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ABSTRACT 

     Vehicular Ad-Hoc Networks (VANETs) have emerged as a pivotal technology for enhancing road 

safety and traffic management through real-time vehicle-to-vehicle (V2V) communication. However, the 

dynamic and open nature of VANETs introduces challenges related to data security, privacy, and trust 

among vehicles. To address these challenges, the integration of blockchain technology into VANETs has 

gained considerable attention. In this study, we introduce Vehicular chain- Reinforcement Learning (RL), 

a Blockchain-based VANET system that employs artificial intelligence (AI), Deep Reinforcement Learning 

(DRL), to create a flexible, knowledgeable, collaborative, and secure network for the VANET industry. 

The framework brings together a wide variety of VANET systems by utilizing Blockchain technology and 

an intelligent decision-making RL algorithm that operates online. The goal is to optimize the network's 

behavior in real time, with privacy and security of Vehicles data as primary concerns. The proposed 

Blockchain Manager (BM) intelligently adjusts blockchain setup to optimize security, latency, and cost. In 

the realm of Reinforcement Learning (RL), the D3QN framework introduces Deep Q-Network (DQN), 

Double Deep Q-Network (DDQN) and Dueling DQN (DQDQN) techniques to efficiently solve the 

Markov Decision Process (MDP) optimization model. The proposed approaches and two heuristic ones 

are thoroughly compared. The suggested methods achieve real-time adaptation to system state 

convergence, maximum security, minimal latency, and low cost. 

Keywords:  VANET, Block chain, Block Manager, Reinforcement learning, Deep Q-Network (DQN)  

 

 

1. INTRODUCTION 

       Focusing on the global impact of VANET systems and their effect on people's standard of living is 

essential. Due to an increase in the number of Vehicles with event transactions, it is becoming 

increasingly difficult to employ the conventional VANET model to provide round-the- clock monitoring. 

Direct interaction between doctors and Vehicles during illness epidemics raises concerns about instability, 

scalability, and delays in receiving critical services. As a result, both the Vehicles and the doctors face a 

higher risk of dying. More than 10 million Indian vehicles have accidental records that limit their ability to 

function, according to the Traffic control laws. Obviously, these figures rise precipitously due to the 

ongoing intelligent transport management systems. It is of the utmost importance to establish an VANET 

system that eliminates the requirement for Vehicles and physicians to meet one another in person. 

Researchers are looking into approaches to decentralize the connecting of several parties while yet 

considering these constraints. In 2008, a distributed ledger, often known as a blockchain, was first 

presented as a means of ensuring the dependability and security of data that is exchanged across several 

participants. As discussed in, this exciting technology was use in a variety of fields, including but not 

limited to Industry 4.0 and the IoT, the financial sector, and the academic world. 
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       Blockchain features allowed it “to overcome central challenges in these applications. Due to the 

characteristics that it possesses, Blockchain was able to overcome major problems in several applications. 

These characteristics can be summarized as follows: It eliminates the need for a third party while at the 

same time fostering confidence amongst diverse entities subject to a variety of rules and regulations. Data 

recovery is made simpler because all entities involved in the Blockchain have access to a copy of the 

ledger. In this way, the newly added block is irretrievable and better fraud detection is achieved [1]. 

       To create these Blockchain systems, a consensus algorithm and smart contract are used. Blockchain's 

consistency and integrity are safeguarded by the consensus algorithm. There are a few different consensus 

algorithms that have been researched and written about, including Proof of Work (PoW), Proof of Stake 

(PoS), Practical Byzantine Fault Tolerance (PBFT), Delegated Proof of Stake (DPoS), and others. 

Without the need for a middleman, smart contracts enable the autonomous execution of business logic in 

response to predefined criteria. Smart contracts enjoy the same security assurances as the blockchain 

ledger since they are executed as transactions on top of the ledger. Miners are responsible for checking the 

legitimacy of transactions before they are included in a confirmed block. With guidance from Blockchain 

companies, miners can reliably enforce smart contract regulations. Due to Vehicles misidentification and 

event records being duplicated between vehicles, traditional VANET systems experience redundancy 

issues. The VANET industry has been an early adopter of blockchain technology due to the many ways in 

which it can be utilized to improve upon the inefficiencies of current VANET systems. The VANET 

sector is predicted to become the largest Blockchain market by 2022, with revenues of over $500 million. 

       VANET systems benefit from blockchain technology because of its ability to reduce the likelihood of 

inconsistencies in medical data, resulting in higher-quality data, shorter processing times, fewer human 

processing processes, and lower reconciliation costs. Moreover, Blockchain capabilities such as 

accessibility, trust, openness, traceability, and auditability can be effectively implemented in VANET 

delivery systems. When conducting an analysis of medical data, it can be helpful to link data and events 

from a variety of entities to understand the factors that contribute to medical phenomena like virus 

infections. When dealing with complicated transactions while adhering to all the essential privacy and 

security regulations, there are issues that can occur. When optimizing for Blockchain, the writers solely 

take latency and security into account. The price, however, is a factor that must not be disregarded. 

       To enhance blockchain efficiency, it is necessary to update the Blockchain configuration adaptively 

based on the characteristics of incoming transactions, a task that requires a learning- assisted decision-

making strategy [2]. Rapid advancements in Artificial Intelligence (AI) in recent years attest to the 

technology's prowess in efficiently absorbing and applying lessons from large datasets. To enable the 

construction of intelligent health systems across a variety of disciplines, including the VANET industry, 

AI methodologies were used extensively. Data analysis, preprocessing, recognition, categorization, drug 

discovery, etc. were only some of the many uses. The Artificial Intelligence (AI) technique known as 

Machine Learning (ML) known as Reinforcement Learning (RL) has found usage in medical settings. RL 

is a technology that is decision-driven and learns the dynamics of its surroundings as well as the links 

between the states of its components. Since RL approaches include both the immediate (short-term) reward 

at a given state and the discovery of a long-term policy that optimizes the system's benefit over time, they 

have the potential to outperform conventional methods of decision-making. 

