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significantly on Autonomous

s Underwater Navigation Systems (AUNS). The PSO+ACO hybrid method is
superior to the PSO, ACO, and GA algorithms in pathfinding with a 6.43-second execution time
and 93.5% accuracy—the ACO model completed in 12.53 seconds, superior to the proposed

system.
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1. Introduction

The investigation and tracking of the world's lowest oceans, reservoirs, and lakes have bce
greatly improved by the emergence of Autonomous Underwater Vehicles (AUV), which
addresses that have been employed in recent years to indicate significant technical pro

These automobiles are called autonomous vehicles and usually function without reguii

involvement. These autonomous vehicles have the possibility to be employed i )rmous
number of programs, which include but are not restricted to scientific rgsea d dataseollecting,
g un

inspection of underwater systems, army tracking, and the field of
according to the outermost layer of the deep sea [2]. Such AUVs arejgdsential for improving the

study of marine systems, may be beneficial to the advancement ofrit g security, and are also

&

possible remedies for developing techniques in taking adv, &'u of the resources of the bottom of

the sea.

avigate across complicated and unreachable

es. The PF system plays an important role in

(UE) are typically challenging to ast that which has been an important challenge for the

development of this system. In

underwater challenges,
account, A
Although ged
information; e teehniques must be enabled to adapt successfully to developments that have not
been predic 3f

r number of individuals become aware of how crucial it is to use good AUNS in

to how constantly changing and unpredictable these settings are. Incorporating real-

e information into the UE proved to be a prevalent issue for conventional PF techniques. The
probability of security risks has grown due to insufficient and erroneous navigation, for example,
which occurred regularly as a consequence of all these factors [4]. These restrictions have made it

more challenging to develop effective systems that can respond to real-world circumstances while



maintaining secure travel. Optimizing task execution has been successful in large part due to this

threshold [5].

Algorithms designed in order to deal with those problems frequently employ incoftec

predictions about the external environment or utilize static pictures of the UE. Howe

unfortunately, these methods may not help to capture the complexities of real-world g
fully. While many heuristic and swarm intelligence methods like Ant Colony Optimi
Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) have als

AUNS, even such models each have limitations. PSO models, thoug

may overlook local optimality; ACO models have provided d
However, they can be quite computationally intensive for larger inp as, and GA could offer a
balance between exploration and exploitation, but these models req? extensive tuning to achieve
desired outcomes [6].

In this work, in order to address the above-disgliss allehges in the field of PF in AUV
h roposed a PSO+ACO hybrid model for

ACO t0 utilize PSO's broad search capability

and the inherent limitations of empirical mo
PF for AUV. The hybrid approach combi
for identifying global paths and ACO's detailed

us for local path changes. The proposed solution
addresses the problem of PF using t ost efficient method, which is mapping the complete UE
into a layout. In addition, colligi efition techniques are employed to do this. In order to

execute the study, a Virtual ix Sy (VMS) was built, and the success of the method was

assessed based on its cafe ease the range to the objective, as well as its precision and
time efficiency metas
model helps,o
is higher t 1 PSO, ACO, or GA regarding PF.

The ‘paper 15 structured as follows: Section 2 presents the literature of the work, Section 3

thodology, Section 4 presents the evaluation of the work and Section 5 presents the

iterature Review
Applying the Deep Deterministic Policy Gradient (DDPG) technique, researchers
established a model that could improve the planning of paths for AUV. The design aimed to

address the problems of driving AUVs throughout underwater tunnels and avoid anonymous risks.



Their strategy employed sensor data as input, and with the support of that sensor data, researchers
attempted to attain the optimum results in terms of the driving speed and the rotation angle.
The AUVs have effectively steered past static and dynamic hazards by employing a structured
reward function model and the artificially generated potential field technique for persi

rewards.

sending near-optimal outcomes. Also, the authors implemented pra
in order to achieve an acceptable balance between route performanc

The problem that has been given to the domain o
technologies was investigated by [9], which investigate
Reinforcement Learning (RL) methods. T ch roposed a method that focuses on Q-
learning and ACO for the optimal PF of art from focusing on improving the Value of
Information (Vol) by developing the PF o AUV, experts determined that significantly
reducing the delay throughout the collection process was necessary. Tests have been done
that showed the success rate of 1thin they used when compared with standard algorithms

in many circumstances. In the Unde r Wireless Sensor Networks (UWSN) framework, [10]

suggested a PF system ohtfully incorporated any possible reduction in EC. Using GA,

researchers built a

loyed an improved Fireworks-Ant Colony Hybrid Algorithm (FACHA) for
PF. They developed their model to handle path planning in environments that are
ected by ocean currents and problems. This model included various factors such as EC,
vigation time, and distance costs to achieve this task. They successfully demonstrated the
effectiveness of their proposed work through different simulation experiments.

