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Abstract: This study introduced a novel real-time Fault Diagnosis Model (FDM) in manufacturing 

robots by integrating Depthwise Convolutional Neural Networks (CNNs) with Bidirectional Long 

Short-Term Memory (BiLSTM) networks. The objective is to design a model that can handle the 

complex high-dimensional sensor data that arrives out of complex, non-linear systems for effective 

FDM. The work introduced a Feature Extraction (FE) model based on Monte Carlo Filtering 

(MCF). The work integrates a Depthwise CNN with BiLSTM (DC-BiLSTM) for diagnosis. The 

integration helps to reduce the computational need and, at the same time, preserve the feature 

representation. The model was experimented against other models, such as CNN, Long Short-

Term Memory (LSTM), Recurrent Neural Network (RNN), and Feed-Forward Neural Networks 

(FFNN), using a fault dataset sourced from a simulated environment. The results have shown that 

the proposed model fared well in terms of accuracy, precision, recall, and F1 score against all 

compared models. The results have judged the proposed model’s applicability in the field of fault 

diagnosis, which could effectively predict mishaps in advance, thereby helping with efficient 

maintenance and ensuring continuous productivity. 

Keywords: Real-Time Fault Diagnosis, Monte Carlo Filtering, Feature Extraction, CNN, 

BiLSTM, Accuracy 
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1. Introduction 

Manufacturing robots have recently been playing a crucial role in various modern industrial 

operations because of their advantage in offering unparalleled precision, productivity, and 

efficiency. Their integration into the process of manufacturing production lines has shown a 

significant and enhanced output capability, and in this way, they have paved the method for further 

advancements in automation. The extent to which they show better performance to the same extent 

their level of complexity in their functioning and working environments together makes them 

prone to faults that ultimately result in disrupted operations. So, the proper fault diagnosis 

mechanisms are crucial for effective preemptive maintenance by ensuring continuous operation, 

thereby minimizing costly unplanned downtime. However, designing an effective fault diagnosis 

model has some critical challenges, mainly due to the nonlinear and non-Gaussian nature of the 

systems within which they operate. The current available traditional Fault Diagnostic Model 

(FDM) are all models that often fall short of efficiency when they are faced with such complexity. 

These methods often fail to cope with the high-dimensional data that are generated by an array of 

sensors embedded in modern robots.  

In response to these limitations and to address the challenges recently, researchers and 

engineers have been involved in the process that explored several approaches to improve Fault 

Diagnosis (FD). The study is mainly performed to develop a more efficient use of the large amount 

of sensor data in order to find the anomalies that suggest the starting point of an issue at an earlier 

phase. Acknowledging that these attempts have been developed, there is still scope for 

development. In addition, there continually exists a demand for an approach that is adept at rapidly 

adapting to the unique functioning patterns of individual robots and the inherent subtle nuances 

that are FD. The challenges and limitations that have been highlighted are the motivation 

underpinning the recommended research. In recent years, Convolutional Neural Networks+ 

Recurrent Neural Network (CNN+RNN)-based models have been used in this domain. The 

objective of this investigation is to present an original framework to take advantage of the features 

of both methods. Additionally, the significance of handling high-dimensional data is of the highest 

priority, which is what prompts this research to look for methods that are feasible in order to handle 

such data sets. 

The proposed work is built on the above motivation, which proposes a model for real-time 

FMD in manufacturing robots. The work proposed Depthwise convolutional BiLSTM (DC-
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BiLSTM), which is a combination of proposed Depthwise Convolutional Neural Networks 

together with Bidirectional Long Short-Term Memory (BiLSTM) networks. To handle the high 

dimensionality issue from the sensor collected data, the work proposed Feature Extraction (FE) 

based on the Monte Carlo Filtering (MCF) technique, which was chosen for its effectiveness in 

feature extraction from complex, non-linear systems. The proposed  DC-BiLSTM model employs 

standard convolution as the initial layers for spatial FE, followed by Depthwise separable blocks 

and BiLSTM layers. The proposed model was examined using a fault dataset and compared against 

other models, such as CNN, Long Short-Term Memory (LSTM), Recurrent Neural Networks 

(RNN), and Feed-Forward Neural Networks (FFNN), for its efficiency in terms of accuracy, 

precision, recall, and F1 score. For all metrics, the proposed model had shown better performance. 

