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Abstract: Several epidemiological studies have been undertaken usi ntal model
to predict disease spread effectively. However, knowledge abo iolowgeal cycle
lacks existing techniques and fails to promote the vaccines 3 dications that the
government issues to overcome the pandemic disease. Many reses
Susceptible-Infected-Recovered-Deceased (SIRD) based compgytmSgia
determine the methods emphasized by the government to ezl a% spread of COVID-19.

with the SIRD model to enhance the 4 he proposed approach is
’ available covid19ltaly dataset is

utilized for the experimental process. Thg gcd method obtains the overall predicted R” of
0.97 and time complexity of 2634.01ms.

Keywords: COVID-19, Italy, tion mechanism, bi-directional gated recurrent unit,
Autoencoder, hospitalizations ntal models.
1. Introduction:

COVID-19 was discg d (N@ally in Wuhan, China, in December 2019, which was then
professed as a pand arc? 2020 by the World Health Organization (WHO). Under the
; HO, it is known that millions of people have been affected, and
asing by the communicable disease [1]. COVID-19 has emerged,
ptoms include dry cough, appetite loss, fever and breathing difficulties,

p coronavirus transmission. This social distancing and lockdown aim to break
ission chain and reduce the coronavirus. Estimating the spread over time is critical
re management to protect lives and reduce the disease’s social and economic
nces [4, 5].

Due to the increased contagion, the confirmed cases at the initial stage are quite
increasing. As a result, a lack of ICU and respiratory equipment arose in most developing
countries. The spread of COVID-19 can be eradicated with isolation beds and hospital 1CUs.
However, the need for isolation beds and other medical requirements is increasing in many
hospitals, and the knowledge about these requirements is unknown to the governmental
organization to take necessary preventive measures. To overcome this issue, an effective
compartmental model is highly required to learn the daily spread of COVID-19 and other



medical requirements in the hospital. Other countries like France, Belgium, New York, Japan,
and South Korea report the day-to-day spread of the COVID-19 pandemic disease utilizing
high effective compartmental model [6].

The compartmental model is one of the mathematical models used to calculate the count
of infectious diseases by considering different compartments in an entire population [7]. During
the COVID-19 pandemic, the compartmental approach predicts hospital demand and ICU
utilization [8]. The common outline of compartmental modelling is that it arranges the
individuals based on their disease depth and infection rate [9]. The compartmental mod
considers the extra compartments for ICU and hospitalization demand [10]. The logig
functions, spreading dynamics, and standardized logistic functions are required compartgeny

Mc Kendrick and Kermack introduced the compartmental mgilg
Compartmental modal repeats the outbreaks of observed charactg¥
period. Compartmental epidemiological models depend on SEIR Wge d prolorfged it for

extra features consisting of ICU and health care compartments. The atures are structured
as 0to 59, 60 to 79, and above 80 years of age. Several studies have ie onducted using the

model [12].

compartmental modal, particularly in the transmission of COVI9 ir®several countries,
focusing on various features [13-15]. The SIR model is compartmental approach
consisting of three compartments: susceptible, infected ed [16]. In the SIR model,
the epidemic spread signifies individually or transmiif®e n syseptible-infected-recovered
cases [17].

Whly required to effectively calculate
ainly depends on the individuals’
g@/’COVID-19, and other intervention processes
Qe to the spread of COVID-19, SARS-CoV-2

awareness. The government im ial distancing, reducing individual contact to diminish
the spread of COVID-19 ¢
including wearing masks
al key parameters via COVID-19 clinical lessons. This
ighest amount of diagnoses, time and attack rate for the

from on gnother under varying infection rates. The people not present in the
mined as non-infectious cases. But in the COVID-19 case, there is
eople exposed in the compartment are also infectious. In this case, the people
ious diseases to the susceptible compartments. The diagnosed carriers are
ed to a hospital or isolated at home for nearly 14 days. If they are not tested,
gnosed carriers with no symptoms like cough or fever can spread COVID-19

nt days, several mathematical models have been proposed for understanding the
mic progression of COVID-19. One of the best models for understanding the epidemic is
a compartmental model. However, the existing models failed to provide the best approximation
for the huge COVID-19 dataset. The conventional compartmental models utilize appropriate
estimation approaches such as Maximum Likelihood to compute the hyper-parameters. These
models usually considered time-invariant hyper-parameters and thereby reduced the prediction
accuracy. Hence, the hyper-parameter should be modelled with a time-dependent characteristic
to allow the model to work under varying marginal conditions. These points motivate




