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Abstract - Sleep pattern recognition plays a crucial role in detecting pathological and psychological diseases. Various disorders 

can be identified through analysis of EEG patterns recorded during sleep. Sleep EEG consists of four primary waveforms: 

alpha, beta, theta, and delta waves, each associated with different sleep stages. The cyclic alternating pattern (CAP) is 

characterized by cerebral activity and autonomic motor functions, providing insights into motor events and neurovegetative 

functions that aid in understanding the pathophysiology of sleep disorders. This research focuses on identifying sleep patterns 

using a Compressed Sensing Architecture (CSA). The aim is to assist pathologists in accurately and efficiently diagnosing 

sleep disorders through automated analysis. Existing methodologies for extracting sleep patterns from EEG rely on various 

algorithms. In this study, error signals are extracted using CSA, and metrics such as the Percentage Root-mean-square 

Difference (PRD) and Signal-to-Noise Ratio (SNR) are computed after reconstructing the original signal. The proposed 

approach demonstrates enhanced accuracy, making it a promising solution for automated, error-free diagnosis of sleep 

disorders. The research findings have significant potential for practical implementation, improving diagnostic precision and 

clinical outcomes. 
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I.  INTRODUCTION 

Sleep and Brain activities are closely connected, with technology like BCIs (Brain Computer Interfaces) utilizing 

these signals for advanced applications. Sleep is essential part of daily life during which the body and brain rest, 

consciousness and sensory activity reduce, clears the waste via Glymphatic system and the brain reorganizes the 

neurons. The Brain function improves when in sleep. The Brain activity during sleep is measured using EEG 

signals, which changes in amplitude and frequency depending on sleep stage. There are different frequencies and 

amplitudes for falling asleep, being asleep and being awake. Alpha waves appear during relaxation, Beta waves 

dominate during focus, Gamma waves during intense concentration, and Delta and Theta waves during deeper 

sleep. Analysing these patterns helps in diagnosing sleep disorders and understanding brain function. 

BCIs takes brain signal analysis further by enabling humans to communicate with machines without speech or 

gestures. BCIs use sensors to collect brain activity data and translate it to commands for devices, often relying on 

EEG signals. EEG signals are sensitive to other bio-signals such as heart rate and eye movement, BCI incorporate 

additional inputs like electrocardiogram (ECG), photoplethysmography (PPG), electromyogram (EMG), 

electrooculogram (EOG), and Galvanic Skin Reflex (GSR) for greater accuracy. BCIs directly decode brain 

commands allowing control of devices like prosthetics or computer cursers, unlike traditional systems that rely 

on peripheral nerves. These bio-signals make it feasible to control external devices as well as computer 

applications. The technology is widely applied in fields such as healthcare, aerospace, education, entertainment 

and marketing and simplifying interactions with machines. These advancements and concerns about security and 

privacy remain as third-party misuse of personal data which is a significant risk. In the past, the idea that brain 

activity could be utilized to interpret thoughts or intentions was dismissed as unrealistic it was resulted as Research 

into brain activity was traditionally restricted to diagnosing neurological disorders or investigating brain activities. 

This limitation was due to the scarcity of information that could be reliably gathered from the human brain, making 
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the design of a Brain-Computer Interface (BCI) seem prohibitively difficult.  BCIs were once considered as 

impractical due to limited technology and challenges of real- time signal processing but advancements in 

neuroscience, psychology, engineering and computer science have made BCIs more feasible. Researchers are now 

advocating a unified approach to BCI design to standardize developments and accelerate progress in the 

transformative filed. 

There are 5 Stages of sleep, the Figure 1 shows different stages of sleep with respect to time. The sleepness and 

the wakefulness shows different stages in the Figure. Based on the specific type of sleeve, the neural systems are 

being activated while the others being turned off. The neurobiology helps us to understand various stages of sleep. 

For many centuries, most of the people thought that the sleep is considered as a unitary phenomenon whose 

physiological he was essential. The purpose of sleep is just the restorative. In the 1953, Nathaniel Kleitman and 

Eugene Aserinksy Presented that. The sleep for actually comprises of different stages based on the 

electroencephalographic recordings. Whereas these stages occur sequentially, one after the other. 

 

Figure 1: Stages of Sleep 

A high frequency of 50 to 60 Hz is recorded during the waking state after one hour of sleep. These signals have 

low amplitude (Approximately 30 microvolts) And they are fewer active signals. The Figure 1, shows one hover 

of EEG recording of first ever sleep. Patterns are called as beta activity. 

