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Abstract

Sustainable Manufacturing Practices (S , particularly in the selection of materials, have
become essential due to environmentalgS8Sies caused by the expansion of industry. Compared to
conventional polymers, biode able mer Materials (BPM) are growing more commonly as

an approach to reducing ion. Suitable materials can be challenging due to numerous

considerations, like eco pact, expenditure, and material properties. When addressing

sophisticated -~offSistandard approaches drop. To compete with such challenges, employing
Genetic Al h GA) may be more successful, as they have their foundation in the basic

1 development and the natural selection process. With a focus on BPM, this

‘@ ] 1on used for practical testing—PSO, ACO, and SA—the GA model is the most
fective. The findings demonstrate that GA can be used to enhance SMP and performs well in

ous search spaces that contain numerous different combinations of materials.
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1. Introduction

Sustainable Manufacturing Practices (SMP) have been gradually and systematiall

finding progress throughout all aspects of the manufacturing industry in the past few decade

transformation of the cycle of operation. The selection and use gffmaterials from nature is a
significant manufacturing industry step by step which de oughtful consideration in order

to accomplish a sufficient level of environmentally sclous elopment [2]. This is because

this decision directly influences the economig , environmental aspects of accountability

for the environment. Additional engaging pical polymers that are used Biodegradable

Polymer Materials (BPM) provides an innovatige solution to waste reduction by degrading apart

into innocuous byproducts. This pre requirement motivated the development of BPM.
Following the recogniti has a chance to provide several benefits, the task of

identifying the accurate BPM lagued with vital challenges. These difficulties originate from

various material featur romental values, and financial considerations that must be

reliant on gi atic model-based systems for decision-making due to the specifics of
the task at fac ework of this helpful, on the contrary, fails to consider multiple trade-offs
and variabilif§of stbstance performance over time [7]. In addition, such models cannot efficiently

xplore the exgensive search spaces mainly defined by the combinations of material variables. This

por selection decisions, which can cause the model to fail to satisfy the criteria that are
guired for achieving Environmental Sustainability (ES).

Genetic algorithms, or GA, are now acceptable for maintaining ES and identifying suitable
BPM [5]. In following the concepts of biological selection and the evolution of genes, the GA

framework can model the steps of evolution by applying methods such as selection, crossover, and



mutation, which are performed on a sample of candidate solutions [6]. Through this iterative
process, the GA model in their process effectively involves the exploration of diverse
combinations of material properties. The selection of materials through GA ensures a dynamic
adaptation of finding optimal or near-optimal solutions that satisfy the environmental impac
performance, and cost factors. By employing the computational intelligence of
manufacturing industries can efficiently make material selection decisions that ali
sustainability principles.

Built on the above motivation, the proposed work in this paper involves._t cation of
GA to optimize the selection of BPM in Sustainable Manufacturing The“@A”™ method

i @ Opti solutions that

balance factors like environmental benefits, material performanégg’and cost. This optimal

involves simulating the process involved in natural evolution to

—_—

balancing process is achieved by evolving a population of candidat ns, which is measured
using an adaptive fitness function that includes the score ironmental impact, mechanical
properties, and economic viability. The proposed wor 1cability is experimented with using

ra to manufacturing packages using eco-

a case study involving a packaging indust
friendly materials, and the models perfo o the expectation, thereby demonstrating the

algorithm's capability to navigate complex o ization landscapes. The experimental analysis

involved comparing the GA with ot ptimization methods like PSO, ACO, and GA, which had

shown the GA's effectiveness j nvironmental impact and enhancing computational

efficiency, thereby underlining s, utility"in advancing SM practices.

