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Abstract 

Sustainable Manufacturing Practices (SMP), particularly in the selection of materials, have 

become essential due to environmental issues caused by the expansion of industry. Compared to 

conventional polymers, biodegradable Polymer Materials (BPM) are growing more commonly as 

an approach to reducing trash pollution. Suitable materials can be challenging due to numerous 

considerations, like ecological impact, expenditure, and material properties. When addressing 

sophisticated trade-offs, standard approaches drop. To compete with such challenges, employing 

Genetic Algorithms (GA) may be more successful, as they have their foundation in the basic 

concepts of biological development and the natural selection process. With a focus on BPM, this 

study provides a GA model for optimal packaging substance selection. Out of the four algorithms 

for computation used for practical testing—PSO, ACO, and SA—the GA model is the most 

effective. The findings demonstrate that GA can be used to enhance SMP and performs well in 

enormous search spaces that contain numerous different combinations of materials. 
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1. Introduction 

Sustainable Manufacturing Practices (SMP) have been gradually and systematically 

finding progress throughout all aspects of the manufacturing industry in the past few decades, 

signifying an important change in the contemporary industrial sector. Preventing the real-life 

environmental consequences associated with products produced with energy sources from 

petroleum and other petroleum products and satisfying the constantly evolving needs of users and 

government officials were the primary drivers of this advancement [1]. The SMP idea, which relies 

on the concept of reducing negative environmental effects at all levels of manufacturing while 

simultaneously improving resources and conservation of energy, has long been connected with the 

transformation of the cycle of operation. The selection and use of materials from nature is a 

significant manufacturing industry step by step which demands thoughtful consideration in order 

to accomplish a sufficient level of environmentally conscious development [2]. This is because 

this decision directly influences the economic, social, and environmental aspects of accountability 

for the environment. Additional engaging than typical polymers that are used Biodegradable 

Polymer Materials (BPM) provides an innovative solution to waste reduction by degrading apart 

into innocuous byproducts. This pressing requirement motivated the development of BPM. 

Following the recognition that BPM has a chance to provide several benefits, the task of 

identifying the accurate BPM is plagued with vital challenges. These difficulties originate from 

various material features, environmental values, and financial considerations that must be 

addressed [3]. The mathematical models that are presently in use for choosing materials are all 

reliant on either linear or static model-based systems for decision-making due to the specifics of 

the task at face. A framework of this helpful, on the contrary, fails to consider multiple trade-offs 

and variability of substance performance over time [7]. In addition, such models cannot efficiently 

explore the extensive search spaces mainly defined by the combinations of material variables. This 

leads to poor selection decisions, which can cause the model to fail to satisfy the criteria that are 

required for achieving Environmental Sustainability (ES). 

Genetic algorithms, or GA, are now acceptable for maintaining ES and identifying suitable 

BPM [5]. In following the concepts of biological selection and the evolution of genes, the GA 

framework can model the steps of evolution by applying methods such as selection, crossover, and 
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mutation, which are performed on a sample of candidate solutions [6]. Through this iterative 

process, the GA model in their process effectively involves the exploration of diverse 

combinations of material properties. The selection of materials through GA ensures a dynamic 

adaptation of finding optimal or near-optimal solutions that satisfy the environmental impact, 

performance, and cost factors. By employing the computational intelligence of GAs, 

manufacturing industries can efficiently make material selection decisions that align with 

sustainability principles. 

Built on the above motivation, the proposed work in this paper involves the application of 

GA to optimize the selection of BPM in Sustainable Manufacturing (SM). The GA method 

involves simulating the process involved in natural evolution to identify optimal solutions that 

balance factors like environmental benefits, material performance, and cost. This optimal 

balancing process is achieved by evolving a population of candidate solutions, which is measured 

using an adaptive fitness function that includes the scores of environmental impact, mechanical 

properties, and economic viability. The proposed work’s applicability is experimented with using 

a case study involving a packaging industry in migrating to manufacturing packages using eco-

friendly materials, and the models performed up to the expectation, thereby demonstrating the 

algorithm's capability to navigate complex optimization landscapes. The experimental analysis 

involved comparing the GA with other optimization methods like PSO, ACO, and GA, which had 

shown the GA's effectiveness in reducing environmental impact and enhancing computational 

efficiency, thereby underlining its utility in advancing SM practices. 

The paper is structured as follows: Section 2 presents the literature review, Section 3 

presents the background for the work, Section 4 presents the methodology, Section 5 presents the 

evaluation of the work and Section 6 concludes the work. 

2. Literature review 

The literature on the optimization of material selection, mainly related to the field of SM 

and design, has shown a significant interest in integrating computational intelligence and Machine 

Learning (ML) methodologies to handle the complexities associated with the corresponding 

material science.  

