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Abstract: Underwater research and monitoring operations rely significantly on Autonomous 

Underwater Vehicles (AUVs) for scientific investigations, resource management, and monitoring, 

and underwater infrastructure is provided maintenance levels amid other applications. Efficient 

navigation and preventative methods are only a couple of the numerous challenges that Path-

Finding (PF) in rapidly changing and sophisticated Underwater Environments (UE) requires 

overcoming. Dynamic environments and real-time improvements are problems for traditional 

models. In order to provide superior solutions for navigating uncertain UE, this work suggests a 

hybrid optimization technique that combines Ant Colony Optimization (ACO) for local path 

selection with Particle Swarm Optimization (PSO) for global path scheduling. Runtime efficiency, 

accuracy, and distance focused on decrease are three metrics that demonstrate how the PSO-ACO 

hybrid method outperforms conventional algorithms, proving its significance for improving AUV 

navigation. The improvement of AUV functions in fields such as underwater research, along with 

others, is supported by the current research, which further assists with the invention of 

Autonomous Underwater Navigation Systems (AUNS). The PSO+ACO hybrid method is 

superior to the PSO, ACO, and GA algorithms in pathfinding with a 6.43-second execution time 

and 93.5% accuracy—the ACO model completed in 12.53 seconds, superior to the proposed 

system. 
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1. Introduction 

The investigation and tracking of the world's lowest oceans, reservoirs, and lakes have been 

greatly improved by the emergence of Autonomous Underwater Vehicles (AUV), which are 

addresses that have been employed in recent years to indicate significant technical progress [1]. 

These automobiles are called autonomous vehicles and usually function without requiring human 

involvement. These autonomous vehicles have the possibility to be employed in an enormous 

number of programs, which include but are not restricted to scientific research and data collecting, 

inspection of underwater systems, army tracking, and the field of exploring undiscovered lands 

according to the outermost layer of the deep sea [2]. Such AUVs are essential for improving the 

study of marine systems, may be beneficial to the advancement of maritime security, and are also 

possible remedies for developing techniques in taking advantage of the resources of the bottom of 

the sea.  

Their knack to function autonomously and navigate across complicated and unreachable 

waters allows them to complete all of these objectives. The PF system plays an important role in 

the successful operation of AUVs, notwithstanding their great potential. Underwater environments 

(UE) are typically challenging to forecast that which has been an important challenge for the 

development of this system. In order to maximize the effectiveness of their operation, the AUVs 

have had to become accustomed to an operational setting that constantly evolves. Sea waves, 

underwater challenges, and various environments define this UE. With every aspect taken into 

account, AUNs are required to be adaptable and efficient to navigate underwater successfully. 

Although reducing Energy Consumption (EC) and improving the precision of collecting 

information, these techniques must be enabled to adapt successfully to developments that have not 

been predicted [3]. 

A greater number of individuals become aware of how crucial it is to use good AUNS in 

UE owing to how constantly changing and unpredictable these settings are. Incorporating real-

time information into the UE proved to be a prevalent issue for conventional PF techniques. The 

probability of security risks has grown due to insufficient and erroneous navigation, for example, 

which occurred regularly as a consequence of all these factors [4]. These restrictions have made it 

more challenging to develop effective systems that can respond to real-world circumstances while 

Auth
ors

 Pre-
Proo

f



maintaining secure travel. Optimizing task execution has been successful in large part due to this 

threshold [5].  

 

Algorithms designed in order to deal with those problems frequently employ incorrect 

predictions about the external environment or utilize static pictures of the UE. However, 

unfortunately, these methods may not help to capture the complexities of real-world scenarios 

fully. While many heuristic and swarm intelligence methods like Ant Colony Optimization (ACO), 

Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) have also been applied to 

AUNS, even such models each have limitations. PSO models, though, excel in global search but 

may overlook local optimality; ACO models have provided detailed local path refinement. 

However, they can be quite computationally intensive for larger input areas, and GA could offer a 

balance between exploration and exploitation, but these models require extensive tuning to achieve 

desired outcomes [6]. 

In this work, in order to address the above-discussed challenges in the field of PF in AUV 

and the inherent limitations of empirical models, we have proposed a PSO+ACO hybrid model for 

PF for AUV. The hybrid approach combines PSO+ACO to utilize PSO's broad search capability 

for identifying global paths and ACO's detailed focus for local path changes. The proposed solution 

addresses the problem of PF using the most efficient method, which is mapping the complete UE 

into a layout. In addition, collision prevention techniques are employed to do this. In order to 

execute the study, a Virtual Matrix System (VMS) was built, and the success of the method was 

assessed based on its capacity to decrease the range to the objective, as well as its precision and 

time efficiency metrics. Using tests, the analysis demonstrates that the proposed PSO+ACO hybrid 

model helps optimize the route. In particular, this research shows that the recommended approach 

is higher than individual PSO, ACO, or GA regarding PF.  

The paper is structured as follows: Section 2 presents the literature of the work, Section 3 

presents the methodology, Section 4 presents the evaluation of the work and Section 5 presents the 

conclusion. 

2. Literature Review 

Applying the Deep Deterministic Policy Gradient (DDPG) technique, researchers 

established a model that could improve the planning of paths for AUV. The design aimed to 

address the problems of driving AUVs throughout underwater tunnels and avoid anonymous risks. 
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Their strategy employed sensor data as input, and with the support of that sensor data, researchers 

attempted to attain the optimum results in terms of the driving speed and the rotation angle. 