 

Figure 2: Sleep Cycles 

The sleep is classified into four stages (as in Figure 2) by American Academy of sleep medicine. Among the four 

sleep cycles, the first two stages are considered to be light sleep. When a person is begins to fall asleep, he enters 

the Stage 1. During this, the EEG recorded will be having low amplitude waves with high frequency. When the 

person enters the Stage 2, The EEG signals will be having a sleep spindles and k-complexes (patterns in sleep 

EEG signals). A train of high frequency waves are called as a sleep spindles. The Biphasic waves that stand out 

from the rest of the EEG signal are called K complex. The slew wave sleep is the stage 3 of sleep. The third stage 
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of the sleep is very important for the restfulness. Next, the sleeper passes rapidly back through stage two and stage 

one before entering rapid eye movement or REM sleep. In REM sleep stage of the EEG activity is very similar to 

the top of waking Stage or stage 1. Most of the vivid dreams occur in this Stage. Each cycle will lose about 90 to 

110 minutes in a normal human being. And it is repeated for about four to five times in a night, as shown in the 

Figure 2 With the timeline. 

1.1 Contribution and Motivation 

 

The compressed sensing architecture (CSA) is employed to classify sleep patterns in EEG signals. In this research 

phase, the patterns have been analysed, and feature extraction has been completed. The CSA was used to extract 

error signals. Data were collected from 50 subjects with normal sleep. The error signals were extracted, and the 

original signals were reconstructed as detailed in earlier sections. The results demonstrate improved accuracy 

compared to existing systems and highlight the potential of this method for practical applications, achieving results 

close to high accuracy. The experiment successfully extracted sleep patterns and facilitated automated detection 

of key parameters in EEG signals. As a continuation of this research, the approach can be extended to recognize 

paralyzed sleep patterns. The proposed method has shown effectiveness in accurately identifying patterns 

associated with paralyzed sleep. 

 

1.2 Organization of the Paper 

The first section of paper gives a brief introduction to the basic details of sleep and patterns in sleep. The 

importance of sleep and sleep disorders are mentioned. The existing system and the different methods used to 

extract the sleep pattern details are also mentioned in the second section literature review. The basics of the 

proposed algorithm with detailed explanation is given in the third section proposed algorithm. Results and 

discussion are the fourth section which gives the implementation results obtained for the experiment conducted, 

in this the detailed description of each waveform is mentioned. Last section is the conclusion and future scope 

which are the final part of the paper.  

II.  LITERATURE SURVEY 

In [1], the Author explained the Most BCI games classified as serious games have primarily been designed with 

healthy individuals in mind. Since BCI aims to replace traditional Human-Computer Interaction (HCI) in this 

context, it must effectively of Recent advancements in interpreting brain activity have enabled the conversion of 

neural signals into meaningful commands, facilitating applications such as smooth gameplay. With the availability 

of consumer-grade EEG equipment, the first BCI-controlled games were developed. These games can be 

categorized as either competitive entertainment games or medically focused serious games [2]. In [3],[4] The 

Authors analysed the BCI-controlled home automation system can manage various household components, 

including light fixtures, switches, and ceiling fans.  

The combination of EEG, Variational Mode Decomposition (VMD), Support Vector Machine (SVM), and 

Predictor Importance Estimate (PIE) achieved remarkable performance metrics for diagnosing Autism Spectrum 

Disorder (ASD), including an accuracy of 98.08%, sensitivity of 100%, specificity of 99.16%, precision of 

99.17%, F1-score of 99.58%, and a geometric mean of 99.57% [5]. In [6] Using EEG data, the combination of 

Independent Component Analysis (ICA), Power Spectrum Density Energy Diagram (PSDED), and a Deep 

Convolutional Neural Network (DCNN) achieved an accuracy of 80% for classifying Autism and Epilepsy. The 

combination of EOG and EEG signals processed with a Bandpass Filter, Filter Bank Common Spatial Pattern 

(FBCSP), and Support Vector Machine (SVM) achieved an accuracy of 87.31% in the application of vehicle 

control[7].Electrocorticography (ECoG) signals processed using a filter, statistical analysis, and Principal 

Component Analysis (PCA) with a Long Short-Term Memory (LSTM) network achieved an accuracy of 82.4% 

for hand gesture decoding[8].  In [9] Magnetoencephalography (MEG) signals processed with a low-pass 

Butterworth filter, a notch filter, an autoencoder, and a Support Vector Machine (SVM) achieved an accuracy of 

82.08% for neural speech decoding. 

