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Abstract

Today, the demand for Renewab / (RE) Sources has increased a lot; out of all
Renewable Energy Sources (RES), Solar Energga(SE) has emerged as a better solution due to its
sustainability and abundance. Ho , energy sources from the sun directly depend on the

efficiency of the photovoltaic (P, mployed, whose efficiency depends on the variability

of solar irradiance and temperatice. SO harvesting the maximum output from PV panels requires
optimized Maximum Pq @ cking (MPPT) systems. The traditional MPPT systems that
involved Perturb a e (P&O) and Incremental Conductance (IncCond) are the most widely
used models. weverjpthose models have limited efficiency due to rapidly changing
environm nd s and their tendency to oscillate around the Maximum PowerPoint (MPP).

This paper oses a Hybrid Heuristic Model (HHM) called the Hybrid Grey Wolf Optimizer

GW 1gorithm, which employs the Genetic Algorithm (GA) model for optimizing the Grey
ymizer (GWO) algorithm for effectively utilizing MPPT in PV systems. The simulation
reases fluctuation, boosting how the system responds to shifts in the surrounding atmosphere.
The framework evolved through several experiments, and its ability to perform was assessed
concerning the results of different models for the factors that were considered seriously throughout

several solar radiation and temperature scenarios. During all of the tests, the recommended HGWO



model scored more effectively than the other models. This succeeded by accurately following the
MPP and boosting the power supply.

Keywords: Renewable Energy Sources, Solar Energy, Machine Learning, Photovoltaic System,
Maximum Power Point Tracking, Hybrid Grey Wolf Optimizer, Accuracy

1.0 Introduction

The application of renewable energy sources (RES) has become ever more ess

order to achieve the objective of finding ecologically sound options and fulfilling t
energy on a global scale. One of the RESs that is readily accessible, solar ener IS NOW
ces 1]. RES
ne ollect SE and

recognized as the most popular energy source since it is additionally sa

The energy production of PV syste site conjunction, has a fundamental link

to the constant flow of direct sunlight. En ight and variations in heat are two of the
key elements of SE that have a major effec the level of electrical energy that produces
electricity [3]. Due to the fact that ations of such factors result in a loss in the performance
of PV panels, which in turn ou, panels operating at less than their highest possible
Maximum Power Point (MPP),%hat reltance is causing problems with successfully exploiting SE.

For the objectivefot enhi@mcing the operational effectiveness of PV systems, techniques that

are commonly refs

The MPPT systems have successfully boosted the energy output of PV systems by using

this rapid control feature. Because of this, the MPPT model is a vital element for making the most
of SE [6]. The conventional MPPT approaches include the Perturb and Observe (P&O) and

Incremental Conductance (IncCond) techniques, which were the most commonly employed



methods for conducting PV optimization. However, both models suffer from severe drawbacks; as
an outcome, they cannot adapt their actions following fast-changing circumstances [7]. Because
of this, hypothetical circumstances are the primary factors contributing to losses. A few instances
of these scenarios include (i) oscillation in MPP, (ii) delayed response, and iii) problems in trackin
amid partial shade conditions. Given these drawbacks, there is an immediate need for

advanced MPPT methods that can provide improved reliability, performance, security @
capacity to cope with rapidly shifting features such as sunlight and temperature.
A framework that addresses the computational challenge of MPPT @ms in

in
. Th for this
to theéydevelopment a

1 Grey Wolf Optimizer
O)principles. The GWO

fluctuating solar radiation and weather conditions is recommended in th

study depends on the circumstances mentioned previously. The s
novel Hybrid Heuristic Model (HHM) that acquired the name
(HGWO). This framework emerged using Grey Wolf Optimizer
evolved with the social system and predation methods of es functioning as its main point
of reference. The HGWO based on GWO is optimize @ic Algorithm (GA) operations
that enhance the solution diversity and pre & convergence. The proposed model’s
effectiveness in handling varied Solar Irr: I) and"temperature and ensuring high energy
productivity was examined using a series o eriments and analysed using metrics such as
efficiency, convergence speed, arative performance, sensitivity, and computational
complexity. The results have atjthe HGWO model outperformed both the P&O and

IncCond traditional models.