integrating the time-dependent compartmental model with deep learning algorithms to give
accurate long-term estimations. The major contributions of this research work are listed as
follows:
> To propose a DL-integrated SIRD compartmental model by considering the time-
dependent parameters to eliminate the spread of COVID-19 efficiently.
> To modify the conventional compartmental model by integrating the SIRD model with
DL algorithms.
> To give an accurate long-term prediction for the Covid-19 outbreak by introducin
novel A-Bi-GRU-AE-based DL technique.

> To validate the performance of the proposed model by considering the _ .

outbreak in Italy.
> To analyze the proposed method in PYTHON and performance a

prediction R* and time complexity are analyzed and compared yg

Keeling et al. [21] defined a different compartmental mathemati odel for analyzing
the spread of COVID-19 based on quarantining and age-related ws. IS compartmental
model forecasts the spread of an epidemic using original on confirmed cases. Next,
difficulties with social distance were examined based idemic outcomes. Lastly,
discovered the key biological characteristics of O tt remain unknown under
susceptibility to varying age groups and sy

Ramezani et al. [22] established 3 ipa ntal model SEAIRDQ (Susceptible-
Exposed- Asymptomatic-Infectious- decceasW-Quarantined) models for the

2. Literature survey:
Some of the recent related works are listed as follows:

SEAIRDQ model could take the nonlinear bt V|our of COVID 19 pandemlc for determlnlng
the asymptomatic infections in the individuals.

individual’s current reproducy nd irnrnunity level.

modelling its dynamic evORg@lon. method aids in determining the spread of disease by
training the tradition24RRea ntal models until it returns the best prediction outcome. Here,
the chemical reacti ps Were modelled using chemical master equations and solved
bs. This model was effectively used for COVID-19 prediction
In medium and small-sized municipalities.

4] introduced the SIR-modified model for COVID-19 transmission to

D-19 epidemiological data collected from other countries using certified
output parameters were considered as formation time and immunity level of
Iar diseased individual. These parameters were then used as an effective indicator
e the day-to-day analysis of the suspected cases effectively.

ainisch et al. [25] determined the SEIR compartmental model to analyze the local
emic transmission. This SEIR method uses the input of health care resources, case counts,
and evaluates the intrusion strategies. The output includes the infection patients count, death
rate, critical isolation beds, and ventilators relative to current capacity. This method shows that
aggressive interventions can stop the extensive diseases and death rate from coronavirus. This
SEIR method permits the fast calculation of locally applicable states and improves the outcome
when the current information becomes more accurate and clear.



Wang et al. [26] defined an asymptomatic infected compartmental model by extending
the proliferation rate of COVID-19. Also, this study utilized LSTM to improve prediction
accuracy by updating the compartmental model parameters. Compagni et al. [27] integrated
the compartmental model with a Feed-Forward Neural Network (FFNN) to increase prediction
accuracy and forecast ICU occupancy.

2.1 Problem definition
In literature, some methods used feed-forward neural networks and the LSTM model to predi
the patients’ future trajectories. However, the feed-forward neural networks will not consi

the temporal relations between the historical data. However, RNN can consider the tempo
relations between the input sequences. RNN has a superior ability to encapsulate )
information over time. Some existing approaches like LSTM have also been go

intervals. Recently, many techniques have been integrated with the
prediction. But those techniques are highly suffered due to time compl and error. Hence,
an effective hybrid technique is required to address the drawb# faC®l by the existing
techniques for accurate prediction. To the best of the ge, the proposed method
addresses all the problems arising in the existing te d effectively provides an
outstanding prediction outcome.