EEG signals processed for artifact removal using RNN, CNN, and XGBoost achieved an accuracy of 95.53% in 

the application of typing [10]. EEG signals processed with low-pass, high-pass, and notch filters alongside a CNN 

achieved an accuracy of 55.33%, a standard deviation of 3.615%, and a kappa value of 0.173 in the application of 

object movement [11]. Functional near-infrared spectroscopy (fNIR) signals processed with a high-pass filter 

combined with a Deep Neural Network (DNN) has achieved remarkable accuracy of 66% in various applications 
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[12]. EEG signals processed with a bandpass filter, Fast Fourier Transform (FFT), and On-line for instance, the 

Online Sequential Extreme Learning Machine (OS-ELM) achieved an accuracy of 97.62%, a sensitivity of 

97.55%, and a specificity of 99% in wheelchair control applications [13]. The time series data can be effectively 

analysed by extracting features from the detailed coefficients at different levels of resolution or within specific 

frequency bands, depending on the context. 

 
Classification Methods  

In BCI systems, various classification algorithms are employed [14][15]. Over-sampling can be employed to 

create an over-complete lexicon from a complete dictionary by sampling from it. While the dictionary’s basis is 

orthogonal, this orthogonality may no longer hold after oversampling. Through iterative cycles, the Signal 

Decomposition Matrix (SDM) of the signal is constructed. Each iteration selects the optimal waveform based on 

the highest inner product between it and the residual signal. 

 

Feature Extraction 

The extracted features are then fed into a classifier for training, which helps recognize patterns. However, due to 

technical and biological factors—such as the subject's attention, session variability, mental state, anatomical 

differences, amplifier quality, and ambient noise—EEG signals are highly nonstationary and dynamic [16]. 

Galvanic Skin Response (GSR) [17] as a complement to EEG in BCI.  Electromyography (EMG) [18]. 

 

Database 

The database includes recordings from 16 healthy subjects with no neurological issues and not using any CNS-

affecting drugs. The remaining 92 recordings come from patients where EEG technology is being used to diagnose 

and study various sleep disorders, including Nocturnal Frontal Lobe Epilepsy (NFLE), Rapid Eye Movement 

Sleep Behaviour Disorder (RBD), Periodic Limb Movement Disorder (PLM), insomnia, narcolepsy, Sleep-

Disordered Breathing (SDB), and bruxism. Demographic information such as age and gender are available in a 

spreadsheet named "gender-age.xlsx," and the recordings are labelled according to the subject's sleep disorder 

[19].  In [20], the instability of sleep is referred to as CAP (Cycling Alternating Pattern). CAP typically occurs 

during non-rapid eye movement (NREM) sleep and is divided into two phases: A and B. Phase A is characterized 

by irregularity, allowing for adaptive adjustments to ongoing states based on internal and external inputs. In 

contrast, phase B is considered the background rhythm of CAP. CAP involves both cerebral activity and autonomic 

motor functions. Several sleep disorders can be identified through the analysis of CAP, as it reflects motor events 

and neurovegetative functions, aiding in the understanding of physiological pathways in sleep disturbances. 

The experimental data for sleep patterns in EEG signals is sourced from PhysioNet. The focus is on Cyclic 

Alternating Patterns (CAP), which reflect the brain's instability during sleep. CAP, characterized by periodic 

abnormal brain activity, is a marker of unstable sleep and does not occur during REM sleep. In conditions like 

Lennox-Gastaut syndrome, CAP helps control seizures and epileptic discharges through a gate-control mechanism 

[21].  In [22] This section introduces the Compressed Sensing architecture. The first part provides an overview of 

the architecture, while the second part discusses the dynamic knob in compressed sensing. The third part 

formulates the actual problem. 