The AUVs have effectively steered past static and dynamic hazards by employing a structured 

reward function model and the artificially generated potential field technique for persistent 

rewards.  

An article that was presented by [8] studies the subject of PF for Autonomous Surface 

Vehicles (ASV) within and around challenging coastlines. Researchers intended to identify a 

remedy to the problem by using an approach called PSO, which has been improved by Visibility 

Graphs (VG) to define the number of option possibilities. This approach efficiently addresses the 

primary constraints of early convergence that are vital to the PSO, enhancing its reliability in 

sending near-optimal outcomes. Also, the authors implemented pragmatic reward-based planning 

in order to achieve an acceptable balance between route performance and experimental trip results. 

The problem that has been given to the domain of Internet of Underwater Things (IoUT) 

technologies was investigated by [9], which investigated the use of algorithmic methods and 

Reinforcement Learning (RL) methods. The researchers proposed a method that focuses on Q-

learning and ACO for the optimal PF of AUV. Apart from focusing on improving the Value of 

Information (VoI) by developing the PF of the AUV, experts determined that significantly 

reducing the delay throughout the data collection process was necessary. Tests have been done 

that showed the success rate of the algorithm they used when compared with standard algorithms 

in many circumstances. In the Underwater Wireless Sensor Networks (UWSN) framework, [10] 

suggested a PF system that thoughtfully incorporated any possible reduction in EC. Using GA, 

researchers built a successful AUV route planning system that requires the advantage of reducing 

EC. Through experiments, they had shown that their model had faster convergence and extended 

the lifetime of UWSN. 

[11] had employed an improved Fireworks-Ant Colony Hybrid Algorithm (FACHA) for 

2D autonomous PF. They developed their model to handle path planning in environments that are 

greatly affected by ocean currents and problems. This model included various factors such as EC, 

navigation time, and distance costs to achieve this task. They successfully demonstrated the 

effectiveness of their proposed work through different simulation experiments. 

 An integrated model was proposed by [12], which combines the memory function with 

the artificial Jellyfish Search (JS) algorithm to improve its convergence accuracy. They formulated 
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an objective function that considered the ocean current disturbance model. The improved 

algorithm demonstrated effectively optimal performance for the time cost and ocean current 

penalty cost along the planned paths, thereby showcasing their model’s adaptability for multi-

AUV movements. 

The authors in [13] designed an autonomous underwater review robot, where a novel controller 

is fabricated to reduce steady-state errors. Hybrid swarm algorithms are applied to detect and 

classify Underwater images [14]. Additionally, the article emphasises the hybrid method of GA 

[15], which can be used for PF in UE. Followed by [16], the authors explore Federated Deep 

Reinforcement Learning (FDRL) for efficient pathfinding in UE.  

3. Methodology 

3.1 Setup A Grid System for Underwater Terrain Environment (UTE) 

To simulate the complex UTE is represented as  a 2D matrix, 𝑀𝑀, where each element, 𝐸𝐸𝑚𝑚𝑚𝑚, 

corresponds to a specific portion of the seabed. The UE is segmented into a grid, with each grid 

cell representing either an obstacle or open water. Cells corresponding to obstacles are assigned a 

value of ‘0’. Conversely, cells representing navigable water are assigned a value of ‘1’. This study 

pays morphological operations, dilation and erosion to mitigate the computational load imposed 

by the terrain's complexity on the AUNA algorithm. These operations refine the grid, 𝑀𝑀′, 

emphasizing essential navigational data and discarding superfluous data. Such simplification is 

pivotal for optimizing the AUV 's-PF capabilities. 

Each grid cell within the VMS is uniquely identified by a co-ordinate pair, (𝑢𝑢𝑚𝑚, 𝑣𝑣𝑚𝑚), facilitating 

accurate AUV localization. The transformation from a cell's linear index, 𝑙𝑙, to bidimensional co-

ordinates is crucial for mapping and navigation systems. Given the VMS dimensions 𝑅𝑅 × 𝑆𝑆 (rows 

by columns), the formulas for calculating the row index 𝑢𝑢𝑚𝑚 and the column index 𝑣𝑣𝑚𝑚 from the 

linear index 𝑙𝑙 are as follows: 

• Row Index (𝒖𝒖𝒎𝒎) : The row index is determined by dividing the linear index by the number 

of columns, rounded down to the nearest whole number, EQU (1) 

𝑢𝑢𝑚𝑚 = �𝑙𝑙
𝑆𝑆
�      (1) 

• Column Index (𝒗𝒗𝒏𝒏) : The column index is calculated as the remainder of the linear index 

divided by the number of columns, EQU (2) 

𝑣𝑣𝑚𝑚 = 𝑙𝑙mod𝑆𝑆     (2) 
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These EQU (1) and EQU (2) ensure that each cell in the grid can be precisely located and 

referenced during the simulation of AUV path-finding, enhancing the accuracy of navigation 

algorithms. The objective function, denoted as 𝐹𝐹, measures the viability and optimality of 

navigational paths through the underwater grid environment. It includes path length, EC, hindrance 

avoidance, and environmental adaptability. 