An integrated model was proposed by [12], which combines the memory function with

the artificial Jellyfish Search (JS) algorithm to improve its convergence accuracy. They formulated



an objective function that considered the ocean current disturbance model. The improved
algorithm demonstrated effectively optimal performance for the time cost and ocean current
penalty cost along the planned paths, thereby showcasing their model’s adaptability for multi-
AUV movements.

The authors in [13] designed an autonomous underwater review robot, where a novel contr:
is fabricated to reduce steady-state errors. Hybrid swarm algorithms are applied to d

classify Underwater images [14]. Additionally, the article emphasises the hybrid metho

[15], which can be used for PF in UE. Followed by [16], the authors expk)(

Deep
Reinforcement Learning (FDRL) for efficient pathfinding in UE.

3. Methodology
3.1 Setup A Grid System for Underwater Terrain Environment ( )

To simulate the complex UTE is represented as a 2D trw , where each element, E,,,,,,
corresponds to a specific portion of the seabed. The UE i ted into a grid, with each grid

cell representing either an obstacle or open watgr, Cebls co ding to obstacles are assigned a

@» e watet are assigned a value of “1°. This study
slon to mitigate the computational load imposed

value of ‘0’. Conversely, cells representing
pays morphological operations, dilation an
by the terrain's complexity on the AUNA alg@sithm. These operations refine the grid, M’,
emphasizing essential navigationalfdatagand discarding superfluous data. Such simplification is
pivotal for optimizing the AU¥IS-PF ¢ lities.

Each grid cell within t uniquely identified by a co-ordinate pair, (u,,, v,,), facilitating
accurate AUV localizat ansformation from a cell's linear index, [, to bidimensional co-

ordinates is ¢

and navigation systems. Given the VMS dimensions R X S (rows
by column ulas for calculating the row index u,, and the column index v, from the
linear ind a lows:

. oW x (U,,) : The row index is determined by dividing the linear index by the number

mns, rounded down to the nearest whole number, EQU (1)
1
= || (1)
e Column Index (v,,) : The column index is calculated as the remainder of the linear index

divided by the number of columns, EQU (2)
v, = lmodS 2)



These EQU (1) and EQU (2) ensure that each cell in the grid can be precisely located and
referenced during the simulation of AUV path-finding, enhancing the accuracy of navigation
algorithms. The objective function, denoted as F, measures the viability and optimality of
navigational paths through the underwater grid environment. It includes path length, EC, hindranc

avoidance, and environmental adaptability.
1 Path Length (L): The length of the path, L, is calculated as the sum of the @
between consecutive nodes (grid cells) along the path, expressed as EQU (3

L= Z?=_11 d(P;, Piyq) Q)
where d(P;, P;,,) represents the distance between repeated poi ; P71 he path,

and n is the total number of points.

specific parameters, EQU (4)
E=a-L+p-Y]

where ‘a’ represents the energy cost per unit di§tan
energy cost due to sensor and s ctions, and e(P;) encapsulates the energy
overhead at a point P;, including co ations with environmental factors.

3 Obstacle Avoidance (0): Obstacle avoidance, O, ensures the AUV steers clear of hazards,
preserving its integrity andgnission continuity. It can be incorporated into the objective

function through draw s agsociated with proximity to known obstacles, EQU (5)

—y.yn 1
0 _y Zl:l d(Pi,ObS)+6 (5)

where Obs repr location of problems, d(P;, Obs) is the distance from the point

P, tot bstacle, y is a weighting factor, and € is a small constant to prevent
divi by
4 Envikon al Adaptability (A): Adaptability to environmental conditions, A, reflects
AUWs ability to navigate efficiently through dynamic underwater currents and varying
ains, potentially optimizing EC and reducing transit time, EQU (6)
A=6-3, alP) (6)
where a(P;) evaluates the adaptability of the path at point P; in response to environmental

conditions, and § is a weighting factor that balances adaptability with other path-finding



objectives. The objective function F (P) is then expressed by considering the above factors
as EQU (7)
F(P)=A-L(P)+ A, -E(P)+ A3 - 0(P) + A4 - A(P) (7)

")

Where P denotes a specific path and A4, 4,, 45, and A, are weighting co-efficient.
3.2 Optimization Strategy
To handle the complexities associated with the UTE for AUV, this work intr

hybrid model that combines the strengths of PSO+ACO. The dual-phase optimizatigmep

3

directed by this work objective function F, to minimize the combined criteria
problem avoidance, and environmental adaptability. The optimization
as EQU (8).