In [23],[24] The Sleep disruptions can interfere with neural functions, and in-ear electroencephalography (EEG) 

is employed to collect EEG signals from patients, providing a 24/7 unobtrusive monitoring method. The 

experiment involved 22 healthy participants undergoing overnight sleep monitoring. This method aims to predict 

automatic sleep stages using ear-EEG from a single in-ear sensor. The overall classification accuracy of the five 

sleep stages, calculated using PSG, was 74.1%. The ear sensor proved to be a feasible tool for monitoring 

overnight sleep, aligning with the PSG. This continuous, wearable alternative offers a convenient option for 

analysing sleep data around the clock. 
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III. PROPOSED ALGORITHM 

 

The implementation process consists of multiple stages, each involving algorithms that analyze sleep patterns in 

EEG signals. The first stage in the front-end analysis employs a technique called Adaptive Quantized Compressive 

Sensing. This approach is an advanced method that integrates the principles of quantized compression sensing 

with adaptive mechanisms, allowing for efficient data representation and improved analysis of EEG signals. 

Adaptive quantized compress sensing 

This technique is a relatively new approach for converting analog signals into an information sampling scheme. 

It is designed to work efficiently under the assumption that the signal is sparse or compressible, meaning that it 

contains a limited number of significant components compared to its overall size. In this scheme, an N-

dimensional vector is sampled using M measurements to produce a compressed representation of the vector a. 

These measurements satisfy certain fundamental conditions to ensure accurate reconstruction and effective data 

analysis. 

                                                                                    a= Φb                                                                                 (1) 

In the equation (1), the Φ ϵ Q m × n, is called the sensing array with the linear encoding. The sampling rate is defined 

by M in the N Compressed sensing. In this context, the sensing matrix Φ is typically modeled as either a Bernoulli 

Random Variable or a Gaussian Random Variable, depending on the specific application. A key condition for the 

system is that the number of measurements M is much smaller than the signal dimension N (i.e., M<<N), as 

outlined in Equation (1). Under these conditions, the signal cannot be uniquely retrieved directly from the sensing 

array. However, by leveraging certain sparsity constraints, it becomes possible to recover the signal accurately. 

Specifically, the sparsity condition allows the inclusion of a transform matrix Ψ∈QN×N, which represents the signal 

in terms of a set of sparse coefficients c ∈QN. This transformation enables the signal to be reconstructed effectively, 

even with limited measurements, by exploiting the sparse nature of the coefficients. 

            b = 𝜓 c                                                                               (2) 

In the above equation (2), the under transformations Ψ, is having the count of zero elements. So, considering the 

equations (1) and (2), the spars vector is represented as below equation (3). 

                                                                               a = 𝜙𝜓c= Θ𝑀 𝑋 𝑁 c                                                                                                        (3) 

In Equation (3), the matrix ΘM×N is referred to as the measurement matrix, which plays a critical role in signal 

acquisition. In practical applications, the original form of any signal is typically analog. Before the signal can be 

processed or transmitted digitally, it must undergo a quantization process. Quantization is essential for converting 

the continuous analog signal into a discrete digital form suitable for further analysis. Once quantized, the next 

step is to compress the resulting signal a. This compression is achieved using a quantization model, which is 

mathematically represented in Equation (4). This process ensures efficient storage and transmission while 

preserving essential information from the original signal. 

                                                                                   â = Rx(a)                                                                              (4) 

In the above equation Rx, is called the quantization Function. â is the representation of the a with the quantization 

bits x. As we know the c is a sparse vector. Hence 

                                                                       ĉ =min∥c∥0    subject to  ∥ â − Θc∥ < ϵ                                             (5) 

The reconstruction error margin is denoted by ϵ, which defines the permissible deviation in the signal 

reconstruction process. Equation (5) provides a unique solution for the reconstruction, ensuring that the recovered 

signal adheres to the defined error constraints. One common approach to solving Equation (5) involves 

approximating the solution by reformulating the problem into an optimization task. This is achieved by 
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minimizing a specific formulation, transitioning the problem into a structured minimization framework that 

simplifies computation while maintaining accuracy. 

                                                                    ĉ =min∥c∥1    subject to  ∥ â − Θc∥ < ϵ                                                (6) 

The f1-minimization approach is a convex optimization problem, which makes it computationally efficient and 

solvable within polynomial time. This property is particularly advantageous for practical applications where quick 

and reliable solutions are required. As a result, the reconstructed signal b̂ can be accurately represented using this 

method. This approach ensures both efficiency and precision in signal reconstruction tasks. 

