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ABSTRACT

Vehicular Ad-Hoc Networks (VANETS) have emerged as a pivota @ for eMgmncing road
safety and traffic management through real-time vehicle-to-vehicle (V2V)\@g#Mnication. However, the
dynamic and open nature of VANETS introduces challenges related to data rity, privacy, and trust
among vehicles. To address these challenges, the integration of blockchain jgshr™@agy into VANETS has
gained considerable attention. In this study, we introduce Vehicul inﬁnforcement Learning (RL),
a Blockchain-based VANET system that employs artificial intell , Deep Reinforcement Learning
(DRL), to create a flexible, knowledgeable, collaborative, ork for the VANET industry.
The framework brings together a wide variety of VANET, ing Blockchain technology and
an intelligent decision-making RL algorithm t ‘ ine. The goal is to optimize the network's
behavior in real time, with privacy and se
Blockchain Manager (BM) intelligently adju
the realm of Reinforcement Learning (RL), the \@RQN framework introduces Deep Q-Network (DQN),
Double Deep Q-Network (DDQN) and Dueling
Markov Decision Process (MDP) optigaseation model? The proposed approaches and two heuristic ones
are thoroughly compared. The ethods achieve real-time adaptation to system state
convergence, maximum security, y, and low cost.

Keywords: VANET, Block ¢ BlocR™lanager, Reinforcement learning, Deep Q-Network (DQN)

1. INTRODUCTIO

Focusi pact of VANET systems and their effect on people's standard of living is
essenti i ase in the number of Vehicles with event transactions, it is becoming
increasi i to employ the conventional VANET model to provide round-the- clock monitoring.
i etween doctors and Vehicles during illness epidemics raises concerns about instability,
ays in receiving critical services. As a result, both the Vehicles and the doctors face a
ying. More than 10 million Indian vehicles have accidental records that limit their ability to

intelligent transport management systems. It is of the utmost importance to establish an VANET
that eliminates the requirement for Vehicles and physicians to meet one another in person.
Researchers are looking into approaches to decentralize the connecting of several parties while yet
considering these constraints. In 2008, a distributed ledger, often known as a blockchain, was first
presented as a means of ensuring the dependability and security of data that is exchanged across several
participants. As discussed in, this exciting technology was use in a variety of fields, including but not
limited to Industry 4.0 and the 10T, the financial sector, and the academic world.




Blockchain features allowed it “to overcome central challenges in these applications. Due to the
characteristics that it possesses, Blockchain was able to overcome major problems in several applications.
These characteristics can be summarized as follows: It eliminates the need for a third party while at the
same time fostering confidence amongst diverse entities subject to a variety of rules and regulations. Data
recovery is made simpler because all entities involved in the Blockchain have access to a copy of the
ledger. In this way, the newly added block is irretrievable and better fraud detection is achieved [1].

To create these Blockchain systems, a consensus algorithm and smart contract are used. Blockc
consistency and integrity are safeguarded by the consensus algorithm. There are a few differe
algorithms that have been researched and written about, including Proof of Work (PoW),
(PoS) Practical Byzantlne Fault Tolerance (PBFT), Delegated Proof of Stake (D

ledger since they are executed as transactions on top of the ledger. Miner
legitimacy of transactions before they are included in a confirmed block. X Fance from Blockchain
companies, miners can reliably enforce smart contract regulations. Due to VENg@les misidentification and
event records being duplicated between vehicles, traditional VANET sy perience redundancy
issues. The VANET industry has been an early adopter of blockchgi dgy due to the many ways in
which it can be utilized to improve upon the inefficiencies o ANET systems. The VANET
sector is predicted to become the largest Blockchain market evenues of over $500 million.

