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Abstract 

Today, the demand for Renewable Energy (RE) sources has increased a lot; out of all 

Renewable Energy Sources (RES), Solar Energy (SE) has emerged as a better solution due to its 

sustainability and abundance. However, energy sources from the sun directly depend on the 

efficiency of the photovoltaic (PV) systems employed, whose efficiency depends on the variability 

of solar irradiance and temperature. So harvesting the maximum output from PV panels requires 

optimized Maximum Power Point Tracking (MPPT) systems. The traditional MPPT systems that 

involved Perturb and Observe (P&O) and Incremental Conductance (IncCond) are the most widely 

used models. However, those models have limited efficiency due to rapidly changing 

environmental conditions and their tendency to oscillate around the Maximum PowerPoint (MPP). 

This paper proposes a Hybrid Heuristic Model (HHM) called the Hybrid Grey Wolf Optimizer 

(HGWO) Algorithm, which employs the Genetic Algorithm (GA) model for optimizing the Grey 

Wolf Optimizer (GWO) algorithm for effectively utilizing MPPT in PV systems. The simulation 

decreases fluctuation, boosting how the system responds to shifts in the surrounding atmosphere. 

The framework evolved through several experiments, and its ability to perform was assessed 

concerning the results of different models for the factors that were considered seriously throughout 

several solar radiation and temperature scenarios. During all of the tests, the recommended HGWO 
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model scored more effectively than the other models. This succeeded by accurately following the 

MPP and boosting the power supply. 

Keywords: Renewable Energy Sources, Solar Energy, Machine Learning, Photovoltaic System, 

Maximum Power Point Tracking, Hybrid Grey Wolf Optimizer, Accuracy  

1.0 Introduction 

The application of renewable energy sources (RES) has become ever more essential in 

order to achieve the objective of finding ecologically sound options and fulfilling the demand for 

energy on a global scale. One of the RESs that is readily accessible, solar energy (SE), is now 

recognized as the most popular energy source since it is additionally safe and accessible [1]. RES 

collection depends primarily on photovoltaic, or PV, panels, which are designed to collect SE and 

produce power. A panacea that can be more predictable and secure to alleviate the issue of 

dependence on petroleum and natural gas can be found in PV systems, which have the ability to 

transfer SE into electrical energy. There is a correlation between the volume of SE that is extracted 

and the degree of effectiveness of PV cells when it comes to harvesting electrical power [2]. 

The energy production of PV systems, in the opposite conjunction, has a fundamental link 

to the constant flow of direct sunlight. Energy from sunlight and variations in heat are two of the 

key elements of SE that have a major effect on the level of electrical energy that produces 

electricity [3]. Due to the fact that fluctuations of such factors result in a loss in the performance 

of PV panels, which in turn outcomes in the panels operating at less than their highest possible 

Maximum Power Point (MPP), that reliance is causing problems with successfully exploiting SE. 

For the objective of enhancing the operational effectiveness of PV systems, techniques that 

are commonly referred to as Maximum Power Point Tracking (MPPT) were designed [4]. It is 

vital to perform this method in order to put forward an approach for addressing the issue at hand. 

MPPTs are concepts that have the power to rapidly change the settings of PV panels' function and 

the electrical power supply. It is essential to execute the above process in order to guarantee that 

the panels provide efficiency that is nearly identical to the MPP as is feasible in practice, subject 

to any changes that might happen in outside factors [5].  

The MPPT systems have successfully boosted the energy output of PV systems by using 

this rapid control feature. Because of this, the MPPT model is a vital element for making the most 

of SE [6]. The conventional MPPT approaches include the Perturb and Observe (P&O) and 

Incremental Conductance (IncCond) techniques, which were the most commonly employed 
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methods for conducting PV optimization. However, both models suffer from severe drawbacks; as 

an outcome, they cannot adapt their actions following fast-changing circumstances [7]. Because 

of this, hypothetical circumstances are the primary factors contributing to losses. A few instances 

of these scenarios include (i) oscillation in MPP, (ii) delayed response, and iii) problems in tracking 

amid partial shade conditions. Given these drawbacks, there is an immediate need for more 

advanced MPPT methods that can provide improved reliability, performance, security, and the 

capacity to cope with rapidly shifting features such as sunlight and temperature. 

A framework that addresses the computational challenge of MPPT in PV systems in 

fluctuating solar radiation and weather conditions is recommended in this paper. The idea for this 

study depends on the circumstances mentioned previously. The studies led to the development a 

novel Hybrid Heuristic Model (HHM) that acquired the name Hybrid Grey Wolf Optimizer 

(HGWO). This framework emerged using Grey Wolf Optimizer (GWO) principles. The GWO 

evolved with the social system and predation methods of grey wolves functioning as its main point 

of reference. The HGWO based on GWO is optimized using Genetic Algorithm (GA) operations 

that enhance the solution diversity and prevent premature convergence. The proposed model’s 

effectiveness in handling varied Solar Irradiance (SI) and temperature and ensuring high energy 

productivity was examined using a series of experiments and analysed using metrics such as 

efficiency, convergence speed, comparative performance, sensitivity, and computational 

complexity. The results have shown that the HGWO model outperformed both the P&O and 

IncCond traditional models. 

