector to the Linear Prediction (LP) layer.  

          Assuming the time series data as,
 TvppppP ,....,,, 321=

having k  a number of 

dimensions. Also, consider that the Bi-GRU has hidden units x  that encode the vector outcome. 

At the final stage, the hidden vector state can be mathematically formulated as,  

( ) ( )
x

B

x

F

x

s

kv

s

xv

s

x

s

hhh

PGyh





=

=

1121

221
,

                              (16) 
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          Here, ( )kv

s PG 

 depicts the summary function of the Bi-GRU encoder, 
x

B

x

F handh
 11

indicates the forward and backward hidden states, respectively, sh represents the added hidden 

vector state from
x

B

x

F handh
 11

and sy indicates the encoder’s output vector.  

           For evaluating the weight of the attention layer, the hidden vector state 
x

sh
21

and the 

output
xv

sy
2

is utilized. The initial dimension of 
x

sh
21

is replicated at the time v  to 

accommodate the dimensions of
xv

sy
2

. The weight of the attention layer att
sW 1

is estimated 

using
x

sh
21

and
xv

sy
2

 at each time step. The obtained att
vW 1

is then convoluted with
xv

sy
2

for 

generating oatt
sW −

1
to extract hierarchical information during each time step. At the last stage, 

oatt
sW −

1
is forwarded to the Bi-GRU’s decoder unit for estimating the vector outcome and 

hidden state. It can be mathematically formulated as,  
xv

s

plicationx

s hh
2Re21 

⎯⎯⎯ →⎯                                   (17) 

( )xv

s

xv

satt
v yhAttW

221  =                                (18) 
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attatt
x yWW

2121  =                                 (19) 

( ) ( )s
x

oatt
x

r

xv

r

x

r hWGyh 2121221
,, 

−


=                        (20) 

The outcome of the attention layer is then added with ry and LP layer to decode vp~ under v a 

number of times for the prediction of encoder input
 TvppppP ~,....,~,~,~~

321= . The error which 

is smoothened at a time v  is expressed as, ttt ppE −= ~
. The AS-based Bi-GRU is then finally 

trained to reduce the prediction error, and it can be mathematically formulated as,  

( )
=

=
v

r

tE
1

2

12

1

                                        (21) 

Here, 1tE
 depicts the norm-1 operator that can intersect fast compared to a norm-2 operator. 

After training of AS-based Bi-GRU, the input P is compressed in the final encoded hidden 

state unit. If the AS-based Bi-GRU is integrated with several Bi-GRU layers, the embedding 

vector is generated by adding all the layers in the hidden states and can be mathematically 

formulated as,  

s
n

ssv hhhZ ....21 =                                  (22) 

Here, s
nh indicates the final hidden vector state of the 

thn  layer, vZ
 denotes the input time 

series data having embedding vector and n indicates the total Bi-GRU layers.  

(B). LR-based embedding vector 

This model helps to map the difference between the actual value and the predicted SIRD 

outcome. Assuming the failed time series as the, 
 TvppppP ,....,,, 321=

and having a k  

number of dimensions,  ns uuup ....., 21= . A stable window sliding   has the data sequence
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    n

xxxxv



+−++− ==


 111321 ,....,,,,....,,, . The sliding window sequence is 

fed as the input to the AS-based Bi-GRU and hence, x
 can establish an embedding vector xZ

via equation (16).  

Finally, the time series having multi-dimensional features are converted into single-

dimensional embedding vector series as  vzzzzz ,....,,, 21 ++=   that contains the details 

about the actual data. Assuming M as the number of cases to be predicted, thus,
( )bz  is 

determined as,b where, Mb . The initial embedding can be mentioned as ( )321 ,, bbb ZZZ in
( )bz are, must be correctly predicted, as same as values obtained in the dataset. Due to the 

reduction of a lifetime, the system performance gets degraded and completely alters the actual 

and the predicted value.  