The paper is st s Yollows: Section 2 presents the literature review, Section 3

presents the back
evaluation @f t ork a ection 6 concludes the work.
ie

¢ on the optimization of material selection, mainly related to the field of SM

[7] had proposed a model for material selection by introducing a novel Latent-Variable
(LV) approach that was built within the Bayesian Optimization (BO) framework. They attempt to

emphasize the BO’s capability in material selection through the process of mapping qualitative



design variables to numerical latent variables in Gaussian Process (GP) models. They applied
their model in the environment, like optimizing the light absorption of quasi-random solar cells
and the combinatorial search for optimal Hybrid Organic-Inorganic Perovskite (HOIP) designs.
Through flexible parameterization and superior modelling accuracy, they provided an effe€tiv
model for material selection that considered numerous qualitative factors of materials design.

[8] attempted to employ GA and ML-based predictive models to design poly

extreme property measures. They combined different ML models together with the

demonstrate ML’s potential to revolutionize against the tra

These studies have been conducted through surveys

ialidiscovery, and the inverse design process.
model's efficiency in advancing the material
selection process.
[11] had mainly discussed t mprehensive perspective that is needed for more optimal
materials design. This article the challenges and opportunities available for ML tools
in the field of material science.
[12] had introd
inspiration that arg
attempt to
the propos el against other Metaheuristic Algorithms (MA) [13-18]. Through various
optimjizationgproblems, they demonstrated the proposed MGA's performance.
Bac u
uction to Genetic Algorithm (GA)
GA are a subset of evolutionary algorithms inspired by the process of natural selection and
concepts derived from Darwinian genetics. These algorithms are used to find optimized solutions

to search and optimization problems through a process miming biological evolution. The following

are the basic foundations of GA:



e Population (P): A set of candidate solutions to the problem. Each candidate solution is
often referred to as a "Chromosome". Mathematically, If P is a population, Then P =
{Cy,C,, ..., C,} where C; represents the i chromosome.

e Chromosome (C): A representation of a candidate solution. Chromosomes are typi
expressed as strings of binary values, but they can also be represented by other structure
depending on the problem domain. A chromosome C; could be representedf@
(91,92, ---» gm), Where g; represents the j t gene in the chromosome.

e Gene (g): A part of a chromosome that determines a particular charac 'smeter

in the candidate solution. Genes are the basic units of data in (@ H!

e Search Space: The search space, 'S’, encompasses all po futions to the problem.

Each solution is encoded as a chromosome, 'C’, consisting of genes, g;, where each gene

represents a solution parameter. For a given proble elrch pace is defined by S =

{C1,C,, ..., Cy}, where each C; = (91,92, > Im nt§ a potential solution within the
space.

e Fitness Function: The fitness fu ), quantitatively evaluates the suitability of a
chromosome C as a solution to the m. The function assigns a fitness score to each

chromosome, influencing its likelihood eing selected for reproduction. The objective
of a GA is to optimize thisffuncéen, either by maximization or minimization, depending
on the problem contex

GA manage a populagi individuals, each represented as a chromosome or solution,

along with their correspon ess scores. Individuals with higher fitness scores are prioritized

for reproducti er ounterparts. Those selected for mating combine their genetic material
to produce ‘Offspr potentially leading to superior solutions. Given the constant size of the

st be made for these new members. Consequently, some individuals are

placed by newcomers, facilitating the emergence of a new generation once the
otential of the existing population is fully utilized. It is anticipated that, with each
ing generation, more optimal solutions will emerge as less fit individuals are phased out.

With every new generation, there is, on average, an increase in "Better Genes" compared to
the individuals from preceding generations, resulting in progressively improved "Partial
Solutions."” This iterative process continues until the offspring show negligible differences from

those produced in prior cycles, indicating that the population has stabilized. At this point, the



algorithm is considered to have converged, offering solutions for the given problem. Once the
initial generation is created, the algorithm evolves the generation using the following operators:
e Selection: A process by which chromosomes are chosen from the population for breeding
based on their fitness. The selection process ensures that more fit chromosomes are for;

likely to be selected for reproduction.

e Crossover: A genetic operator used to combine the genetic data of two parents to/g

new offspring. It is a method of recombination. For example, given two chronaesen
e

hin th&population by

(aq,ay, ...,a,,) and Cp, = (by, by, ..., by), a single-point crossover mi

offspring C, = (ay, ay, ..., A, D1, - bi).

e Mutation: A genetic operator used to maintain genetic di
randomly altering one or more genes in a chromosome¥or a chromosome C; =

(91, 92> -+» Gm), @ mutation might change g; to g;

The Process of GA Is Illustrated As follows:
1 Initialization: Generate an initial populatio of osomes randomly.

ach*€hromosome C; in the population.