3. Proposed method
This paper proposes a new modified al mo®®8l with deep learning algorithm for
ations. Initially, the population is divided into

four compartments: susceptible (S), infectiS@a, (1), recovered (R), and dead (d). Here, the

the time dependence. Then,
using the number of peop

e, recovery rate, and deceased rate will be estimated
ith symptoms, isolated patients at home and in the

GRU-AE will be i ith the SIRD model for learning and correcting the estimated
error created b

51-GRU-AE, and the real hospitalizations/data will be used as the
A-Bi-GRU-AE model. In addition, the proposed model will introduce

rediction using hybrid SIRD with A-Bi-GRU-AE
dicting the COVID-19 outbreak and hospitalizations, the conventional SIRD model is

utiMzed. In the conventional SIRD model, the population M can be divided into four

compartments, namely (S),(1), (R)and (D)is determined based on varying time intervals V .
Figure 1 determines the structure of the SIRD-based compartmental model.
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Figure 1: Structure of SIRD-based compartmental model
The mathematical interpretation of the SIRD model is explained in the ygco sec e

total populationM can be formulated as,

M=S,+I,+R, +D, (1)

Here, S, 1., R, and D, indicates the suspected cases |nf , recovered cases

and deceased cases under different time intervals, respectj teratlons that take place
in the total cases can be formulated as,

=
(2)
S remains constant. The outcomes
Ibelo
/1

L =S-— SI

The obtained outcome from equg
obtained in each compartment are depiq

M (3)

= +(’18'J ul =1l
M (4)
R =R+ (5)
D, =D+l ©)

e contact rate, # signifies the recovery rate and 77 depicts the

ase, the susceptible (S)cases are equal to the total populationM . The

rowth () for each day and the primary reproductive number (Rn)can be
nterpreted as,
p=2—(u+n) @)
R A
a+n (8)

When R, >](,0 > O), the epidemic disease is generated and in the reverse case, the
epidemic disease gets eradicated.

3.1.1 Calculation of epidemic after several measures taken by the government



Let us consider the regular change in suspected cases as S=35u- Sv. Similarly, the constant
change in infected, recovered and deceased cases can be mathematically formulated as,

S _ (—ZSI j
M 9)

(
R= /Jl I\
D= nl
The above interpretations are also referred to as transmission coefficien C ,

and death rate.
I, +R, +D, @

In the past few years, the dataset A= isvery | erent@ing from

the total population. The total populationM is very near to the S, , the@onsider 4 = A/ I for a
huge amount of data.
Finally, the obtained contact rate A, recovery rate 6eceased rate 77 can be
mathematically interpreted as,
y Wl A)
(13)
_R
o (14)
_D
T (15)

Here, A represents umb aily changes in the SIRD compartment, A indicates

the total changes undg cases, R indicates the change in daily recovered cases, D
cases.

gyrom A is very high, and an accurate outcome is still required to
ases efficiently. In addition, the existing SIRD model does not show
s due to varying time intervals. Hence, this research introduces a novel
echnique using the conventional SIRD model. The outcome of the
model is given as input to the proposed A-Bi-GRU-AE technique.

oposed A-Bi-GRU-AE technique

operation in the proposed model undergoes two major stages, namely offline SIRD
artmental curve library construction and online SIRD-based COVID-19 prediction
estitnation during the testing process. In the offline stage, embedding vectors are initially
developed based on attention and skip connection (AS) with the AE model. The continuous
variation of SIRD cases is evaluated by changes that have occurred in the embedding vectors
during machine operations. During the training process, the curve is obtained to form the SIRD
compartmental curve library.
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Figure 2: Architecture of A-Bi-GRU-AE nw

Figure 2 depicts the architecture of the A-Bi-G del. The proposed system
works based on time series, and the curve must be spf#ot 0 e/@hinate overfitting and other
irreversible processes. In addition, the propQasiie intr s the Linear Regression (LR)
i outcomes from the network model.
to theWrained LR model as an input for
arity is estimated between the offline training
SIRD prediction.

(A). Bi-GRU with AS
The Bi-GRU consists of do

s hg¥ing forward and backward directions that can extract
he completion of encoding process, the hidden vector

h

state ''s is utilized fg process. The encoder having an output vector Y gets added

put to the Bi-GRU decoder. Finally, the decoded Bi-GRU outcome is
skip connection and overcomes the computational complexity by proving
or to the Linear Prediction (LP) layer.