P* = Arg MinF(P)

Here, P* denotes the optimal path that minimizes the objectiv. fu

3.3 PSO for Global PF

PSO utilizes the collective intelligence beh within swarms [16-20]. They
adeptly explore and exploit the search spac efficient routes within the mentioned
constraints. The following section describe

(i) PSO and Path Representation

O-based global path planning.

PSO simulates social behaviougpattetns observed in nature, such as birds flocking, to search

for optimal solutions in a multi

[¢]

onali$pace. Each particle in the swarm represents a potential

path 'P’, defined by a seque te points. (xj, yj). This route points chart the AUV's proposed

o

route from its starting pd destination.

Update Rules: The core mechanism driving PSO's search

ce from its current position to its personal best position, and the distance to the
swarm's global best position. Mathematically, the velocity update for the ‘i’ particle is given
by EQU (9).

vi(t+1) =w-v;(t) +¢; -rand () - (pbest , — x;(t)) + ¢, - Rand () - ( gbest — x;(£))(9)



e Position Update: The position of a particle is updated by adding its velocity to its current
position, facilitating the exploration of new potential paths, EQU (10).
xi(t+1) =x0)+v(t+1) (10)
Where w is the inertia weight, controlling the impact of the previous velocity on the cu

velocity. ¢; and ¢, are the cognitive and social coefficients, respectively, guiding

particle towards its personal best and the global best positions; rand () and Ra

random functions generating values between 0 and 1, pbest ; is the personalgbes

Y, the inertia

of the i th particle, and gbest is the global best position found by the s

Adapting the PSO for underwater PF involves modifying its para

weight (w), cognitive co-efficient (c;), and social co-efficie ain the balance

between exploration (searching new areas) and exploitation (focusin@@n promising areas):
e Inertia Weight (w ): Adjusting w helps control the trad’f bétiveen global and local
search abilities. A higher w promotes exploration, wer ‘'w' enhances exploitation.

e Cognitive and Social Co-efficients ( ¢; and c, -tuning c; and c, dictates the

tendency of particles to navigate heifgpersonal and global best, respectively.

Balancing these coefficients is cru effective search behaviour in the context of
underwater problems and mission objec
(ii) Static Problem Avoidance in -Based Global Path Planning
The UE is conceptuali as'a 2-B grid or a continuum, where obstacles are precisely

located based on their cogidinates, Each obstacle denoted as Obs;, is considered by its location

ition towards its goal. The dynamics of each particle, including its position

lve over iterations according to PSO's optimization rules, guiding the swarm

The essence of PF, F(P), is quantified by a fitness function that integrates a critical obstacle
av@idance component. This component employs a repulsive potential field concept around
obstacles to penalize paths that either intersect with obstacles or traverse too closely to them.

Mathematically, the obstacle avoidance aspect of the fitness function can be articulated as EQU

(11)



O(P) = Agps Yobss Yo 1 )
( ) ObSZl—l j=1 d((ijyj)’ObSi)2+E ( )

where:
® n,ps signifies the count of problems within the UE.

®  TNpyins represents the number of route points defining path ‘P’
o d ((xj, vi), Obsi) computes the distance from the ’j' route points in ‘P’ to the 'i’ g @

e Aops 1s a co-efficient weighing the importance of obstacle avoidance within 8S

function.

e '€’ is a minor constant to ensure the denominator ney,

esgout, maintaining
computational stability.
This O(P) effectively institutes a repulsion from problems, dete the selection of unsafe
paths. The overarching fitness function that a particle (path) uwinim ze becomes EQU (12).
F(P) = ,{L(P) + A,E(P) + 1;0(P) + A,A(P) (12)
Here, the PSO aims to minimize F (P), steering the o 1za ards identifying optimal paths.
(iii) Enhanced Route Adaptability in P Global Path Planning

The adaptability of a route to envire i >ntal changes can be significantly enhanced by

dynamically adjusting the weighting factor '8’ of the adaptability term A(P) in the fitness function.
This adjustment is based on the lgvel vironmental variation or the changes in the AUV's

operational context. The modi ada ty term can be expressed as EQU (13).