The paper is structured as follows: the literature review is presented in Section 2, Section 

3 presents the background, Section 4 presents the methodology, Section 5 presents the results, and 

Section 6 concludes the work. 

2.0 Literature Review 

[8] had been involved in investigating the sensitivity corresponding to MPP related to 

environmental factors like temperature and irradiance. Their investigation was attributed to their 

proposal of a novel method that utilized a Machine Learning (ML) model in order to predict the 

optimum reference voltage factor related to a PV panel under all weather conditions. They have 

employed the Proportional-Integral-Derivative controller and a DC/DC boost converter for the 

simulation and analysis of the proposed work. Through the experiment, the work demonstrates the 
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robustness of their model with a Support Vector Machine (SVM) against other models in mixed 

disturbances.  

[9] Their work described the implementation of linear and nonlinear regression-type ML 

algorithms to operate PV systems at MPP. They demonstrated the effectiveness of different ML 

models, out of which they showcased the efficiency of regression algorithms, which had better 

adaptability to the duty cycle of a boost converter than other models, such as beta MPPT and 

Artificial Neural Network (ANN) approaches and had performed better even in different 

environment conditions.  

In another work by [10], they presented a Decision-Tree (DT) based ML algorithm for 

MPPT. They attempted this work to exhibit the DTs method's ability to deal with the non-linear 

data that are generated by dynamic weather conditions. Through multiple experiments through 

simulation, they have shown that their approach had improved efficiency by around 93.93% in 

steady-state conditions. They defended their model through these experiments and demonstrated 

that it has a significant advantage over existing MPPT methodologies. 

[11] had proposed a model that uses Slime Mould Optimization (SMO) and an improved 

Salp Swarm Optimization Algorithm (ISSA) to address the power loss due to irregular irradiance 

and partial shading. LSA, which refers to local search algorithms, is an approach which assists the 

SMO-MPPT technique, which is another unique method, to decrease variations. When contrasted 

with additional conventional approaches such as P&O and PSO, this method showed superior 

results in both steady-state and transient scenarios throughout many different environmental 

variables. 

The key goal of their study was to build an architecture that could be applied to tackle the 

issues that have been brought about by scenarios that include partial shading [12]. In order to 

discover a fix to this problem, they developed an approach they decided was called Modified 

Particle-Swarm Optimization (MPSO). Based on the outcomes obtained from their studies and 

evaluations, their MPSO system was able to produce an important boost in energy usage while 

continuing to operate at the MPP level on a global level. Employing the mathematical model that 

they established, they were able to illustrate the boost in overall the use of energy. The algorithm 

they developed revealed excellent outcomes concerning usefulness as well as accuracy when 

contrasted with traditional methods and Neural Network (NN) methods [13-15]. This was 

confirmed by the results of the evaluations that were performed. 
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3. Background 

3.1 Methods of Maximum Power Point Tracking 

1 P&O: The P&O method is one of the simplest and most commonly used MPPT algorithms. 

It involves periodically perturbing (adjusting) the voltage ( 𝑉𝑉𝑝𝑝𝑝𝑝� of the PV module and 

observing the effect on power output �𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑉𝑉𝑝𝑝𝑝𝑝 × 𝐼𝐼𝑝𝑝𝑝𝑝�. The algorithm decides the 

direction of the next perturbation based on the change in power (Δ𝑃𝑃) resulting from the 

last perturbation (Δ𝑉𝑉). 

2 IncCond: IncCond calculates the derivative of power concerning voltage (𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉) and 

compares it to the rapid conductance (−𝐼𝐼/𝑉𝑉) to find the MPP. The voltage is adjusted until 

this derivative equals zero, indicating the MPP. 

3 Constant Voltage (CV): The CV method assumes a fixed relationship between the open-

circuit voltage ( 𝑉𝑉𝑜𝑜𝑜𝑜) and the MPP voltage, setting the operating voltage �𝑉𝑉𝑜𝑜𝑝𝑝� at a 

predetermined fraction (𝑘𝑘) of 𝑉𝑉𝑜𝑜𝑜𝑜. 

4 Fuzzy Logic Control (FLC): FLC uses a set of control rules based on Fuzzy Logic (FL) 

to adjust the operating point without requiring a precise mathematical model, making it 

adaptable to changing conditions. 

5 Hybrid Algorithms: Hybrid algorithms combine the strengths of two or more MPPT 

methods to improve efficiency and accuracy. For example, a system might use P&O for 

general tracking and switch to IncCond for finer adjustment as it nears the MPP [16-20]. 

Table 1 presents details about the MPPT techniques. 

Table 1: MPPT techniques 
Method Description Advantages Limitations 

P&O 

Adjusts voltage and observes 

changes in power to find the 

MPP. 

Simple and easy 

to implement. 

It can oscillate around MPP and 

is less effective under rapid 

changes. 

IncCond 

Determines MPP by equating 

the conductance to the 

derivative of power concerning 

voltage. 