VANET systems benefit from blockchain tec S bility to reduce the likelihood of
inconsistencies in medical data, resulting in Wi , shorter processing times, fewer human
processing processes, and lower reconci Q er, Blockchain capabilities such as
accessibility, trust, openness, traceability, anC\gag |I|ty can be effectively implemented in VANET
delivery systems. When conducting an analysis oNg@aedical data, it can be helpful to link data and events
from a variety of entities to understand the facto at contribute to medical phenomena like virus
infections. When dealing with com d transactions while adhering to all the essential privacy and

security regulations, there are issye ccur. When optimizing for Blockchain, the writers solely
take latency and security into , however, is a factor that must not be disregarded.

€D

To enhance blockchgj i , it is necessary to update the Blockchain configuration adaptively
i g transactions, a task that requires a learning- assisted decision-

health systems across a variety of disciplines, including the VANET industry,
d extensively. Data analysis, preprocessing, recognition, categorization, drug
only some of the many uses. The Atrtificial Intelligence (Al) technique known as

at is decision-driven and learns the dynamics of its surroundings as well as the links
tesof its components. Since RL approaches include both the immediate (short-term) reward
te and the discovery of a long-term policy that optimizes the system's benefit over time, they
e potential to outperform conventional methods of decision-making.

Deep Learning was combined with traditional RL to create Deep Reinforcement Learning, or DRL for
short, to improve RL's overall performance”. A decision can be made in real time by Deep Reinforcement
Learning (DRL) based on a model that has been trained. This paradigm enables us to achieve our objective
of maximizing system security while simultaneously reducing latency and costs, and achieving this
optimal balance between these competing system goals is our primary objective.




Within the scope of this investigation, we present Health chain-RL, an effective and decentralized
VANET Blockchain architecture. Health chain-RL makes use of Deep Reinforcement Learning (DRL),
which enables the network's behavior to be dynamically modified. This paradigm enables us to achieve our,
objective of maximizing system security while simultaneously reducing latency and costs, and achieving
this optimal balance between these competing system goals is our primary objective. Here is a rundown of
the major contributions:

A multi-goal optimization framework, Blockchain-RL is being developed for use in V.
systems. “It establishes a relationship between characteristics like the number of transactiong
and the age of a transaction and blockchain setup aspects like the priority of transactions and
data. The purpose of Blockchain-RL is to boost the effectiveness of VANET networks s

d |
» Optimise latency, security, and cost in real-time while considering tf -v ements of Blockchain
entities and have been tasked with proposing an intelligent manager that\g@based on reinforcement
learning techniques such as Deep Q-Network (DQN) and Dueling Do p Network. This will

lockcnam; and
3].

> Introduce the reputation of Blockchain miners; consider the temporal
formulate the Markov Decision Process (MDP) of our suggested Healt

allow to optimize these factors by taking into account the requj 1@t Blockchain entities.
» Compare the suggested Health chain-RL to other methods, t reedy and Random- selection
methods, while demonstrating the superior performan th oyl BM”.

2. RELATED WORK

Table 1. Blockchain-powered appli employing Deep Reinforcement Learning.
AUTHORS TRADE-OFF RL-APPROACH
OBJECTIVE

Trust features of
Blockchain nodes and

Zhangl;(lj:;.énz,exlg, Z. etworISsHOC vehicles, consensus DDQN
nodes, Blockchain
computational capability
dustrlal_lnternet Parity across regions Distributed DON
of Things and overall energy use
Energy required for
Vehicular Edge | transmission, data stored DON
Computing in cache, and delay in
sending data all add up.
. Industrial Internet . Flexibility,
ith, D., Golmie, . independence, delay, DON
of Things
N. and safety
ia, X., Chen, F., He, Wireless Consumption of
Q., Grundy, J., Networks resources, costs, and DQN
Abdelrazek, M., Jin, H. caching
10T Monitoring | Accountability, lag time,
Guth, S, etal, Applications and price DON