AP t) = 6(6) - B2 (13)
where:
e a(p, asses8es the adaptability of the i’ route points in path P concerning the current
envi entdl conditions E (t) at time t.
o S(D)N e-varying weighting factor that dynamically adjusts the importance of
virommental adaptability based on real-time feedback.

namic adjustment of §(t) is modelled based on environmental unpredictability. For

tance, if environmental volatility is quantified by a metric V(t), §(t) is represented as follows:
(14)
1
6(t) = 1+e_k(V(t)_Vthircsh) (14)

where:




e [ is a scaling constant that determines the sensitivity of § (t) to changes in V (t).
®  Viesn 18 a threshold value for environmental unpredictability beyond which the importance
of adaptability significantly increases.
(iv) Implementation in PSO

Integrating this dynamic weighting mechanism into the PSO algorithm involves recalculatin

4(t) at each iteration based on current environmental data. This ensures that the fitness

and consequently the optimization process, dynamically prioritizes path adaptabilj

to changing environmental conditions:

¢ Real-time Environmental Feedback: Continuously monitQs

E (t) and calculate the variability metric V (t) to adjust &(
e Fitness Function Update: Given the dynamic adjustment of{the weighting factor §(t)
based on environmental variability or changes, the updatedd€ompesite objective (fitness)

function F (P, t) at time 't’ is expressed as EQU (

F(P,t)=A,-L(P)+A,-E(P)+ A3 - O(P)+6(t (P; (15)
This updated fitness function F (P, tdf€nables th O algorithm to dynamically prioritize

Iso highly adaptable to the current underwater

paths that are not only efficient and safe ™
environmental conditions. The complete process®@f the PF is presented in the following algorithm,
Algorithm 1 for PSO for AUV Gléba
Inputs:

e Grid Environment

e Number of Parti

ax_lIter)

e CoOgniti efficient (c;)

o cial Co-efficient (c, )

tart and Goal Positions

nitialize the Grid Environment

e Construct the grid G based on input environmental data, marking obstacles and navigable
waters.

2. Initialize Particles



e For each particle i’ in the swarm (i = 1,2, ...,N) :
e Randomly initialize the position x; representing a potential path in ‘G’ from the start to
the goal position.
¢ Initialize velocity v; randomly.
e Set pbest ; to its initial position.
o Initialize gbest based on the initial calculations of F(P).
3. Evaluate Fitness
e For each particle, compute F (P) considering the path P represented by,
length (L(P) ), EC (E(P) ), problem avoidance (O(P) ), an b
4. Update Personal and Global Bests

(AP

e For Each particle, if F(P) at x; is better than F (P) at pbest ;, Opdate pbest ; to x;.
o Update gbest if any pbest ; offers a better fitness thanthe ‘ent best.
5. Velocity and Position Update

e For Each particle:

e Update v; using the formula congic Q

,C1,@y, pbest ;, and gbest.
e Update x; by adding v; to the curréafposition, ensuring the new position is valid within

G and avoids obstacles.

6. Iterate and Convergence Ch
e Repeat Step 3 to Step SQ itéV 1terations gbest changes minimally between iterations,

indicating conve
7. Output
e Theop

pa
3.4 Local P ingAACO
ACO 1 T ilistic technique that is designed by the inspiration of the foraging behaviour

of antsWLhe O utilizes the concept of pheromones to guide the search for optimal solutions.

tial ACO components and functions are:
1 Initialization: The algorithm begins by initializing all paths with a small volume of
pheromone to ensure that every path can be explored. The initial pheromone level on each

path, or edge, in the graph, is typically set to a constant value, 7.

r the AUV is represented by the gbest particle's position.