2 Evaluation: Compute the fitness f’
3 Selection: Select pairs of chromo $ from the current population to breed a new
generation. Selection is often performed S@that chromosomes with higher fitness are more

likely to be selected.

4 Crossover and Mutation: crossover and mutation operators to the selected

chromosomes to p spring, which forms the next generation of solutions.

5 Replacement: 1e current population with the new generation of chromosomes

and r ess a termination condition has been reached (e.g., a sufficient
fitn r a nfaximum number of generations).
3.2 Sustaihab facturing

ustamable manufacturing is a concept developed to achieve a minimal negative, energy

nm y friendly, economically viable, and socially acceptable. One of the critical
utes'in developing SM is the process of proper material selection based on its attributes and
ctionalities. The materials decide the product’s lifecycle, energy consumption (EC) in
manufacturing, recycling ability, and the quality and efficiency of the produced product. This is

why the focus was increased on material selection that could satisfy all the necessary criteria.



(i) BPM: Within the diverse field of sustainable material science, the advent of BPM has
emerged as a most sought-after material that could meet all the essential attributes of a material
suited for SM. These materials are of such a kind that they offer the needed solution to the existing
and most persistent problem of pollution, which is plastic waste. The BPMs are designed uSin

technology that breaks down into natural substances like water, carbon dioxide, and biomass u

specific conditions. By integrating those BPM into SM processes, the companies that

handling plastic can employ BPM so that they can significantly reduce the environ

Biodegradable
polymers

Figure 1: Applic
(ii) Criteria for Selecting BPM
The selection of BPM is determpined b n the following factors:

. : The environmental impact of BPMs is assessed throughout

. rfo nce Characteristics (PC): The PC of BPMs determine their respective selection
pplication for specific domains. These characteristics include (i) mechanical strength,

(1) durability, flexibility, and (iii) resistance to heat and moisture.
e Economic Viability (EV): The decision-making process of one specific type of BPM is
additionally determined by the cost for SM using that specific type. Because it decreases

the total expense, the particularly feasible substance for business purposes must be selected



for manufacturing. The EV also takes into consideration the cost of the raw materials, the
cost of manufacturing processes, and any other expenses related to satisfying required
regulations or environmentally friendly criteria.
3.3 Problem Definition
It must be accomplished to address the efficiency issue associated with selecting the

effective set of BPM for contextual SM approaches.

o LetX = {x;,x,,..,x,} represent the set of BPM, where each x; is a polyme
by a unique combination of features.
e Each polymer x; is related to a set of features A = {a,, a,, . a radation

\ h
@ for sustainable work.

This purpose is subject to optimization and is expressed as follows: EQU (1).

F(X) =w;-EX) +w, - P(X) —ws - Cost (X)

where:
e F(X) is the objective function, &
act o

rate, mechanical strength, and cost, which define its appro

(1)

e FE(X) quantifies the environmentg ¢ polymer selection ‘X', aiming for

minimization,

e P(X) represents the performance score, Which we seek to maximize,
e Cost (X) is the economic ciated with the polymer selection, which should be
minimized, @
* Wy, Ww,, and w; wei rflect the relative position of ecological impact, performance, and
cost.
The challengélis td'fi of polymers 'X*' that optimizes (X), EQU (2).
X* = Arg (2)

sts and environmental impact.

finition: The search space 'S’ is defined by the set of all possible combinations

Xy X Xy X X Xy, 3)

where X;, X5, ..., X, represent the ranges of possible values for each attribute across all

considered polymers. The dimensionality of the search space is determined by the number of



attributes ‘m’ considered for each polymer, making 'S’ a multi-dimensional space that the GA

navigates to find 'X*'.