1 Path Length (𝑳𝑳): The length of the path, 𝐿𝐿, is calculated as the sum of the distances 

between consecutive nodes (grid cells) along the path, expressed as EQU (3) 

𝐿𝐿 = ∑  𝑚𝑚−1
𝑖𝑖=1 𝑑𝑑(𝑃𝑃𝑖𝑖,𝑃𝑃𝑖𝑖+1)    (3) 

where 𝑑𝑑(𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑖𝑖+1) represents the distance between repeated points 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑖𝑖+1 on the path, 

and 𝑛𝑛 is the total number of points. 

2 Energy Consumption (𝑬𝑬): EC, 𝐸𝐸 is modelled as a function of path length and vehicle-

specific parameters, EQU (4) 

𝐸𝐸 = 𝛼𝛼 ⋅ 𝐿𝐿 + 𝛽𝛽 ⋅ ∑  𝑚𝑚
𝑖𝑖=1 𝑒𝑒(𝑃𝑃𝑖𝑖)    (4) 

where ′𝛼𝛼′ represents the energy cost per unit distance, 𝛽𝛽 is a co-efficient accounting for the 

energy cost due to sensor and system functions, and 𝑒𝑒(𝑃𝑃𝑖𝑖) encapsulates the energy 

overhead at a point 𝑃𝑃𝑖𝑖, including communications with environmental factors. 

3 Obstacle Avoidance (𝑶𝑶): Obstacle avoidance, 𝑂𝑂, ensures the AUV steers clear of hazards, 

preserving its integrity and mission continuity. It can be incorporated into the objective 

function through drawback terms associated with proximity to known obstacles, EQU (5) 

𝑂𝑂 = 𝛾𝛾 ⋅ ∑  𝑚𝑚
𝑖𝑖=1

1
𝑑𝑑(𝑃𝑃𝑖𝑖, Obs )+𝜖𝜖

    (5) 

where 𝑂𝑂𝑂𝑂𝑂𝑂 represents the location of problems, 𝑑𝑑(𝑃𝑃𝑖𝑖 ,𝑂𝑂𝑂𝑂𝑂𝑂) is the distance from the point 

𝑃𝑃𝑖𝑖 to the nearest obstacle, 𝛾𝛾 is a weighting factor, and 𝜖𝜖 is a small constant to prevent 

division by ‘0’. 

4 Environmental Adaptability (𝑨𝑨): Adaptability to environmental conditions, 𝐴𝐴, reflects 

the AUV's ability to navigate efficiently through dynamic underwater currents and varying 

terrains, potentially optimizing EC and reducing transit time, EQU (6) 

𝐴𝐴 = 𝛿𝛿 ⋅ ∑  𝑚𝑚
𝑖𝑖=1 𝑎𝑎(𝑃𝑃𝑖𝑖)     (6)  

where 𝑎𝑎(𝑃𝑃𝑖𝑖) evaluates the adaptability of the path at point 𝑃𝑃𝑖𝑖 in response to environmental 

conditions, and 𝛿𝛿 is a weighting factor that balances adaptability with other path-finding 
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objectives. The objective function 𝐹𝐹(𝑃𝑃) is then expressed by considering the above factors 

as EQU (7) 

𝐹𝐹(𝑃𝑃) = 𝜆𝜆1 ⋅ 𝐿𝐿(𝑃𝑃) + 𝜆𝜆2 ⋅ 𝐸𝐸(𝑃𝑃) + 𝜆𝜆3 ⋅ 𝑂𝑂(𝑃𝑃) + 𝜆𝜆4 ⋅ 𝐴𝐴(𝑃𝑃)     (7) 

Where 𝑃𝑃 denotes a specific path and 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, and 𝜆𝜆4 are weighting co-efficient.  

3.2 Optimization Strategy 

To handle the complexities associated with the UTE for AUV, this work introduces a 

hybrid model that combines the strengths of PSO+ACO. The dual-phase optimization process is 

directed by this work objective function 𝐹𝐹, to minimize the combined criteria of path length, EC, 

problem avoidance, and environmental adaptability. The optimization target can be formally stated 

as EQU (8). 

𝑃𝑃∗ = Arg Min
𝑃𝑃
 𝐹𝐹(𝑃𝑃)          (8) 

Here, 𝑃𝑃∗ denotes the optimal path that minimizes the objective function ′𝐹𝐹′. 

3.3 PSO for Global PF 

PSO utilizes the collective intelligence behaviour inherent within swarms [16-20]. They 

adeptly explore and exploit the search space to identify efficient routes within the mentioned 

constraints. The following section describes the PSO-based global path planning. 

(i) PSO and Path Representation 

PSO simulates social behaviour patterns observed in nature, such as birds flocking, to search 

for optimal solutions in a multidimensional space. Each particle in the swarm represents a potential 

path ′𝑃𝑃′, defined by a sequence of route points. �𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�. This route points chart the AUV's proposed 

route from its starting point to its destination. 

• Velocity and Position Update Rules: The core mechanism driving PSO's search 

capability lies in the iterative update of each particle's velocity and position, governed by 

the following rules: 

• Velocity Update: The velocity of a particle is adjusted based on its previous velocity, the 

distance from its current position to its personal best position, and the distance to the 

swarm's global best position. Mathematically, the velocity update for the ′𝑖𝑖′ particle is given 

by EQU (9). 

𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤 ⋅ 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝑐𝑐1 ⋅ rand () ⋅ � pbest 𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑡𝑡)� + 𝑐𝑐2 ⋅ Rand () ⋅ ( gbest − 𝑥𝑥𝑖𝑖(𝑡𝑡)) (9) 
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• Position Update: The position of a particle is updated by adding its velocity to its current 

position, facilitating the exploration of new potential paths, EQU (10). 

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1)        (10) 

Where 𝑤𝑤 is the inertia weight, controlling the impact of the previous velocity on the current 

velocity. 𝑐𝑐1 and 𝑐𝑐2 are the cognitive and social coefficients, respectively, guiding the 

particle towards its personal best and the global best positions; 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑 () and 𝑅𝑅𝑎𝑎𝑛𝑛𝑑𝑑 () are 

random functions generating values between 0 and 1, pbest  𝑖𝑖 is the personal best position 

of the 𝑖𝑖 th particle, and gbest is the global best position found by the swarm. 

Adapting the PSO for underwater PF involves modifying its parameters, namely, the inertia 

weight (𝑤𝑤), cognitive co-efficient (𝑐𝑐1), and social co-efficient (𝑐𝑐2)-to maintain the balance 

between exploration (searching new areas) and exploitation (focusing on promising areas): 

• Inertia Weight (𝒘𝒘 ): Adjusting 𝑤𝑤 helps control the trade-off between global and local 

search abilities. A higher 𝑤𝑤 promotes exploration, while a lower ′𝑤𝑤′ enhances exploitation. 

• Cognitive and Social Co-efficients ( 𝒄𝒄𝟏𝟏 and 𝒄𝒄𝟐𝟐 ): Fine-tuning 𝑐𝑐1 and 𝑐𝑐2 dictates the 

tendency of particles to navigate towards their personal and global best, respectively. 

Balancing these coefficients is crucial for effective search behaviour in the context of 

underwater problems and mission objectives. 

(ii) Static Problem Avoidance in PSO-Based Global Path Planning 

The UE is conceptualized as a 2-D grid or a continuum, where obstacles are precisely 

located based on their coordinates. Each obstacle denoted as 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖, is considered by its location 

(𝑥𝑥𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 ) and potentially its size or radius 𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 to represent its physical extent accurately. 

Within the PSO framework, each particle symbolizes a potential navigational path 𝑃𝑃, constructed 

from a sequence of co-ordinates �𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�. These route points chart the course the AUV is to navigate 

from its starting position towards its goal. The dynamics of each particle, including its position 

and velocity, evolve over iterations according to PSO's optimization rules, guiding the swarm 

towards optimal paths. 

The essence of PF, 𝐹𝐹(𝑃𝑃), is quantified by a fitness function that integrates a critical obstacle 

avoidance component. This component employs a repulsive potential field concept around 

obstacles to penalize paths that either intersect with obstacles or traverse too closely to them. 

Mathematically, the obstacle avoidance aspect of the fitness function can be articulated as EQU 

(11) 
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𝕆𝕆(𝑃𝑃) = 𝜆𝜆𝑜𝑜𝑜𝑜𝑠𝑠 ∑  𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖=1 ∑  𝑚𝑚points 

𝑗𝑗=1
1

𝑑𝑑��𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗�,𝑂𝑂𝑜𝑜𝑠𝑠𝑖𝑖�
2
+𝜖𝜖

       (11) 

where: 

• 𝑛𝑛𝑜𝑜𝑜𝑜𝑠𝑠 signifies the count of problems within the UE. 

• 𝑛𝑛points  represents the number of route points defining path ′𝑃𝑃′. 

• 𝑑𝑑 ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖� computes the distance from the ′𝑗𝑗′ route points in ′𝑃𝑃′ to the ′𝑖𝑖′ problem. 

• 𝜆𝜆𝑜𝑜𝑜𝑜𝑠𝑠 is a co-efficient weighing the importance of obstacle avoidance within the total fitness 

function. 

• ′𝜖𝜖′ is a minor constant to ensure the denominator never zeroes out, maintaining 

computational stability. 

This 𝕆𝕆(𝑃𝑃) effectively institutes a repulsion from problems, deterring the selection of unsafe 

paths. The overarching fitness function that a particle (path) 𝑃𝑃 must minimize becomes EQU (12). 

𝐹𝐹(𝑃𝑃) = 𝜆𝜆1𝐿𝐿(𝑃𝑃) + 𝜆𝜆2𝐸𝐸(𝑃𝑃) + 𝜆𝜆3𝕆𝕆(𝑃𝑃)  + 𝜆𝜆4𝐴𝐴(𝑃𝑃)      (12) 

Here, the PSO aims to minimize 𝐹𝐹(𝑃𝑃), steering the optimization towards identifying optimal paths.  

(iii) Enhanced Route Adaptability in PSO-Based Global Path Planning 

The adaptability of a route to environmental changes can be significantly enhanced by 

dynamically adjusting the weighting factor ′𝛿𝛿′ of the adaptability term 𝐴𝐴(𝑃𝑃) in the fitness function. 

This adjustment is based on the level of environmental variation or the changes in the AUV's 

operational context. The modified adaptability term can be expressed as EQU (13). 