        Deep Learning was combined with traditional RL to create Deep Reinforcement Learning, or DRL for 

short, to improve RL's overall performance”. A decision can be made in real time by Deep Reinforcement 

Learning (DRL) based on a model that has been trained. This paradigm enables us to achieve our objective 

of maximizing system security while simultaneously reducing latency and costs, and achieving this 

optimal balance between these competing system goals is our primary objective. 
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       Within the scope of this investigation, we present Health chain-RL, an effective and decentralized 

VANET Blockchain architecture. Health chain-RL makes use of Deep Reinforcement Learning (DRL), 

which enables the network's behavior to be dynamically modified. This paradigm enables us to achieve our 

objective of maximizing system security while simultaneously reducing latency and costs, and achieving 

this optimal balance between these competing system goals is our primary objective. Here is a rundown of 

the major contributions: 

        A multi-goal optimization framework, Blockchain-RL is being developed for use in VANET 

systems. “It establishes a relationship between characteristics like the number of transactions per block 

and the age of a transaction and blockchain setup aspects like the priority of transactions and the security of 

data. The purpose of Blockchain-RL is to boost the effectiveness of VANET networks such as to:  

➢ Introduce the reputation of Blockchain miners; consider the temporal elements of Blockchain; and   

formulate the Markov Decision Process (MDP) of our suggested Health chain- RL [3]. 

➢ Optimise latency, security, and cost in real-time while considering the requirements of Blockchain 

entities and have been tasked with proposing an intelligent manager that is based on reinforcement 

learning techniques such as Deep Q-Network (DQN) and Dueling Double Deep Network. This will 

allow to optimize these factors by taking into account the requirements of Blockchain entities. 

➢ Compare the suggested Health chain-RL to other methods, such as the Greedy and Random- selection   

methods, while demonstrating the superior performance of the proposed BM”. 

2. RELATED WORK 

 

Table 1.   Blockchain-powered applications employing Deep Reinforcement Learning. 

 

AUTHORS FIELD TRADE-OFF 

OBJECTIVE 

RL-APPROACH 

Zhang, D., Zeng, Z., 

Sudhan, A. 

Vehicular Ad Hoc 

Networks 

Trust features of 

Blockchain nodes and 

vehicles, consensus 

nodes, Blockchain 

computational capability 

DDQN 

Arulkumaran, K. 
Industrial Internet 

of Things 

Parity across regions 

and overall energy use 
Distributed DQN 

Liu, Y., Wang, S., Zhao, 

Q., Du, S., Zhou, A., 

Ma, X., Yang, F. 

Vehicular Edge 

Computing 

Energy required for 

transmission, data stored 

in cache, and delay in 

sending data all add up. 

DQN 

Liang, F., Yu, W., Liu, 

X., Griffith, D., Golmie, 

N. 

Industrial Internet 

of Things 

Flexibility, 

independence, delay, 

and safety 
DQN 

Xia, X., Chen, F., He, 

Q., Grundy, J., 

Abdelrazek, M., Jin, H. 

Wireless 

Networks 

Consumption of 

resources, costs, and 

caching 
DQN 

Guth, S., et al. 
IoT Monitoring 

Applications 

Accountability, lag time, 

and price 
DQN 
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2.1   Blockchain Technology in VANET 

        Blockchain is ideally suited for use in VANET applications due to its features, which are required to 

uphold a high level of confidentiality when exchanging Vehicles data and medical records with one another. 

The authors propose a distributed event record ledger constructed on the MATLAB software. This will allow 

for diverse VANET operators to have access to Vehicles information in real time. Unfortunately, it has 

shortcomings in a variety of areas, including Vehicles identity, key replacement, and scalability, among 

others. The proposed architecture that is built on the Blockchain that safeguards the confidentiality of 

Vehicles event records and prohibits potentially harmful parties from having unauthorized access to those 

records. The proposed framework for Parallel Healthcare System (PHS) Blockchain has its own problems, 

such as scalability, latency, and security, because it is based on artificial systems, computational 

experimentation, and parallel execution, yet it has shortcomings. A dual Blockchain infrastructure is utilized 

by both the BSPP and the BLOCHIE VANET systems respectively. Both approaches come with several 

problems, including low scalability, high latency, high computational cost, and inadequate storage space. 

The private blockchain architecture for VANET known as Vehicular chain has problems with scalability and 

adds additional responsibilities, such as needing Vehicles to provide clearance [4]. The OmniPHR 

framework promotes interoperability among different providers to access health record, solves the 

scalability problem that Vehicular chain was having, although Vehicles authentication is still necessary. As 

an illustration, quite a few of the other suggested Blockchain systems in the VANET industry, such as, have 

problems with the scalability of their administrative processes. 