4. Methodology

4.1 Encoding BPM Selections into Chromosomes for GA Optimization

The encoding strategy involves the process of integrating the binary and real-va

representations to the features of BPMs effectively:

Chromosome (C;) : Each chromosome in GA corresponds to a potential polya

which is represented as an array of genes C; = [g1, g2, ---» Gm], Where m is

genes. Each gene encodes an attribute of the polymer; that w centi omosome

represents all the relevant properties that are needed for asses

Gene Representation:

(1)

(ii)

Binary Encoding for Discrete Attributes: Bin?en ing is employed for
discrete attributes in BPM, such as the p pe. Each gene g; within this
category is a binary digit (0 or 1), re position represents a different

polymer type or characteristi

Real-Valued Encoding tinuous Attributes: Continuous attributes,
including the degradation rate a echanical properties like tensile strength and
elasticity, are enco as real numbers. The attribute selection for the GA

optimization in es'the following:
er ( T ): The type of biodegradable polymer is encoded using

gits (b). Each bit in a segment of the chromosome, T =

by ], represents a different type of biodegradable polymer. Here, k

is the'number of polymer types considered.

egradation Rate (D): The degradation rate reflecting how quickly a
polymer degrades under environmental conditions. This attribute is encoded
as a real-valued gene, D, within the chromosome.

e Mechanical Properties (M): Key mechanical properties, including tensile
strength (M) and elasticity (M,), are encoded as real numbers. These
properties are crucial for assessing the material's performance and are

represented as M = [My;, M,] within the chromosome.



e Economic Cost (C): The economic viability of using a particular polymer
type is encoded as a real-valued gene, C, reflecting the cost associated with
production, processing, and other related expenses.

In applying this encoding scheme within the GA model, each chromosome C; represe
potential solution, i.e., a specific selection of biodegradable polymers, and is structured as follo
EQU (4).

C;=|T,D,M,C]

where:
e (;isthei™ chromosome,
e T encodes the type(s) of biodegradable polymer included,
e D represents the degradation rate,
e M encodes mechanical properties and
e ( denotes the economic cost. @
4.2 Fitness Function Implementation

The fitness function, F(C;), for each @
optimization goals of minimizing environnienfa
performance. The function is formulated as foll@

and their notations, EQU (5).

F(C)=w;-E(C)+wy-P — Wy, Cost (C;) (5
where:

o F(C;) is the fitne
o E(C) 1f1

0 ; in the population directly reflects the
impact and cost while maximizing material

, integrating the previously defined attributes

ironmental impact of the polymer selection encoded by C;,
o P(CHErepresents the performance score, incorporating mechanical properties and
de a e,

. st denotes the economic cost associated with the selection, wy, w,, and w; are the

ts reflecting the relative importance of each criterion.

(i) Environmental Impact (E(C;)): The Environmental Impact E (C;) of a polymer, selection
be quantified by considering factors such as the degradation rate and the energy required for
production. An EQU (6) to represent this component might look like the following:

E(C)) = a-DEG(C;) + B -ENR(C;) (6)



where:
e DEG(C;) is the degradation rate of the polymer selection, with higher rates generally
preferred to ensure rapid decomposition.
e ENR(C;) represents the energy required for producing the selected polymers, with lower

energy consumption preferable.

e « and B are weighting factors that reflect the relative importance of degradation rat
energy consumption in the overall environmental impact assessment.
(ii) Performance Score (P(C;)): The Performance Score P(C;) evaluat
the polymer selection in meeting mechanical and functional specificati

as a weighted sum of relevant performance attributes, EQU (7).