𝐴𝐴(𝑃𝑃, 𝑡𝑡) = 𝛿𝛿(𝑡𝑡) ⋅ ∑  𝑚𝑚points 
𝑖𝑖=1 𝑎𝑎(𝑃𝑃𝑖𝑖 ,𝐸𝐸(𝑡𝑡))        (13) 

where: 

• 𝑎𝑎(𝑃𝑃𝑖𝑖,𝐸𝐸(𝑡𝑡)) assesses the adaptability of the ′𝑖𝑖′ route points in path 𝑃𝑃 concerning the current 

environmental conditions 𝐸𝐸(𝑡𝑡) at time 𝑡𝑡. 

• 𝛿𝛿(𝑡𝑡) is a time-varying weighting factor that dynamically adjusts the importance of 

environmental adaptability based on real-time feedback. 

The dynamic adjustment of 𝛿𝛿(𝑡𝑡) is modelled based on environmental unpredictability. For 

instance, if environmental volatility is quantified by a metric 𝑉𝑉(𝑡𝑡), 𝛿𝛿(𝑡𝑡) is represented as follows: 

EQU (14) 

𝛿𝛿(𝑡𝑡) = 1

1+𝑒𝑒−𝑘𝑘�𝑉𝑉(𝑡𝑡)−𝑉𝑉thiresh �
         (14) 

where: 
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• 𝑘𝑘 is a scaling constant that determines the sensitivity of 𝛿𝛿(𝑡𝑡) to changes in 𝑉𝑉(𝑡𝑡). 

• 𝑉𝑉thresh  is a threshold value for environmental unpredictability beyond which the importance 

of adaptability significantly increases. 

 (iv) Implementation in PSO 

Integrating this dynamic weighting mechanism into the PSO algorithm involves recalculating 

𝛿𝛿(𝑡𝑡) at each iteration based on current environmental data. This ensures that the fitness function, 

and consequently the optimization process, dynamically prioritizes path adaptability in response 

to changing environmental conditions: 

• Real-time Environmental Feedback: Continuously monitor environmental conditions 

𝐸𝐸(𝑡𝑡) and calculate the variability metric 𝑉𝑉(𝑡𝑡) to adjust 𝛿𝛿(𝑡𝑡) accordingly. 

• Fitness Function Update: Given the dynamic adjustment of the weighting factor 𝛿𝛿(𝑡𝑡) 

based on environmental variability or changes, the updated composite objective (fitness) 

function 𝐹𝐹(𝑃𝑃, 𝑡𝑡) at time ′𝑡𝑡′ is expressed as EQU (15). 

𝐹𝐹(𝑃𝑃, 𝑡𝑡) = 𝜆𝜆1 ⋅ 𝐿𝐿(𝑃𝑃) + 𝜆𝜆2 ⋅ 𝐸𝐸(𝑃𝑃) + 𝜆𝜆3 ⋅ 𝕆𝕆(𝑃𝑃) + 𝛿𝛿(𝑡𝑡) ⋅ 𝐴𝐴(𝑃𝑃,𝐸𝐸(𝑡𝑡))    (15) 

This updated fitness function 𝐹𝐹(𝑃𝑃, 𝑡𝑡) enables the PSO algorithm to dynamically prioritize 

paths that are not only efficient and safe but also highly adaptable to the current underwater 

environmental conditions. The complete process of the PF is presented in the following algorithm, 

Algorithm 1 for PSO for AUV Global PF  

Inputs: 

• Grid Environment (𝐺𝐺)  

• Number of Particles (𝑁𝑁)  

• Maximum Iterations (Max_Iter) 

• Inertia Weight (𝑤𝑤)  

• Cognitive Co-efficient (𝑐𝑐1)  

• Social Co-efficient (𝑐𝑐2 ) 

• Start and Goal Positions 

1. Initialize the Grid Environment 

• Construct the grid 𝐺𝐺 based on input environmental data, marking obstacles and navigable 

waters. 

2. Initialize Particles 
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• For each particle ′𝑖𝑖′ in the swarm (𝑖𝑖 = 1,2, … ,𝑁𝑁) : 

• Randomly initialize the position 𝑥𝑥𝑖𝑖 representing a potential path in ′𝐺𝐺′ from the start to 

the goal position. 

• Initialize velocity 𝑣𝑣𝑖𝑖 randomly. 

• Set pbest  𝑖𝑖 to its initial position. 

• Initialize gbest based on the initial calculations of 𝐹𝐹(𝑃𝑃). 

3. Evaluate Fitness 

• For each particle, compute 𝐹𝐹(𝑃𝑃) considering the path 𝑃𝑃 represented by 𝑥𝑥𝑖𝑖, integrating path 

length (𝐿𝐿(𝑃𝑃) ), EC (𝐸𝐸(𝑃𝑃) ), problem avoidance (𝕆𝕆(𝑃𝑃) ), and adaptability ( 𝐴𝐴(𝑃𝑃) ). 

4. Update Personal and Global Bests 

• For Each particle, if 𝐹𝐹(𝑃𝑃) at 𝑥𝑥𝑖𝑖 is better than 𝐹𝐹(𝑃𝑃) at pbest  𝑖𝑖, update pbest  𝑖𝑖 to 𝑥𝑥𝑖𝑖. 

• Update gbest if any pbest  𝑖𝑖 offers a better fitness than the current 𝑔𝑔 best. 

5. Velocity and Position Update 

• For Each particle: 

• Update 𝑣𝑣𝑖𝑖 using the formula considering 𝑤𝑤, 𝑐𝑐1, 𝑐𝑐2, pbest  𝑖𝑖, and 𝑔𝑔𝑂𝑂𝑒𝑒𝑂𝑂𝑡𝑡. 