More accurate for 

changing 

conditions. 

It is more complex and can 

oscillate around MPP. 
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CV 
Sets operating voltage at a fixed 

fraction of open-circuit voltage. 

Simple and 

effective for 

stable conditions. 

It can be inaccurate if conditions 

vary. 

FLC 
Utilizes FL rules to adjust the 

operating point. 

Performs well 

under variable 

conditions and is 

robust to 

changes. 

It requires expert knowledge to 

design and is computationally 

intensive. 

Hybrid Algorithms 
Integrates multiple MPPT 

methods for better performance. 

Improves 

efficiency and 

accuracy by 

combining 

methods. 

It is more complex and can be 

costlier. 

3.2 PV Array Modeling 

Accurate modelling of the PV array is needed for the practical application of MPPT 

algorithms. A typical model for a PV cell includes a current source with a parallel diode to capture 

the nonlinear I-V characteristics, incorporating series and parallel resistances (Rs and Rp ) for 

internal resistive losses and leakage current, respectively. 

The current output (I) of a PV cell can be described as EQU (1) and EQU (4). 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼0 �Exp �𝑉𝑉+𝐼𝐼⋅𝑅𝑅𝑠𝑠
𝑛𝑛⋅𝑉𝑉𝑡𝑡ℎ

� − 1� − 𝑉𝑉+𝐼𝐼⋅𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝

       (1) 

𝐼𝐼𝑝𝑝ℎ = 𝐺𝐺 ⋅ 𝐴𝐴 ⋅ 𝜂𝜂𝑞𝑞𝑞𝑞          (2) 

𝐼𝐼0 = 𝐼𝐼0, ref �
𝑇𝑇
𝑇𝑇ref 

�
3

exp �−𝐸𝐸𝑔𝑔
𝑘𝑘
�1
𝑇𝑇
− 1

𝑇𝑇ref 
��       (3) 

𝑉𝑉𝑡𝑡ℎ = 𝑘𝑘⋅𝑇𝑇
𝑞𝑞

           (4) 

where, ′𝑉𝑉′ is the cell output voltage, 𝑅𝑅𝑠𝑠 and 𝑅𝑅𝑝𝑝 are the series and parallel resistances, ′𝑛𝑛′ is 

the diode ideality factor, ′𝐺𝐺′ is the SI (W/m²), 𝐴𝐴 is the area of the PV cell (m2 ), 𝜂𝜂𝑞𝑞𝑞𝑞 is the quantum 

efficiency of the cell, 𝐼𝐼0, ref  is the reverse saturation current at a reference temperature, 𝑇𝑇 and 𝑇𝑇ref  

are the actual and reference temperatures (Kelvin), 𝐸𝐸𝑔𝑔 is the bandgap energy of the semiconductor 

material, ′𝑘𝑘′ is Boltzmann's constant (1.38 × 10−23 J/𝐾𝐾), ′𝑞𝑞′ is the charge of an electron 

(1.6 × 10−19C). 

The relationship between the PV voltage (V) and a PV panel's output DC power (P) is 

illustrated to demonstrate the importance of control systems for tracking the MPP amid varying 
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environmental conditions. These relationships show that SI (G) and cell temperature (T) vary, and 

the MPP also shifts correspondingly. The following chart in Figure 1 shows the power variation 

from a panel compared against varying ‘G’ and ‘T’. 

 
Figure 1: Power variation of PV panel 

3.3 Problem Definition 

The primary objective of this model is defined by the following objective function, which 

aims to maximize the power output of the PV system by optimizing the voltage and current at the 

PV module to align with the MPP, EQU (5). 

Max𝑃𝑃𝑃𝑃𝑉𝑉 = 𝑉𝑉𝑃𝑃𝑉𝑉 × 𝐼𝐼𝑃𝑃𝑉𝑉          (5) 

Subject to the constraints: 

• 0 ≤ 𝑉𝑉𝑃𝑃𝑉𝑉 ≤ 𝑉𝑉𝑂𝑂𝑂𝑂, where 𝑉𝑉𝑂𝑂𝑂𝑂 is the open-circuit voltage. 

• 0 ≤ 𝐼𝐼𝑃𝑃𝑉𝑉 ≤ 𝐼𝐼𝑆𝑆𝑂𝑂, where 𝐼𝐼𝑆𝑆𝑂𝑂  is the short-circuit current. 