2.2   Enhancing VANETs Using Reinforcement Learning 

        In “a Markov decision process (MDP), a transition to a new state is said to have occurred when a 

decision- maker (the agent) chooses an action for a given state while interacting with the environment (the 

formulation of the issue). This is because the decision-maker has moved on to a new state, Markov 

decision process (MDP). At the same time, the agent is rewarded monetarily for the work that he or she 

has done. As a result, the MDP consists of the following five basic components: the agent, the 

environment, the states, the actions, and the reward. A unique approach to solving Markov decision 

processes (MDPs) that use artificial intelligence (AI) is called reinforcement learning (RL), and it is a 

subfield of the area of machine learning (ML)”. The major objective of the agent is to engage with its 

environment in a manner that contributes to the accomplishment of its other primary objective, which is to 

maximize its utility by adhering to a behavior policy. In the second stage, you will examine the policy that 

is the focus of your attention and decide on the most effective next move for a particular state. This later 

technique ends up being the one that is better in the long run, thus it is the one that we will implement. 

2.3   Off-policy Learning 

During its training, the agent may select either the on-policy or the off-policy instructional method. 

The concept known as on-policy learning describes a circumstance in which the desired policy and the 

actual behavior are completely congruent with one another. Off-policy learning is the term used to 

describe the alternative (e.g., Q-Learning). Q-learning is a well-known example of an off-policy learning 

algorithm in reinforcement learning. An agent is a piece of software that takes in information about a 

policy's value function and then tries to optimize that policy by analyzing it and making changes where 

necessary. Off-policy learning, on the other hand, involves the agent learning the value function in a 

manner that is distinct from the action itself. This is accomplished by iteratively updating the policy in the 

course of exploration in order to find the most effective policy [5].  

2.4    Q-Learning approach 

         In particular, the Q-Learning approach is investigated in this work. This is a method in which an 

agent attempts to determine the most appropriate response for any given set of circumstances and then 

records this data in a Q-table. Medical imaging research and clinical concept extraction are only two 

examples of the kinds of challenges that neural networks may help with. This is only one example of how 
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doctors might benefit from using deep q-networks (DQN). 

 

3.  SYSTEM MODELING AND ANALYSIS 

      Our goal in creating Vehicular chain-RL was to create a safe, adaptable, and web-based platform 

where many parties could safely share and use VANET information. Fig-1 depicts the structure, which 

advocates the implementation of a consortium medical Blockchain across multiple VANET organizations. 

In accordance with their predetermined eligibility in the smart contract, these entities will have access to 

the distributed ledger where the medical data is stored, share it with other entities, and process it. In 

addition, any organization may operate its own private network to gather, process, and prepare 

Blockchain-bound transactions holding crucial data. Transaction data might be gathered, processed, and 

processed using this network. Some local network data may be preprocessed using AI techniques 

including summarization, clustering, and compression. However, this article will primarily focus on 

optimizing Blockchain networks by striking a balance between security, latency, and cost in light of the 

constraints imposed by transactions,                           specifically              the security and urgency levels. 

        Blockchain managers have been proposed as a means of dealing with the time-sensitive nature of 

medical data, protecting that data from unauthorized access, and optimizing all the aims at once [6]. In 

this study, we present a smart Blockchain manager that utilizes reinforcement learning methods to 

respond to the ever-changing state of the system and anticipate its behavior in the future. 

        Then, the Blockchain optimization problem is resolved, along with the Blockchain entities, the 

Blockchain network, the intelligent Blockchain manager, and the Blockchain itself. 

 

 
 

Fig. 1 Architecture of Vehicular Chain-Reinforcement Learning 
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3.1   Entities of a Blockchain   

        Several interested parties may collaborate on this framework's creation to speed up the creation of a 

decentralized VANET system that is also scalable, safe, and smart. To conduct research, review data, and 

adopt new health rules, these organizations can either share their VANET data with the blockchain or 

access the data that is already there. Possible participants in such a framework include medical facilities, 

pharmaceutical stores, insurance providers, and the Ministry of Public Health (MOPH) [7]. In the form of 

a smart contract, Blockchain presents the underlying business logic that makes the technology work. 

This logic encompasses all the organizations’ stipulations, guidelines, hierarchies of authority, and 

order of importance levels. Each party must approve the transaction and then apply the smart contract 

before it can be recorded on the Blockchain ledger. 

   3.2   Blockchain Technology. 

 Blockchain, a distributed ledger technology, facilitates the secure movement, storage, and 

processing of Vehicles data between institutions. Instead of using Proof of Stake (PoS), a consensus 

mechanism called Delegated Proof of Stake (DPoS) can be used to guarantee scalability and shield the 

Blockchain from detrimental usage and centralization. Voting and elections are used to select miners 

who maintain low operating expenses. With the Blockchain setup described in this paper, the trade-off 

between cost, latency, and security may be adjusted to suit the needs of the various entities storing 

transactions [8]. The important variables are the total number of miners and the average number of 

transactions per block. Those two factors are determined by the smart Blockchain manager. 

     3.3    Blockchain Manager of  Intelligent Blockchain — an Optimizer 

         One of the most important parts of the proposed architecture is the Blockchain Manager (BM). A 

certain time step's worth of transactions will be gathered, and from there the number of transactions allowed 

in a block will be determined. Next, a set number of miners validate a block using their storage space, 

processing power, and transaction fees. While it may be tempting to keep adjusting those settings, doing 

so can incur unnecessary computational and financial costs and should be avoided. Unless an unexpected 

occurrence occurs, all parties involved can agree on how often the Blockchain configuration should be 

updated. A smart contract on the blockchain or a timed algorithm could specify certain actions to be done 

at specific intervals. To ensure the integrity of the Blockchain, either one entity must assume the role of 

BM (which is not recommended for security reasons) or the role can be shared among multiple entities in 

the same chain and rotated at regular intervals. This circulation should occur on a predetermined and 

agreed-upon schedule. For the sake of consistency and safety, the proposed Vehicular chain-RL 

framework implements a circulation protocol. 