2.1 Blockchain Technology in VANET

Blockchain is ideally suited for use in VANET applications due to its features, which are required t
uphold a high level of confidentiality when exchanging Vehicles data and medical records with one anoth
The authors propose a distributed event record ledger constructed on the MATLAB software. This will allo
for diverse VANET operators to have access to Vehicles information in real time. Unfortunately, it h
shortcomings in a variety of areas, including Vehicles identity, key replacement, and scalability, 3
others. The proposed architecture that is built on the Blockchain that safeguards the confidenti
Vehicles event records and prohibits potentially harmful parties from having unauthorized access
records. The proposed framework for Parallel Healthcare System (PHS) Blockchain has its
such as scalability, latency, and security, because it is based on artificial systems
experimentation, and parallel execution, yet it has shortcomings. A dual Blockchain infr

problems including Iow scalablllty, high latency, high computatlonal cos :
gyics prof]
lea

ealth record, solves the
gtion is still necessary. As
industry, such as, have

framework promotes interoperability among different providers to acc
scalability problem that Vehicular chain was having, although Vehicles authe
an illustration, quite a few of the other suggested Blockchain systems in t A
problems with the scalability of their administrative processes.

2.2 Enhancing VANETS Using Reinforcement Learnin

ane s said to have occurred when a
while interacting with the environment (the
as moved on to a new state, Markov
rewarded monetarily for the work that he or she
following five basic components: the agent, the
environment, the states, the actions, and the rewX@h A unique approach to solving Markov decision
processes (MDPs) that use artificial § igence (Al) is called reinforcement learning (RL), and it is a
subfleld of the area of machine Ie I . The major objective of the agent is to engage with its
accomplishment of its other primary objective, which is to

In “a Markov decision process (MDP), a transitio

formulation of the issue). This is because
decision process (MDP). At the same time, T

maximize its utility by adheri
is the focus of your attenjiages cide on the most effective next move for a particular state. This later

completely congruent with one another. Off-policy learning is the term used to
e (e.g., Q-Learning). Q-learning is a well-known example of an off-policy learning
rcement learning. An agent is a piece of software that takes in information about a
function and then tries to optimize that policy by analyzing it and making changes where

at is distinct from the action itself. This is accomplished by iteratively updating the policy in the
C of explorationin order to find the most effective policy [5].

2.4 Q-Learning approach

In particular, the Q-Learning approach is investigated in this work. This is a method in which an
agent attempts to determine the most appropriate response for any given set of circumstances and then
records this data in a Q-table. Medical imaging research and clinical concept extraction are only two
examples of the kinds of challenges that neural networks may help with. This is only one example of how



doctors might benefit from using deep g-networks (DQN).

3. SYSTEM MODELING AND ANALYSIS

Our goal in creating Vehicular chain-RL was to create a safe, adaptable, and web-based platform
where many parties could safely share and use VANET information. Fig-1 depicts the structure, w,
advocates the implementation of a consortium medical Blockchain across multiple VANET organizaip
In accordance with their predetermined eligibility in the smart contract, these entities will have gcce

4 _

optimizing Blockchain networks by striking a balance between security?
constraints imposed by transactions, specificallythe securit

Blockchain managers have been proposed as a means of deallng wi
medical data, protecting that data from unauthorized access, andgas
this study, we present a smart Blockchain manager that ut'
respond to the ever-changing state of the system and antici

g all the aims at once [6]. In
orcement learning methods to

Then the Blockcham optlmlzatlon problegas

Bl B5

. Eventoccurence

Fig. 1 Architecture of Vehicular Chain-Reinforcement Learning



3.1 Entities of a Blockchain

Several interested parties may collaborate on this framework's creation to speed up the creation of a
decentralized VANET system that is also scalable, safe, and smart. To conduct research, review data, and
adopt new health rules, these organizations can either share their VANET data with the blockchain or
access the data that is already there. Possible participants in such a framework include medical facilitig
pharmaceutical stores, insurance providers, and the Ministry of Public Health (MOPH) [7]. In the foy
a smart contract, Blockchain presents the underlying business logic that makes the technology
This logic encompasses all the organizations’ stipulations, guidelines, hierarchies of au
order of importance levels. Each party must approve the transaction and then apply the

before it can be recordedon the Blockchain ledger.
3.2 Blockchain Technology.
Blockchain, a distributed ledger technology, facilitates the ment, rage, and

processing of Vehicles data between institutions. Instead of using Proo ke (PoS), a consensus
mechanism called Delegated Proof of Stake (DP0S) can be used to guaranteS@galability and shield the
Blockchain from detrimental usage and centralization. Voting and electl arsg@psed to select miners
who maintain low operating expenses. With the Blockchain setsmgs d in this paper, the trade-off
between cost, latency, and security may be adjusted to suit of the various entities storing
transactions [8]. The important variables are the total niggbd
transactions per block. Thosetwo factors are determined igg@&he s pckchain manager.