.
suming the time series data as,P:[pl’pZ'p3""" pv] having k a number of

dimensions. Also, consider that the Bi-GRU has hidden units X that encode the vector outcome.
At the final stage, the hidden vector state can be mathematically formulated as,

(hsleX’ ysvx2x ): GS (vak )
hslx2x _ hlex @ hlex (16)




vxk 1xx 1xx
Here,Gs(P ) depicts the summary function of the Bi-GRU encoder, he™" and hg
h

indicates the forward and backward hidden states, respectively, ''s represents the added hidden

h Ixx and h Ixx y . .
vector state from''r 8 and Ysindicates the encoder’s output vector.
h 1x2x

For evaluating the weight of the attention layer, the hidden vector state s  and the
Vx2X 1x2x
outputys is utilized. The initial dimension of h is replicated at the timeV

VX2X

accommodate the dimensions of ¥s . The weight of the attention layerW *au is g

1x2x VX2X

using N andYs  at each time step. The obtained W™"au is then convolutedgyi @
generatingW a0 to extract hierarchical information during each tirggs e last'Stage,
W a0 is forwarded to the Bi-GRU’s decoder unit for estimatd @

hidden state. It can be mathematically formulated as,

h 1x2x Re plication h Vx2X
—_—

tor ouNme and

s s (17)

W™ o = Att(h 4 l) (18)

W " (19)

0 B AU (20)

The outcome of the attention layer is t d with Y-and LP layer to decode 5v underVa

= = = = ~
number of times for the prediction of encodeNut ” = [Py By B Bl The error which

is smoothened at a timeV is expgf¥se E=p - Pt The AS-based Bi-GRU is then finally
trained to reduce the predictj it can be mathematically formulated as,

~ 3=52 (el

operator that can intersect fast compared to a norm-2 operator.

_He9® Bi-GRU, the input P is compressed in the final encoded hidden
ed Bi-GRU is integrated with several Bi-GRU layers, the embedding

(21)

Z,=h's®h*% ®..h" (22)

Z

He s indicates the final hidden vector state of the n" layer, ~v denotes the input time

sel®s data having embedding vector and I indicates the total Bi-GRU layers.
(B). LR-based embedding vector
This model helps to map the difference between the actual value and the predicted SIRD

.
outcome. Assuming the failed time series as the, P =[pl, P2y Pysevesy pv] and having a k



XN

x—w+1] . The sliding window sequence is

fed as the input to the AS-based Bi-GRU and hence, ¥, can establish an embedding vectorzx

via equation (16).
Finally, the time series having multi-dimensional features are converted into single-

V= IIIl’\PZ’\P3"“" va—w+l]’ \Px = [\Px’\P ¥

X+11000

dimensional embedding vector series as?’ :[Zw’zw+1’zw+2""" Zv] that contains the details
about the actual data. Assuming M as the number of cases to be predicted, thus, z®

b b —b
determined as,bwhere, b € M . The initial embedding can be mentioned as (Z EVASIVAE,

Z(b)are, must be correctly predicted, as same as values obtained in the dataset.
reduction of a lifetime, the system performance gets degraded and completely d
and the predicted value.

The deviation between the actual and the predicted compart
mathematically formulated as,

1

pt), = = _zu
Mo (23)
Here, Znorm represents the normalized embedding Vv, |gn|f|es the components
present in Lrom . The proposed system utilizes the nor e[01]to map the D®), for
generating the curve, and it can be mathematjga Ia

b)
‘ )V —w,o+1,...

(
X Jmin (24)

D®)
HP = (D((b 4 @

(b) (b)
Here, (D X)max’ (D X)mindepicts the maxi™@gn and minimum values having b" deviation

D®), during a certain operation e. Based on the training of the unsupervised network, the
degradation at b"an instangi rmed. For training the LR model, the best prediction
outcome is obtained, and be matically formulated as,

hv = éVO + é/T Py (25)

predicted value and the input reading at a time V , respectively

andg . /R represents the coefficient factors. After training the LR model, the
i aining values are given as input to equation (27) to generate a particular

n outcome. Let’s assume that the original value is different at the training time, so the

test curve is rotated with a delayed time 3N to make the training and testing curve’s similarity
accurately. The mathematical interpretation for the similarity calculation is depicted below:

~D(Tr,, Te®, N)]

Sim(b, &) = exp( 5

(26)
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ZS:<H “H®)

D(Tr,, Te®s,N)= 3 on

(f))l =

D(Tr,, Te®,N)