The paper is st ows: the literature review is presented in Section 2, Section

3 presents the bac gion 4 presents the methodology, Section 5 presents the results, and

2.0 Liter
[8] involved in investigating the sensitivity corresponding to MPP related to
vironmental/factors like temperature and irradiance. Their investigation was attributed to their
a novel method that utilized a Machine Learning (ML) model in order to predict the
imum reference voltage factor related to a PV panel under all weather conditions. They have
enployed the Proportional-Integral-Derivative controller and a DC/DC boost converter for the

simulation and analysis of the proposed work. Through the experiment, the work demonstrates the



robustness of their model with a Support Vector Machine (SVM) against other models in mixed
disturbances.

[9] Their work described the implementation of linear and nonlinear regression-type ML
algorithms to operate PV systems at MPP. They demonstrated the effectiveness of differen
models, out of which they showcased the efficiency of regression algorithms, which had b
adaptability to the duty cycle of a boost converter than other models, such as beta
Artificial Neural Network (ANN) approaches and had performed better evengi
environment conditions.

as L thm for

In another work by [10], they presented a Decision-Tree (D

i @ al withythe non-linear
data that are generated by dynamic weather conditions. Through 1pl

MPPT. They attempted this work to exhibit the DTs method's ab

e experiments through
simulation, they have shown that their approach had improved effi@ieneyp by around 93.93% in
steady-state conditions. They defended their model throu experiments and demonstrated
that it has a significant advantage over existing MPPT@ne ologies.

[11] had proposed a model that usesShit
Salp Swarm Optimization Algorithm (IS Q

and partial shading. LSA, which refers to local'§garch algorithms, is an approach which assists the

Optimization (SMO) and an improved

dress the power loss due to irregular irradiance

SMO-MPPT technique, which is an unique method, to decrease variations. When contrasted
with additional conventional a S Such as P&O and PSO, this method showed superior
results in both steady-state andjtransient scenarios throughout many different environmental
variables.

The key go, y was to build an architecture that could be applied to tackle the

issues thatpha ht about by scenarios that include partial shading [12]. In order to
discover roblem, they developed an approach they decided was called Modified
Particle-Sw. imization (MPSO). Based on the outcomes obtained from their studies and

ir MPSO system was able to produce an important boost in energy usage while

to operate at the MPP level on a global level. Employing the mathematical model that
they established, they were able to illustrate the boost in overall the use of energy. The algorithm
theéy developed revealed excellent outcomes concerning usefulness as well as accuracy when
contrasted with traditional methods and Neural Network (NN) methods [13-15]. This was

confirmed by the results of the evaluations that were performed.



3. Background

3.1 Methods of Maximum Power Point Tracking

1 P&O: The P&O method is one of the simplest and most commonly used MPPT algorith
It involves periodically perturbing (adjusting) the voltage ( va) of the PV mo
observing the effect on power output (va = Vo X Ipv). The algorithg s the
direction of the next perturbation based on the change in power (AP )gge: @i bm the
last perturbation (AV).

2 IncCond: IncCond calculates the derivative of power cd yvoltage (dI/dV) and
compares it to the rapid conductance (—1/V) to find the MPP. The voltage is adjusted until
this derivative equals zero, indicating the MPP.

3 Constant Voltage (CV): The CV method assume cdgrelationship between the open-
circuit voltage ( V,.) and the MPP vgltag&'settin ° operating voltage (Vop) at a
predetermined fraction (k) of V.

4 Fuzzy Logic Control (FLC): FLC set of control rules based on Fuzzy Logic (FL)
to adjust the operating point without requiring a precise mathematical model, making it
adaptable to changing conditio

5 Hybrid Algorithms: &lybri thms combine the strengths of two or more MPPT
methods to imprqQ y and accuracy. For example, a system might use P&O for
general tracking h to IncCond for finer adjustment as it nears the MPP [16-20].

Table 1 p ils"about the MPPT techniques.

Table 1: MPPT techniques
Me Description Advantages Limitations
Adjusts voltage and observes It can oscillate around MPP and
Simple and easy
changes in power to find the ] is less effective under rapid
to implement.
MPP. changes.
Determines MPP by equating
More accurate for
the conductance to the It is more complex and can
IncCond changing
derivative of power concerning oscillate around MPP.

conditions.
voltage.