         Our goal is to find the sweet spot between security, latency, and cost in the Vehicular chain-RL 

protocol by optimizing the provided attributes transaction latency, cost, and security. Information on a 

transaction's security, timeliness, and age are summarized using various data compression, classification, 

and event detection methods (local network). How long a transaction must sit in limbo before it can be 

put to the Blockchain is described by the "age" concept (ledger). In Section 4 we go into greater depth. 

Here are some examples where urgency and safety play a role: Urgent transactions, like emergency alerts, 

may call for little security and short latency. If more miners are needed to keep the Bitcoin network 

running, transaction fees and transaction times for high- security payments may rise. 

          Considering three competing goals, the suggested framework allows us to attempt to translate the 

Vehicle’s circumstances into several modes of Blockchain configuration. Safety, Delay, and Money [9]. 

At a given time step t, the utility multi-objective function is represented by Eq. (1) 

Auth
ors

 Pre-
Proo

f



𝑚𝑖𝑛𝑚𝑖, 𝑝 (
𝐿

𝑙𝑚𝑎𝑥
) + 𝑞 (

𝑠𝑚𝑎𝑥

𝑆
) + (

𝐶

𝑐𝑚𝑎𝑥
)                                         (1) 

 

                         𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 1 ≤ 𝑚𝑖 ≤ 𝑀𝑚𝑎𝑥 

1 ≤ t𝑟𝑖 ≤ 𝑇𝑚𝑎𝑥 

                                                𝐴𝑡 ≤ 𝐴𝑡ℎ 

         Where by 1 ≤ mi ≤ 𝑀max and 1 ≤ t𝑟i ≤ 𝑇max are constraints on the chosen number of miners mi and 

the number of transactions tri, respectively. 

          The Mmax miners and Tmax transactions in a single block. The transaction age (At) should not 

exceed the threshold (Ath) above which a transaction is rejected from the submission queue and not 

included in a block and forwarded to the network. According to the needs of the system administrator, the 

relative importance of latency, security, and cost is determined by the weighting factors p, q, and r, the 

sum of which equals one. When determining what features a system administrator needs, it is possible to 

consider both business logic and the data's inherent characteristics. With the maximum values of the 

objectives in mind, we were able to create equations that were uniform in their units and scaled to the 

same dimensions. Maximum latency (lmax), maximum security (smax) and maximum cost (cmax) [10]. 

                      𝑆 = 𝑆𝑐𝑚𝐵𝑀𝑞                                                           (2) 

           Where Sc is a system coefficient; mBM is the number of miners picked by the BM; and q is an 

indicator factor demonstrating the scale of the network, with a value that is greater than or equal to two, 

can be used to identify the security (S). 

           The total amount of time that it takes to create, verify, broadcast, and upload a block is denoted by 

the symbol L in Equation 3.  

                𝐿 = (
𝑡𝑏𝑆𝑡

𝐷𝑡𝑟
) + 𝑚𝑎𝑥𝑖∈1 (

𝐺

𝑎𝑖
) + 𝐸𝑡𝑏𝑆𝑡𝑚 +

𝑉𝑓

𝑈𝑡𝑟
                                     (3) 

            tb is the number of transactions that are included in each block, St is the size of each transaction, G 

is the number of computational resources required to verify a block, ai is the number of computational 

resources that miner I possesses, and E is a predefined parameter that is described in greater detail in. The 

size of the verification feedback is denoted by Vf, the uplink transmission rate from the miners to the BM 

is denoted by Utr, and the downlink transmission rate from the BM to the miners is denoted by Dtr.  

                                                            𝑈𝑡𝑟 = 𝑏𝑙𝑜𝑔(1 + 𝑆𝑁𝑢)                                             (4) 

                                                             𝐷𝑡𝑟 = 𝑏𝑙𝑜𝑔(1 + 𝑆𝑁𝑑)                                              (5)   

            In equations (4) and (5), b denotes the bandwidth, while SNd and SNu stand for the signal- to-noise          

ratio of the downlink and the uplink respectively. 

The final objective that we are aiming to achieve via reducing costs is the cost Cmin, Which is     

represented in Equation (6).  

                                     𝐶𝑚𝑖𝑛 =
∑ 𝐶𝐶𝑖

𝑚
0

𝑡𝑏
                                                  (6) 

            In this equation, the computing cost for each miner m is denoted by CCi, where I am the number of 

selected transactions. As CC𝑖 = a𝑖 × r𝑖, CCi is proportional to the   product of its available resources (ai) and 

the cost of utilizing those resources (ri). 
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3.4   Strategy Based on Deep Reinforcement Learning (RL) 

          The architecture shown in was used as a starting point and tweaked such that the system could be 

used in a variety of online environments. This study aims to find the optimal Blockchain configuration for 

a given set of Vehicles conditions by considering the tension between the three main constraints of any 

VANET system: privacy, speed, and cost. Its goal is to ensure a responsive, smart, and safe VANET 

system. We classify this optimization issue as NP-hard. The problem was solved by the authors in using a 