2 Solution Construction: Each ant in the colony constructs a solution by traversing the
graph from the starting point to the destination. The choice of the next node to visit is
probabilistic, heavily influenced by the amount of pheromone on the connecting edges and
the heuristic desirability of the move. The probability of moving from node i to node {ifo
ant k is given by EQU (16)

Lieatlowed), (T?ﬂlﬁ)

Where 7;; is the pheromone concentration on the edge from i to j, 1;; is th

associated with the edge from i to j, often related to the inverse @fath e% b

Nij,

nodes, a and f are parameters that control the influence g @

k _
bij =

allowed,, is the set of nodes available for the next move for at

on the paths are updated to reflect the newly acqu ledge. This involves two main
steps:
a) Pheromone Evaporation: i lgorithm from converging too early on
a suboptimal path, a certain of pheromone evaporates from all paths. This
is modelled by EQU (17).
75 =1 =p) 7y (17)
where p is the olmone gyaporation rate, a parameter between 0 and 1.
b) Pheromong ition: Ants deposit pheromones on the paths they traverse based

k

heir solution. The amount of pheromone deposited, At;;, often

n nverse of the path length or cost found by ant k, encouraging the
N

on of shorter or more efficient paths in future iterations.

4 Conyer Check: The algorithm repeats the solution construction process and
erom@ne update until a stopping criterion is met, such as a maximum number of
ite n

i s or a solution quality threshold.
Enhanced Cost Function for ACO-Based Local Path Planning
For local path planning using ACO, the cost function is modified to include (i) Safety

Distance Compliance (S(P) ) and (ii) Dynamic Obstacle Avoidance (D (P)).
(i) Safety Distance Compliance (S(P)): This component evaluates how well a path

adheres to maintaining a predefined safe distance from obstacles in a grid-based UE.



Given that the environment is represented as a 2D matrix, where obstacles are marked with
an O (indicating no-go zones) and navigable water with a 1 (safe zones), the safety distance

compliance can be recalibrated as follows: EQU (18).

S(P) = Y woine max(O,dsafe — min_d(P, Obs)) (18

i=1 VObsEN(P;)
® dgrp isthe predefined safety distance, translated into the number of grid cells that

minimum buffer between the AUV and any obstacle.

d(P;, 0bs) Now, it measures the shortest grid-based distance (in terms of €¢

problems dynamically and the necessity of mamiaining a safe buffer zone, as defined by S(P),

around those obstacles. The dynami@"problem avoidance capability is given by EQU (19).
oints —1
D(P) =X, 7 8(Py Piss, Qia (19)

Here, 6 (Pi, Piyq, is a function assessing the adjustability of the path segment

t both the presence of dynamic obstacles within the grid (Ogrid )

+ A, E(P)+A3-O(P)+ A, - A(P) + A5 - S(P) + A¢ - D(P) (20)
),O(P), and A(P) represent path length, EC, problem avoidance, and
ironmental adaptability, respectively.
e 1, to A are the weighting coefficients for each component to balance efficiency, safety,
and adaptability.
The entire process of finding local paths using ACO is presented in algorithm 2.

Algorithm 2: ACO-Based Local Path Planning Algorithm for AUV's



Inputs:
e (Grid Environment (G)
e Number of Ants (N)
e Maximum Iterations (Max_Iter)

e Pheromone Evaporation Rate ( p )

e Influence Parameters (a, )
e Initial Pheromone Level (7,)
e Safety Distance (dg,g )
o Start and Goal Positions
Output Specification:
e The optimal path, P*, from S to T that considers safety distanc&gompliance and dynamic
obstacle avoidance.
Algorithm Steps:
1 [Initialization:

e Initialize the grid G with the cu

@ ‘

e Set all paths in G with an initial ph€gémone level 7.
e Place N ants at the starting location S.

2 Path Construction:

e For Each ant:

e Construct a g8
influenced m cromone levels and heuristic values (distance to T, safety

lianeg).
. transition probability using:
o u

cu
r ves comply with dg, ., avoiding paths that breach the safety distance from
es

to T by selecting moves based on transition probabilities

obs

al Pheromone Update:

e Optionally, local pheromone updates should be applied after each move or path
construction to encourage exploration.

4 Global Pheromone Update:

e After all ants complete their paths, update pheromones globally:



e Apply evaporation: 7;; = (1 — p) - 7;;.
e Deposit pheromones on paths traversed by ants, with AT{‘J- proportional to path
quality (inversely related to path cost considering S(P) and (P) ).
5 Cost Function Evaluation:

e Evaluate the cost of each path using:

Cost (P) = Ay - L(P) + Ay - E(P) + A3 - O(P) + A, - A(P) + A5 - S(B %

D(P)
e Select the path with the lowest cost as the current best solution. O
6 Convergence Check:

¢ If not met, return to Step 2 with updated pheromone levm
7 Output the Optimal Path:

e Determine if a stopping criterion is met (e.g., no signif ovenieént in path cost,

maximum number of iterations reached).

e Return to the optimal path P* as the ti ring it adheres to safety and

efficiency criteria while adapting pamic@hanges in the underwater environment.