) Simple and ) ) .
Sets operating voltage at a fixed It can be inaccurate if conditions
CvV effective for
fraction of open-circuit voltage. vary.
stable conditions.

Performs well

under variable It requires expert knowledge

Utilizes FL rules to adjust the
FLC ) ) conditions and is design and is computationall
operating point.

robust to intensive.
changes.
Improves
efficiency and
Integrates multiple MPPT Itis mof@Comp
Hybrid Algorithms accuracy by
methods for better performance. ier.
combining
methods.
3.2 PV Array Modeling
Accurate modelling of the PV array is needed practical application of MPPT
algorithms. A typical model for a PV cell includes a ¢ rcgwith a parallel diode to capture

the nonlinear -V characteristics, incorpor ieSvand parallel resistances (Rs and Rp ) for

internal resistive losses and leakage curret

The current output (I) of a PV cell can'Bg,described as EQU (1) and EQU (4).

V+I-R
I=1,—1,|E S —1 1
on = Io [Exp (5522) M
Ln=G-A-1g (2)
T
IO - IO ref f EXp (3)
kT
Ven =~ 4)

cell output voltage, R and R, are the series and parallel resistances, 'n’ is

the digde ideality factor, ‘G’ is the SI (W/m?), A is the area of the PV cell (m? ), 14, is the quantum
e cell, Iy r 1s the reverse saturation current at a reference temperature, T and Ti.¢

al and reference temperatures (Kelvin), E is the bandgap energy of the semiconductor

terial, 'k’ is Boltzmann's constant (1.38 x 10723 ]/K), 'q’ is the charge of an electron
(1.6 x 10719C).
The relationship between the PV voltage (V) and a PV panel's output DC power (P) is

illustrated to demonstrate the importance of control systems for tracking the MPP amid varying



environmental conditions. These relationships show that SI (G) and cell temperature (T) vary, and
the MPP also shifts correspondingly. The following chart in Figure 1 shows the power variation

from a panel compared against varying ‘G’ and “T°.

Voltage-Power Characteristics of a PV Panel
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Figure 1: Power variation of
3.3 Problem Definition
The primary objective of this model i e thefollowing objective function, which
aims to maximize the power output of th by Optimizing the voltage and current at the

PV module to align with the MPP, EQU (5).

MaxPpy = Vpy X Ipy (%)
Subject to the constraints:

e 0 < Vpy < Vpc, wher ist en-circuit voltage.

. e short-circuit current.

The Hybrid G gorithm employs the GWO's social hierarchy and predation
strategies tQ se converge upon the Vypp and Iypp that maximize Py,pp. The algorithm
iteratively and Ipy, evaluating the objective function Ppy, under varying conditions of

G and T to ehsur t the operating point is always near or at the MPP. The notations used in the
bjecti ngtion are described in the following Table 2:

Table 2: Notations used in this work

Notation Description

Power output from the PV module

Vpy The voltage across the PV module

Ipy Currently, through the PV module
G SI (W /m?)




T Temperature ( °C)

Vurp The voltage at the MPP
Iypp Current at the MPP
Pypp MPP

AV Perturbation in voltage
Al Perturbation in current
Voc Open-circuit voltage
Igc Short-circuit current

4.0 Methodology

4.1 Introduction to GWO

The GWO algorithm mimics the social hierarchy and hun our Ofigrey wolves in

Vo

nature. Grey wolves are animals known to live in packs, typicall sisting of about 5 to 12

members. These packs are structured into four hierarchy levels:}ha eta, delta, and omega

wolves; each has a distinct role in the pack's decision- nd hunting strategy. The alpha
wolves lead the pack, making movement, hunting, and*re isions. The beta wolves act as

the second in command, generally assisting !!D

the lowest ranking among all other members ofihe pack.

hagin decision-making processes. The delta

wolves are subordinate to the alpha and be 8, and the omega wolves are considered to have