[7] had proposed a model for material selection by introducing a novel Latent-Variable 

(LV) approach that was built within the Bayesian Optimization (BO) framework. They attempt to 

emphasize the BO’s capability in material selection through the process of mapping qualitative 
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design variables to numerical latent variables in Gaussian Process (GP) models.  They applied 

their model in the environment, like optimizing the light absorption of quasi-random solar cells 

and the combinatorial search for optimal Hybrid Organic-Inorganic Perovskite (HOIP) designs. 

Through flexible parameterization and superior modelling accuracy, they provided an effective 

model for material selection that considered numerous qualitative factors of materials design.  

[8] attempted to employ GA and ML-based predictive models to design polymers with 

extreme property measures. They combined different ML models together with the GA model and 

attempted to predict better material combinations. The idea behind their work was to examine the 

GA's potential in evolving polymer designs through the process of natural operations like 

crossover, mutation, and selection. Through experiments, they have generated chemically unique 

polymers with high thermal and electrical performance metrics.  

[9-10] have both reviewed the role of ML in material selection in their respective work to 

demonstrate ML’s potential to revolutionize against the traditional trial-and-error methodologies. 

These studies have been conducted through surveys and have highlighted the advantages of ML 

models' ability to enhance property prediction, material discovery, and the inverse design process. 

This enhanced processability adds an edge to the ML model's efficiency in advancing the material 

selection process.  

[11] had mainly discussed the comprehensive perspective that is needed for more optimal 

materials design. This article mentioned the challenges and opportunities available for ML tools 

in the field of material science.  

[12] had introduced a Material Generation Algorithm (MGA) model that was built with 

inspiration that arrived from material chemistry and chemical reactions. The MGA is a novel 

attempt to optimize engineering problems. Through various experiments, their work benchmarked 

the proposed MGA model against other Metaheuristic Algorithms (MA) [13-18]. Through various 

optimization problems, they demonstrated the proposed MGA's performance.  

3. Background 

3.1. Introduction to Genetic Algorithm (GA) 

GA are a subset of evolutionary algorithms inspired by the process of natural selection and 

concepts derived from Darwinian genetics. These algorithms are used to find optimized solutions 

to search and optimization problems through a process miming biological evolution. The following 

are the basic foundations of GA: 
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• Population (P): A set of candidate solutions to the problem. Each candidate solution is 

often referred to as a "Chromosome". Mathematically, If 𝑃𝑃 is a population, Then 𝑃𝑃 = 

{𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛} where 𝐶𝐶𝑖𝑖 represents the 𝑖𝑖th  chromosome. 

• Chromosome (C): A representation of a candidate solution. Chromosomes are typically 

expressed as strings of binary values, but they can also be represented by other structures 

depending on the problem domain. A chromosome 𝐶𝐶𝑖𝑖 could be represented as 𝐶𝐶𝑖𝑖 = 

(𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚), where 𝑔𝑔𝑗𝑗 represents the 𝑗𝑗th  gene in the chromosome. 

• Gene (g): A part of a chromosome that determines a particular characteristic or parameter 

in the candidate solution. Genes are the basic units of data in GA. 

• Search Space: The search space, ′𝑆𝑆′, encompasses all potential solutions to the problem. 

Each solution is encoded as a chromosome, ′𝐶𝐶′, consisting of genes, 𝑔𝑔𝑖𝑖, where each gene 

represents a solution parameter. For a given problem, the search space is defined by 𝑆𝑆 =

{𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛}, where each 𝐶𝐶𝑖𝑖 = (𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚) represents a potential solution within the 

space. 

• Fitness Function: The fitness function, 𝑓𝑓(𝐶𝐶), quantitatively evaluates the suitability of a 

chromosome 𝐶𝐶 as a solution to the problem. The function assigns a fitness score to each 

chromosome, influencing its likelihood of being selected for reproduction. The objective 

of a GA is to optimize this function, either by maximization or minimization, depending 

on the problem context. 

GA manage a population of (n) individuals, each represented as a chromosome or solution, 

along with their corresponding fitness scores. Individuals with higher fitness scores are prioritized 

for reproduction over their counterparts. Those selected for mating combine their genetic material 

to produce offspring, potentially leading to superior solutions. Given the constant size of the 

population, space must be made for these new members. Consequently, some individuals are 

phased out and replaced by newcomers, facilitating the emergence of a new generation once the 

reproductive potential of the existing population is fully utilized. It is anticipated that, with each 

passing generation, more optimal solutions will emerge as less fit individuals are phased out. 