P(C) =y -TENS(C;) + & - ELAS (C)) (7)

where: l

e TENS(C;) Measures the tensile strength of th @ |'| er selection, indicative of its

lymegpselection, reflecting its flexibility and

mechanical robustness.

e ELAS (C;) Assesses the elasticity g

durability under stress.

e yand § are weights assigned to the tensil@strength and elasticity, respectively, indicating

their importance in the ove ance evaluation.

(i) Economic Cost (Cosg(C;)): conomic Cost Cost (C;) Associated with a polymer

selection, raw material ction, and processing expenses are covered. This can be
modelled as EQU (8).

Cost (C;) = T + 14 PROC (C;) (8)
where:

esents the cost of raw materials for the polymer selection.
>) Includes the costs associated with processing and producing the selected
mers.
e O and A are weighting factors that balance the impact of raw material costs and processing
expenses on the total economic cost.

4.3 Customizing Genetic Operators



These operators must be tailored to effectively navigate the unique landscape of material
properties and sustainability criteria. This customization enhances the GA's ability to identify
optimal polymer combinations by ensuring that genetic diversity is maintained and that the search
space is thoroughly explored.

(i) Selection Operators

The selection operator's role is to choose individuals from the population for reprgductio

prioritizing those with higher fitness scores to ensure the propagation of advantage aits. Fe
the BPM selection problem:
e Tournament Selection is employed due to its balance bg se genetic

e
@ &set number of

ate in a "tournament," the

diversity and ensuring the advancement of fit individuals.
individuals are randomly selected from the population to pa

individual with the highest fitness within this group is ?se or reproduction. This

process is repeated until the desired number o uals is selected for the next
generation.
Given a tournament size of k, the sele c or one individual can be expressed as
follows:
1 Randomly select k individuals from th ulation.

2 Compare the fitness scores, ?), of the selected individuals.

3 The individual with the

s score wins the tournament and is selected.

The mathematical expressiompfor selecting one individual through Tournament Selection can
be represented as EQU
Select (C;) = ), F(Ci)} 9)

chromosomes of the individuals participating in the tournament, and

where Cj4,
F(Cl) ist
(ii) Castom

Cros or recombination, combines the genetic data of two parents to generate offspring,

tion evaluating each individual's suitability.

rossover Operators

raging the exploration of new regions in the search space. To explore new combinations of

mer properties effectively, a Uniform Crossover strategy is implemented for the
recombination of parental chromosomes:

e Uniform Crossover Strategy: For two parent chromosomes C, and C,, each gene g; in

the offspring chromosome C, is chosen randomly from the corresponding genes in C,, and



Cq4 with equal probability. This approach ensures equitable contribution from both parents
across the entire gene set, suitable for the mixed nature of binary and real-valued encoded
attributes, EQU (10).

] C,[j1 With Probability 0.5
Colil =1,
0 Cqlj1  With Probability 0.5

(ii1) Customizing Mutation Operators
Mutation introduces random alterations in the chromosome, aiding in exploring
space and preventing the GA from becoming trapped in local optima. Considerin

encoding of chromosomes, a Hybrid Mutation strategy is adopted, dif]

and real-valued genes:
e Bit-Flip Mutation for Binary Genes: For binary-encoded s nts representing discrete
polymer types or characteristics, the bit-flip mutation is ap?d.

state is flipped with a mutation probability p,,, E

_(1—yg; Urand () <pn
Pm = {g I Otherwise

e Random Mutation for Real-Val s: For real-valued genes encoding continuous

attributes like degradation rate or mechamical properties, a random mutation is performed

by adding a small, random lected delta, ‘A’ within predefined limits, ensuring the
exploration of nearby so acgy EQU (12).
gj=g;+A4, (12)

where A is a ran
The pwepo
Algorith Optimized Selection of BPM

thin the attribute's range

sing GA for the BMP selection is presented below:

Inputs:

ber of individuals in the population.
aximum number of generations.

¢ . Probability of crossover.

Pm : Probability of mutation.

e [k : Tournament size for selection.