                                                                                       â = 𝜓ĉ                                                                              (7) 

Adaptive compressed Sensing architecture 

This section introduces the proposed Compressed Sensing architecture, outlining its key components and 

functionality. The first part provides an overview of the architecture, offering insights into its structure and 

purpose. The second part delves into the concept of a dynamic knob, which plays a crucial role in optimizing the 

compressed sensing process. Finally, the third part focuses on formulating the core problem, laying the foundation 

for the subsequent analysis and solution strategies. 

Architecture overview 

The proposed adaptive compressed sensing architecture is designed to enhance EEG-based analysis of sleep 

patterns. This algorithm features dynamic reconfiguration, allowing it to adjust its components in response to the 

input signals provided through the EEG. The architecture, as depicted in Figure 3, consists of four key 

components: the dynamic web module, which manages real-time adjustments; the randomized encoding module, 

responsible for efficiently encoding the signals; the quantization module, which converts the continuous EEG 

signals into discrete values; and the signal reconstruction module, which reconstructs the signal for further 

analysis. Together, these components work synergistically to improve the accuracy and efficiency of sleep pattern 

detections 

 

Figure 3: The block diagram representation of compressed sensing architecture. 

Sensors collect analog inputs, also known as raw analog data c ∈ QN. These signals are analyzed by a system 

called the dynamic knob, which examines the structure of the signals. The dynamic knob then adjusts the system's 

settings using an optimal parameter estimator to ensure the best performance. It carries out two key tasks: 
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converting the signals into digital form (quantization) and encoding them in a randomized way for efficient 

processing (randomized encoding). 

In this system, the analog data b is encoded into an M-dimensional vector  

a ∈ QM using an encoding matrix Θ𝑀 𝑋 𝑁. Each bit is processed through a quantization scheme Rx, and the resulting 

digital data is represented as â. The data aggregator collects this encoded information from a wireless transmitter. 

Within the aggregator, a reconstruction algorithm is implemented to recover the original N-dimensional input 

signal b. At the heart of the Adaptive Compressed Sensing (ACS) architecture is the Dynamic Knob. This 

component acts like the central nervous system, managing and coordinating the activities of all modules. It ensures 

that the system adapts to the EEG signals and optimally configures the other modules for accurate signal 

processing. 

To evaluate the CSA in terms of energy and the performance, the ACS model for energy is mentioned as below. 

                                                                               E = J × M × I                                                                           (8) 

In Equation (8), M represents the sampling rate, I denote the bit resolution and refers J to the energy per bit in 

wireless communication. The Percentage Root Mean Square Difference (PRD) is defined in Equation (9). 

                                                                 𝑃𝑅𝐷 =
‖𝑏 − 𝑏̂‖

2

||𝑏||
2

𝑋 100%                                                                  (9) 

Percentage Root-Mean-Square Difference (PRD), which is often used to quantify the difference between an 

original signal (b) and its reconstructed or approximated version (b̂), ‖𝑏 −  𝑏̂‖
2

 - represents the Euclidean norm 

(or L2-norm) of the difference between the original signal (b) and the reconstructed signal (b̂). ||𝑏||
2
 - is the L2-

norm (Euclidean norm) of the original signal b, essentially measuring the magnitude of b and X 100% - 

Multiplying by 100 converts the result into a percentage for easier interpretation. 

   

 

Figure 4: The Dynamic Knob Structure 

To achieve high accuracy and low-power design in EEG signal processing, the Dynamic Knob Framework plays 

a critical role in the design architecture. This framework ensures the mobility of the front-end EEG signals while 

maintaining efficient performance. It consists of two key components: 

1. Signal Structure Analyzer 

2. Configuration Lookup Table 

The Configurable Pre-Calculator manages adjustable parameters, and ultra-low-power memory technology is 

employed to configure this structure. The primary goal is to create a highly accurate and energy-efficient signal 

structure within the analyzer. The basic block structure of the Dynamic Knob is depicted in Figure 4. 

The Support Vector Machine (SVM) scheme is integrated into the Signal Structure Analyzer. The initial step 

involves a binary SVM classifier, which focuses on two critical factors: energy efficiency and classification 

accuracy. Accuracy is improved using a robust training dataset, while energy consumption is optimized through 
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circuit-level implementation of the binary SVM classifier. The key challenge addressed by the Dynamic Knob 

Framework is solving the problem of multi-class classification. 