The Alpha (éa), beta (5[;) delta (55) Wolves represent the best, second-best, and

third-best solutions, respectively, while thé omega (C_fw ) Wolves are considered for exploring

alternative solutions. The pesition$are updated according to the following equations, representing

the iterative process of i @ lement and attack strategy, EQU (6) and EQU (7).
G(t+1) = (6)
D =|C G~ (7)
Heroyt' es the current iteration, while 4 and C are coefficient vectors determining the
rection of the wolves' movement towards the prey, represented by 5p. The position

ensit
olfe1s

A=2d-#—d ®)

!

denoted by G. The coefficients A and C are calculated as follows: EQU (8) and EQU

Ay
Il
NN

‘7 ©)



The parameter d decreases linearly from 2 to 0 throughout the iterations that balance
between exploration (searching for prey) and exploitation (homing in on the prey), with #; and 7,

as random vectors in the range [0,1]. The value of d is updated using the EQU (10):

G=2—-t —
M;

where M; is the maximum number of iterations for the optimizer.

Position of Prey

5 wolves
or other wolves
K Estimated

Figure 2: GWO'™ m’s position update

The position update process, as shown indigure 2, involved the calculation of the distance.

(ﬁa, Bﬁ, 55) between the prey and he three leading wolves (alpha, beta, and delta). These
distances are defined by the E&

Dy = |Gy - G -

Dp =|Cy- Gp — O (11)

Ds = |CSR¢G
where 51, d re coefficient vectors. The next step involves updating the positions of the
wolves b 0 distances calculated from the alpha, beta, and delta wolves, using the
follo EQU%12):

_Al Da
=Gg— A, Dp (12)
—_ (;')5 _A)?’ 55

The final position of the wolf pack (C_f (t + 1)) at the next iteration is then determined by
averaging the positions derived from the alpha, beta, and delta wolves, EQU (13).



G +Go+Gs

Gt+1) =222 (13)
4.2 The Hybrid GWO

The traditional GWO faces challenges such as premature convergence and limited
exploration when applied to the dynamic MPPT problem. The HGWO addresses these challe
by integrating GA’s crossover and mutation operations into the GWO framework.

i) Initial Population: The HGWO process starts with a randomly generated population

current (Ipy) In order to maximize the power output (Ppy = Vpy %/ system. The
initial positions are determined by the physical limits of the open- oltage (V) and short-
circuit current (Ig¢) :
e Voltage Initialization (Vpy) : The initial voltage fo éﬁ is randomly selected and
lies in the range from 0 to V. The expression for i zifig the voltage for the i’ agent is
given by EQU (14).
Vev,i = Vmin +rand O X (Voc — V4 (14)

where Vi, 1s the minimum voltage (close ), rand () is a random number between 0 and 1,

and V. is the open-circuit voltage.

e Current Initialization (Ipy): itial current for each agent is randomly determined
within the range from sc @ ¢ expression for initializing the current for the i’ agent
is denoted by EQ
Ipyi = Imin s¢ = Imin) (15)

whe inimum current, rand () is a random number between 0 and 1, and Ig
is the short- it
ii) Fitness ‘Bunc Definition: The Fitness Function (Fit) aims to minimize the deviation

betwee

e al power output of the PV system and the maximum power output possible under

at environmental conditions. This is represented as EQU (16).

1
(VPV; IPV) =

(16)

1+|Pgctual—Pmppl

where, P, ty,q1 TEpresents the actual power output, Pypp is the maximum power output;
the objective is to maximize this Fit by finding the Vp and Ip, values that minimize the absolute

deviation| P, tya1 — Pupp|. Since the Fit is the inverse of this deviation, maximizing the Fit



corresponds to minimizing the deviation, effectively aligning the PV system's operating point with
the MPP.

The HGWO uses this Fit to guide the search for optimal Vpy, and Ipy, settings. During the
optimization process, the wolves (search agents) explore the solution space of Vp, and Ipy, vallie

guided by the Fit towards configurations that produce power outputs closer to Pypp. Thro

thereby ensuring the PV system operates as close to the MPP as possible

environmental conditions.