• Update 𝑥𝑥𝑖𝑖 by adding 𝑣𝑣𝑖𝑖 to the current position, ensuring the new position is valid within 

𝐺𝐺 and avoids obstacles. 

6. Iterate and Convergence Check 

• Repeat Step 3 to Step 5 for max_iter iterations gbest changes minimally between iterations, 

indicating convergence. 

7. Output 

• The optimal path for the AUV is represented by the gbest particle's position. 

3.4 Local PF using ACO 

ACO is a probabilistic technique that is designed by the inspiration of the foraging behaviour 

of ants. The  ACO utilizes the concept of pheromones to guide the search for optimal solutions. 

The essential ACO components and functions are: 

1 Initialization: The algorithm begins by initializing all paths with a small volume of 

pheromone to ensure that every path can be explored. The initial pheromone level on each 

path, or edge, in the graph, is typically set to a constant value, 𝜏𝜏0. 
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2 Solution Construction: Each ant in the colony constructs a solution by traversing the 

graph from the starting point to the destination. The choice of the next node to visit is 

probabilistic, heavily influenced by the amount of pheromone on the connecting edges and 

the heuristic desirability of the move. The probability of moving from node 𝑖𝑖 to node 𝑗𝑗 for 

ant 𝑘𝑘 is given by EQU (16) 

𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘 =
𝜏𝜏𝑖𝑖𝑗𝑗
𝛼𝛼 ⋅𝜂𝜂𝑖𝑖𝑗𝑗

𝛽𝛽

∑𝑙𝑙∈𝑎𝑎𝑙𝑙𝑙𝑙𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘  �𝜏𝜏𝑖𝑖𝑙𝑙
𝛼𝛼⋅𝜂𝜂𝑖𝑖𝑙𝑙

𝛽𝛽�
        (16) 

Where 𝜏𝜏𝑖𝑖𝑗𝑗 is the pheromone concentration on the edge from 𝑖𝑖 to 𝑗𝑗, 𝜂𝜂𝑖𝑖𝑗𝑗 is the heuristic value 

associated with the edge from 𝑖𝑖 to 𝑗𝑗, often related to the inverse of the distance between the 

nodes, 𝛼𝛼 and 𝛽𝛽 are parameters that control the influence of 𝜏𝜏𝑖𝑖𝑗𝑗 and 𝜂𝜂𝑖𝑖𝑗𝑗, respectively and  

𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑤𝑤𝑒𝑒𝑑𝑑𝑘𝑘 is the set of nodes available for the next move for ant 𝑘𝑘. 

3 Pheromone Update: After all ants have constructed their solutions, the pheromone levels 

on the paths are updated to reflect the newly acquired knowledge. This involves two main 

steps: 

a) Pheromone Evaporation: To prevent the algorithm from converging too early on 

a suboptimal path, a certain amount of pheromone evaporates from all paths. This 

is modelled by EQU (17). 

𝜏𝜏𝑖𝑖𝑗𝑗 = (1 − 𝜌𝜌) ⋅ 𝜏𝜏𝑖𝑖𝑗𝑗        (17) 

where 𝜌𝜌 is the pheromone evaporation rate, a parameter between 0 and 1. 

b) Pheromone Deposition: Ants deposit pheromones on the paths they traverse based 

on the quality of their solution. The amount of pheromone deposited, Δ𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘 , often 

depends on the inverse of the path length or cost found by ant 𝑘𝑘, encouraging the 

selection of shorter or more efficient paths in future iterations. 

4 Convergence Check: The algorithm repeats the solution construction process and 

pheromone update until a stopping criterion is met, such as a maximum number of 

iterations or a solution quality threshold. 

3.4.1  Enhanced Cost Function for ACO-Based Local Path Planning 

For local path planning using ACO, the cost function is modified to include (i) Safety 

Distance Compliance (𝑆𝑆(𝑃𝑃) ) and (ii) Dynamic Obstacle Avoidance (𝐷𝐷(𝑃𝑃)).  

(i) Safety Distance Compliance (𝑺𝑺(𝑷𝑷)): This component evaluates how well a path 

adheres to maintaining a predefined safe distance from obstacles in a grid-based UE. 
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Given that the environment is represented as a 2D matrix, where obstacles are marked with 

an O (indicating no-go zones) and navigable water with a 1 (safe zones), the safety distance 

compliance can be recalibrated as follows: EQU (18). 

𝑆𝑆(𝑃𝑃) = ∑  𝑚𝑚points 
𝑖𝑖=1 max �0,𝑑𝑑safe − min

∀𝑂𝑂𝑜𝑜𝑠𝑠∈𝑁𝑁(𝑃𝑃𝑖𝑖)
 𝑑𝑑(𝑃𝑃𝑖𝑖, Obs )�     (18) 

• 𝑑𝑑safe  is the predefined safety distance, translated into the number of grid cells that form the 

minimum buffer between the AUV and any obstacle. 

• 𝑑𝑑(𝑃𝑃𝑖𝑖,𝑂𝑂𝑂𝑂𝑂𝑂) Now, it measures the shortest grid-based distance (in terms of cells) from the 𝑖𝑖 

th waypoint on the path 𝑃𝑃 to the nearest problem cell 𝑂𝑂𝑂𝑂𝑂𝑂, respecting the grid layout. 