The Hybrid GWO-MPPT algorithm employs the GWO's social hierarchy and predation 

strategies to search for and converge upon the 𝑉𝑉𝑀𝑀𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑀𝑀𝑃𝑃𝑃𝑃 that maximize 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃. The algorithm 

iteratively adjusts 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉, evaluating the objective function 𝑃𝑃𝑃𝑃𝑉𝑉 under varying conditions of 

𝐺𝐺 and 𝑇𝑇 to ensure that the operating point is always near or at the MPP. The notations used in the 

objective function are described in the following Table 2: 

Table 2: Notations used in this work 
Notation Description 

𝑷𝑷𝑷𝑷𝑷𝑷 Power output from the PV module 

𝑷𝑷𝑷𝑷𝑷𝑷 The voltage across the PV module 

𝑰𝑰𝑷𝑷𝑷𝑷 Currently, through the PV module 

𝑮𝑮 SI (𝑊𝑊/m2) 
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𝑻𝑻 Temperature ( ∘C) 

𝑷𝑷𝑴𝑴𝑷𝑷𝑷𝑷 The voltage at the MPP 

𝑰𝑰𝑴𝑴𝑷𝑷𝑷𝑷 Current at the MPP 

𝑷𝑷𝑴𝑴𝑷𝑷𝑷𝑷 MPP 

𝚫𝚫𝑷𝑷 Perturbation in voltage 

𝚫𝚫𝑰𝑰 Perturbation in current 

𝑷𝑷𝑶𝑶𝑶𝑶 Open-circuit voltage 

𝑰𝑰𝑺𝑺𝑶𝑶 Short-circuit current 

4.0 Methodology 

4.1 Introduction to GWO 

 The GWO algorithm mimics the social hierarchy and hunting behaviour of grey wolves in 

nature. Grey wolves are animals known to live in packs, typically consisting of about 5 to 12 

members. These packs are structured into four hierarchy levels: alpha, beta, delta, and omega 

wolves; each has a distinct role in the pack's decision-making and hunting strategy. The alpha 

wolves lead the pack, making movement, hunting, and resting decisions. The beta wolves act as 

the second in command, generally assisting the alpha in decision-making processes. The delta 

wolves are subordinate to the alpha and beta wolves, and the omega wolves are considered to have 

the lowest ranking among all other members of the pack. 

The Alpha ��⃗�𝐺𝛼𝛼�, beta ��⃗�𝐺𝛽𝛽�, and delta ��⃗�𝐺𝛿𝛿� Wolves represent the best, second-best, and 

third-best solutions, respectively, while the omega ��⃗�𝐺𝜔𝜔 ) Wolves are considered for exploring 

alternative solutions. The positions are updated according to the following equations, representing 

the iterative process of prey encirclement and attack strategy, EQU (6) and EQU (7). 

�⃗�𝐺(𝑡𝑡 + 1) = �⃗�𝐺𝑝𝑝(𝑡𝑡) − 𝐴𝐴 ⋅ 𝐷𝐷��⃗          (6) 

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ �⃗�𝐺𝑝𝑝(𝑡𝑡) − �⃗�𝐺(𝑡𝑡)�         (7) 

Here, 't' denotes the current iteration, while 𝐴𝐴 and 𝐶𝐶 are coefficient vectors determining the 

intensity and direction of the wolves' movement towards the prey, represented by �⃗�𝐺𝑝𝑝. The position 

of a wolf is denoted by �⃗�𝐺. The coefficients 𝐴𝐴 and 𝐶𝐶 are calculated as follows: EQU (8) and EQU 

(9). 

𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟1 − �⃗�𝑎          (8) 

𝐶𝐶 = 2 ⋅ 𝑟𝑟2           (9) 
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The parameter �⃗�𝑎 decreases linearly from 2 to 0 throughout the iterations that balance 

between exploration (searching for prey) and exploitation (homing in on the prey), with 𝑟𝑟1 and 𝑟𝑟2 

as random vectors in the range [0,1]. The value of �⃗�𝑎 is updated using the EQU (10): 

�⃗�𝑎 = 2 − 𝑡𝑡 ⋅ 2
𝑀𝑀𝑡𝑡

           (10) 

where 𝑀𝑀𝑡𝑡 is the maximum number of iterations for the optimizer.  

 
Figure 2: GWO algorithm’s position update 

The position update process, as shown in Figure 2, involved the calculation of the distance. 

�𝐷𝐷��⃗ 𝛼𝛼 ,𝐷𝐷��⃗ 𝛽𝛽 ,𝐷𝐷��⃗ 𝛿𝛿� between the prey and each of the three leading wolves (alpha, beta, and delta). These 

distances are defined by the EQU (11): 

𝐷𝐷��⃗ 𝛼𝛼 = �𝐶𝐶1 ⋅ �⃗�𝐺𝛼𝛼 − �⃗�𝐺�
𝐷𝐷��⃗ 𝛽𝛽 = �𝐶𝐶2 ⋅ �⃗�𝐺𝛽𝛽 − �⃗�𝐺�
𝐷𝐷��⃗ 𝛿𝛿 = �𝐶𝐶3 ⋅ �⃗�𝐺𝛿𝛿 − �⃗�𝐺�

         (11) 

where 𝐶𝐶1,𝐶𝐶2, and 𝐶𝐶3 are coefficient vectors. The next step involves updating the positions of the 

wolves based on the distances calculated from the alpha, beta, and delta wolves, using the 

following EQU (12): 

�⃗�𝐺1  = �⃗�𝐺𝛼𝛼 − 𝐴𝐴1 ⋅ 𝐷𝐷��⃗ 𝛼𝛼
�⃗�𝐺2  = �⃗�𝐺𝛽𝛽 − 𝐴𝐴2 ⋅ 𝐷𝐷��⃗ 𝛽𝛽
�⃗�𝐺3  = �⃗�𝐺𝛿𝛿 − 𝐴𝐴3 ⋅ 𝐷𝐷��⃗ 𝛿𝛿