In the first-level implementation of the binary SVM classifier, handling the multi-class classification problem 

becomes a top priority. The Radial Basis Function (RBF) and Time-Division Multiplexing (TDM) kernel are 

utilized for classification tasks, with the CORDIC Algorithm enabling efficient SVM implementation. 

The algorithm calculates differences between input vectors to generate support vectors. Multipliers are used for 

squaring operations, and the sum of all squared values is combined to form specific parameters. These parameters, 

determined using the CORDIC algorithm, are crucial for computing exponentials and other elements in Equation 

(10). This approach enhances both classification performance and energy efficiency in the Dynamic Knob 

Framework. 

                                                                              parasi =ai x αi                                                                          (10) 

The authors have proposed an automatic sleep spindle detection system, working with EEG signals from 

background activity. The system combines two approaches. The first approach filters the EEG signal to isolate 

Sigma band frequencies, while the second approach imitates the procedure of expert analysis. Sleep spindle 

detection is only considered valid when both approaches produce consistent results. The testing included EEG 

recordings from two subjects; thus, an aggregate number of 1,132 epochs was achieved. Sleep spindle events were 

identified for 803 instances by experts and the developed model achieved accuracy of 87.7%. The study of sleep 

spindles has various applications for humans, such as the detection of nervous system diseases, nutritional 

deficiencies, and risk assessment for diseases including sudden infant death syndrome. A polymorphic graph is 

used to analyse sleep patterns among adults and children. 

The detected virtual patterns are considerable for psychological and pathological studies. Five characteristic 

patterns for sleep are identified in the paper: slow delta and theta waves, EEG activity spindles, rapid eye 

movement (REM) sleep, and EMG muscle tone. EEG samples are collected at 250 Hz, and two discrimination 

approaches are processed in parallel, classified as Module 1 and Module 2. In Module 1, the Sigma band filter is 

applied, while Module 2 utilizes a mimicking approach. Both modules filter and analyse the ECG signal in the 

time domain, and analysis is conducted based on different criteria. The findings are condensed in Module 3 and 

set up the acceptable parameters in relation to the requirements of the system specifications. Several parameters 

are used in fine-tuning and training of the data to establish a correct threshold for the signals. 

Throughout the study, anterior derivations were studied, using direct references for both background activity and 

anterior activation. The system was tested on continuous sleep recordings from a pair of patients, amounting to a 

total of 1,132 epochs. Experts identified 803 occurrences of sleep spindle events, and the results were tabulated, 

showing an average accuracy of prediction at 87.7%. Nakamura et al. [25]. Sleep is an integral part of human life 

and is associated with distinct brain wave patterns, which is actually a state of both physical and mental rest. The 

fundamental feature of sleep is changed consciousness, which is usually associated with reduced sensory 

perception, muscular activity, and environmental interaction. During the course of sleep, brain activity is 

increased, and neural circuits are remodelled. In addition, central nervous system promotes the brain Glymphatic 

system space clearance. These amplitude and frequency variations of the sleep cycle are observable in the EEG 

signals as the variations that correspond to the states - falling asleep, asleep, or awake. Various stages present 

different brain waves, Alpha waves typically occur when a person is resting. Other brain waves include Beta, 

Theta, Gamma, and Delta waves, each associated with different states of brain activity. Beta waves are observed 

when an individual focus on a particular aspect. This is a function of high frequencies and less amplitude. Gamma 

waves are used when a person is greatly engaged in an activity. These include Delta and Theta waves in the deeper 

stages of sleeping [26]. 

 

IV. RESULTS AND DISCUSSION 

Parameters of analysis  

This experimental result analyses is done two key parameters: Signal-to-Noise Ratio (SNR) and Percentage Root 

Mean Square Difference (PRD). In simple terms, SNR refers to the ratio between the desired information signal 

and the undesired background noise, indicating the signal's clarity. PRD, which stands for Percentage Root Mean 

Square Difference, is a quality metric used to evaluate the accuracy of EEG signal reconstruction after 

compression. It reflects the improvement in signal reconstruction, with lower PRD values indicating better quality. 
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The research experiment was conducted on 50 patients, with their sleep patterns recorded as EEG signals. The 

signals were pre-processed, and the error signals were extracted as illustrated in Figures 5 to 10. A sample from 

two subjects is presented below. 

 

Figure 5: The Original EEG signals of Sample Subject 1. 

 

Figure 6: the Pre-processed EEG signals of Sample Subject 1. 