With every new generation, there is, on average, an increase in "Better Genes" compared to 

the individuals from preceding generations, resulting in progressively improved "Partial 

Solutions." This iterative process continues until the offspring show negligible differences from 

those produced in prior cycles, indicating that the population has stabilized. At this point, the 
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algorithm is considered to have converged, offering solutions for the given problem. Once the 

initial generation is created, the algorithm evolves the generation using the following operators:  

• Selection: A process by which chromosomes are chosen from the population for breeding 

based on their fitness. The selection process ensures that more fit chromosomes are more 

likely to be selected for reproduction. 

• Crossover: A genetic operator used to combine the genetic data of two parents to generate 

new offspring. It is a method of recombination. For example, given two chromosomes 𝐶𝐶𝑎𝑎 =

(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚) and 𝐶𝐶𝑏𝑏 = (𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑚𝑚), a single-point crossover might produce an 

offspring 𝐶𝐶𝑜𝑜 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘+1, … , 𝑏𝑏𝑚𝑚). 

• Mutation: A genetic operator used to maintain genetic diversity within the population by 

randomly altering one or more genes in a chromosome. For a chromosome 𝐶𝐶𝑖𝑖 = 

(𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚), a mutation might change 𝑔𝑔𝑗𝑗 to 𝑔𝑔𝑗𝑗′ . 

The Process of GA Is Illustrated As follows: 

1 Initialization: Generate an initial population 𝑃𝑃0 of 𝑛𝑛 chromosomes randomly. 

2 Evaluation: Compute the fitness 𝑓𝑓(𝐶𝐶𝑖𝑖) for each chromosome 𝐶𝐶𝑖𝑖 in the population. 

3 Selection: Select pairs of chromosomes from the current population to breed a new 

generation. Selection is often performed so that chromosomes with higher fitness are more 

likely to be selected. 

4 Crossover and Mutation: Apply crossover and mutation operators to the selected 

chromosomes to produce offspring, which forms the next generation of solutions. 

5 Replacement: Replace the current population with the new generation of chromosomes 

and return to step 2 unless a termination condition has been reached (e.g., a sufficient 

fitness level or a maximum number of generations). 

3.2 Sustainable Manufacturing 

Sustainable manufacturing is a concept developed to achieve a minimal negative, energy 

environmentally friendly, economically viable, and socially acceptable. One of the critical 

attributes in developing SM is the process of proper material selection based on its attributes and 

functionalities. The materials decide the product’s lifecycle, energy consumption (EC) in 

manufacturing, recycling ability, and the quality and efficiency of the produced product. This is 

why the focus was increased on material selection that could satisfy all the necessary criteria. 
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(i) BPM: Within the diverse field of sustainable material science, the advent of BPM has 

emerged as a most sought-after material that could meet all the essential attributes of a material 

suited for SM. These materials are of such a kind that they offer the needed solution to the existing 

and most persistent problem of pollution, which is plastic waste. The BPMs are designed using 

technology that breaks down into natural substances like water, carbon dioxide, and biomass under 

specific conditions. By integrating those BPM into SM processes, the companies that are now 

handling plastic can employ BPM so that they can significantly reduce the environmental footprint 

of their products. The following Fig. 1 illustrates various applications for the usage of BPM. 

 
Figure 1: Applications of BPM 

(ii) Criteria for Selecting BPM 

The selection of BPM is determined based on the following factors:  

• Environmental Impact (EI): The environmental impact of BPMs is assessed throughout 

their product lifecycle, starting right from the process of raw material extraction and SM 

to end-of-life degradation. Factors like energy and resources consumed during production, 

the emissions generated, and the degradation time and conditions are also considered to 

measure the EI. 

• Performance Characteristics (PC): The PC of BPMs determine their respective selection 

and application for specific domains. These characteristics include (i) mechanical strength, 

(ii) durability, flexibility, and (iii) resistance to heat and moisture.  

• Economic Viability (EV): The decision-making process of one specific type of BPM is 

additionally determined by the cost for SM using that specific type. Because it decreases 

the total expense, the particularly feasible substance for business purposes must be selected 
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for manufacturing. The EV also takes into consideration the cost of the raw materials, the 

cost of manufacturing processes, and any other expenses related to satisfying required 

regulations or environmentally friendly criteria. 

3.3 Problem Definition 

It must be accomplished to address the efficiency issue associated with selecting the most 

effective set of BPM for contextual SM approaches.  

• Let 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} represent the set of BPM, where each 𝑥𝑥𝑖𝑖 is a polymer characterized 

by a unique combination of features. 

• Each polymer 𝑥𝑥𝑖𝑖 is related to a set of features 𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2, … , 𝑎𝑎𝑚𝑚}, such as degradation 

rate, mechanical strength, and cost, which define its appropriateness for sustainable work. 

This purpose is subject to optimization and is expressed as follows: EQU (1). 