          (12) 

The final position of the wolf pack (�⃗�𝐺(𝑡𝑡 + 1)) at the next iteration is then determined by 

averaging the positions derived from the alpha, beta, and delta wolves, EQU (13). 
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�⃗�𝐺(𝑡𝑡 + 1) = �⃗�𝐺1+�⃗�𝐺2+�⃗�𝐺3
3

          (13) 

4.2 The Hybrid GWO 

The traditional GWO faces challenges such as premature convergence and limited 

exploration when applied to the dynamic MPPT problem. The HGWO addresses these challenges 

by integrating GA’s crossover and mutation operations into the GWO framework. 

i) Initial Population: The HGWO process starts with a randomly generated population of search 

agents (wolves) representing potential solutions within the PV system's parameter space. Each 

agent's position is particularly denoted as 𝑉𝑉𝑖𝑖(𝑥𝑥) which reflect the settings of voltage (𝑉𝑉𝑃𝑃𝑉𝑉) and 

current (𝐼𝐼𝑃𝑃𝑉𝑉) In order to maximize the power output (𝑃𝑃𝑃𝑃𝑉𝑉 = 𝑉𝑉𝑃𝑃𝑉𝑉 × 𝐼𝐼𝑃𝑃𝑉𝑉) of the PV system. The 

initial positions are determined by the physical limits of the open-circuit voltage (𝑉𝑉𝑂𝑂𝑂𝑂) and short-

circuit current (𝐼𝐼𝑆𝑆𝑂𝑂) : 

• Voltage Initialization (𝑷𝑷𝑷𝑷𝑷𝑷) : The initial voltage for each agent is  randomly selected and 

lies in the range from 0 to 𝑉𝑉𝑂𝑂𝑂𝑂. The expression for initializing the voltage for the ′𝑖𝑖′ agent is 

given by EQU (14). 

𝑉𝑉𝑃𝑃𝑉𝑉,𝑖𝑖 = 𝑉𝑉min + rand () × (𝑉𝑉𝑂𝑂𝑂𝑂 − 𝑉𝑉min)      (14) 

where 𝑉𝑉min is the minimum voltage (close to 0), rand () is a random number between 0 and 1, 

and 𝑉𝑉𝑂𝑂𝑂𝑂 is the open-circuit voltage. 

• Current Initialization (𝑰𝑰𝑷𝑷𝑷𝑷): The initial current for each agent is randomly determined 

within the range from 0 to 𝐼𝐼𝑆𝑆𝑂𝑂  and the expression for initializing the current for the ′𝑖𝑖′ agent 

is denoted by EQU (15). 

𝐼𝐼𝑃𝑃𝑉𝑉,𝑖𝑖 = 𝐼𝐼min + rand () × (𝐼𝐼𝑆𝑆𝑂𝑂 − 𝐼𝐼min )       (15) 

where 𝐼𝐼min is the minimum current, rand () is a random number between 0 and 1, and 𝐼𝐼𝑆𝑆𝑂𝑂  

is the short-circuit current.  

ii) Fitness Function Definition: The Fitness Function (𝐹𝐹𝑖𝑖𝑡𝑡) aims to minimize the deviation 

between the actual power output of the PV system and the maximum power output possible under 

the current environmental conditions. This is represented as EQU (16). 

Fit (𝑉𝑉𝑃𝑃𝑉𝑉, 𝐼𝐼𝑃𝑃𝑉𝑉) = 1
1+|𝑃𝑃𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎−𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀|        (16) 

where, 𝑃𝑃𝑎𝑎𝑜𝑜𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 represents the actual power output,  𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃 is the maximum power output; 

the objective is to maximize this 𝐹𝐹𝑖𝑖𝑡𝑡 by finding the 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉 values that minimize the absolute 

deviation|𝑃𝑃𝑎𝑎𝑜𝑜𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃|. Since the 𝐹𝐹𝑖𝑖𝑡𝑡 is the inverse of this deviation, maximizing the 𝐹𝐹𝑖𝑖𝑡𝑡 

Auth
ors

 Pre-
Proo

f



corresponds to minimizing the deviation, effectively aligning the PV system's operating point with 

the MPP. 

The HGWO uses this 𝐹𝐹𝑖𝑖𝑡𝑡 to guide the search for optimal 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉 settings. During the 

optimization process, the wolves (search agents) explore the solution space of 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉 values, 

guided by the 𝐹𝐹𝑖𝑖𝑡𝑡 towards configurations that produce power outputs closer to 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃. Through 

iterations involving crossover and mutation aimed at enhancing exploration and exploitation of the 

solution space, HGWO aims to identify the set of 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉 that maximizes Fit (𝑉𝑉𝑃𝑃𝑉𝑉, 𝐼𝐼𝑃𝑃𝑉𝑉), 

thereby ensuring the PV system operates as close to the MPP as possible given the current 

environmental conditions. 