• 𝑁𝑁(𝑃𝑃𝑖𝑖) represents the set of neighbouring cells around the point 𝑃𝑃𝑖𝑖 considered in the safety 

distance calculation, adjusted according to 𝑑𝑑safe . 

• This formula penalizes paths where any part of 𝑃𝑃 comes within 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 Grid cells of 

obstacles, thereby promoting routes that maintain the integrity and safety of the AUV. 

In this grid context, the Euclidean distance is adapted to account for the discrete nature of the 

grid, potentially using the Manhattan distance metric for grid navigation. 

Dynamic Obstacle Avoidance (D(P)):  𝐷𝐷(𝑃𝑃) consider both the ability to reroute around new 

problems dynamically and the necessity of maintaining a safe buffer zone, as defined by 𝑆𝑆(𝑃𝑃), 

around those obstacles. The dynamic problem avoidance capability is given by EQU (19). 

𝐷𝐷(𝑃𝑃) = ∑  𝑚𝑚points −1
𝑖𝑖=1 𝛿𝛿�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑖𝑖+1,𝑂𝑂𝑔𝑔𝑔𝑔𝑖𝑖𝑑𝑑, 𝑆𝑆(𝑃𝑃)�       (19) 

Here, 𝛿𝛿�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑖𝑖+1,𝑂𝑂grid ,𝑆𝑆(𝑃𝑃)� is a function assessing the adjustability of the path segment 

from 𝑃𝑃𝑖𝑖 to 𝑃𝑃𝑖𝑖+1, taking into account both the presence of dynamic obstacles within the grid �𝑂𝑂grid �  

Overall Cost Function Formulation: The overall cost function, integrating these 

considerations with traditional path optimization criteria, EQU (20). 

Cost (𝑃𝑃) = 𝜆𝜆1 ⋅ 𝐿𝐿(𝑃𝑃) + 𝜆𝜆2 ⋅ 𝐸𝐸(𝑃𝑃) + 𝜆𝜆3 ⋅ 𝕆𝕆(𝑃𝑃) + 𝜆𝜆4 ⋅ 𝐴𝐴(𝑃𝑃) + 𝜆𝜆5 ⋅ 𝑆𝑆(𝑃𝑃) + 𝜆𝜆6 ⋅ 𝐷𝐷(𝑃𝑃) (20) 

• 𝐿𝐿(𝑃𝑃),𝐸𝐸(𝑃𝑃),𝕆𝕆(𝑃𝑃), and 𝐴𝐴(𝑃𝑃) represent path length, EC, problem avoidance, and 

environmental adaptability, respectively. 

• 𝜆𝜆1 to 𝜆𝜆6 are the weighting coefficients for each component to balance efficiency, safety, 

and adaptability. 

The entire process of finding local paths using ACO is presented in algorithm 2. 

Algorithm 2: ACO-Based Local Path Planning Algorithm for AUVs 
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Inputs: 

• Grid Environment (G) 

• Number of Ants (N) 

• Maximum Iterations (Max_Iter) 

• Pheromone Evaporation Rate ( 𝜌𝜌 ) 

• Influence Parameters (𝛼𝛼,𝛽𝛽) 

• Initial Pheromone Level (𝜏𝜏0) 

• Safety Distance (𝑑𝑑safe ) 

• Start and Goal Positions 

Output Specification: 

• The optimal path, 𝑃𝑃∗, from 𝑆𝑆 to 𝑇𝑇 that considers safety distance compliance and dynamic 

obstacle avoidance. 

Algorithm Steps: 

1 Initialization: 

• Initialize the grid 𝐺𝐺 with the current state of UE. 

• Set all paths in 𝐺𝐺 with an initial pheromone level 𝜏𝜏0. 

• Place 𝑁𝑁 ants at the starting location 𝑆𝑆. 

2 Path Construction: 

• For Each ant: 

• Construct a path from 𝑆𝑆 to 𝑇𝑇 by selecting moves based on transition probabilities 

influenced by pheromone levels and heuristic values (distance to 𝑇𝑇, safety 

compliance). 

• Calculate transition probability using: 

• Ensure moves comply with 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒, avoiding paths that breach the safety distance from 

obstacles. 

3 Local Pheromone Update: 

• Optionally, local pheromone updates should be applied after each move or path 

construction to encourage exploration. 

4 Global Pheromone Update: 

• After all ants complete their paths, update pheromones globally: 
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• Apply evaporation: 𝜏𝜏𝑖𝑖𝑗𝑗 = (1 − 𝜌𝜌) ⋅ 𝜏𝜏𝑖𝑖𝑗𝑗. 

• Deposit pheromones on paths traversed by ants, with Δ𝜏𝜏𝑖𝑖𝑗𝑗𝑘𝑘  proportional to path 

quality (inversely related to path cost considering 𝑆𝑆(𝑃𝑃) and (𝑃𝑃) ). 

5 Cost Function Evaluation: 

• Evaluate the cost of each path using: 

Cost (𝑃𝑃) = 𝜆𝜆1 ⋅ 𝐿𝐿(𝑃𝑃) + 𝜆𝜆2 ⋅ 𝐸𝐸(𝑃𝑃) + 𝜆𝜆3 ⋅ 𝕆𝕆(𝑃𝑃) + 𝜆𝜆4 ⋅ 𝐴𝐴(𝑃𝑃) + 𝜆𝜆5 ⋅ 𝑆𝑆(𝑃𝑃) + 𝜆𝜆6.
𝐷𝐷(𝑃𝑃)  

• Select the path with the lowest cost as the current best solution. 