The paper is structured as follows: Section 2 presents the literature review, Section 3 

presents the methodology, Section 4 presents the analysis of experiments, and Section 5 concludes 

the work 

2. Literature Review 

[1] In their work, they have conducted a comprehensive review of the field of FD and the 

ML models used in this field. They surveyed several databases, selecting 44 primary studies 

highlighting the application of Artificial Neural Networks (ANN), Decision Trees (DT), hybrid 

models, and latent variable models in FD and prognosis. They revealed that despite the ML model's 

high performance and computational efficiency, the effectiveness of such models is often 

challenged by concept drift, clearly suggesting a gap in model adaptability to changing conditions.  

The propagation level checking that is connected with multi-joint robots for industry was 

the main objective of the research they conducted [2]. Researchers succeeded in achieving this by 

introducing an original FDM that was based on behaviour data. The strategy that the researchers 

employed included using a hybrid Sparse Auto-Encoder (SAE) and Support Vector Machine 

(SVM) technique to evaluate the differences in performance that caused by the robot's end element 

link. Their finding that researchers managed to attain superior outcomes in accurately identifying 

faults proved the possibility of using specific data features for the intent of FD within sophisticated 

automated frameworks. 

With the support of its decisions, the business was able to meet the essential requirement 

for real-time anomaly identification throughout the framework of manufacturing automation. The 

following is performed in order to avoid substantial economic losses that result from bottlenecks 
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in firm operations. For the aim of maintenance based on condition, they developed an unsupervised 

detection of anomalies technique that had the power to manage heterogeneous time series data. 

Therefore, the invention of autonomous monitoring systems that have the ability to detect 

anomalies in both space and time has been significantly impacted by the outcome of the research 

conducted here, which currently has a readily evident result. 

[4] performed studies to find out whether or not it would be feasible to integrate the Digital-

Twin (DT) technique with Deep Learning (DL) in order to accomplish the objective of FD. As the 

outcome of their studies, the authors suggested an FDM that is suitable with DT as well as a 

strategy involving the use of an autonomous tool-holder that has the capacity to collect data from 

the Internet of Things (IoT). Throughout the use of experimental research, the researchers were 

able to prove the versatility of their approach and argue that it was useful in improving the 

automated operation of machinery tasks as well as the precision of FD.  

The team of scientists who performed this research introduced a new FMD that had a 

chance to enhance the accuracy of FD. This FMD had been developed through the integration of 

Binarized Deep Neural Networks (BDNNs) with significantly enhanced Random Forests (RFs). 

Taking into account the implementation of BDNNs for the task of FE and the adaptation of the RF 

training method with ReliefF, researchers were capable of effectively try finding the faults by 

using those methods. By performing comprehensive tests as such, the research team showed their 

framework exhibited accuracy in diagnosis that was higher than that of Deep Neural Networks 

(DNNs) that have been shown to be state-of-the-art [6-10]. 

3. Methodology 

3.1 MCF Algorithm for Feature Extraction 

In settings during which there does not exist the potential for accurate tracking, the primary 

goal of MCF, which is additionally referred to as particle filtering, is to provide a precise forecast 

of the present state of a given system. The Bayesian theory acts as the basis against which the MCF 

is developed. The practical use of this approach can be achieved when it is used for non-linear 

frameworks, which tend to be challenging to manage using traditional approaches. In order to 

precisely forecast the subsequent distribution of the system's state, the process makes use of several 

types of data points, which are frequently referred to as particles, in addition to the measured 

weights that correspond with the particles. Additionally, when it comes to fresh data, the above 

approach allows an updating of the state by a continuous procedure [11-12].  
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The MCF is divided into its vital basics, which are drawn below: 

• State Representation: The system's state at the time ′𝑡𝑡′ is denoted by ′𝑥𝑥𝑡𝑡′. Here, ′𝑥𝑥𝑡𝑡′ 

represent operational parameters that define the robot's current state. 

• Observation Model: The observation at time ‘𝑡𝑡’ is represented by ‘𝑧𝑧𝑡𝑡′, which corresponds 

to the data measured or recorded by sensors. The observation model relates the current state 

′𝑥𝑥𝑡𝑡′ to the observation ′𝑧𝑧𝑡𝑡′, expressed as ′𝑝𝑝(𝑧𝑧𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡)′, where ′𝑝𝑝′ denotes the probability of 

observing ′𝑧𝑧𝑡𝑡′ given the state 𝑥𝑥𝑡𝑡. 