(iii) Crossover: In the crossover stage, two selected solutions, a parent solution (𝑃𝑃𝑠𝑠) and a 

neighbouring solution ( 𝑁𝑁𝑠𝑠 ), are merged to produce one or more offspring solutions. The offspring 

inherit characteristics from both parent solutions, enriching the solution space with new variants. 

This process is governed by the crossover operation, mathematically represented as EQU (17). 

𝑂𝑂𝑖𝑖 = 𝜆𝜆 ⋅ 𝑃𝑃𝑠𝑠 + (1 − 𝜆𝜆) ⋅ 𝑁𝑁𝑠𝑠        (17) 

where,  

• 𝑂𝑂𝑖𝑖 is the offspring solution produced from the crossover operation. 

• 𝑃𝑃𝑠𝑠 = �𝑉𝑉𝑃𝑃𝑉𝑉
𝑃𝑃𝑠𝑠 , 𝐼𝐼𝑃𝑃𝑉𝑉

𝑃𝑃𝑠𝑠 � and 𝑁𝑁𝑠𝑠 = �𝑉𝑉𝑃𝑃𝑉𝑉
𝑁𝑁𝑠𝑠 , 𝐼𝐼𝑃𝑃𝑉𝑉

𝑁𝑁𝑠𝑠 � The parent and neighbouring solutions are a vector of 

voltage and current settings. 

• 𝜆𝜆 is a random crossover factor within the range [0,1] that determines the degree to which 

the offspring inherits characteristics from each parent. 

(iv) Mutation: Mutation in the HGWO is applied to individual solutions (wolves) to introduce 

random changes in their 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉 settings. The mutation operation can be mathematically 

represented as follows for a given solution 𝑆𝑆𝑖𝑖, EQU (18). 

𝑆𝑆𝑖𝑖′ = 𝑆𝑆𝑖𝑖 + 𝜇𝜇 ⋅ (𝑆𝑆rand − 𝑆𝑆𝑖𝑖)        (18) 

where: 

• 𝑆𝑆𝑖𝑖′ is the mutated solution. 

• 𝑆𝑆𝑖𝑖 = �𝑉𝑉𝑃𝑃𝑉𝑉
𝑆𝑆𝑖𝑖 , 𝐼𝐼𝑃𝑃𝑉𝑉

𝑆𝑆𝑖𝑖 � is the original solution before mutation. 

• 𝜇𝜇 is the mutation rate, a randomly chosen factor within the range [0,1] that determines the 

extent of mutation applied to the solution. 
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• 𝑆𝑆rand = �𝑉𝑉𝑃𝑃𝑉𝑉
𝑆𝑆rand , 𝐼𝐼𝑃𝑃𝑉𝑉

𝑆𝑆rand � is a randomly selected solution from the population that serves as 

the reference for presenting variation. This selection ensures that the mutation introduces 

a directed randomness, potentially guiding the solution towards unexplored areas of the 

solution space. 

The choice of 𝑆𝑆rand  is critical, as it influences the direction and magnitude of the mutation. The 

goal is to use 𝑆𝑆rand  to push 𝑆𝑆𝑖𝑖 towards potentially more optimal 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉 settings that have not 

yet been considered by 𝑆𝑆𝑖𝑖, thereby expanding the exploration of the solution space. 

(v) Exploitation Phase 

In the exploitation phase, the positions of the wolves within the packet are adjusted to 

converge towards the best solutions represented by the alpha, beta, and delta wolves. These 

changes are guided by the following expressions, which explicitly calculate the contribution of 

each leading wolf, EQU (19) and EQU (20). 

𝑉𝑉𝑃𝑃𝑉𝑉new = 1
3
�𝑉𝑉𝑃𝑃𝑉𝑉𝛼𝛼 + 𝑉𝑉𝑃𝑃𝑉𝑉

𝛽𝛽 + 𝑉𝑉𝑃𝑃𝑉𝑉𝛿𝛿 � + 𝐴𝐴 ⋅ �𝑉𝑉𝑃𝑃𝑉𝑉
target − 𝑉𝑉𝑃𝑃𝑉𝑉current �     (19) 

𝐼𝐼𝑃𝑃𝑉𝑉new = 1
3
�𝐼𝐼𝑃𝑃𝑉𝑉𝛼𝛼 + 𝐼𝐼𝑃𝑃𝑉𝑉

𝛽𝛽 + 𝐼𝐼𝑃𝑃𝑉𝑉𝛿𝛿 � + 𝐴𝐴 ⋅ �𝐼𝐼𝑃𝑃𝑉𝑉
target − 𝐼𝐼𝑃𝑃𝑉𝑉current �      (20) 

where: 

• 𝑉𝑉𝑃𝑃𝑉𝑉𝑛𝑛𝑞𝑞𝑛𝑛 and 𝐼𝐼𝑃𝑃𝑉𝑉𝑛𝑛𝑞𝑞𝑛𝑛 are the updated voltage and current settings for a given wolf aimed at 

moving closer to the MPP. 