Greedy strategy that ignored the time-dependent nature of receiving transactions within the Blockchain 

framework, hence negatively affecting latency and the system's long-term viability. The Greedy method is 

expensive and unreliable in real-time since it requires solving the optimization at each time step. To get 

beyond these restrictions on speed, complexity, and future aggregated performance, researchers have 

turned to reinforcement learning methodologies, particularly Q learning and its derivatives. The 

configurations of Blockchain will be determined at regular intervals by examining the BM queue of 

pending transactions [11]. The utility function represents the trade-off in a consortium, considering 

security, speed, and efficiency. A Markov Decision Process model is used to explain the multi-objective 

optimization issue (MDP) State space (SS), action space (AS), state transitions (Ts), reward function (RF), 

and discount factor (Df) Df ∈ [0, 1). The agent receives a snapshot of the environment's state, represented as 

es ∈ SS, at regular intervals of time, denoted by t. To get a reward 𝑟𝑡 ∈ R, the agent must carry out an 

action e𝑎 ∈ AS in accordance with a policy (a|s). Therefore, 𝑃 (𝑠 ′ |e𝑠, e𝑎) = Ts (e𝑠, e𝑎, 𝑠′) is the transition 

probability from state es to state s ′ when ea is the initial state. We introduce the concept of deep 

expectation, where the reward for performing an action an in a state s while adhering to a certain policy 𝜋 

is encapsulated by the function 𝑄𝜋 (e𝑠, e𝑎) = E𝑎∼𝜋,′∼𝑃 [𝑅𝑡 |𝑠𝑡 = e𝑠, 𝑎𝑡 = e𝑎]. The MDP is then solved 

using Deep Reinforcement Learning (DRL). After the MDP is defined, Deep Reinforcement Learning is 

used to solve it (DRL). Following this, we will describe in detail the structure of our aims-based approach 

to education. This encompasses the SS, AS, EA, and MORF of our optimization issue, or state space, 

action space, environment, and goal function. 

4.    PROPOSED METHODOLOGIES FOR REINFORCEMENT LEARNING 

       Blockchain Manager is unaware of the model for state transitions, a model-free technique like Deep Q-

Network (DQN) must be employed to arrive at an estimate for Q. There is no assurance that this approach will 

converge, thus it's useful to add enhancements that speed up the weight convergence and stabilize training in 

a neural network. When it comes to model-free algorithms, experience replay (Rp) is a key idea utilized to 

facilitate training, both for the present experience and the agent's accumulated history of experiences. Using 

these previously collected samples of experience during updates not only improves data efficiency, “but 

also guarantees that the correlation between different samples of experience in the update is minimized 

using uniform sampling, which in turn reduces the variance. Using experience replay and soft updates to the 

neural networks, Fig. 2 depicts the interaction flowchart between an agent (BM) and the environment 

(environment) in Bitcoin. The agent takes suitable action to reflect the share of state- selected transactions 

and miners needed to validate them. The environment's evaluation of the agent's action and its subsequent 

impact on reward and state will be fed back to the agent. Initially, multiple random actions are taken to 

explore the state space and determine the ideal action for that state. An experience replay memory will be 

created to record all information regarding previous encounters, including the state, the action made, the 

reward received, and the subsequent state [12]. As often as N time steps, the target network's settings will be 

adjusted. Making the proper choice and responding quickly to unexpected changes are crucial in VANET 

applications, where they can have a major impact on the health of the Vehicles and the effectiveness of the 

system. Traditional methods of decision-making struggle to keep up with the rapid pace and high stakes of 

today's VANET systems. Therefore, the purpose of this research is to explore the online decision-making 

performance and flexibility of state-of-the-art off-policy techniques. Double Q- Network (DQN) and its 
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variants are investigated. These include the Double Deep Q-Network (DDQN) and the Dueling Double Q-

Network (D3QN). When neural networks are used in place of a Q-table, as they are in the original DQN 

model, the table is no longer needed. Concerns of overconfidence and false positives associated with DQN 

are especially pressing in the context of VANET systems. Since DQN suffers from being too optimistic, 

DDQN is an improvement. D3QN considers not just the value of the state in relation to the action to be 

taken, but also the probability of being in that condition. Thus, D3QN employs a neural network model with 

a unique structure. Each method is broken down into its component parts below. Traditional Q- learning 

relies on Q- tables for action estimation, but for model-free results, researchers at Google have 

recommended using a neural network instead. Machine learning models are used by DQN as function 

approximators instead of traditional lookup tables. The online network will undergo continuous gradient 

descent updates, while the parameters of the target network are changed after a predetermined number of 

episodes.                                     

       In the case of DQN, Y is denoted by the equation (7), and the parameters are held constant at some 

previously determined values *.  

                                    𝑌𝑘𝐷𝑄𝑁 = 𝑟 + 𝐷𝑓𝑚𝑎𝑥𝑄(𝑠′. 𝑎′; 𝜃 ∗)                            (7) 

       The revised version of the loss function, denoted by Lf, considers the historical data on Y, DQN that 

has been stored in the replay buffer, denoted by Rp (8). Equation (9) describes the Q function,  

                                     𝐿𝑓𝑘(𝜃𝑘) = 𝐸(𝑠,𝑠,𝑟,𝑠𝐹)~𝖯(𝑅𝑓)[(𝑌𝑘𝐷𝑄𝑁 − 𝑄(𝑠, 𝑎; 𝜃𝑘))2]              (8) 

                                    𝑄𝑘+1(𝑠𝑡, 𝑎𝑡, 𝜃𝑡) = (𝑠𝑡, 𝑎𝑡, 𝜃𝑡) + ((𝑌𝑘𝐷𝑄𝑁 − (𝑠𝑡, 𝑎𝑡, 𝜃𝑡)) (9) 

        Where k is the episode duration, Df is the discounting factor that prevents the BM from relying 

solely on future rewards, and the settings of the neural network. Rectified linear units (ReLU) make use of 

the activation function (𝜕), a positive-returning function defined by 𝜕 = max (0, x). The 𝜑 value denotes 

the learning rate, which indicates the degree to which the most recent estimate is modified in relation to 

the update target. The smooth-Lf1 loss function is developed and refined with the aid of Adam 

Optimizer. Online Sample-based learning is made possible using an intermediate estimate Y of the 

rewards of the future state. Adam is utilized as an alternative to standard stochastic gradient descent (SGD) 

techniques. The Q-Learning approach that is utilized determines how Y is defined. 