𝐹𝐹(𝑋𝑋) = 𝑤𝑤1 ⋅ 𝐸𝐸(𝑋𝑋) + 𝑤𝑤2 ⋅ 𝑃𝑃(𝑋𝑋) − 𝑤𝑤3 ⋅ Cost (𝑋𝑋)      (1) 

where: 

• 𝐹𝐹(𝑋𝑋) is the objective function, 

• 𝐸𝐸(𝑋𝑋) quantifies the environmental impact of the polymer selection ′𝑋𝑋′, aiming for 

minimization, 

• 𝑃𝑃(𝑋𝑋) represents the performance score, which we seek to maximize, 

• Cost (𝑋𝑋) is the economic cost associated with the polymer selection, which should be 

minimized, 

• 𝑤𝑤1,𝑤𝑤2, and 𝑤𝑤3 weights reflect the relative position of ecological impact, performance, and 

cost. 

The challenge is to find the set of polymers ′𝑋𝑋∗′ that optimizes (𝑋𝑋), EQU (2). 

𝑋𝑋∗ = Arg Min
𝑋𝑋
 𝐹𝐹(𝑋𝑋)          (2) 

to minimize costs and environmental impact. 

Search Space Definition: The search space ′𝑆𝑆′ is defined by the set of all possible combinations 

of polymers and their attributes that could potentially form a solution, EQU (3). 

𝑆𝑆 = 𝑋𝑋1 × 𝑋𝑋2 × … × 𝑋𝑋𝑛𝑛         (3) 

where 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 represent the ranges of possible values for each attribute across all 

considered polymers. The dimensionality of the search space is determined by the number of 
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attributes ′𝑚𝑚′ considered for each polymer, making ′𝑆𝑆′ a multi-dimensional space that the GA 

navigates to find ′𝑋𝑋∗′. 

4. Methodology 

4.1 Encoding BPM Selections into Chromosomes for GA Optimization 

The encoding strategy involves the process of integrating the binary and real-valued 

representations to the features of BPMs effectively: 

• Chromosome (𝑪𝑪𝒊𝒊) : Each chromosome in GA corresponds to a potential polymer selection, 

which is represented as an array of genes 𝐶𝐶𝑖𝑖 = [𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚], where 𝑚𝑚 is the total number of 

genes. Each gene encodes an attribute of the polymer; that way, the entire chromosome 

represents all the relevant properties that are needed for assessment. 

• Gene Representation:  

(i) Binary Encoding for Discrete Attributes: Binary encoding is employed for 

discrete attributes in BPM, such as the polymer type. Each gene 𝑔𝑔𝑗𝑗 within this 

category is a binary digit ( 0 or 1 ), where each bit position represents a different 

polymer type or characteristic. 

(ii) Real-Valued Encoding for Continuous Attributes: Continuous attributes, 

including the degradation rate and mechanical properties like tensile strength and 

elasticity, are encoded as real numbers. The attribute selection for the GA 

optimization involves the following: 

• Type of Polymer ( 𝑻𝑻 ): The type of biodegradable polymer is encoded using 

binary digits (𝑏𝑏). Each bit in a segment of the chromosome, 𝑇𝑇 =

[𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑘𝑘], represents a different type of biodegradable polymer. Here, 𝑘𝑘 

is the number of polymer types considered. 

• Degradation Rate (𝑫𝑫): The degradation rate reflecting how quickly a 

polymer degrades under environmental conditions. This attribute is encoded 

as a real-valued gene, 𝐷𝐷, within the chromosome. 

• Mechanical Properties (𝑴𝑴): Key mechanical properties, including tensile 

strength (𝑀𝑀𝑡𝑡𝑡𝑡) and elasticity (𝑀𝑀𝑒𝑒), are encoded as real numbers. These 

properties are crucial for assessing the material's performance and are 

represented as 𝑀𝑀 = [𝑀𝑀𝑡𝑡𝑡𝑡 ,𝑀𝑀𝑒𝑒] within the chromosome. 
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• Economic Cost (C): The economic viability of using a particular polymer 

type is encoded as a real-valued gene, 𝐶𝐶, reflecting the cost associated with 

production, processing, and other related expenses. 

In applying this encoding scheme within the GA model, each chromosome 𝐶𝐶𝑖𝑖 represents a 

potential solution, i.e., a specific selection of biodegradable polymers, and is structured as follows: 

EQU (4). 

𝐶𝐶𝑖𝑖 = [𝑇𝑇,𝐷𝐷,𝑀𝑀,𝐶𝐶]        (4) 

where: 

• 𝐶𝐶𝑖𝑖 is the 𝑖𝑖th  chromosome, 

• 𝑇𝑇 encodes the type(s) of biodegradable polymer included, 

• 𝐷𝐷 represents the degradation rate, 

• 𝑀𝑀 encodes mechanical properties and 

• 𝐶𝐶 denotes the economic cost. 