• 𝑉𝑉𝑃𝑃𝑉𝑉𝛼𝛼 ,𝑉𝑉𝑃𝑃𝑉𝑉
𝛽𝛽 , and 𝑉𝑉𝑃𝑃𝑉𝑉𝛿𝛿  (similarly for 𝐼𝐼𝑃𝑃𝑉𝑉 ) represent the voltage (current) settings of the alpha, 

beta, and delta wolves, respectively. These settings are considered the best current 

estimates for achieving the MPP. 

• 𝑉𝑉𝑃𝑃𝑉𝑉
target  and 𝐼𝐼𝑃𝑃𝑉𝑉

target  refer to the hypothetical, optimal settings towards which the pack should 

converge based on environmental conditions ( 𝐺𝐺 and 𝑇𝑇 ) and the characteristics of the PV 

system. 

• 𝑉𝑉𝑃𝑃𝑉𝑉current  and 𝐼𝐼𝑃𝑃𝑉𝑉current  are the current settings of the wolf being updated. 

• 𝐴𝐴 is a coefficient modulates the adjustment based on the distance to the target settings, 

potentially incorporating random elements to maintain exploration capabilities. 

Additionally, the impact of the top wolves can be mathematically represented by incorporating 

weighted averages where the weights could reflect the relative performance or fitness of the alpha, 

beta, and delta solutions, EQU (21) and EQU (22). 
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𝑉𝑉𝑃𝑃𝑉𝑉new = 𝑤𝑤𝛼𝛼 ⋅ 𝑉𝑉𝑃𝑃𝑉𝑉𝛼𝛼 + 𝑤𝑤𝛽𝛽 ⋅ 𝑉𝑉𝑃𝑃𝑉𝑉
𝛽𝛽 + 𝑤𝑤𝛿𝛿 ⋅ 𝑉𝑉𝑃𝑃𝑉𝑉𝛿𝛿        (21) 

𝐼𝐼𝑃𝑃𝑉𝑉new = 𝑤𝑤𝛼𝛼 ⋅ 𝐼𝐼𝑃𝑃𝑉𝑉𝛼𝛼 + 𝑤𝑤𝛽𝛽 ⋅ 𝐼𝐼𝑃𝑃𝑉𝑉
𝛽𝛽 + 𝑤𝑤𝛿𝛿 ⋅ 𝐼𝐼𝑃𝑃𝑉𝑉𝛿𝛿        (22) 

where, 𝑤𝑤𝛼𝛼,𝑤𝑤𝛽𝛽, and 𝑤𝑤𝛿𝛿 are weights assigned based on the fitness or rank of each top wolf, 

with higher weights given to solutions closer to the MPP. This ensures that the packet's direction 

is prejudiced more by the wolves with the best solutions. The entire process is presented in the 

algorithm 1. 

Algorithm 1 for HGWO for MPPT Input 

• 𝐺𝐺 : SI 

• 𝑇𝑇 : Temperature 

• 𝑉𝑉𝑂𝑂𝑂𝑂 : Open-circuit voltage 

• 𝐼𝐼𝑆𝑆𝑂𝑂  : Short-circuit current 

Output: Optimal 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉 settings to maximize 𝑃𝑃𝑃𝑃𝑉𝑉 

Procedure: 

• Initialize: Generate an initial population of 𝑁𝑁 wolves (search agents), where each wolf 

′𝑖𝑖′ has a position 𝑊𝑊𝑖𝑖 = �𝑉𝑉𝑃𝑃𝑉𝑉,𝑖𝑖, 𝐼𝐼𝑃𝑃𝑉𝑉,𝑖𝑖� initialized within the ranges [0,𝑉𝑉𝑂𝑂𝑂𝑂] for voltage and 

[0, 𝐼𝐼𝑆𝑆𝑂𝑂] for current. 

• Evaluate Fitness: For Each wolf 𝑖𝑖, calculate the fitness 𝐹𝐹𝑖𝑖𝑡𝑡𝑖𝑖�𝑉𝑉𝑃𝑃𝑉𝑉,𝑖𝑖, 𝐼𝐼𝑃𝑃𝑉𝑉,𝑖𝑖� based on the 

deviation from the theoretical maximum power point (MPP), considering current 𝐺𝐺 and 

𝑇𝑇. 

3 Iterate Until Convergence: 

• For Each iteration 𝑡𝑡 : 

a. Crossover: 

• Select pairs of parent wolves (𝑃𝑃𝑠𝑠 and 𝑁𝑁𝑠𝑠) based on fitness. 