4.1   Double Deep Q-Network (DDQN)  

        In DDQN, the maximum operator is used by both the online and target networks at the same time, 

but in DQN, the maximum operator is used in a separate fashion. The two methods differ in how they 

alter the target network [13]. Because of this, the estimated actions are unrealistically positive. Most of 

the time, an overly optimistic problem will manifest itself in the form of a false-positive issue when it 

comes to large- scale issues. To choose the appropriate action with the highest Q-value, DDQN favors 

using online networks. With an eye toward the following state's expected Q-values, the target network 

prioritizes the action that necessitates the most data. After a set number of cycles, the online network's 

data will be used to adjust the parameters of the desired network. On the other hand, the internet network 

will be upgraded in accordance with the optimizer (e.g., Adam Optimizer). Because of this, the problem 

of over optimism will be mitigated, and the phase of learning will become steadier and more dependable. 

Equation (10) stands for the Y𝒌
DDQN

, and Equation (11) is the action- value function Q for the DDQN 

taking Y DDQN into consideration. 

                    Y𝒌
DDQN = r + D(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄(𝑠′. 𝑎′;  θ∗))𝑘                         (10) 
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                                𝑄𝑘+1(𝑠𝑡, 𝑎𝑡 , θ𝑡) =  (𝑠𝑡 , 𝑎𝑡 , θ𝑡) +  φ (Y𝒌
DDQN

−  𝑄𝑘+1(𝑠𝑡, 𝑎𝑡 , θ𝑡))    (11) 

4.2    Dual-Depth Q-Network Battle (D3QN)  

         We presented a new network architecture called the Dueling Double Deep Q-Network (D3QN). Since 

many states' action choices are roughly equivalent, the motivation for suggesting D3QN is that doing so 

may slow down learning. Two streams can be estimated using the suggested dueling neural network model. 

In this study, we apply the idea of an advantage function to DDQN, where the approach of applying 

advantage function A produces identifiability concerns and consequently inhibits the recovery of both the Vs 

and Af. T the average of Af, shown to increase the stability of the optimization. Action-state Q function in 

D3QN is represented by Eq. (12), which incorporates the value and advantage functions”. 

     𝑄(𝑠, 𝑎;  θ, 𝑥", 𝑦") = Vs(𝑠, θ, 𝑥") + ((A𝑓(𝑠, 𝑎;  θ, 𝑥", 𝑦") −  
1

|𝐴𝑓|
∑ 𝐴𝑓(𝑠, 𝑎;  θ, 𝑥, 𝑦

𝐴𝑓

𝑎 )   (12) 

 

           Parameters for the combined streams Af and Vs are denoted by x” and y” in Eq. (12).  

          Vs(𝑠) = E[𝑄∗ (𝑠, 𝑎)]is a representation of the state-value function Vs. It is important to note that 

over optimism is not an issue for many uses because high performance can still be achieved. But 

lowering it will greatly steady the educational process. 

 

Fig. 2.   Vehicular chain-RL system's Deep Q-Learning flowchart 

 

5.    IDEAS PROPOSED DURING INSTRUCTION 

       First, we have Algorithm 1, which depicts the BM's training procedures in full. Together with the 

initialization of the replay memory Rp, where the tuples of experience data are stored, the weights of the 

online and target neural networks are also set. Through social interaction, an agent in the BM model 

accumulates a set of experience tuples across a succession of states. The agent “picks actions in each 
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𝑖=1 

state at random with probability or according to a greedy policy (𝜖) to ensure the quality of its 

investigation of the actions available in that state. It also involves adjusting the weights of both the online 

and target neural networks until line7. To facilitate BM environment learning, 𝜖 is initially set to 1, and 

then begins to decline over time [14]. Exploitation behavior is represented by the best actions (those with 

the highest Q-value), while exploration behavior is shown by random activities. Acting is done to control 

the cost-benefit ratio of the situation. The tuples of state-action transitions are recorded in the replay 

memory Rp and later used as experience data in the optimization process to refine the estimation of 𝑄∗. As 

an option, we can consider requesting irrational subsets of Rp's experiences of 𝜌. The TD-target Yi is 

computed for each experience tuple i in the subset 𝜌t to arrive at the updated estimate when 𝜃* is 

considered. This procedure aids in stabilizing and bringing about convergence in the learning process 

(experience replay). Whether a DQN, DDQN, or D3QN model is employed, the resulting TD-target Yi is 

determined by the formula. Adam optimizer is then used to fit to 𝑌 𝑖 with a soft update to 𝜃* applied after 

a predetermined number of iterations to account for the most recent information about the environment. 

Soft updates to the target network can also help stabilize the learning process Convergence occurs when 

and only when *𝜃∼ 𝜃*”. 

  Algorithm 1: Methods Used in BM Training (agent)                

Input: Artificial Environment Modeler 

Output: 𝜃1: The approximation's NN parameters 𝑄∗ 

1: Rp ← Setting the amount of the replay memory as the initial 𝑁. 

2: 𝜃 ← Randomize internet network settings to start. 

3: 𝜃*← 𝜃 Setup the parameters for the intended network.  