• State Transition Model: This model describes how the state evolves from ′𝑥𝑥𝑡𝑡−1′ to ‘𝑥𝑥𝑡𝑡’. 

Which is expressed as ′𝑝𝑝(𝑥𝑥𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡−1)′, referring to the  probability of transitioning to a state 

‘𝑥𝑥𝑡𝑡′ from state ′𝑥𝑥𝑡𝑡−1′. 

• Particles and Weights: The filter represents the probability distribution of the system's 

state using a set of particles �𝑥𝑥𝑡𝑡
(𝑖𝑖)�

𝑖𝑖=1

𝑁𝑁
, where each particle 𝑥𝑥𝑡𝑡

(𝑖𝑖) is a state of the system at 

time ′𝑡𝑡′, and ‘𝑁𝑁′ is the total number of particles. Each particle is associated with a weight 

𝑤𝑤𝑡𝑡
(𝑖𝑖) that represents the importance or likelihood of that particle given the observed data up 

to time ′𝑡𝑡′. 

The FE algorithm 1 using the above-discussed MCF fundamentals is presented in algorithm 1. 

The MCF technique processes the input sequence of observations 𝑍𝑍 = {𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑇𝑇},. The 

algorithm initiates a set of particles, with each particle symbolizing a potential state of the system, 

�𝑥𝑥0
(𝑖𝑖)�

𝑖𝑖=1

𝑁𝑁
. These initial states are distributed randomly across the expected range of states, 

particularly with each particle assigned with an equal initial weight, 𝑤𝑤0
(𝑖𝑖) = 1

𝑁𝑁
. The algorithm then 

updates the state of each particle using the state transition function. 𝑥𝑥𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡−1). Next to state 

prediction, the algorithm then adjusts the weights of each particle that are based on the observed 

data ′𝑧𝑧𝑡𝑡′ and the predicted state, utilizing the observation probability function (𝑧𝑧𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡). The 

algorithm then normalizes the weights to ensure their sum equals 1. Following weight normalization 

[13-15], the algorithm performs a resampling step by selecting particles based on their normalized 

weights for the next iteration. In the FE phase, the algorithm calculates the mean 𝜇𝜇𝑡𝑡 and standard 

deviation ′𝜎𝜎𝑡𝑡′ of the states from the resampled particles. These are then assembled into a feature 

vector 𝑓𝑓𝑡𝑡 = [𝜇𝜇𝑡𝑡,𝜎𝜎𝑡𝑡] For each time step, provide a summary of the system's state.  

Auth
ors

 Pre-
Proo

f



Algorithm 1: FE Using MCF 

Input: 

• 𝑍𝑍 = {𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑇𝑇} : sensor data up to time 𝑇𝑇. 

• 𝑁𝑁 : Number of particles. 

• 𝑓𝑓 : State transition function, 𝑥𝑥𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡−1),  

• 𝑔𝑔 : Observation likelihood function, 𝑝𝑝(𝑧𝑧𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡),  

Output: 𝐹𝐹 = {𝑓𝑓1,𝑓𝑓2, … , 𝑓𝑓𝑇𝑇}: Sequence of FE from the observations up to time 𝑇𝑇. 

Algorithm: 

1 Initialization: 

• For 𝑖𝑖 = 1 to 𝑁𝑁 : 

• Initialize particles 𝑥𝑥0
(𝑖𝑖) randomly based on a uniform distribution over the expected 

range of states. 

• Initialize particle weights 𝑤𝑤0
(𝑖𝑖) = 1

𝑁𝑁
. 

2 For Each time step 𝑡𝑡 = 1 to 𝑇𝑇 : 

• Prediction: 

• For 𝑖𝑖 = 1 to 𝑁𝑁 : 

• Predict the next state of particle 𝑖𝑖 using the state transition function EQU (1) 

 𝑥𝑥𝑡𝑡
(𝑖𝑖) = 𝑓𝑓�𝑥𝑥𝑡𝑡−1

(𝑖𝑖) �.        (1) 

• Update: 

• For 𝑖𝑖 = 1 to 𝑁𝑁 : 

• Update the weight of particle 𝑖𝑖 based on the observation probability, EQU (2). 