4. Experimental Analysis

The simulation platform for our AUV patliaplanning experiments was built on a system
powered by an AMD Ryzen 9 39, -Core Processor @ 3.5 GHz, running a Linux-based
operating system. The algorithn@waS*€valuated using Python, leveraging libraries such as NumPy

for numerical computation Matplotlib for graphical representations. The simulated

@

0 grid, as shown in Fig. 1.

eca of 100x100 km, organized into a grid where each cell spanned

underwater domain cove

on parameters included:

m Acceleration: Adjusted to 3 m/s? for the AUV's propulsion system

esolution: Set at N =1 /im.

ety Margin: Established at 2 km.
e AUV's Initial and Target Coordinates: Selected as (10, 20) and (100, 90) within the grid.
This setup tests the algorithm across the maximum possible distance within the simulated

domain, presenting various navigation challenges from shallow to deep-water scenarios.
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Three models, PSO, ACO, and GA, are compared again
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Figure 2: PF for different models



The simulation results, as shown in Fig. 3, show the effectiveness of different algorithms in

terms of the following metrics:

1. Inflection Count: A lower inflection count indicates a smoother path with fewer sharp

turns that are best for energy efficiency and operational feasibility. The PSO+ACO hybri
algorithm outperforms PSO, ACO, and GA by reducing the inflection count to 5.

2. Route Lengths: The PSO+ACO hybrid algorithm performed better by achie
shortest long route (17.69 km) and the shortest route (16.13 km).

3. Average Route Length: The average route length measures the overall @
across simulations (Fig. 3). The PSO+ACO hybrid algorithm obtai he 10
route length (16.91 km) compared to PSO (24.20 km), AGO 42 km)s
km).

d GA (22.52

Algorithm Performance and Inflection Count Com?‘so

@ . 4 9 -8.0
25
75
20
55
r -50
; 3

GA PSO+ACO

~
=3

Route Values
Inflection Count

-
o
o
o

Algorithm
: Average route length and Inflection count

simulation results, as shown in Figure 4, analyse the time efficiency and
accuracy i er models. The proposed PSO+ACO hybrid algorithm showed better
rding the speed and precision of pathfinding. The model had a completion time
V 43 Sec. and had effectively surpassed its counterparts. Also, the hybrid algorithm showed an
racy rate of 93.5%, a way better performance than the PSO, ACO, and GA algorithms, which
ieved 66.2%, 63.4%, and 65.7%, respectively. Among the later performing models, the ACO

showed a completion time of 12.53 Sec. next to the proposed model.



Performance Comparison of Algorithms o5 Distance to Target Point over Iterations
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Figure 4: Accuracy and Target reach time

model showed a 51gn1ﬁcant reduction in distance to the ta Q geaching it much ahead of other

models. The model achieved reachlng the target in fi i ioftS than both stand-alone models.

this study, the value of the proposedalgorithm's performance in successfully AUNS the UE and,
as a result, driving the AUV t

5. Conclusion and FuturegV

The main objec the study was to explore the idea of employing Particle Swarm

Optimization @RS olony Optimization (ACO) in order to Path Finding (PF) for

Autonomo ater Vehicles (AUV). Using the techniques of static problem avoidance and
enhancedeutctadaptability, the approach utilized PSO for global route planning and ACO for
ing. Both of these approaches were applied during the entire method. Simulations
d by employing the proposed approach in a framework that was represented as a

. Forthe aim of comparing performance comparison, the computer simulation used PSO, ACO,
and GA models. The analysis was conducted on how well the models performed regarding the
total time they saved, the accuracy they attained, and the distance they decreased to the objective.

The results indicate that the built PSO+ACO hybrid model performed better throughout all regions



based on all guidelines. These results reinforce the practical application of the framework in the
route planning method for AUV in Underwater Environments (UE).

It is predicted that in further work, the prototype will be evaluated in a UE that is
comparable to the real world, and it will additionally incorporate additional variables like ECian.
navigational safety.
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