4.2 Fitness Function Implementation 

The fitness function, 𝐹𝐹(𝐶𝐶𝑖𝑖), for each chromosome 𝐶𝐶𝑖𝑖 in the population directly reflects the 

optimization goals of minimizing environmental impact and cost while maximizing material 

performance. The function is formulated as follows, integrating the previously defined attributes 

and their notations, EQU (5). 

𝐹𝐹(𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐸𝐸(𝐶𝐶𝑖𝑖) + 𝑤𝑤2 ⋅ 𝑃𝑃(𝐶𝐶𝑖𝑖) − 𝑤𝑤3 ⋅ Cost (𝐶𝐶𝑖𝑖)      (5) 

where: 

• 𝐹𝐹(𝐶𝐶𝑖𝑖) is the fitness score of chromosome 𝐶𝐶𝑖𝑖, 

• 𝐸𝐸(𝐶𝐶𝑖𝑖) quantifies the environmental impact of the polymer selection encoded by 𝐶𝐶𝑖𝑖, 

• 𝑃𝑃(𝐶𝐶𝑖𝑖) represents the performance score, incorporating mechanical properties and 

degradation rate, 

• Cost (𝐶𝐶𝑖𝑖) denotes the economic cost associated with the selection, 𝑤𝑤1,𝑤𝑤2, and 𝑤𝑤3 are the 

weights reflecting the relative importance of each criterion. 

(i) Environmental Impact �𝑬𝑬(𝑪𝑪𝒊𝒊)�: The Environmental Impact 𝐸𝐸(𝐶𝐶𝑖𝑖) of a polymer, selection 

can be quantified by considering factors such as the degradation rate and the energy required for 

production. An EQU (6) to represent this component might look like the following: 

𝐸𝐸(𝐶𝐶𝑖𝑖) = 𝛼𝛼 ⋅ 𝐷𝐷𝐸𝐸𝐷𝐷(𝐶𝐶𝑖𝑖) + 𝛽𝛽 ⋅ 𝐸𝐸𝐸𝐸𝐸𝐸(𝐶𝐶𝑖𝑖)        (6) 
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where: 

• 𝐷𝐷𝐸𝐸𝐷𝐷(𝐶𝐶𝑖𝑖) is the degradation rate of the polymer selection, with higher rates generally 

preferred to ensure rapid decomposition. 

• 𝐸𝐸𝐸𝐸𝐸𝐸(𝐶𝐶𝑖𝑖) represents the energy required for producing the selected polymers, with lower 

energy consumption preferable. 

• 𝛼𝛼 and 𝛽𝛽 are weighting factors that reflect the relative importance of degradation rate and 

energy consumption in the overall environmental impact assessment. 

(ii) Performance Score �𝑷𝑷(𝑪𝑪𝒊𝒊)�: The Performance Score 𝑃𝑃(𝐶𝐶𝑖𝑖) evaluates the suitability of 

the polymer selection in meeting mechanical and functional specifications. This can be expressed 

as a weighted sum of relevant performance attributes, EQU (7). 

𝑃𝑃(𝐶𝐶𝑖𝑖) = 𝛾𝛾 ⋅ 𝑇𝑇𝐸𝐸𝐸𝐸𝑆𝑆(𝐶𝐶𝑖𝑖) + 𝛿𝛿 ⋅ 𝐸𝐸LAS (𝐶𝐶𝑖𝑖)       (7) 

where: 

• 𝑇𝑇𝐸𝐸𝐸𝐸𝑆𝑆(𝐶𝐶𝑖𝑖) Measures the tensile strength of the polymer selection, indicative of its 

mechanical robustness. 

• 𝐸𝐸LAS (𝐶𝐶𝑖𝑖) Assesses the elasticity of the polymer selection, reflecting its flexibility and 

durability under stress. 

• 𝛾𝛾 and 𝛿𝛿 are weights assigned to the tensile strength and elasticity, respectively, indicating 

their importance in the overall performance evaluation. 

(iii) Economic Cost �𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 (𝑪𝑪𝒊𝒊)�: The Economic Cost Cost (𝐶𝐶𝑖𝑖) Associated with a polymer 

selection, raw material costs, production, and processing expenses are covered. This can be 

modelled as EQU (8). 

Cost (𝐶𝐶𝑖𝑖) = 𝜃𝜃 ⋅ 𝑀𝑀𝐴𝐴𝑇𝑇(𝐶𝐶𝑖𝑖) + 𝜆𝜆 ⋅ PROC (𝐶𝐶𝑖𝑖)       (8) 

where: 

• 𝑀𝑀𝐴𝐴𝑇𝑇(𝐶𝐶𝑖𝑖) represents the cost of raw materials for the polymer selection. 