 𝑤𝑤𝑡𝑡
(𝑖𝑖) = 𝑝𝑝�𝑧𝑧𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡

(𝑖𝑖)�.          (2) 

• Normalize the weights, EQU (3) 

 �̂�𝑤𝑡𝑡
(𝑖𝑖) = 𝑤𝑤𝑡𝑡

(𝑖𝑖)

∑𝑗𝑗=1
𝑁𝑁  𝑤𝑤𝑡𝑡

(𝑖𝑖).          (3) 

• Resampling: Resample 𝑁𝑁 particles from the set �𝑥𝑥𝑡𝑡
(𝑖𝑖)�  

• FE: Compute the mean 𝜇𝜇𝑡𝑡 and standard deviation 𝜎𝜎𝑡𝑡 of the resampled particles' states, 

EQU (4) and EQU (5). 

𝜇𝜇𝑡𝑡 = 1
𝑁𝑁
∑  𝑁𝑁
𝑖𝑖=1  𝑥𝑥𝑡𝑡

′(𝑖𝑖)           (4) 
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𝜎𝜎𝑡𝑡  = �1
𝑁𝑁
∑  𝑁𝑁
𝑖𝑖=1  �𝑥𝑥𝑡𝑡

′(𝑖𝑖) − 𝜇𝜇𝑡𝑡�
2
         (5) 

• Define the feature vector for time 𝑡𝑡 as 𝑓𝑓𝑡𝑡 = [𝜇𝜇𝑡𝑡,𝜎𝜎𝑡𝑡]. 

3 Output the sequence of FE ‘𝐹𝐹′. 

3.2 Depth-Wise Separable Convolution 

The depthwise separable convolutions reduce the computational cost and the number of 

parameters while retaining the capacity for detailed feature representation [16-20]. The depthwise 

separable convolution block, as shown in Figure 1, comprises two key steps: 

1 Depthwise Convolution: 

• Input: A high-dimensional input tensor from sensor data, with dimensions 𝐷𝐷𝑓𝑓 × 𝐷𝐷𝑓𝑓 × 𝑀𝑀, 

where 𝐷𝐷𝑓𝑓 is the spatial dimension, and 𝑀𝑀 is the number of channels. 

• Convolution: A depthwise convolution involves 𝑀𝑀 filters of size 𝑘𝑘 × 𝑘𝑘 × 1 that are 

convolved with each input channel separately, yielding an output of size 𝐷𝐷𝑔𝑔 × 𝐷𝐷𝑔𝑔 × 𝑀𝑀.  

This step is employed to independently extract spatial features from each channel to reduce 

the number of computations. 

2 𝟏𝟏 × 𝟏𝟏 Convolution: 

• Convolution: Following the depthwise convolution, a pointwise convolution with 𝑁𝑁 filters 

of size 1 × 1 × 𝑀𝑀 combines the outputs of the depthwise convolution across the channels. 

• Final Output: The resultant tensor has dimensions 𝐷𝐷𝑔𝑔 × 𝐷𝐷𝑔𝑔 × 𝑁𝑁, which captures the spatial 

features and combines them, thereby forming new features that would effectively represent 

channel-wise correlations. 

 
Figure 1: Depth-wise separable convolution. 

3.3 Proposed DC-BiLSTM Model 
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The proposed DC-BiLSTM model integrates depthwise separable convolutional blocks 

with a BiLSTM network. The model inputs the features into a standard convolutional block 

configured with 16 filters of size 3×3 to identify the spatial features from the input data. Next, batch 

normalization is applied to stabilize the learning process and improve the model's efficiency, 

followed by the Rectified Linear Unit (ReLU) activation function for normalization and max 

pooling for feature dimension reduction. Then, two depthwise convolutional blocks are placed one 

after the other, each with 32, 3×3 filters. After spatial FE, the model employs a BiLSTM layer with 

32 units to analyze the temporal relationships inherent in the sequential data. The BiLSTM layer is 

followed by a dropout layer with a 0.5 dropout rate before feeding to a Fully Connected (FC) layer 

with 75 units. Finally, the model employs a SoftMax layer for the output. The architecture of the 

proposed model is presented in Figure 2, and the algorithm 2 presents the process flow. 

 
Figure 2: DC-BiLSTM architecture 

Algorithm 2: DC-BiLSTM 

Inputs: 

• 𝑋𝑋 : The input features extracted from the MCF process. 

• 𝑌𝑌 : The true labels for the training data. 

