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ault Diagnosis Model (FDM) in manufacturing
ral Networks (CNNs) with Bidirectional Long

Abstract: This study introduced a novel rea
robots by integrating Depthwise Convolutional
Short-Term Memory (BiLSTM) negworks. The objective is to design a model that can handle the
complex high-dimensional se data'that@rrives out of complex, non-linear systems for effective

FDM. The work introducedsa

(MCF). The work integ @

ure Extraction (FE) model based on Monte Carlo Filtering

epthwise CNN with BiLSTM (DC-BiLSTM) for diagnosis. The

integration h X computational need and, at the same time, preserve the feature
representa odeY'was experimented against other models, such as CNN, Long Short-
Term Metory , Recurrent Neural Network (RNN), and Feed-Forward Neural Networks
(FF usingha fault dataset sourced from a simulated environment. The results have shown that

op odel fared well in terms of accuracy, precision, recall, and F1 score against all

ared models. The results have judged the proposed model’s applicability in the field of fault
nosis, which could effectively predict mishaps in advance, thereby helping with efficient
maintenance and ensuring continuous productivity.
Keywords: Real-Time Fault Diagnosis, Monte Carlo Filtering, Feature Extraction, CNN,
BiLSTM, Accuracy



1. Introduction

Manufacturing robots have recently been playing a crucial role in various modern industrial
operations because of their advantage in offering unparalleled precision, productivity, and
efficiency. Their integration into the process of manufacturing production lines has sho
significant and enhanced output capability, and in this way, they have paved the method for fu
advancements in automation. The extent to which they show better performance to the sa

their level of complexity in their functioning and working environments togethe

model has some critical challenges, mainly due to the nonlinear andfadn-Gaussian nature of the
systems within which they operate. The current available traditi Hault Diagnostic Model
(FDM) are all models that often fall short of efficiency w are faced with such complexity.

These methods often fail to cope with the high-dimengional@ata that are generated by an array of
sensors embedded in modern robots.

In response to these limitations a address the challenges recently, researchers and
engineers have been involved in the process explored several approaches to improve Fault
Diagnosis (FD). The study is mainly, ormed to develop a more efficient use of the large amount
of sensor data in order to find t 1e8)that suggest the starting point of an issue at an earlier

phase. Acknowledging that e atttmpts have been developed, there is still scope for

ontthually exists a demand for an approach that is adept at rapidly

mended research. In recent years, Convolutional Neural Networks+

etwork (CNN+RNN)-based models have been used in this domain. The

underpinnj
Recurent a

jecti investigation is to present an original framework to take advantage of the features

hods. Additionally, the significance of handling high-dimensional data is of the highest
jority, which is what prompts this research to look for methods that are feasible in order to handle
such data sets.

The proposed work is built on the above motivation, which proposes a model for real-time

FMD in manufacturing robots. The work proposed Depthwise convolutional BiLSTM (DC-



BiLSTM), which is a combination of proposed Depthwise Convolutional Neural Networks
together with Bidirectional Long Short-Term Memory (BiLSTM) networks. To handle the high
dimensionality issue from the sensor collected data, the work proposed Feature Extraction (FE)
based on the Monte Carlo Filtering (MCF) technique, which was chosen for its effectivene§s i

feature extraction from complex, non-linear systems. The proposed DC-BiLSTM model emp

standard convolution as the initial layers for spatial FE, followed by Depthwise separab
and BiLSTM layers. The proposed model was examined using a fault dataset and corapaie
other models, such as CNN, Long Short-Term Memory (LSTM), Recurrent
(RNN), and Feed-Forward Neural Networks (FFNN), for its efficica

1 accuracy,

rm
precision, recall, and F1 score. For all metrics, the proposed mode]di@ oWn better performance.

The paper is structured as follows: Section 2 presents the ature review, Section 3

presents the methodology, Section 4 presents the analysis of experiménts;@nd Section 5 concludes
the work

2. Literature Review

[1] In their work, they have conducted’a CoB
ML models used in this field. They sur¥ Q eral databases, selecting 44 primary studies
etworks (ANN), Decision Trees (DT), hybrid

prehensive review of the field of FD and the

highlighting the application of Artificial Neura
models, and latent variable models i and prognosis. They revealed that despite the ML model's
high performance and computati ctficiency, the effectiveness of such models is often

challenged by concept drift, cleagly suggesting a gap in model adaptability to changing conditions.

The propagationfle eckihg that is connected with multi-joint robots for industry was

the main objective they conducted [2]. Researchers succeeded in achieving this by
introducin
employed i ing a hybrid Sparse Auto-Encoder (SAE) and Support Vector Machine
(SVM) technigue to evaluate the differences in performance that caused by the robot's end element

ink. Theis finding that researchers managed to attain superior outcomes in accurately identifying

S

omated frameworks.

ed the possibility of using specific data features for the intent of FD within sophisticated

With the support of its decisions, the business was able to meet the essential requirement
for real-time anomaly identification throughout the framework of manufacturing automation. The

following is performed in order to avoid substantial economic losses that result from bottlenecks



in firm operations. For the aim of maintenance based on condition, they developed an unsupervised
detection of anomalies technique that had the power to manage heterogeneous time series data.
Therefore, the invention of autonomous monitoring systems that have the ability to detect
anomalies in both space and time has been significantly impacted by the outcome of the resdarc
conducted here, which currently has a readily evident result.