(iii) Crossover: In the crossover stage, two selected solution solutien (P,) and a

5 solutions. The offspring

neighbouring solution ( Ny ), are merged to produce one or more offsp
inherit characteristics from both parent solutions, enriching the sov)n Space with new variants.
This process is governed by the crossover operation, mat y represented as EQU (17).
O;=A1-P+(1—21)-Ng (17)

where,

e 0, is the offspring solution produce € crossover operation.

e P = [V;;j, I Iff,] and N; = [Vpﬁs, I ;,V‘j] Theparent and neighbouring solutions are a vector of
voltage and current setting
e Aisarandom crossov ctor within the range [0,1] that determines the degree to which

the offspring inhegi eristics from each parent.

GWO is applied to individual solutions (wolves) to introduce

(18)

e mutated solution.
o S = [VPSV", I PS{,] is the original solution before mutation.
e u is the mutation rate, a randomly chosen factor within the range [0,1] that determines the

extent of mutation applied to the solution.



o Sond = [V;;a“d N If{,a“d] is a randomly selected solution from the population that serves as
the reference for presenting variation. This selection ensures that the mutation introduces
a directed randomness, potentially guiding the solution towards unexplored areas of the
solution space.
The choice of S,,,4 1s critical, as it influences the direction and magnitude of the mutation, Th
goal is to use S,,,q to push S; towards potentially more optimal Vpy, and Ipy, settings that @
yet been considered by S;, thereby expanding the exploration of the solution space

(v) Exploitation Phase

In the exploitation phase, the positions of the wolves withig acket are adjusted to

converge towards the best solutions represented by the alpha, delta®wolves. These

changes are guided by the following expressions, which explicitly ulate the contribution of

each leading wolf, EQU (19) and EQU (20). /
n 1 rrent
Vi =5 (V8 +VE + VB )+ A (G —vgen) (19)
new __ 1 B 1 t
gy =2 (18 + 15, + 19 ) + A (I — I8 (20)
where:

o VY and Ip;" are the updated voltag@pand current settings for a given wolf aimed at
moving closer to the MPP.

o V&, VPE,, and V2, (simil py) represent the voltage (current) settings of the alpha,

beta, and delta wo

estimates for ac

o Yot oy cfeI0 the hypothetical, optimal settings towards which the pack should
converge d on"environmental conditions ( G and T ) and the characteristics of the PV

s .
o QK™ d Igy™™ are the current settings of the wolf being updated.
coefficient modulates the adjustment based on the distance to the target settings,
potentially incorporating random elements to maintain exploration capabilities.
dditionally, the impact of the top wolves can be mathematically represented by incorporating
weighted averages where the weights could reflect the relative performance or fitness of the alpha,

beta, and delta solutions, EQU (21) and EQU (22).



VY = wy - VS +wg - VB +ws - VS, 1)

IBY = wy - 18, +wg - 15, + ws - I, (22)
where, w,, wg, and wg are weights assigned based on the fitness or rank of each top wolf,

with higher weights given to solutions closer to the MPP. This ensures that the packet's direc

is prejudiced more by the wolves with the best solutions. The entire process is presente e

algorithm 1.
Algorithm 1 for HGWO for MPPT Input

e (:SI
e T :Temperature
e Uy : Open-circuit voltage

e [sc : Short-circuit current

Output: Optimal Vpy, and Iy, settings to maximize Ppy,
Procedure:
e Initialize: Generate an initial popu &VGS search agents), where each wolf

Gy

'i' has a position W; = [va,i, Ip ed within the ranges [0, V] for voltage and

[0, Is¢] for current.

¢ Evaluate Fitness: For Ea If i, calculate the fitness F itl‘(VpV‘i, I pV'i) based on the
deviation from the the aximum power point (MPP), considering current G and
T.

3 Iterate Until Cc

elect pairs of parent wolves (P; and N) based on fitness.
Perform crossover to generate offspring O;, where O; = 1- P, + (1 — A1) - Ng,
and A is a random factor [0,1].

. Mutation: For each wolf S;, apply mutation to introduce random variations: S; =
Si+ - (Sang — Si ), where u is the mutation rate [0,1], and S,,,q is a randomly chosen
solution from the population.

c. Evaluate Fitness: Recalculate the fitness of all wolves, including the newly generated

offspring, based on their Vpy, and Ipy settings.



d. Update Positions (Exploitation): Adjust the positions of all wolves towards the best
solutions (&, B, §) based on their fitness, using weighted averages to guide the packet
closer to the MPP.

e. Select Alpha, Beta, and Delta: Identify the top three wolves with the highest fitiies

to serve as a, [, and 6 for the next iteration.

e Termination: The algorithm terminates when a predefined number of itera
completed or when the change in fitness between iterations falls belo
indicating convergence.