] architecture is the Blockchain Manager (BM). A
ed, and from there the number of transactionsallowed

hhancial costs and should be avoided. Unless an unexpected
ree on how often the Blockchain configuration should be
or a timed algorithm could specify certain actions to be done
Aategrity of the Blockchain, either one entity must assume the role of
curity reasons) or the role can be shared among multiple entities in
gular intervals. This circulation should occur on a predetermined and
sake of consistency and safety, the proposed Vehicular chain-RL

updated. A smart contract on
at specific intervals. To g g

enae
ed at

Ity, timeliness, and age are summarized using various data compression, classification,
ction methods (local network). How long a transaction must sit in limbo before it can be

are some examples where urgency and safety play a role: Urgenttransactions, like emergency alerts,
may<call for little security and short latency. If more miners are needed to keep the Bitcoin network
running, transaction fees and transaction times for high- security payments may rise.

Considering three competing goals, the suggested framework allows us to attempt to translate the
Vehicle’s circumstances into several modes of Blockchain configuration. Safety, Delay, and Money [9].
At a given time step t, the utility multi-objective function is represented by Eq. (1)



Minm;, p(L)+q(sm%)+(c) (1)

lmax Cmax

subject to 1<m; < Mmax

1 S tri S Tmax

Ar < Auy

Where by 1 <mi < Mmax and 1 < tr < Tmax are constraints on the chosen number of miggu;

| .

the number of transactions tri, respectively.

The Mmax miners and Tmax transactions in a single block. The transaction
exceed the threshold (Aw) above which a transaction is rejected from th i
included in a block and forwarded to the network. According to the needs g
relative importance of latency, security, and cost is determined by the W y
sum of which equals one. When determining what features a system admin Pr needs, it is possible to
consider both business logic and the data's inherent characteristics. With th&@gaximum values of the
objectives in mind, we were able to create equations that were uniform jgheir Whits and scaled to the
same dimensions. Maximum latency (Imax), maximum security ( aximum cost (Cmax) [10].

S = S.mBM¢Y @)

Where S¢is a system coefficient; mBM jg
indicator factor demonstrating the scale of thg
can be used to identify the security (S).

urger of rs picked by the BM; and q is an
wit alue that is greater than or equal to two,

The total amount of time that it takes to cr
the symbol L in Equation 3.

e verify, broadcast, and upload a block is denoted by

— (oSt , Yr
L= (Dtr) + 1flx +EGSm+ o 3)

tp is the number of tra ions e included in each block, St is the size of each transaction, G
j urces required to verify a block, a is the number of computational
is a predefined parameterthat is described in greater detail in. The

is the number of compyig
SSESSCN
yedbackilk denoted by Vi, the uplink transmission rate from the miners to the BM

resources that miner | g

is denote h nk transmission rate from the BM to the miners is denoted by Dy.
U = blog(1 + SN,) 4)
D¢ = blog(1 4+ SNy) (5)

size of the verification
quaty®s (4) and (5), b denotes the bandwidth, while SNy and SN, stand for the signal- to-noise
b of thapwnlink and the uplink respectively.

he objective that we are aiming to achieve via reducing costs is the cost Cmin, Which is
nted in Equation (6).
X5 CCi
Cnin = Ot (6)
b

In this equation, the computing cost for each miner m is denoted by CC;i, where | am the number of
selected transactions. As CCi = a; x r;, CC; is proportional to the product of its available resources (a;) and
the cost of utilizing those resources ().