• PROC (𝐶𝐶𝑖𝑖) Includes the costs associated with processing and producing the selected 

polymers. 

• 𝜃𝜃 and 𝜆𝜆 are weighting factors that balance the impact of raw material costs and processing 

expenses on the total economic cost. 

4.3 Customizing Genetic Operators 
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These operators must be tailored to effectively navigate the unique landscape of material 

properties and sustainability criteria. This customization enhances the GA's ability to identify 

optimal polymer combinations by ensuring that genetic diversity is maintained and that the search 

space is thoroughly explored. 

(i) Selection Operators 

The selection operator's role is to choose individuals from the population for reproduction, 

prioritizing those with higher fitness scores to ensure the propagation of advantageous traits. For 

the BPM selection problem: 

• Tournament Selection is employed due to its balance between preserving genetic 

diversity and ensuring the advancement of fit individuals. In this method, a set number of 

individuals are randomly selected from the population to participate in a "tournament," the 

individual with the highest fitness within this group is chosen for reproduction. This 

process is repeated until the desired number of individuals is selected for the next 

generation. 

Given a tournament size of 𝑘𝑘, the selection process for one individual can be expressed as 

follows: 

1 Randomly select 𝑘𝑘 individuals from the population. 

2 Compare the fitness scores, 𝐹𝐹(𝐶𝐶𝑖𝑖), of the selected individuals. 

3 The individual with the highest fitness score wins the tournament and is selected. 

The mathematical expression for selecting one individual through Tournament Selection can 

be represented as EQU (9). 

Select (𝐶𝐶𝑖𝑖) = max{𝐹𝐹(𝐶𝐶𝑖𝑖1),𝐹𝐹(𝐶𝐶𝑖𝑖2), … ,𝐹𝐹(𝐶𝐶𝑖𝑖𝑘𝑘)}      (9) 

where 𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2, … ,𝐶𝐶𝑖𝑖𝑘𝑘 are the chromosomes of the individuals participating in the tournament, and 

𝐹𝐹(𝐶𝐶𝑖𝑖) is the fitness function evaluating each individual's suitability. 

(ii) Customizing Crossover Operators 

Crossover, or recombination, combines the genetic data of two parents to generate offspring, 

encouraging the exploration of new regions in the search space. To explore new combinations of 

polymer properties effectively, a Uniform Crossover strategy is implemented for the 

recombination of parental chromosomes: 

• Uniform Crossover Strategy: For two parent chromosomes 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑞𝑞, each gene 𝑔𝑔𝑗𝑗 in 

the offspring chromosome 𝐶𝐶𝑜𝑜 is chosen randomly from the corresponding genes in 𝐶𝐶𝑝𝑝 and 
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𝐶𝐶𝑞𝑞 with equal probability. This approach ensures equitable contribution from both parents 

across the entire gene set, suitable for the mixed nature of binary and real-valued encoded 

attributes, EQU (10). 

𝐶𝐶𝑜𝑜[𝑗𝑗] = �
𝐶𝐶𝑝𝑝[𝑗𝑗]  With Probability 0.5
𝐶𝐶𝑞𝑞[𝑗𝑗]  With Probability 0.5       (10) 

(iii) Customizing Mutation Operators 

Mutation introduces random alterations in the chromosome, aiding in exploring the search 

space and preventing the GA from becoming trapped in local optima. Considering the composite 

encoding of chromosomes, a Hybrid Mutation strategy is adopted, differentiating between binary 

and real-valued genes: 

• Bit-Flip Mutation for Binary Genes: For binary-encoded segments representing discrete 

polymer types or characteristics, the bit-flip mutation is applied. If 𝑔𝑔𝑗𝑗 is a binary gene, its 

state is flipped with a mutation probability 𝑝𝑝𝑚𝑚, EQU (11). 

𝑝𝑝𝑚𝑚 = �
1 − 𝑔𝑔𝑗𝑗  If rand () < 𝑝𝑝𝑚𝑚
𝑔𝑔𝑗𝑗  Otherwise         (11) 

• Random Mutation for Real-Valued Genes: For real-valued genes encoding continuous 

attributes like degradation rate or mechanical properties, a random mutation is performed 

by adding a small, randomly selected delta, ′Δ’ within predefined limits, ensuring the 

exploration of nearby solution space, EQU (12). 

𝑔𝑔𝑗𝑗′ = 𝑔𝑔𝑗𝑗 + Δ,           (12) 

where Δ is a random value within the attribute's range 

The proposed algorithm using GA for the BMP selection is presented below: 

Algorithm: GA for Optimized Selection of BPM 

Inputs: 

• 𝐸𝐸 : Number of individuals in the population. 