{T,D, M, C}: Set of BPM attributes



e Weights wy, w,, ws: weights for environmental impact, performance, and cost in the fitness
function.
Process:
1 Initialize Population: Generate an initial population of N individuals randomly. Eac
individual represents a set of BPM attributes encoded as chromosomes.

2 Evaluate Fitness: For Each individual in the population, calculate their fitness

the EQU (13):
F(C;)) =w; - E(C;) +w, - P(C;) —ws - Cost (C;) 13)
where E, P, and Cost are the environmental impact, performance sco d‘&Conom st of the

BPM, respectively.

3 For Each generation in 1 to Gy, Do:

e Selection: l

e Forifrom 1 to N Do:

e Conduct k-tournament selection to 0S

e Crossover:

e For Each pair of parents Do:

e Ifrandom () < p. Then, a Biiform crossover will be performed to produce
offspring.

e Mutation:

e Apply bit-flip mutation.
o [Else If the gene is real-valued (e.g.,, Degradation Rate, Mechanical
Properties, Cost):
e Apply random perturbation within range.
e Evaluate the Fitness of New Offspring: Calculate the fitness of each new offspring

using the fitness function.

¢ Replacement: Integrate offspring into the population, replacing the least fit individuals.



e Check Stopping Criterion: Exit the loop if a predefined stopping criterion is met.

4 Identify Optimal Selection: At the end of G,;,,x generations, identify the individual with
the best fitness score as the optimal set of biodegradable polymers, X ™.

5 Output: Return the optimal set X* and its fitness score, detailing the selégte
biodegradable polymers' attributes and their alignment with sustainability, performarc
and cost objectives.

5. Experiment Analysis
A packaging manufacturing company located in Shenzhen, China, is s

to eco-friendly materials to reduce environmental impact without cops

or significantly increasing costs. The company aims to utilize BPM
materials. This case study aims to apply the GA to select the optimtfalf€ombination of BPM that
balances environmental friendliness, material performance, and costfeffectiveness.

(i) Data Collection and Preparation: The data co rocess involves details about

different polymers that are sourced from acade li rgy industrial input and product

catalogues. Each polymer is characterized ibutes (Table 1): type (T), degradation
rate (D), mechanical properties (M), and ¢
1. Type (T): This attribute relates to the ch@mical composition of BPM, which includes PLA
(Polylactic Acid), PHA yhydroxyalkanoates), PBAT (Polybutylene Adipate
Terephthalate), and oth

2. Degradation Rate (D)Measures the rate of how quickly a polymer can degrade into

environmentally ubstances.

3. ): This includes tensile strength, elasticity, and durability under
4 senting the economic viability of each polymer option, it includes the raw
expenses, processing and manufacturing costs.
Table 1: Polymer Attributes
Degradation Mechanical Properties
Polymer Type (T) Origin Cost (C)
Rate (D) M)
6-12 months

Tensile Strength: 45-60
PLA (Polylactic Acid) Synthetic (Industrial Medium
) MPa, Elasticity: Moderate
Composting)




9-18 months Tensile Strength: 35-45

PHA (Polyhydroxyalkanoates) Natural High
(Soil Burial) MPa, Elasticity: High
PBAT
) 3-6 months Tensile Strength: 25-35 Medium-
(Polybutylene Adipate Synthetic ) o ] )
(Soil) MPa, Elasticity: Very High Hig
Terephthalate)
6-9 months
PBS ) ) Tensile Strength: 40-50
Synthetic (Industrial
(Polybutylene Succinate) ) MPa, Elasticity: Moderate
Composting)

(ii) Preparation:

To prepare the data for the GA, the following steps were undertaken:

o Normalization: Attributes were normalized to ensure co andyto balance their
erties and degradation
rates were scaled to a typical range, facilitating a unifg sessment of material
performance and environmental impact.
e Encoding: Each polymer's attributes were i a format suitable for GA

processing. The type attribute was en 1gits to represent the presence or

absence of specific polymer categ nuouShattributes, such as degradation rate and

mechanical properties, were encoded a§teal numbers within their respective ranges.

o Data Cleaning: The incomplete,and inconStstent entries are addressed by the data cleaning
processes.

e Preliminary Screeni n indtidl screening was conducted to exclude polymers that did

not meet basic e or performance thresholds, such as those with prolonged

The follo presents the description of the collected dataset. The GA model was

trained usin rs as shown in Table 3.