3.4  Strategy Based on Deep Reinforcement Learning (RL)

The architecture shown in was used as a starting point and tweaked such that the system could
used in a variety of online environments. This study aims to find the optimal Blockchain configuration
a given set of Vehicles conditions by considering the tension between the three main constraints of an
VANET system: privacy, speed, and cost. Its goal is to ensure a responsive, smart, and safe VAQ
system. We classify this optimization issue as NP-hard. The problem was solved by the authors in
Greedy strategy that ignored the time-dependent nature of receiving transactions within the Blod

expensive and unreliable in real-time since it requires solving the optimization at each ti
beyond these restrictions on speed, complexity, and future aggregated performanc

optimization issue (MDP) State space (SS), action space (AS), state transitio
and discount factor (Dy) Ds € [0, 1). The agent receives a snapshot of the eny&o t's state, represented as
es € SS, at regular intervals of time, denoted by t. To get a revg % the agent must carry out an
action ea € AS in accordance with a policy (als). Therefore, P *a) = Ts (es, ea, s') is the transition
probability from state es to state s ' when ea is the injd introduce the concept of deep
expectation, where the reward for performing an action nas ile adhering to a certain policy
is encapsulated by the function Qm (es, ea) = § |st = es, at = ea]. The MDP is then solved
using Deep Reinforcement Learning (DRL efined, Deep Reinforcement Learning is
used to solve it (DRL). Following this, we W
to education. This encompasses the SS, AS, T and MORF of our optimization issue, or state space,
action space, environment, and goal function.

P
MD

4. PROPOSED METHODOLO FOR REINFORCEMENT LEARNING

Blockchain Manager is unggr e del for state transitions, a model-free technique like Deep Q-
Network (DQN) must be empgRd to ar: an estimate for Q. There is no assurance that thisapproach will
converge, thus it's useful jgss ncements that speed up the weight convergence and stabilize training in
a neural network. Whg [ odel-free algorithms, experience replay (Rp) is a key idea utilized to

ent experience and the agent's accumulated history of experiences. Using

ard and state will be fed back to the agent. Initially, multiple random actions are taken to
state space and determine the ideal action for that state. An experience replay memory will be
to record all information regarding previous encounters, including the state, the action made, the
reward received, and the subsequent state [12]. As often as N time steps, the target network’s settings will be
adjusted. Making the proper choice and responding quickly to unexpected changes are crucial in VANET
applications, where they can have a major impact on the health of the Vehicles and the effectiveness of the
system. Traditional methods of decision-making struggle to keep up with the rapid pace and high stakes of
today's VANET systems. Therefore, the purpose of this research is to explore the online decision-making
performance and flexibility of state-of-the-art off-policy techniques. Double Q- Network (DQN) and its




variants are investigated. These include the Double Deep Q-Network (DDQN) and the Dueling Double Q-
Network (D3QN). When neural networks are used in place of a Q-table, as they are in the original DQN
model, the table is no longer needed. Concerns of overconfidence and false positives associated with D
are especially pressing in the context of VANET systems. Since DQN suffers from being too optimisti
DDQN is an improvement. D3QN considers not just the value of the state in relation to the action to b
taken, but also the probability of being in that condition. Thus, D3QN employs a neural network mod
a unique structure. Each method is broken down into its component parts below. Traditional Q- |
relies on Q- tables for action estimation, but for model-free results, researchers at Googl8
recommended using a neural network instead. Machine learning models are used by D
approximators instead of traditional lookup tables. The online network will undergo cont
descent updates, while the parameters of the target network are changed after a pred ' er of
episodes.

In the case of DQN, Y is denoted by the equation (7), and the parag Id coMgant at some

previously determined values *.