• 𝐷𝐷max : Maximum number of generations. 

• 𝑝𝑝𝑐𝑐 : Probability of crossover. 

• 𝑝𝑝𝑚𝑚 : Probability of mutation. 

• 𝑘𝑘 : Tournament size for selection. 

• {𝑇𝑇,𝐷𝐷,𝑀𝑀,𝐶𝐶}: Set of BPM attributes  
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• Weights 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3: weights for environmental impact, performance, and cost in the fitness 

function.  

Process: 

1 Initialize Population: Generate an initial population of 𝐸𝐸 individuals randomly. Each 

individual represents a set of BPM attributes encoded as chromosomes. 

2 Evaluate Fitness: For Each individual in the population, calculate their fitness based on 

the EQU (13): 

𝐹𝐹(𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐸𝐸(𝐶𝐶𝑖𝑖) + 𝑤𝑤2 ⋅ 𝑃𝑃(𝐶𝐶𝑖𝑖) − 𝑤𝑤3 ⋅ Cost (𝐶𝐶𝑖𝑖)     (13) 

where 𝐸𝐸,𝑃𝑃, and Cost are the environmental impact, performance score, and economic cost of the 

BPM, respectively. 

3 For Each generation in 1 to 𝐷𝐷max Do: 

• Selection: 

• For 𝑖𝑖 from 1 to 𝐸𝐸 Do: 

• Conduct 𝑘𝑘-tournament selection to choose parents. 

• Crossover: 

• For Each pair of parents Do: 

• If random () < 𝑝𝑝𝑐𝑐 Then, a uniform crossover will be performed to produce 

offspring. 

• Mutation: 

• For Each offspring, Do: 

• For Each gene in offspring, Do: 

• If random () < 𝑝𝑝𝑚𝑚 Then: 

• If the gene is binary (e.g., Type): 

• Apply bit-flip mutation. 

• Else If the gene is real-valued (e.g., Degradation Rate, Mechanical 

Properties, Cost): 

• Apply random perturbation within range. 

• Evaluate the Fitness of New Offspring: Calculate the fitness of each new offspring 

using the fitness function. 

• Replacement: Integrate offspring into the population, replacing the least fit individuals. 

Auth
ors

 Pre-
Proo

f



• Check Stopping Criterion: Exit the loop if a predefined stopping criterion is met. 

4 Identify Optimal Selection: At the end of 𝐷𝐷max generations, identify the individual with 

the best fitness score as the optimal set of biodegradable polymers, 𝑋𝑋∗. 

5 Output: Return the optimal set 𝑋𝑋∗ and its fitness score, detailing the selected 

biodegradable polymers' attributes and their alignment with sustainability, performance, 

and cost objectives. 

5. Experiment Analysis 

A packaging manufacturing company located in Shenzhen, China, is seeking to transition 

to eco-friendly materials to reduce environmental impact without compromising product quality 

or significantly increasing costs. The company aims to utilize BPM for its new range of packaging 

materials. This case study aims to apply the GA to select the optimal combination of BPM that 

balances environmental friendliness, material performance, and cost-effectiveness. 

(i) Data Collection and Preparation: The data collection process involves details about 

different polymers that are sourced from academic literature, industrial input and product 

catalogues. Each polymer is characterized by a set of attributes (Table 1): type (T), degradation 

rate (D), mechanical properties (M), and cost (C). 

1. Type (T): This attribute relates to the chemical composition of BPM, which includes PLA 

(Polylactic Acid), PHA (Polyhydroxyalkanoates), PBAT (Polybutylene Adipate 

Terephthalate), and others.  

2. Degradation Rate (D): Measures the rate of how quickly a polymer can degrade into 

environmentally benign substances. 

3. Mechanical Properties (M): This includes tensile strength, elasticity, and durability under 

various conditions. 

4. Cost (C): Representing the economic viability of each polymer option, it includes the raw 

material expenses, processing and manufacturing costs.  

Table 1: Polymer Attributes 

Polymer Type (T) Origin 
Degradation 

Rate (D) 

Mechanical Properties 

(M) 
Cost (C) 

PLA (Polylactic Acid) Synthetic 

6-12 months 

(Industrial 

Composting) 

Tensile Strength: 45-60 

MPa, Elasticity: Moderate 
Medium 
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PHA (Polyhydroxyalkanoates) Natural 
9-18 months 

(Soil Burial) 

Tensile Strength: 35-45 

MPa, Elasticity: High 
High 

PBAT  

(Polybutylene Adipate 

Terephthalate) 

Synthetic 
3-6 months 

(Soil) 

Tensile Strength: 25-35 

MPa, Elasticity: Very High 

Medium-

High 

PBS  

(Polybutylene Succinate) 
Synthetic 

6-9 months 

(Industrial 

Composting) 

Tensile Strength: 40-50 

MPa, Elasticity: Moderate 
Medium 

(ii) Preparation: 

To prepare the data for the GA, the following steps were undertaken: 

• Normalization: Attributes were normalized to ensure comparability and to balance their 

influence in the optimization process. For instance, mechanical properties and degradation 

rates were scaled to a typical range, facilitating a uniform assessment of material 

performance and environmental impact. 