The deviation between the actual and the predicted compartmental outcomes can be 

mathematically formulated as,  

( ) ( )

2

1



−=
normzZ

v
b

v
b ZZ

M
D

                                      (23) 

Here, normz represents the normalized embedding vector, M signifies the components 

present in normz . The proposed system utilizes the normalization range  1,0 to map the ( )
v

bD for 

generating the curve, and it can be mathematically formulated as,  

( )
( )( ) ( )

( )( ) ( )( )
( )b

x
b

x
b

v
b

x
b

v
b vv

DD

DD
H ,....,1,,

minmax

max +=
−

−
= 

                     (24) 

Here, 
( )( ) ( )( )minmax , x

b
x

b DD depicts the maximum and minimum values having 
thb deviation

( )
v

bD during a certain operational time. Based on the training of the unsupervised network, the 

degradation at 
thb an instance is determined. For training the LR model, the best prediction 

outcome is obtained, and it can be mathematically formulated as,  

v

T

v ph  += 0                                               (25) 

Here, vh and vp represents the predicted value and the input reading at a time v  , respectively 

and  n ,......,, 21=  represents the coefficient factors. After training the LR model, the 

obtained testing and training values are given as input to equation (27) to generate a particular 

predicted value.  

(C) Similarity calculation for SIRD prediction 

The proposed prediction method for the testing value is emphasized based on the similarity 

concept. However, the proposed technique runs longer during training and tends to reduce the 

prediction outcome. Let’s assume that the original value is different at the training time, so the 

test curve is rotated with a delayed time  to make the training and testing curve’s similarity 

accurately. The mathematical interpretation for the similarity calculation is depicted below:  

( )
( )( )













 −
=



,,
exp,

c
b

c TeTrD
bSim

                           (26) 
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( )( ) ( )( )
2

1

~

ˆ

1
,, 

=

+−=
S

r

s
b

sc
b

c HH
S

TeTrD
                       (27) 

Here, 
( )( ),, c
b

c TeTrD indicates the square of average Euclidean distance for the two curves, 

 determines the relax factor that can measure the similarity degree under different cases, Ŝ

interprets the total time taken for online process. The resting predictive value is predicted based 

on the 
thb training instance and can be mathematically interpreted as,  

( ) −−= SSbed b
ˆ,Pr                                 (28) 

Here, bS signifies the total time taken for the training process. Every testing and training 

instance is determined using equation (29) to generate weight similarity. The outcome having 

greater similarity can be mathematically interpreted as,  

( ) ( )

( )











=

b

b

bSim

bedbSim

de
,

,Pr,
~

Pr

                      (29) 

Here,
( ) ( )





 


,max,

,
bSimbSim

b


 which
( )


,max

,
bSim

b depicts the high similarity 

between the training curves under varying lagging times, the parameter controls the training 

instance to be integrated with the testing instances.  

 

4. Results and discussion 

The proposed work will be implemented in the Python platform by studying the COVID-19 

situation in Lombardy, Italy [28]. There are 1,707,743 tested cases in this dataset, which is 

mapped to 195,351 positive cases. For the active cases, recovered cases, hospitalizations, 

intensive care and death cases, 105,847, 63,120, 21,533, 2,102 and 26,384 cases are present. 

In addition, this dataset is separated into three categories: the total COVID cases at the regional, 

national, and provincial levels. A total of COVID-19 cases in Italian countries is stated from 

February 2020 to October 2022 under different levels respectively. Also, the performance of 

the proposed model will be validated by comparing the predicted results of the number of cases 

confirmed, death, recovered, hospitalization (ICU) and reproduction number with actual data. 

Also, R-squared (R2) is a statistical measure used to measure the predicting ability of the 

proposed model. In addition, the integration of the DL algorithm with the SIRD model will be 

proved by comparing it with the conventional SIRD model. Tables 1 and 2 tabulate the 

proposed method’s experimental details and simulation parameters.  