()

YkDON = ¢ + DfmaxQ(s. a’; 0 )
The revised version of the loss function, denoted by Lf, cong ﬁorical data on Y, DON that
has been stored in the replay buffer, denotedby Rp (8). Equatio bes the Q function,

Lfk(0k) = EgssrsF)~P(R . 1)1 (8)

Qk+1(se, at, 6) = (s

solely on future rewards, and the settings ofthe neu
the activation function (d), a positiv rning function defined by d = max (0, x). The ¢ value denotes
which the most recent estimate is modified in relation to
the update target. The smoot tion is developed and refined with the aid of Adam
Optimizer. Online Sample-b made possible using an intermediate estimate Y of the
rewards of the future Statcesidls tilized as an alternative to standard stochastic gradient descent (SGD)

um operator is used by both the online and target networks at the same time,
operator is used in a separate fashion. The two methods differ in how they
rk [13]. Because of this, the estimated actions are unrealistically positive. Most of
optimistic problem will manifest itself in the form of a false-positive issue when it
e- scale issues. To choose the appropriate action with the highest Q-value, DDQN favors
etworks. With an eye toward the following state's expected Q-values, the target network
the action that necessitates the most data. After a set number of cycles, the online network's
ill be used to adjust the parameters of the desired network. On the other hand, the internet network
will be upgraded in accordance with the optimizer (e.g., Adam Optimizer). Because of this, the problem
of over optimism will be mitigated, and the phase of learning will become steadier and more dependable.

Equation (10) stands for the YDDQN and Equation (11) is the action- value function Q for the DDQN
taking Y DDQN into c0n5|derat|0n.

Y PW = 14 D(s', 7 Gmax (Q(s-a'; 69))¢ (10)



Qr+1(S6:at,8) = (St,at,0) + ¢ (Y,?DQN — Qk+1(5t'at'et)) (11)

4.2 Dual-Depth Q-Network Battle (D3QN)

We presented a new network architecture called the Dueling Double Deep Q-Network (D3QN
many states' action choices are roughly equivalent, the motivation for suggesting D3QN is that d
may slow down learning. Two streams can be estimated using the suggested dueling neural nejy
In this study, we apply the idea of an advantage function to DDQN, where the approg
advantage function A produces identifiability concerns and consequently inhibits the recgye
and Ar. T the average of Af, shown to increase the stability of the optimization. Acti aty
D3QN is represented by Eqg. (12), which incorporates the value and advantagg 0

Q(s, a; G,x",y") = Vs(s, G,x") + ((Af(s, a; G,x",y") - |141722fAf

Parameters for the combined streams Ar and V; are denoted by x’?

Vs(s) = E[Q~ (s, a)]is a representation of the state-value 0
over optimism is not an issue for many uses because high
lowering it will greatly steady the educational process.

s. It is important to note that

r-_- == = = = = — — — = Environment
| DEEP REINFORCEMENT LEARNING ING NT |
I States |
I
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Fig. 2. Vehicular chain-RL system's Deep Q-Learning flowchart

5. IDEAS PROPOSED DURING INSTRUCTION

First, we have Algorithm 1, which depicts the BM's training procedures in full. Together with the
initialization of the replay memory Rp, where the tuples of experience data are stored, the weights of the
online and target neural networks are also set. Through social interaction, an agent in the BM model
accumulates a set of experience tuples across a succession of states. The agent “picks actions in each



state at random with probability or according to a greedy policy (€) to ensure the quality of its
investigation of the actions available in that state. It also involves adjusting the weights of both the online
and target neural networks until line7. To facilitate BM environment learning, e is initially set to 1, and
then begins to decline over time [14]. Exploitation behavior isrepresented by the best actions (those with
the highest Q-value), while exploration behavior is shown by random activities. Acting is done to control
the cost-benefit ratio of the situation. The tuples of state-action transitions are recorded in the re
memory Rp and later used as experience data in the optimization process to refine the estimation of Q
an option, we can consider requesting irrational subsets of Rp's experiences of p. The TD-target

4

Soft updates to the target network can also help stabilize the learning p/Sgs
and only when *6~ 6*”,

Algorithm 1: Methods Used in BM Training (agent)
Input: Artificial Environment Modeler ,

Output: 81: The approximation's NN parameters Q=

1: Ry < Setting the amount of the replay memo I N.
2: 8 «— Randomize internet network setting

3: 6%« 6 Setup the parameters for the intend

4: for episodes =1: E do

5: To set the initial condition s < ( 0,a],[Ri1-* Ru])

6: fort=1: K do /** Environ

—

7: Specify the Update OperatioNgr the S®te a.
Random with probability €
{greedy policy, otherwise
hnsactions tr and how many miners m were chosen.