Outputs: �̂�𝑌 : The predicted labels for the input data. 

Procedure: 

1 Initialization: 

• Initialize the weights and biases for all layers in the Depthwise CNN+BiLSTM network. 

• Preprocess 𝑋𝑋 as needed (e.g., normalization, reshaping). 

2 Standard Convolutional Block: 
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• Conduct 2D convolution on 𝑋𝑋 with 16 filters of size 3 × 3. 

• Apply batch normalization to the convolution output. 

• Use the ReLU activation function. 

• Employ max pooling with a 2 × 2 kernel to reduce spatial dimensions. 

3 DC Block 1: 

• Perform DC using 323 × 3 filters. 

• Apply 1 × 1 convolution to the output of the DC. 

• Execute batch normalization followed by ReLU activation. 

4 Depthwise Convolutional Block 2: 

• Apply DC 1 × 1 convolution as in Block 1. 

• Follow with batch normalization and ReLU activation. 

5 BiLSTM Layer: 

• Input the output from the last depthwise block into the BiLSTM layer with 32 units. 

• Allow the BiLSTM layer to process the temporal information. 

6 Dropout Layer:  Apply a dropout operation with a rate of 0.5 to prevent overfitting. 

7 FC Layer: 

• Pass the BiLSTM output into a fully connected layer with 75 units. 

• Apply ReLU activation. 

8 SoftMax Output Layer: 

• Apply the SoftMax function to derive the probability distribution over fault classes. 

• Compute the loss between 𝑌𝑌 and �̂�𝑌 we are using cross-entropy loss. 

• Update the weights by backpropagation using the Adam optimization algorithm. 

9 Training Loop: Iterate steps 2 to 9 for a predetermined number of epochs or until 

convergence. 

10 Fault Diagnosis (Inference Phase): 

• Feed 𝑋𝑋 into the trained model. 

• Perform a forward pass through the model to obtain the predicted labels �̂�𝑌. 

End Procedure 

3.5 Fault Diagnosis Using Proposed MCF FE and Depthwise CNN + BiLSTM (DC-BiLSTM) 
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The FDM begins with data preprocessing that includes filtering, normalization, and 

segmentation, which is followed by FE using MCF. These features are tahn labeled before the input 

into the Neural Network (NN). The DC-BiLSTM model then takes the labelled data for processing 

and effectively FD. The entire process is described in the following algorithm 3 steps: 

Algorithm 3: FD Using DC-BiLSTM 

Step 1: Data Collection and Preprocessing: 

• Collect Monitoring Data: Gather sensor data from manufacturing that include a variety 

of fault conditions. 

• Preprocessing Steps: 

• Filtering: Apply FCF techniques to remove noise and irrelevant fluctuations from the 

sensor data. 

• Normalization: Scale the sensor readings to a standard. 

• Segmentation: Divide the continuous stream of sensor data into fixed-size segments. 

Step 2: FE with MCF: 

• Apply MCF: Use MCF on the preprocessed sensor data to isolate features that are most 

indicative of operational states or potential faults.  

• Feature Preparation: Organize the FE into a structured format for input into the Deep 

Learning (DL) model. 

Step 3: Data Cleaning and Labeling: 

• Data Cleaning: Examine the feature set for any inconsistencies or null values. Remove 

these instances to maintain the integrity of the training process. 

• Labelling: Annotate each data segment with appropriate fault labels. 

Step 4: CNN + BiLSTM Model Architecture and Training: 

• Build Model Architecture: Construct the DC-BiLSTM model starting with: 

• A standard convolutional block for initial spatial feature extraction. 

• Two consecutive depthwise separable convolutional blocks. 

• A BiLSTM layer to capture and analyze temporal dependencies within the sequences 

of spatial features. 

• A fully connected layer and a SoftMax output layer for final fault classification. 

• Model Training: 
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• Split the labelled feature set into training and validation subsets. 

• Train the model on the training set, optimizing the network's weights and biases to 

minimize a predefined loss function through several epochs. Employ the Adam 

optimization algorithm for efficient learning. 

• After each epoch, validate the model's performance on the validation subset to monitor 

accuracy and prevent overfitting. 

Step 5: Evaluation and Deployment for Real-Time Diagnosis: 

• Evaluate Model Performance: Test the trained model on a separate, hidden test set to 

assess its accuracy, precision, recall, and ability to FD. 