Here, indicates the square of average Euclidean distance for the two curves,

& determines the relax factor that can measure the similarity degree under different cases, S
interprets the total time taken for online process. The resting predictive value is predicted based

on the b™training instance and can be mathematically interpreted as,
Pred(b,X)=S, -S-N

Here, S
instance is determined using equation (29) to generate weight similarit
greater similarity can be mathematically interpreted as,

_ Zb:Z:Sim(b,N)x :
Pred =—=— >3 Simb,)

max Sim(

bsignifies the total time taken for the training process. Every testin
he

(29)

sim(b, %) > gox[ngix Sim(b,N))

Here, which bx icts the high similarity

between the training curves under varying lagging ti@s, arg@ieter @ controls the training
instance to be integrated with the testing in :

4. Results and discussion
The proposed work will be implemented Python platform by studying the COVID-19
situation in Lombardy, Italy [28]. There are Q07,743 tested cases in this dataset, which is
mapped to 195,351 positive casegalor the aCWe cases, recovered cases, hospitalizations,
intensive care and death cases, 63,120, 21,533, 2,102 and 26,384 cases are present.
In addition, this dataset is se ee categories: the total COVID cases at the regional,
national, and provincial | COVID-19 cases in Italian countries is stated from
February 2020 to October different levels respectively. Also, the performance of
the proposed model ed by comparing the predicted results of the number of cases
confirmed, death, r¢ ospitalization (ICU) and reproduction number with actual data.
gritistical measure used to measure the predicting ability of the
, the integration of the DL algorithm with the SIRD model will be
it with the conventional SIRD model. Tables 1 and 2 tabulate the

Table 1: Experimental details of the proposed method
SYSTEM CONFIGURATION
Device name SST001

Full device name SSTO001.seahost.local
Processor Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz 3.40 GHz
Installed RAM 8.00 GB (7.89 GB usable)
Device ID 8591FDD2-5800-427D-BB79-151A3EBSAGAB
Product ID 00330-81495-17322-AA248
System type 64-bit operating system, x64-based processor
Pen and touch No pen or touch input is available for this display




Table 2: Simulation parameters of the proposed method

HYPER PARAMETERS VALUES EVALUATED IN
THE PROPOSED METHODOLOGY
No. of hidden layer L 20
No. of hidden nodes h 150/128/64/50/100
Window Length W 50/25/50/100
Learning rate 0.001
Training epochs 10
Early stop 10
L2 weight 0.01
Gradient clipping 1

4.1 Performance metrics
The performance is analyzed daily to predict the COVID
The mathematical formula for calculating the daily s

nder SIRD compartments.
¥ is given:

(30)
The mathematical formula for calculatig cases is given as,
v) (31)
Also, the mathematical interpretation for calcO8Qing daily death cases is given by,
D= (Dv+1 - Dv) (32)
For analyzing the accuracy gt poled prediction model, the prediction coefficient R%is
measured and can be mat tical ulated as,
—P)
predicted R? = 2.(Q-P) >
> (P —mean(P)) (33)
Here, th firmed and recovered cases obtained by the proposed method and

ount of data analyzed for the prediction. If the parameter R*attains a
n the prediction model obtains poor accuracy, and if R*attains a positive

14 A
MSE == P, —P)?

PAHCELY (3)
P, P

Here, lindicates the number of data used, xindicates the

calculated value.

manipulates the actual value,

4.2 Comparative analysis of the proposed model with other models



This section analyses the proposed method’s performance using a graphical illustration. Some
other existing techniques like PDCNN, CNN, BI-GRU and GRU are also compared to prove
the proposed model’s efficiency.

0.4 Train

1.00

— Validate
Test

0.95 4

0.3

0.2

Accuracy
Loss

0.1

Train
Validate
Test

0.0

0 50 100 150 200 250 300
Epoch

(@)

Figure 3: Accuracy and Loss curve under varying epochs, (a) A?a ss and (b) Loss

curve
Figure 3a and 3b illustrate the accuracy and l0ss curvegan ryij epochs. The performance
of the proposed model will be analyzed through g&MInin @ and validation. From the

graphical illustration, it is clear that the prg
and the accuracy obtained is about 96%
accuracy obtained was about 94%. Fro )
under training, testing and validation are 0.N@0.03 and 0.04, respectively.