Determine, using at, hd

RP™¥ (st, ar, 1t , Seva, done)

11.Update State s; «— S¢+1

12: /**Updating the estimates**/ Just pick a sample at random p € R,

p { St,at, Ti, st+1,done} |ﬁ|1



13: Determine Q-targets for the selected strategy by using the target network.
For DQN, DDQN,and D3QN based equations, see Egs. (15), (18), and (20).
14: Fit 6 to Target Y. using Adam Optimizer

15: Update the target network at each target step. 8* «— r6 + (1 — r)*16:

end for

17: end for
18: return 6, ~ 6
5.1. Methods Proposed in Real Time

achin(qgg@nvergence,
t be prepared to adapt

The neural network parameters were saved after completing algorigjg
allowing their subsequent use in a real-time setting. This means that the 3
to sudden changes in the environment (such as an increase in miner pricing 0
maintain the convergence state. One run through the neural network is pegor
Algorithm 2, which is a representation of the steps as they occur j ea\&. Th
the course of action that maximizes its expectedprofit over the |

gl at each time step in
BM will always take

Algorithm 2: Directly Monitored BM in Real Time (agent
Input: NN parameters after training 61

Output: State update

1: done < Set the initial environment status to

2: Initialize State st

3: while! done do

4: Find a * Consider that a * *and 1ge

5: Assuming that you k re Q*(,at,0)
: Observe s:+1, and r¢
oolean

Insert the Experience of a Tuple. Ry < (, a¢ , 1t , St+1, done)

TION OF PERFORMANCE

ehicular chain-RL is tested through computational simulations to see how well it can adapt to
novel conditions, how much action-time it requires to achieve a desired result, and how well its proposed
strategies converge on the reward function.

6.1 Experiment Setup & Design Procedure

We utilize a BM queue size of Q and a multiplicative factor (per episode) for epsilon decay of
0.999 to train our Vehicular chain-RL over 104 episodes (E). It's vital to keep in mind that as the number




of miners grows, so will the risks, delays, and expenses associated with using the network. However, the
delay and overall cost will rise as the number of transactions rises. Since consistency is of utmost
importance, we've decided to give equal importance to all three goals (p, g, r). Table 2 details the
weighting factor values and other optimization parameters in terms of safety, delay, and expense.

Table 2. Variables used in optimization.

Variables Values
B 0.52MHz
SNu 12dB
SNd 10dB
Q 2.01
\Yi 0.52Mb
St 1.0
Sc 1.0
p.q.r 0.342

6.2 Convergence in Rewards

¢ training reward fora total of 104
illa DOQN, DQN with ten hidden layers,
d over the past 50 episodes. Using the
in fact, converge. For the first 1000 episodes, all
pgent to learn about its environment through trial and

Vari Values
20.01
10.2
10*
103
Ds 0.92
€ 1, by means of 0.9999 Decay
hi 4.0 otherwise 10.0
Q-Network When hl= 4 — 70,45,45,79,150
Neurons/layers When
hl=10—70,45,45,45,45,45,45,45,45,45,79,150
0} 3X10*
Ipl 45
IRy| 10°
r 10-3
target steps update 4
(soft)