4: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 = 1 ∶ 𝐸 do 

5: To set the initial condition 𝑠0 ← ⟨[𝑆0 , 𝑈0 , 𝑎0 ] , [ 𝑅1 ⋯ 𝑅𝑀 ]⟩ 

 6: for 𝑡 = 1 ∶ 𝐾 do /** Environmental interaction **/ 

7: Specify the Update Operation for the State 𝑎𝑡 

𝑎𝑡 {
Random with probability ϵ

greedy policy,            otherwise
 

Determine, using at, how many transactions tr and how many miners m were chosen.  

Use Eqs. (7) and (8) as guides. 

8: Perform at and evaluate st+1 and rt 

Rewards can be calculated using Eqs. (9) and (10). 𝑡𝑟𝑡 and 𝑚𝑡 from 𝑎𝑡 

9: Achieved Environmental Status ← Boolean 

10: Replace Experience with a New Tuple in the Playback Memory  

Rp ← (st , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒) 

11.Update State 𝑠𝑡 ← 𝑠𝑡+1 

12: /**Updating the estimates**/ Just pick a sample at random 𝜌 ⊆ Rp 

𝜌 ← { st , 𝑎𝑡 , 𝑟i , 𝑠𝑡+1,done} |𝜌| 
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13: Determine Q-targets for the selected strategy by using the target network.  

For DQN, DDQN, and D3QN based equations, see Eqs. (15), (18), and (20). 

14: Fit 𝜃 to Target 𝑌𝑡 using Adam Optimizer 

15: Update the target network at each target step. 𝜃* ← 𝑟𝜃 + (1 − 𝑟)* 16: 

end for 

17: end for 

18: return 𝜃1 ∼ 𝜃 

5.1.   Methods Proposed in Real Time 

         The neural network parameters were saved after completing algorithm 1 and reaching convergence, 

allowing their subsequent use in a real-time setting. This means that the agent must be prepared to adapt 

to sudden changes in the environment (such as an increase in miner pricing or the loss of some miners) to 

maintain the convergence state. One run through the neural network is performed at each time step in 

Algorithm 2, which is a representation of the steps as they occur in real time. The BM will always take 

the course of action that maximizes its expected profit over the long run. 

Algorithm 2: Directly Monitored BM in Real Time (agent) 

Input: NN parameters after training 𝜃1 

Output: State update 

1: 𝑑𝑜𝑛𝑒 ← Set the initial environment status to false. 

 2: Initialize State 𝑠𝑡 

3: while! done do 

4: Find 𝑎 ∗ Consider that 𝑎 ∗ ← 𝑡𝑟∗ and 𝑚∗ 

5: Assuming that you know the related 𝑄∗ ( , 𝑎𝑡 , 𝜃)  

6: Observe 𝑠𝑡+1, and 𝑟𝑡 

7: Environment Status done ← Boolean 

8: To the Replay Memory, Insert the Experience of a Tuple. Rp ← ( , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒)  

9: Update State 𝑠𝑡 ← 𝑠𝑡+1  

10: end while 

6. EVALUATION OF PERFORMANCE 

        Vehicular chain-RL is tested through computational simulations to see how well it can adapt to 

novel conditions, how much action-time it requires to achieve a desired result, and how well its proposed 

strategies converge on the reward function. 

    6.1    Experiment Setup & Design Procedure 

         We utilize a BM queue size of Q and a multiplicative factor (per episode) for epsilon decay of 

0.999 to train our Vehicular chain-RL over 104 episodes (E). It's vital to keep in mind that as the number 
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of miners grows, so will the risks, delays, and expenses associated with using the network. However, the 

delay and overall cost will rise as the number of transactions rises. Since consistency is of utmost 

importance, we've decided to give equal importance to all three goals (p, q, r). Table 2 details the 

weighting factor values and other optimization parameters in terms of safety, delay, and expense. 

Table 2.   Variables used in optimization. 

 

Variables Values 

B 0.52MHz 

SNu 12dB 

SNd 10dB 

Q 2.01 

Vf 0.52Mb 

St 1.0Kb 

Sc 1.0 

p,q,r 0.342 

6.2  Convergence in  Rewards 

        The hyper parameters of the four Q-Learning methods are adjusted in Algorithm 1's training 

procedure using the values given in Table 3. Experiments and observations were used to determine these 

parameters, which were optimized for performance. In Fig. 3, we see the training reward for a total of 104 

episodes over four different neural network depths (plain vanilla DQN, DQN with ten hidden layers, 

DDQN, and D3QN). Rewards values displayed here are averaged over the past 50 episodes. Using the 

graphic, we can see that the proposed methods do, in fact, converge. For the first 1000 episodes, all 

methods operate randomly with 𝜖 =1, allowing the agent to learn about its environment through trial and 

error. Subsequently, the agent gradually refines its random policy until it converges on the optimal version, 

using the exponential decay 𝜖 of described above [15] 

Table 3.   Configuration Settings 

 

          Variables Values 

         tri 20.01 

         mi 10.2 

                     E 104 

                      K 103 

        Df 0.92 

        𝜖  1, by means of 0.9999 Decay 

       hl 4.0 otherwise 10.0 

         Q-Network When hl= 4 → 70,45,45,79,150 

        Neurons/layers When 

hl=10→70,45,45,45,45,45,45,45,45,45,79,150 

        𝜑 3X 10-4 

       |ρ| 45 

       |𝑅𝑝| 105 

       𝑟 10-3 

      target steps update      

(soft) 

4 
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7.      RESULTS AND DISCUSSION 

 

         To gauge the usefulness of Vehicular chain-policy RL, we have done a battery of experiments. Q-