 

Table 1: Experimental details of the proposed method 

SYSTEM CONFIGURATION 

Device name SST001 

Full device name SST001.seahost.local 

Processor Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz   3.40 GHz 

Installed RAM 8.00 GB (7.89 GB usable) 

Device ID 8591FDD2-5800-427D-BB79-151A3EB8A6AB 

Product ID 00330-81495-17322-AA248 

System type 64-bit operating system, x64-based processor 

Pen and touch No pen or touch input is available for this display 
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Table 2: Simulation parameters of the proposed method 

 

HYPER  PARAMETERS VALUES EVALUATED IN  

THE PROPOSED METHODOLOGY 

No. of hidden layer L 20 

No. of hidden nodes h 150/128/64/50/100 

Window Length W 50/25/50/100 

Learning rate 0.001 

Training epochs 10 

Early stop 10 

L2 weight 0.01 

Gradient clipping 1 

 

4.1 Performance metrics 

The performance is analyzed daily to predict the COVID-19 cases under SIRD compartments. 

The mathematical formula for calculating the daily suspected cases is given: 

vv AAA −= +1
ˆ

                                                 (30) 

The mathematical formula for calculating the daily infected cases is given as,  

( )vvv DRAI +−=ˆ
                                            (31) 

Also, the mathematical interpretation for calculating daily death cases is given by, 

( )vv DDD −= +1
ˆ

                                             (32) 

For analyzing the accuracy of the proposed prediction model, the prediction coefficient 
2R is 

measured and can be mathematically formulated as, 

( )

( )( )

−

−
=

2

2

2

PmeanP

PQ
Rpredicted

                             (33) 

Here, Q determines the confirmed and recovered cases obtained by the proposed method and

P denotes the total amount of data analyzed for the prediction. If the parameter
2R attains a 

negative value, then the prediction model obtains poor accuracy, and if 
2R attains a positive 

value, it is considered the best prediction model.  

Likewise, for analyzing the error performance, MSE is measured and can be mathematically 

formulated as,  

2

1

)ˆ(
1

x

l

x

x PP
l

MSE −= 
=                                    (34) 

Here, l indicates the number of data used, xP manipulates the actual value, xP̂ indicates the 

calculated value. 

 

4.2 Comparative analysis of the proposed model with other models 
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This section analyses the proposed method’s performance using a graphical illustration. Some 

other existing techniques like PDCNN, CNN, BI-GRU and GRU are also compared to prove 

the proposed model’s efficiency.  

 
(a) 

 
(b) 

 

Figure 3: Accuracy and Loss curve under varying epochs, (a) Accuracy loss and (b) Loss 

curve 

 

Figure 3a and 3b illustrate the accuracy and loss curve under varying epochs. The performance 

of the proposed model will be analyzed through training, testing and validation. From the 

graphical illustration, it is clear that the proposed method obtains a training accuracy of 97%, 

and the accuracy obtained is about 96% for the testing process. For the validation process, the 

accuracy obtained was about 94%. From figure 3b, the loss obtained by the proposed method 

under training, testing and validation are 0.05, 0.03 and 0.04, respectively.  

 

 
(a) 

 
(b) 
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(c) 

Figure 4: Analysis of (a) Contact rate, (b) Recovery rate and (c) Deceased rate 

 

Figures 4a, 4b and 4c depict the LR plot for the contact, recovery, and deceased rates, 

respectively. From the graphical illustration, it is clear that the predicted value obtained by the 

proposed method is near to the original value. The contact rate, recovery rate and decreased 

rate for the proposed model are tested on a daily basis. The rate of contact, recovery and death 

is determined for October 2020, June 2021, February and October 2022, respectively.   

 

 
(a) 

 
(b) 

Figure 5: Comparative performance under (a) Daily death and (b) Daily infected cases 

 

Figures 5a and 5b indicate the comparative performance under daily death and infected cases, 

respectively. The graphical plot concludes that the proposed method obtains almost similar 

outcomes compared to the original value. In contrast, the existing techniques continuously 

show a random outcome rather than the actual value. The daily death and infected cases are 

emphasized for October 2020, June 2021, February and October 2022, respectively. For 24th 

June 2021, the total original death cases are considered 127362, and the proposed predictive 

model effectively predicted 127361 death cases. For the infected cases, on 24th June 2021, the 

original cases are given as 68619, and the proposed hybrid model correctly predicts the total 

68618 infected cases.  
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(a)  

(b) 

 
(c) 

Figure 6: Comparative performance under (a) New cases, (b) Hospitalized and (c) Recovered 

cases 

 

Figures 6a, 6b, and 6c illustrate the comparative performance under new, hospitalized, and 

recovered cases, respectively. The graphical interpretation gives a close result compared to 

other conventional models for the proposed method. The new cases, hospitalized and recovered 

cases are determined for October 2020, June 2021, February and October 2022, respectively. 