• Perform crossover to generate offspring 𝑂𝑂𝑖𝑖, where 𝑂𝑂𝑖𝑖 = 𝜆𝜆 ⋅ 𝑃𝑃𝑠𝑠 + (1 − 𝜆𝜆) ⋅ 𝑁𝑁𝑠𝑠, 

and 𝜆𝜆 is a random factor [0,1]. 

b. Mutation:  For each wolf 𝑆𝑆𝑖𝑖, apply mutation to introduce random variations: 𝑆𝑆𝑖𝑖′ =

𝑆𝑆𝑖𝑖 + 𝜇𝜇 ⋅ (𝑆𝑆rand − 𝑆𝑆𝑖𝑖 ), where 𝜇𝜇 is the mutation rate [0,1], and 𝑆𝑆rand  is a randomly chosen 

solution from the population. 

c. Evaluate Fitness: Recalculate the fitness of all wolves, including the newly generated 

offspring, based on their 𝑉𝑉𝑃𝑃𝑉𝑉 and 𝐼𝐼𝑃𝑃𝑉𝑉 settings. 
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d. Update Positions (Exploitation): Adjust the positions of all wolves towards the best 

solutions (𝛼𝛼,𝛽𝛽, 𝛿𝛿) based on their fitness, using weighted averages to guide the packet 

closer to the MPP. 

e. Select Alpha, Beta, and Delta: Identify the top three wolves with the highest fitness 

to serve as 𝛼𝛼, 𝛽𝛽, and 𝛿𝛿 for the next iteration. 

• Termination: The algorithm terminates when a predefined number of iterations are 

completed or when the change in fitness between iterations falls below a threshold, 

indicating convergence. 

5 Output: Return the voltage (𝑉𝑉𝑃𝑃𝑉𝑉) and current (𝐼𝐼𝑃𝑃𝑉𝑉) Settings of the alpha wolf (𝛼𝛼) as the 

optimal solution for the MPPT problem under the given 𝐺𝐺 and 𝑇𝑇. 

5. Experimental Analysis 

To demonstrate the enhancements brought about by implementing AI-based methods for 

MPPT, we utilized a grid-connected PV model tailored to our experimental setup. The foundation 

for this model was adapted from a modified version of the 250 kW grid-connected PV array model 

in MATLAB. The configuration consisted of 8 parallel strings, each including 48 series-connected 

panels of the type LG 400. The comprehensive system integrates a PV array with a boost converter, 

an inverter, and a connection to the grid. The heart of our experiment lies in the control system 

designed for MPPT purposes, which finely tunes the duty cycle to modulate the PV voltage, 

guiding it towards the optimal operating point for maximized efficiency. The proposed model was 

compared against P&O and IndCond, and the findings are discussed below: 

 
Figure 3: Power output vs SI 
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The chart in Figure 3 showcases the relationship between Power Output and SI (G) for 

different MPPT methods. As the SI level increases, it is observed that all three MPPT methods 

have demonstrated an increase in power output. The HGWO method has shown that it consistently 

delivers a higher power output across the entire range of SI than the traditional P&O and IncCond 

methods. The results prove that the HGWO paradigm can more effectively optimise the power 

generated by PV systems. PV systems are particularly successful when the level of solar radiation 

fluctuates within the surroundings. This is because of the hybrid composition of the approach, 

which combines components from the GWO enhanced with features from the genetic algorithms 

for more effective search and extraction. The improved efficiency of the recommended approach 

can be identified as the ability of the model to evolve more, which is caused by the hybrid of the 

natural world of the framework. Following the research results, the P&O method has a lower 

volume of energy, while the IncCond technique performs higher than the P&O technique but 

remains less successful than the HGWO technique. 

 
Figure 4: Power output vs Temperature 
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Figure 5: Computation cost vs Complexity vs Iterations to MPP 

 Figure 4 shows the power output vs temperature (T) relationship performance of the 

HGWO compared to the P&O and IncCond methods. The HGWO method has shown a higher 

peak power output and slower decline when the temperature increases. The proposed HGWO, 

through the results, have shown better performance for different ranges of temperatures. The graph 

also shows the outperformance of the proposed model against the P&O and IncCond for varied 

temperature conditions. Figure 5 compares computational cost and complexity for the HGWO, 

P&O, and IncCond MPPT methods. It compares the iterations needed for the model to achieve the 

MPP; from the results, the proposed model shows a clear picture of its efficiency by taking a 

smaller count of iterations to reach MPP, which is the main objective of the work. However, it had 

increased computational cost and complexity compared to the traditional models. This is 

acceptable due to the nature of the algorithm. The P&O model has the lowest computational cost 

and complexity but poor performance for MPP. At the same time, the ACO model is next to the 

HGOA model. 

6. Conclusion and Future Work 

This study is involved in the process of exploring the possibilities for optimization of 

Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems. This work has introduced 

the innovative Hybrid Grey Wolf Optimizer (HGWO) model as a potential solution to the objective 

of enhancing the adaptability and efficiency of Solar Energy (SE) harnessing. In simulations, the 

HGWO model demonstrated better performance by employing a model that dynamically track the 

Maximum Power Point (MPP). When compared to traditional MPPT methods such as Perturb and 
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Observe (P&O) and Incremental Conductance (IncCond), the proposed model performed better 

even in varied conditions. The comparative analysis has also revealed that the proposed HGWO 

method outperformed the conventional MPPT techniques that had shown convergence much faster 

to the MPP by minimizing the oscillations and effectively adapting to rapid environmental 

changes.  

This work presented a novel MPPT optimization model for PV systems that had to provide 

new avenues for future research to explore its integration with other Renewable Energy (RE) 

methods.  
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