Learning methods have values that are close to one another, unlike the Greedy and RS policies. Vanilla 

DQN, by leveraging online and targeted networks, was able to reap the highest benefit (26,900). It is shown 

in below graph, how much each policy earned in rewards during the testing (real-time) episodes. We have 

a closer look at the payoff when latency, security, and cost are all considered. No goal may be pursued 

with more importance than the others. Considering this, any strategy's aggregate of these three competing 

goals needs to be less than or equal to one. The suggested multi-objective optimization paradigm involves 

a trade-off, while the reward function tends to maximize. It's important to tighten up security without 

compromising on speed or budget. Therefore, the incentive attempts to optimize the three competing 

goals while considering the limits imposed by the application. By assigning penalties to ensure that the 

requirements are met, the DQL algorithm and its variant find the policy that maximizes the long- term 

trade-off described by Eq. (10). To maximize safety, DQL methods consider not only the required level 

of security but also the time-sensitive nature of the transactions at hand. Therefore, it has the lowest 

latency when compared to the Greedy and RS methods. As was previously introduced, the reward 

function is directly affected by the reputation of the chosen miners. Since the RS strategy takes the best 

action given the current state, it achieves a high latency level, while the greedy approach, which simply 

considers the immediate future, is unable to manage the trade-off between security and latency. Greedy 

and RS methods have a hefty price tag compared to how well they perform. Increasing the security 

results in a higher cost objective, as the cost objective stated by Eq. (6) is directly related to the miners' 

cost. The delay goal is also strongly impacted by the volume of transactions that are chosen [16]. 

Therefore, the strategy should consider such details and maximize security while minimizing latency and 

expense. Figure 6 depicts the average accumulated rewards for all methods, demonstrating how similarly 

they function across the various Q-learning methods. As a matter of fact, the RS strategy has the worst 

performance, with the Greedy approach coming in second. In a stationary setting, Vanilla DQN 

performed best, with an average accumulated reward of 13450. 

 

 
 

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400

A
cc

u
m

u
la

te
d

 R
ew

ar
d

s

Testing Episodes

DQN DQN10 DDQN D3QN Greedy RS

Auth
ors

 Pre-
Proo

f



Fig. 3.     Sum of all policies' rewards from their testing (in-the-wild) episodes. 

7.1   Action-time 

        Time-to-decision is viewed as crucial in VANET applications, especially in emergency situations. 

The time it takes for each technique to decide on an action after a series of trials is as follows: The Greedy 

strategy uses the most time because it simply does one pass over all the available actions to identify the 

optimal one considering the immediate payoff. In VANET systems, when quick decision-making is 

essential, the Greedy method may be judged untrustworthy. The Random Selection (RS) method, on the 

other hand, is lightning quick. It picks an action at random, without considering any of the potential 

benefits, later state transmission, entity-level requirements, or necessary tries to successfully solve the 

environment, resulting in little accumulated reward over time. Taking the proper action with a focus on the 

future and the reward now is crucial in VANET systems, making the RS approach an undesirable choice. 

Our proposed training techniques perform similarly to one another, especially when there are no 

unexpected shifts in the environment. Proposed methods must account for the unexpected price shift 

while still rewarding miners for their future work. While vanilla D3QN may show to be the fastest way to 

perform major system changes, doing so is more labor-intensive in practice. The vanilla DQN technique 

may be the most suitable option in a static system or while implementing extensive changes. As we saw   

however, the odds of making a mistake are larger in DQN. Therefore, the characteristics of the system 

are relevant in determining the gravity of the problem. Considering their individual strengths and 

weaknesses as well as the system requirements of Vehicular chain-RL, DQN, DDQN, and D3QN can all 

be successfully implemented [17]. If the methodologies presented in this work are to be used in 

Vehicular chain-RL, the system administrator can use the following guidelines to make an informed 

decision: Even while D3QN increases the time it takes to perform an operation; it is the preferred option 

when working with a dynamic and unpredictable environment. When compared to alternative methods, 

DQN's time to choose an action is the fastest. However, when there is an abrupt shift in the system, the 

temptation to act inappropriately increases. 

 

    Fig. 4.    Simulated Policy Response Time in s, both with and without a shift in miners' pricing. 
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8.   CONCLUSION 

      We provide Vehicular chain-RL, which enables the safe, adaptive, and flexible exchange of medical 

data and Vehicles information among a wide range of entities. An “intelligent Blockchain Manager (BM) 

is introduced to address the trade-off between system security, latency, and cost. The Blockchain 

Manager is implemented with one of three reinforcement decision-making algorithms (DQN, DDQN, or 

D3QN) depending on the needs of the VANET application and the robustness of the platform. For the 

time being, just one method may be used to put the smart Blockchain manager into action. The DQN method 

is useful when only little changes are made to the system, but the D3QN method can handle frequent 

fluctuations and converge smoothly in real time, as shown by the experiments. In the proposed 

Reinforcement Learning (RL) methods, the Block Manager (BM) takes on the role of agent, determining 

parameters like transaction volume per block size and the required number of miners for validation. The 

simulation findings show that reinforcement learning approaches are superior to greedy and random 

selection (RS) methods. Despite heuristic approaches, which make a rapid decision-making that results in 

an immediate drop in the accumulated reward, the given models consider the temporal characteristics and 

future behavior of the Blockchain to arrive at a sub-optimal solution. When compared to DQN, DDQN, 

and D3QN, the Greedy approach's processing overhead makes it unsuitable for usage in real-time or 

mission-critical circumstances”. 
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