6 Convergence Check: 

• Determine if a stopping criterion is met (e.g., no significant improvement in path cost, 

maximum number of iterations reached). 

• If not met, return to Step 2 with updated pheromone levels. 

7 Output the Optimal Path: 

• Return to the optimal path 𝑃𝑃∗ as the solution, ensuring it adheres to safety and 

efficiency criteria while adapting to dynamic changes in the underwater environment. 

4. Experimental Analysis 

The simulation platform for our AUV path planning experiments was built on a system 

powered by an AMD Ryzen 9 3950X 16-Core Processor @ 3.5 GHz, running a Linux-based 

operating system. The algorithm was evaluated using Python, leveraging libraries such as NumPy 

for numerical computations and Matplotlib for graphical representations. The simulated 

underwater domain covered an area of 100×100 km, organized into a grid where each cell spanned 

10×10 km, resulting in a 10×10 grid, as shown in Fig. 1.  

Adjustments to the simulation parameters included: 

• AUV's Maximum Acceleration: Adjusted to 3 m/s² for the AUV's propulsion system 

capabilities to model varying UE. 

• Grid Resolution: Set at N = 1 km. 

• Safety Margin: Established at 2 km. 

• AUV's Initial and Target Coordinates: Selected as (10, 20) and (100, 90) within the grid.  

This setup tests the algorithm across the maximum possible distance within the simulated 

domain, presenting various navigation challenges from shallow to deep-water scenarios. 

Auth
ors

 Pre-
Proo

f



 
Figure 1: Simulation environment grid 

Three models, PSO, ACO, and GA, are compared against the PAO+ACO model. The 

compared model's route from the start to the endpoint is presented in Fig. 2 (a) to (d). the further 

analysis of the compared model’s performance in terms of inflexion count, average route length, 

and time to reach the target accuracy are analyzed in the following sections: 

 
Figure 2: PF for different models 
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The simulation results, as shown in Fig. 3, show the effectiveness of different algorithms in 

terms of the following metrics: 

1. Inflection Count: A lower inflection count indicates a smoother path with fewer sharp 

turns that are best for energy efficiency and operational feasibility. The PSO+ACO hybrid 

algorithm outperforms PSO, ACO, and GA by reducing the inflection count to 5. 

2. Route Lengths: The PSO+ACO hybrid algorithm performed better by achieving the 

shortest long route (17.69 km) and the shortest route (16.13 km). 

3. Average Route Length: The average route length measures the overall path efficiency 

across simulations (Fig. 3). The PSO+ACO hybrid algorithm obtained the lowest average 

route length (16.91 km) compared to PSO (24.20 km), ACO (23.42 km), and GA (22.52 

km). 

 
Figure 3: Average route length and Inflection count 

The following simulation results, as shown in Figure 4, analyse the time efficiency and 

accuracy against other models. The proposed PSO+ACO hybrid algorithm showed better 

performance regarding the speed and precision of pathfinding. The model had a completion time 

of  6.43 Sec. and had effectively surpassed its counterparts. Also, the hybrid algorithm showed an 

accuracy rate of 93.5%, a way better performance than the PSO, ACO, and GA algorithms, which 

achieved 66.2%, 63.4%, and 65.7%, respectively. Among the later performing models, the ACO 

showed a completion time of 12.53 Sec. next to the proposed model. 
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Figure 4: Accuracy and Target reach time    Figure 5: Target vs Iterations 

The graph in Figure 5 represents the distance to the target analysis over iterations for the 

compared models, such as PSO, ACO, GA, and the PSO+ACO hybrid algorithms.  The proposed 

model showed a significant reduction in distance to the target by reaching it much ahead of other 

models. The model achieved reaching the target in fewer iterations than both stand-alone models. 

Even though it possessed a higher overall value at the outset, the ACO approach accomplished a 

level of accuracy similar to that of the recommended model. Closure emerges at the same distance 

ratio for both the PSO+ACO models over the number of iterations. Throughout the framework of 

this study, the value of the proposed algorithm's performance in successfully AUNS the UE and, 

as a result, driving the AUV to reach its location was highlighted. 

5. Conclusion and Future Work 

The main objective of the study was to explore the idea of employing Particle Swarm 

Optimization (PSO) and Ant Colony Optimization (ACO) in order to Path Finding (PF) for 

Autonomous Underwater Vehicles (AUV). Using the techniques of static problem avoidance and 

enhanced route adaptability, the approach utilized PSO for global route planning and ACO for 

local path planning. Both of these approaches were applied during the entire method. Simulations 

were performed by employing the proposed approach in a framework that was represented as a 

grid. For the aim of comparing performance comparison, the computer simulation used PSO, ACO, 

and GA models. The analysis was conducted on how well the models performed regarding the 

total time they saved, the accuracy they attained, and the distance they decreased to the objective. 

The results indicate that the built PSO+ACO hybrid model performed better throughout all regions 
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based on all guidelines. These results reinforce the practical application of the framework in the 

route planning method for AUV in Underwater Environments (UE).  

It is predicted that in further work, the prototype will be evaluated in a UE that is 

comparable to the real world, and it will additionally incorporate additional variables like EC and 

navigational safety. 
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