By 23rd October 2020, the total original new cases are determined as 186,002, and the proposed 

model correctly predicts a total of 186,001. For hospitalization, a total of 38507 people were 

hospitalized on 23rd October 2020, and a total of 38503 were corrected predicted. For recovered 

cases, a total of 58449 people are given in the dataset, and 58451 recovered cases are correctly 

predicted. The proposed technique is also compared with existing techniques, and the predicted 

outcome of these techniques is completely away from the actual value. However, the SIRD 

compartment model is a highly time-dependent process and needs to train for a longer time to 

get an accurate prediction. The existing techniques cannot be supported for multiple varying 

periods, and they suffer greatly from the gradient vanishing problem.  Auth
ors
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Figure 7: Performance comparison for analyzing reproduction number 

 

Figure 7 signifies the performance comparison for analyzing the number of reproductions. The 

proposed method obtains near to the original value from the graphical illustration. The 

reproduction number is determined for varying months and years as October 2020, June 2021, 

February, and October 2022, respectively. The increase in the growth of reproduction number 

starts to reduce from February 2022 and maintains the constant outcome throughout the year 

2022. During the beginning of the COVID-19 outbreak in 2020, the number of reproductions 

grew and rapidly fell to the 0th position in 2021. The proposed hybridized predictive model is 

also compared with multiple traditional techniques and proves the efficiency of the hybrid 

model.  

 

 
Figure 8: Error performance under different techniques 

 

Figure 8 contemplates the error performance under different techniques. The proposed model 

obtains a low error from the graphical manipulation compared to other conventional 

techniques. The conventional AE, Bi-GRU, GRU and the proposed hybrid model obtain the 

MSE of 0.0082, 0.0089, 0.00861, 0.0088 and 0.008, respectively. From the experimental 

outcome, the existing techniques show major difference between the predicted and the original 

value. Table 3 tabulates the outcome of 
2Rpredicted and time complexity. Here, 
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2Rpredicted is one of the effective performance metrics for analyzing the effectiveness of 

the proposed predictive model. In addition, the time complexity of the proposed method is also 

analyzed and compared with different traditional techniques.  

 

Table 3: Outcome of 
2Rpredicted and time complexity 

Performance 

measures Proposed AE Bi-GRU GRU 

2Rpredicted  0.97 0.89 0.78 0.77 

Time complexity 

(ms) 2634.01 6069.17 7483.31 10212.89 

 

5. Conclusion 

For accurate prediction of the spread of COVID-19 outbreak and hospitalizations, the 

traditional SIRD compartment model is not applicable for training with huge data. The 

conventional SIRD model splits the compartments into four parts, and stable transmission is 

determined based on varying time intervals. Using suspected, infected, recovered, and death 

cases, the rate of contact, recovered, and deceased are predicted. However, the traditional 

compartment model is considered a time-consuming process and cannot handle daily changes 

in COVID cases. This research brought a novel hybridized A-Bi-GRU-AE-based DL algorithm 

that aids the Italian government in taking necessary interventions and future decisions to deal 

with the pandemic. The proposed method obtains the overall predicted
2R of 0.97 and time 

complexity of 2634.01ms. The proposed method’s main advantage is that it can process huge 

datasets with low time complexity. Despite this, the proposed method utilizes a single dataset 

for the whole process. In future, the researchers need to focus on utilizing the proposed method 

for processing multiple datasets to eradicate the spread of COVID-19 effectively.   
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