• Encoding: Each polymer's attributes were encoded into a format suitable for GA 

processing. The type attribute was encoded using binary digits to represent the presence or 

absence of specific polymer categories. Continuous attributes, such as degradation rate and 

mechanical properties, were encoded as real numbers within their respective ranges. 

• Data Cleaning: The incomplete and inconsistent entries are addressed by the data cleaning 

processes. 

• Preliminary Screening: An initial screening was conducted to exclude polymers that did 

not meet basic environmental or performance thresholds, such as those with prolonged 

degradation rates and inadequate mechanical strength for packaging applications. 

The following Table 2 presents the description of the collected dataset. The GA model was 

trained using parameters as shown in Table 3. 

Table 2: Dataset Description 
Attribute Description Data Type Value Range or Categories 

Polymer Type (T) Categorical PLA, PHA, PBAT, PBS 

Origin Categorical Natural, Synthetic, Hybrid 

Degradation Rate (D) Continuous e.g., 3-18 months 

Tensile Strength (Part of M) Continuous e.g., 25-60 MPa 

Elasticity (Part of M) Qualitative Low, Moderate, High, Very High 

Cost (C) Continuous e.g., $0.5 - $5 per kilogram 
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Table 3: Hyperparameters for GA 
Parameter Example Value 

Population Size (𝐍𝐍) 100 

Number of Generations (𝑮𝑮𝒎𝒎𝒎𝒎𝒎𝒎) 50 

Crossover Probability (𝑷𝑷𝒄𝒄) 0.8 

Mutation Probability (𝑷𝑷𝒎𝒎 ) 0.1 

Tournament Size (𝐤𝐤) 5 

 
Figure 2: Mean Fitness score 

The graph in Figure 2 shows the mean fitness score of compared models over multiple 

runs. The GA proposed in this work starts at a score of 85 and reaches 97.5 at run 100. Both the 

start and end scores of the GA model are higher than those of other models, such as PSO, ACO, 

and SA. The overall performance at each run is consistent with each experiment run compared to 

the other models. The subsequent analysis is the environmental impact assessment of each model 

against multiple runs, as shown in Figure 3. The analysis shows that the models performing lesser 

impact scores are considered more than the others. From the results, it can be seen that the GA 

model has a lower impact score than the other models. The GA achieves lower scores of 25. The 

SA shows a slightly higher impact score of 27. In contrast, the ACO scored the highest at 30. The 

GA had the lowest score of all models, suggesting its adaptability in such environments. Auth
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Figure 3: Environment Impact Assessment 

 
Figure 4: Fitness Improvement Assessment 

Figure 4  shows the fitness improvement of different optimization algorithms over 

successive generations. The GA displayed substantial fitness improvement for each generation, 

starting around 1 and progressing to 4.5 by the 20th generation. The model displayed better 

convergence as the generations progressed. Following the GA, the SA model also shows better 

convergence than the other models, such as PSO+ACO. Considering all the models, the GA model 

showed better convergence than the other models. 
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Figure 5: Execution Time (ET) vs Memory Usage (MU) 

Most of the examined models' ET and MU are displayed in Figure 5. When evaluating the 

performance of the two approaches, the GA approach consistently emerges as the best for MU and 

ET. The SA model was second in ET and first in MU, contrasting with the GA, which is intriguing. 

When contrasted with all the additional models, the ACO exhibits the highest ET, and the PSO 

uses the most considerable memory. Based on these results, the GA is superior to all other versatile 

approaches in the context of material selection. 

6 Conclusion and Future Work 

The research investigation found that Genetic Algorithms (GA) have enormous potential 

for optimizing material selection, focusing on environmentally conscious production. In order to 

deal with the challenges of environmentally friendly polymer selection, this work recommends 

including the GA technique. Factors for material selection comprised the effects on the 

environment, how they perform, and cost, among others. The application used a case study on a 

product manufacturer's switch to using biodegradable polymer materials for sustainable 

manufacturing. The research study examined the framework of others, like PSO, ACO, and GA, 

and found that the GA model is more appropriate for application in the materials field for effective 

substance decision-making, considering a selection of evaluation parameters.  

Further, this research suggests GA and other algorithmic approaches can be used in several 

contexts that are sustainable industries. 
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