Table 2: Dataset Description

ttribute’Description Data Type Value Range or Categories
mer Type (T) Categorical PLA, PHA, PBAT, PBS
Origin Categorical Natural, Synthetic, Hybrid
Degradation Rate (D) Continuous e.g., 3-18 months
Tensile Strength (Part of M) Continuous e.g., 25-60 MPa
Elasticity (Part of M) Qualitative Low, Moderate, High, Very High

Cost (C) Continuous e.g., $0.5 - $5 per kilogram




Table 3: Hyperparameters for GA

Parameter Example Value
Population Size (N) 100
Number of Generations (G,,,4x) 50
Crossover Probability (P.) 0.8
Mutation Probability (P, ) 0.1
Tournament Size (k) 5

Comparative Mean Fitness Scores Over Multiple Run

97.5F —— GA (proposed)
—=— PSO

95.0f —— ACO
v — SA
S 92.5¢
w0
8 90.0
C
bt
ic 87.5
C
0 85.0
L 85.

82.5

80.0

20 40 60 80 100
un
Mean Fitness score
The graph in Figure OWS ean fitness score of compared models over multiple

runs. The GA proposed i starts at a score of 85 and reaches 97.5 at run 100. Both the
odel are higher than those of other models, such as PSO, ACO,

and SA. The o Ip ance at each run is consistent with each experiment run compared to

the other m . subsequent analysis is the environmental impact assessment of each model

against multi , as shown in Figure 3. The analysis shows that the models performing lesser

ower impact score than the other models. The GA achieves lower scores of 25. The
shows a slightly higher impact score of 27. In contrast, the ACO scored the highest at 30. The

had the lowest score of all models, suggesting its adaptability in such environments.



Environmental Impact Scores by Optimization Method
30

N
w

N
o

iy
wv

[y
o

Environmental Impact Score
wv

GA (proposed) PSO ACO SA
Optimization Method

Figure 3: Environment Impact Assessmes

Fitness Improvement Over Generations (Convergence

45 “*— GA (proposed)

—=— PSO
—— ACO
— SA

Now WA
0 o u o

Fitness Improvement
N
o

Figure 4 shows the fi
successive generations. The substantial fitness improvement for each generation,
starting around 1 and { 4.5 by the 20™ generation. The model displayed better

convergence as the progressed. Following the GA, the SA model also shows better

convergen models, such as PSO+ACO. Considering all the models, the GA model

showed bet nv nce than the other models.



Execution Time and Memory Usage by Optimization Method
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performance of the two approaches, the GA approach consis merges as the best for MU and
ET. The SA model was second in ET and first in MU gontrastiaggwith the GA, which is intriguing.
When contrasted with all the additional AGE exhibits the highest ET, and the PSO

uses the most considerable memory. Based ¢ results, the GA is superior to all other versatile

approaches in the context of material selection.

6 Conclusion and Future Work

The research investigati d that Genetic Algorithms (GA) have enormous potential
for optimizing material selg cusing on environmentally conscious production. In order to
deal with the challenge onmentally friendly polymer selection, this work recommends
including th actors for material selection comprised the effects on the

environme orm, and cost, among others. The application used a case study on a

cy p
product nufdeturcy’s switch to using biodegradable polymer materials for sustainable
he research study examined the framework of others, like PSO, ACO, and GA,
the GA model is more appropriate for application in the materials field for effective
ance decision-making, considering a selection of evaluation parameters.

Further, this research suggests GA and other algorithmic approaches can be used in several
contexts that are sustainable industries.
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