7. RESULTS AND DISCUSSION

To gauge the usefulness of Vehicular chain-policy RL, we have done a battery of experiments. Q-
Learning methods have values that are close to one another, unlike the Greedy and RS policies. Vanilla
DQN, by leveraging online and targeted networks, was able to reap the highestbenefit (26,900). It is shown
in below graph, how much each policy earned in rewards during the testing (real-time) episodes. We R
a closer look at the payoff when latency, security, and cost are all considered. No goal may be pug
with more importance than the others. Considering this, any strategy's aggregate of these three compS@g
requirements are met, the DQL algorithm and its variant find the policy 4 i long- term
uired level

efore, it has the lowest
introduced, the reward

of security but also the time-sensitive nature of the transactions at hand:
latency when compared to the Greedy and RS methods. As was previous
function is directly affected by the reputation of the chosen miners. Sinc
action given the current state, it achieves a high latency level,
considers the immediate future, is unable to manage the trade

RS®
reedy approach, which simply
security and latency. Greedy
rform. Increasing the security
results in a higher cost objective, as the cost objcai is directly related to the miners'
e of transactions that are chosen [16].
security while minimizing latency and
ards for all methods, demonstrating how similarly
they function across the various Q-learning met/"g@ie. As a matter of fact, the RS strategy has the worst
performance, with the Greedy approach coming second. In a stationary setting, Vanilla DQN
performed best, with an average acc ted reward of 13450.
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Fig. 3.  Sum of all policies' rewards from their testing (in-the-wild) episodes.
7.1 Action-time

Time-to-decision is viewed as crucial in VANET applications, especially in emergency situations.
The time it takes for each technique to decide on an action after a series of trials is as follows: The Greedy
strategy uses the most time because it simply does one pass over all the available actions to identi
optimal one considering the immediate payoff. In VANET systems, when quick decision-makif
essential, the Greedy method may be judged untrustworthy. The Random Selection (RS) methgd. 0N

future and the reward now is cru0|al in VANET systems maklng the RS app

‘ ere are no
unexpected shifts in the environment. Proposed methods must accoun @ expectel price shift
while still rewarding miners for their future work. While vanilla D3QN mayS@ to be the fastest way to
perform major system changes, doing so is more labor-intensive in practice, anilla DQN technique
may be the most suitable option in a static system or while implementinfena ¥ changes. As we saw
however, the odds of making a mistake are larger in DON. T tMe characteristics of the system
are relevant in determining the gravity of the problem. C their individual strengths and
weaknesses as well as the system requirements of Vehicul@®h L, N, DDQN, and D3QN can all
be successfully implemented [17]. If the metgma rese n this work are to be used in
Vehicular chain-RL, the system administratg lowing guidelines to make an informed
decision: Even while D3QN increases the ti an operation; it is the preferred option
when working with a dynamic and unpredicta ironment. When compared to alternative methods,
DQN's time to choose an action is the fastest. HOR@&ver, when there is an abrupt shift in the system, the
temptation to act inappropriately increases.

4 0.010453
0.010345

0.00029
0.00025

0.00057

pon B 0.00027

0.00029
0 0.002 0.004 0.006 0.008 0.01 0.012
DQN DQN10 DDQN D3QN RS Greedy
B With Price Change 0.00027 0.00069 0.00029 0.00085 0.0000017 0.010453
Without Nonce Change 0.00029 0.00057 0.00025 0.00082 0.0000018 0.010345

Averaged Action Time (s)

Fig. 4. Simulated Policy Response Time in s, both with and without a shift in miners' pricing.



8. CONCLUSION

We provide Vehicular chain-RL, which enables the safe, adaptive, and flexible exchange of medical
data and Vehicles information among a wide range of entities. An “intelligent Blockchain Manager (BM)
is introduced to address the trade-off between system security, latency, and cost. The Blockchain
Manager is implemented with one of three reinforcement decision-making algorithms (DQN, DDQN, or

fluctuations and converge smoothly in real time, as shown by the experiments. In
Reinforcement Learning (RL) methods, the Block Manager (BM) takes on the role of agen

simulation findings show that reinforcement learning approaches are supg® and random
at results in
al characteristics and
pared to DQN, DDQN,
usage in real-time or

an immediate drop in the accumulated reward, the given models consider Wa
future behavior of the Blockchain to arrive at a sub-optimal solution. Whe

and D3QN, the Greedy approach's processing overhead makes it unsuitalle
mission-critical circumstances”. }
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