• Real-Time FD: Deploy the trained model within the manufacturing robot's operational 

environment. Implement a real-time data collection, preprocessing, and FE system, feeding 

this data into the model for instantaneous FD and decision-making. 

End of Algorithm 

4. Experimental Setup 

In the experimental setup, data was collected from a manufacturing robot using a FDM. A 

non-functioning actuator replaced a functioning one to simulate fault conditions. Data collection 

targeted the robot’s 3rd and 5th axes. The 3rd axis provided 23,456 data points during normal 

operation and 21,234 in fault conditions. The 5th axis yielded 188,532 data points with faults and 

46,789 data points during normal operation. The collection rate was 20 Hz. After collection, FE 

was conducted on this data to prepare for FD analysis. The dataset was split into training sets and 

testing with a (70:30) ratio. The proposed model was compared against CNN, RNN, LSTM, and 

FFNN models in metrics like i) Accuracy, ii) Precision, iii) Recall, and iv) F1. The proposed model 

was trained using the following parameters as shown in Table 1: 

Table 1: Training parameters 
Parameter Value 

Learning Rate 0.001 

Batch Size 64 

Number of Epochs 100 

Dropout Rate 0.5 

Optimizer Adam 

Loss Function Cross-Entropy 

Normalization Technique Batch Normalization 
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Activation Function ReLU 

In evaluating the performance of various NN models for FD in manufacturing robots, the 

DC-BiLSTM model distinctly outperforms its counterparts across all key metrics: accuracy, 

precision, recall, and F1 score (Figure 3 (a)-(d)). The DC-BiLSTM achieves an accuracy of 0.9714, 

demonstrating its capability in correctly classifying normal and faulty conditions that are 

significantly higher than LSTM (0.9371), CNN (0.9128), RNN (0.9060), and FFNN (0.9053). For 

the Precision metric, the DC-BiLSTM model had again shown a leading score of 0.9731, which is 

higher when compared to the LSTM's precision of 0.9551, CNN's 0.9379, RNN's 0.9117, and 

FFNN's 0.8757, this had shown that the DC-BiLSTM model is accurate in fault identification at 

the same time with minimal error. 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 3: a) Accuracy, b) Precision, c) Recall and F1 Score comparison 

In terms of recall, the DC-BiLSTM model shows the highest at 0.9586, which again 

surpasses the LSTM (0.8993), CNN (0.8408), RNN (0.8684), and FFNN (0.9020). This result 

demonstrates that the DC-BiLSTM does not miss any instance in the prediction process compared 

to other models. For the F1 score that balances the precision and recall, the DC-BiLSTM model 

leads the compared models with a score of 0.9603 against LSTM (0.9239), CNN (0.8452), RNN 

(0.9048), and FFNN (0.8717), this shows that the DC-BiLSTM's model has a balanced and reliable 

FD capability. 
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Figure 4: Accuracy vs Epochs 

 
Figure 5: Loss vs Epochs 

Figure 4 shows the graph that presents the proposed model's accuracy over 25 epochs, 

comparing the accuracy scores of the proposed model during the training and testing phases. Figure 

5 shows the graph comparing the model's performance in terms of Loss for both training and 

testing datasets. In both the experiments comparing the models against the train set and test set, 

the proposed model has a steady progression for accuracy and loss analysis with occasional 

fluctuations. Compared to test data, the model has a similar trend in the observer, with the model 

performing at par with the training set for loss and a little less in accuracy. 

5. Conclusion and Future Work 

This study introduced a hybrid model for real-time Fault Diagnosis (FD) in the field of 

manufacturing robots. The work proposed a hybrid model combining the Depthwise Convolutional 

Neural Networks (CNN) with Bidirectional Long Short-Term Memory (BiLSTM) networks. It is 

focused on addressing the challenges inherently related to high-dimensional sensor data, which are 

obviously nonlinear and non-Gaussian—the proposed work employed Monte Carlo Filtering 

(MCF) for the purpose of initial Feature Extraction (FE). Using the FE, the work efficiently FD 

using the proposed DC-BiLSTM model. For the analysis, the work employed the model in 

comparison with CNN, LSTM, RNN, and FFNN for performance against accuracy, precision, 

recall, and F1 scores. For all the metrics, the proposed model showed a significant performance 

compared to other models.  
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Future research will explore the possibility of further optimizing the model and its 

application across different industrial settings. 
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