5 Output: Return the voltage (Vpy) and current (Ipy,) Settings o

optimal solution for the MPPT problem under the given G
5. Experimental Analysis

To demonstrate the enhancements brought about by imple
MPPT, we utilized a grid-connected PV model tailored to imental setup. The foundation

for this model was adapted from a modified version offthe kerid-connected PV array model

in MATLAB. The configuration consisted o el Stsings, each including 48 series-connected

panels of the type LG 400. The comprehen cm integrates a PV array with a boost converter,
an inverter, and a connection to the grid. The hgart of our experiment lies in the control system
designed for MPPT purposes, whi nely tunes the duty cycle to modulate the PV voltage,
guiding it towards the optimal ogr. point for maximized efficiency. The proposed model was

compared against P&O and In d, and the findings are discussed below:

vs.¥Solar Irradiance (G) - Non-Linear Relationship

Power Ou
=
o
o
o

800

200 300 400 500 600 700 800 900 1000
Solar Irradiance (W/m~™2)

Figure 3: Power output vs SI



The chart in Figure 3 showcases the relationship between Power Output and SI (G) for
different MPPT methods. As the SI level increases, it is observed that all three MPPT methods
have demonstrated an increase in power output. The HGWO method has shown that it consistently
delivers a higher power output across the entire range of SI than the traditional P&O and Inc@on.

methods. The results prove that the HGWO paradigm can more effectively optimise the po

generated by PV systems. PV systems are particularly successful when the level of solar £a
fluctuates within the surroundings. This is because of the hybrid composition of the

which combines components from the GWO enhanced with features from the ge
for more effective search and extraction. The improved efficiency of pproach

m
d by the hybrid of the

can be identified as the ability of the model to evolve more, whick

natural world of the framework. Following the research results, t O method has a lower

volume of energy, while the IncCond technique performs higher/an e P&O technique but
remains less successful than the HGWO technique.

Power Output vs. Temperature (T) - a d O Performance

=500}

—1000f

Power Output (W)

—1500¢f

0 20 20 60 80
Temperature (°C)

Figure 4: Power output vs Temperature



Computational Cost and Complexity Analysis

3.0fF = Computational Cost - 300 -3.00
—e— |terations to MPP
—— Algorithmic Complexity
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Figure 5: Computation cost vs Complexity vs Itera to MPP

Figure 4 shows the power output vs temperature (T) rel

HGWO compared to the P&O and IncCond methods.

peak power output and slower decline when the te@
r

nSkip performance of the
method has shown a higher
eases. The proposed HGWO,

through the results, have shown better perforada 0 erent ranges of temperatures. The graph

MPP; from the results, the pro shows a clear picture of its efficiency by taking a
smaller count of iterations to re , which is the main objective of the work. However, it had
complexity compared to the traditional models. This is
acceptable dug to e algorithm. The P&O model has the lowest computational cost
and complexit poorperformance for MPP. At the same time, the ACO model is next to the
HGOA m

6. Conclusioh, and"Future Work

dy is involved in the process of exploring the possibilities for optimization of

Power Point Tracking (MPPT) in photovoltaic (PV) systems. This work has introduced
innovative Hybrid Grey Wolf Optimizer (HGWO) model as a potential solution to the objective
of‘enhancing the adaptability and efficiency of Solar Energy (SE) harnessing. In simulations, the
HGWO model demonstrated better performance by employing a model that dynamically track the
Maximum Power Point (MPP). When compared to traditional MPPT methods such as Perturb and



Observe (P&O) and Incremental Conductance (IncCond), the proposed model performed better
even in varied conditions. The comparative analysis has also revealed that the proposed HGWO

method outperformed the conventional MPPT techniques that had shown convergence much faster

to the MPP by minimizing the oscillations and effectively adapting to rapid environmegnt

changes.

This work presented a novel MPPT optimization model for PV systems that had tg % .

new avenues for future research to explore its integration with other Renewable g
methods.
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