 

 

Figure 7: The Recovered signal obtained after the reconstruction for the EEG signals taken form  

Sample subject -1. 

 

The Figure 5 shows the original EEG signals that are taken from the patient 1(subject 1).  The signals are loaded 

in to the MATLAB code to perform the pre-processing by feature extraction, these results are shown in the Figure 

6. The error signals ate extracted, and the original signals are reconstructed form the it. This is shown in Figure 7.  

The above results are the taken for the sampling value N = 32. The same has been carried out for 

N=32,64,128,256,512,1024.  
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Figure 8: The Original EEG signals of Sample Subject 2. 

 

Figure 9: the Pre-processed EEG signals of Sample Subject 2. 

 

Figure 10: The Recovered signal obtained after the reconstruction for the EEG signals taken form 

Sample subject -2. 

 

The Figure 8, shows the original EEG signals that are taken from the patient 1(subject 1).  The signals are loaded 

in to the MATLAB code to perform the pre-processing by feature extraction, these results are shown in the Figure 

9. The error signals are extracted, and the original signals are reconstructed form the it. This is shown in Figure 

10.  The above results are the taken for the sampling value N = 32. The same has been carried out for 

N=32,64,128,256,512,1024.  

Table 1: PRD and SNR values for different samples 

Samples PRD SNR Samples PRD SNR Samples PRD SNR 

1 0.77383 82.2271 18 0.773 82.396 35 0.7712 82.3967 

2 0.74635 82.5412 19 0.764 82.4559 36 0.761 82.4779 

3 0.74763 82.5263 20 0.761 82.389 37 0.759 82.3284 
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4 0.78882 82.0605 21 0.7681 82.536 38 0.7528 82.398 

5 0.7666 82.3086 22 0.7554 82.3209 39 0.7693 82.4712 

6 0.78056 82.223 23 0.7704 82.2252 40 0.7759 82.432 

7 0.7752 82.3283 24 0.7583 82.261 41 0.7701 82.5159 

8 0.765 82.4847 25 0.7609 82.3145 42 0.7557 82.4693 

9 0.7531 82.2686 26 0.756 82.5072 43 0.7718 82.474 

10 0.7885 82.3477 27 0.7563 82.3264 44 0.7522 82.4662 

11 0.7773 82.3703 28 0.7807 82.3483 45 0.7824 82.4528 

12 0.7879 82.424 29 0.7845 82.5299 46 0.7632 82.5444 

13 0.7503 82.4273 30 0.7625 82.4763 47 0.7646 82.5188 

14 0.7744 82.5102 31 0.7858 82.4582 48 0.7735 82.2928 

15 0.77 82.4081 32 0.7816 82.2757 49 0.7716 82.2777 

16 0.7628 82.3879 33 0.7757 82.3036 50 0.752 82.2349 

17 0.7701 82.2671 34 0.7566 82.2618    

 

 

 

 

Figure 11: The computed PRD values for 50 sample subjects. 

 

Figure 12: The computed SNR values for 50 sample subjects. 

The table 1 is the consolidated values of the PRD and SNR values for the different samples. Figure 11 and Figure 

12 are the plots of the same table. The values of SNR and PRD shows consistency with respect to different 

samples. 
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V.  CONCLUSION AND FUTURE WORK 

The compressed sensing architecture (CSA) is utilized to classify sleep patterns in EEG signals. At this stage of 

the research, the patterns have been analyzed, and feature extraction has been performed. The error signal is 

extracted using the CSA. Data were collected from 50 subjects with normal sleep. For all subjects, the PRD 

(Percentage Root Difference) and SNR (Signal-to-Noise Ratio) were calculated, with the results tabulated in Table 

1 and plotted in Figures 11 and 12. The mean PRD and SNR values were determined to be 82.38496 dB and 

0.76751 dB, respectively, averaged across a sampling range of N=32N = 32N=32 to N=1024N = 1024N=1024.The 

error signals were extracted, and the original signals reconstructed, as detailed in the preceding sections. The 

obtained results demonstrate improved accuracy compared to existing systems. This method shows potential for 

practical applications, as the results are close to achieving high accuracy. The experiment successfully extracted 

sleep patterns and enabled automated detection of relevant parameters in EEG signals. As a continuation of this 

research, the method can be extended to include the recognition of paralyzed sleep patterns. This approach has 

proven effective in accurately identifying patterns associated with paralyzed sleep. 
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