d obtains a training accuracy of 97%,
ing ess. For the validation process, the
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Figure 4: Analysis of (a) Contact rate, (b) Recovery rate a eased rate

Figures 4a, 4b and 4c depict the LR plot for the contact, recovgry,QRd deceased rates,
respectively. From the graphical illustration, it is clear that the pregded value obtained by the
proposed method is near to the original value. The cont recovery rate and decreased
rate for the proposed model are tested on a daily basisgl
is determined for October 2020, June 2021, FebruagMnd

Daily Death Daily Infected
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ive performance under (a) Daily death and (b) Daily infected cases

e graphical plot concludes that the proposed method obtains almost similar
mpared to the original value. In contrast, the existing techniques continuously

Sized for October 2020, June 2021, February and October 2022, respectively. For 24™
2021, the total original death cases are considered 127362, and the proposed predictive
model effectively predicted 127361 death cases. For the infected cases, on 24" June 2021, the
original cases are given as 68619, and the proposed hybrid model correctly predicts the total
68618 infected cases.
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Figure 6: Comparative perform nder (a) New cases, (b) Hospitalized and (c) Recovered
cases
Figures 6a, 6b, and 6c¢ ill te t mparative performance under new, hospitalized, and

’ e graphical interpretation gives a close result compared to
other conventional rfibdels @& th&proposed method. The new cases, hospitalized and recovered
cases are determineqgor Oc@@ber 2020, June 2021, February and October 2022, respectively.
0, Btal original new cases are determined as 186,002, and the proposed

s a total of 186,001. For hospitalization, a total of 38507 people were

recovered cases, res

oposed technique is also compared with existing techniques, and the predicted
these techniques is completely away from the actual value. However, the SIRD
nt model is a highly time-dependent process and needs to train for a longer time to
curate prediction. The existing techniques cannot be supported for multiple varying
ds, and they suffer greatly from the gradient vanishing problem.
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Figure 7 signifies the performance comparison for analyzing the numDW@f reproductions. The
proposed method obtains near to the original value from the gr illustration. The
reproduction number is determined for varying months and ctober 2020, June 2021,
pWih of reproduction number
come throughout the year

starts to reduce from February 2022 and maintains thg c
2022. During the beginning of the COVID-19 outh i e number of reproductions
grew and rapidly fell to the 0™ position in 24 he@goposed nybridized predictive model is
also compared with multiple traditiona S a roves the efficiency of the hybrid

model.
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Figure 8: Error performance under different techniques

re 8 contemplates the error performance under different techniques. The proposed model
obtains a low error from the graphical manipulation compared to other conventional
techniques. The conventional AE, Bi-GRU, GRU and the proposed hybrid model obtain the

MSE of 0.0082, 0.0089, 0.00861, 0.0088 and 0.008, respectively. From the experimental
outcome, the existing techniques show major difference between the predicted and the original

H 2
value. Table 3 tabulates the outcome of predicted R and time complexity. Here,
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predicted R is one of the effective performance metrics for analyzing the effectiveness of
the proposed predictive model. In addition, the time complexity of the proposed method is also
analyzed and compared with different traditional techniques.

H 2
Table 3: Outcome of Predicted R” 3nq time complexity

Performance
measures Proposed AE Bi-GRU GRU
predicted R? 0.97 0.89 0.78
Time complexity
(ms) 2634.01 6069.17 7483.31
5. Conclusion

For accurate prediction of the spread of COVID-19 outbrea
traditional SIRD compartment model is not applicable for tra
conventional SIRD model splits the compartments into four parts, al\g@table transmission is
determined based on varying time intervals. Using suspected, inf?:ﬁl, overed, and death

cases, the rate of contact, recovered, and deceased are predicte oweVer, the traditional
compartment model is considered a time-consuming pro nnot handle daily changes
e “C@U-AE-based DL algorithm
ervgionggind future decisions to deal

overall predicted R®of 0.97 and time
vantage is that it can process huge
e proposed method utilizes a single dataset
¥need to focus on utilizing the proposed method
pread of COVID-19 effectively.

in COVID cases. This research brought a novel hybridi
that aids the Italian government in taking necessar

with the pandemic. The proposed methog
complexity of 2634.01ms. The proposeg
datasets with low time complexity. Des|%gs
for the whole process. In future, the researc
for processing multiple datasets to eradicate t
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