[4] performed studies to find out whether or not it would be feasible to integrate thgfDigita
Twin (DT) technique with Deep Learning (DL) in order to accomplish the objective g %

outcome of their studies, the authors suggested an FDM that is suitable wit

strategy involving the use of an autonomous tool-holder that has the capacit

N

v seful in improving the

the Yeésearchers were

the Internet of Things (IoT). Throughout the use of experimenta,
able to prove the versatility of their approach and argue that it
automated operation of machinery tasks as well as the precision of ED.

The team of scientists who performed this resea duced a new FMD that had a
chance to enhance the accuracy of FD. This FMD hadfbecnfdeveloped through the integration of
Binarized Deep Neural Networks (BDNNs ignificantly enhanced Random Forests (RFs).
Taking into account the implementation o for the task of FE and the adaptation of the RF
training method with ReliefF, researchers wer@ycapable of effectively try finding the faults by
using those methods. By performin prehensive tests as such, the research team showed their

framework exhibited accuracy si§)that was higher than that of Deep Neural Networks
(DNNs) that have been shown%t -of-the-art [6-10].

3. Methodology

Extraction

a given system. The Bayesian theory acts as the basis against which the MCF

e practical use of this approach can be achieved when it is used for non-linear

ecisely forecast the subsequent distribution of the system's state, the process makes use of several
types of data points, which are frequently referred to as particles, in addition to the measured
weights that correspond with the particles. Additionally, when it comes to fresh data, the above

approach allows an updating of the state by a continuous procedure [11-12].



The MCF is divided into its vital basics, which are drawn below:

e State Representation: The system's state at the time 't’ is denoted by 'x,’. Here, 'x;’

represent operational parameters that define the robot's current state.

e Observation Model: The observation at time ‘t” is represented by ‘z,’, which correspo

to1 to ‘x; .

to the data measured or recorded by sensors. The observation model relates the cu

'x;' to the observation 'z,’, expressed as 'p(z; | x;)', where 'p’ denotes th

observing 'z, given the state x;.
e State Transition Model: This model describes how the state e&
ransifion

@

e Particles and Weights: The filter represents the probabily dis

Which is expressed as '‘p(x; | x;_)’, referring to the prob ing to a state
‘x;' from state "x;_;'.

bution of the system's
N

state using a set of particles {xfi)} , where ¢ cl xt(i) is a state of the system at
i=1

time 't’, and ‘N’ is the total number icl ach particle is associated with a weight

Wt(i) that represents the importance ood of that particle given the observed data up

to time t’.
The FE algorithm 1 using the a discussed MCF fundamentals is presented in algorithm 1.
The MCF technique processe puf¥sequence of observations Z = {zy, 2y, ..., zr},. The

algorithm initiates a set of parti with each particle symbolizing a potential state of the system,

AN
{x(()l)} . These initial e distributed randomly across the expected range of states,

i=1

particularly, with@ach pagicle assigned with an equal initial weight, Wéi) = % The algorithm then

updates t 0 h particle using the state transition function. x; = f(x;_,). Next to state
predigtion, lgbrithm then adjusts the weights of each particle that are based on the observed
a 'z he predicted state, utilizing the observation probability function (z; | x;). The

en normalizes the weights to ensure their sum equals 1. Following weight normalization

-15], the algorithm performs a resampling step by selecting particles based on their normalized
weights for the next iteration. In the FE phase, the algorithm calculates the mean u, and standard
deviation ‘g, of the states from the resampled particles. These are then assembled into a feature

vector f; = [y, 0¢] For each time step, provide a summary of the system's state.



Algorithm 1: FE Using MCF
Input:
o 7 ={z,,2,,...,zr} : sensor data up to time T.

e N : Number of particles.

f : State transition function, x; = f(x;_1),

e g : Observation likelihood function, p(z; | x;),
Output: F = {f}, f5, ..., fr}: Sequence of FE from the observations up to time T.
Algorithm:

1 [Initialization:

e Fori=1toN:

o Initialize particles x(()i) randomly based on a uniform distgibution over the expected

range of states. l

o Initialize particle weights Wéi) = %

2 For Eachtimestept =1to T :
e Prediction:
e Fori=1toN:

e Predict the next s f particle’i using the state transition function EQU (1)

x® = f(x(l ) (1)
e Update:
e Fori=
p the*weight of particle i based on the observation probability, EQU (2).
w =p )

alize the weights, EQU (3)
3)

e Resampling: Resample N particles from the set {xfi)}

e FE: Compute the mean y; and standard deviation g; of the resampled particles' states,

EQU (4) and EQU (5).

) .
e =<2, x® )



) ) 2
o = (13 (59 - ) 5)
e Define the feature vector for time t as f; = [ug, o).

3 Output the sequence of FE ‘F’.
3.2 Depth-Wise Separable Convolution

The depthwise separable convolutions reduce the computational cost and the n
parameters while retaining the capacity for detailed feature representation [16-20]. T
separable convolution block, as shown in Figure 1, comprises two key steps:

1 Depthwise Convolution:

=t

e Input: A high-dimensional input tensor from sensor data, si0@8, D X Df X M,
where Dy is the spatial dimension, and M is the number of ch3

e Convolution: A depthwise convolution involves M filte ze k X k X 1 that are

convolved with each input channel separately, yielg Yqutput of size Dy X Dy X M.

This step is employed to independently extract §patft es from each channel to reduce
the number of computations.

2 1 x 1 Convolution:

e Convolution: Following the depthwise c@mvolution, a pointwise convolution with N filters

of size 1 X 1 X M combinesgffic’outputs of the depthwise convolution across the channels.

¢ Final OQutput: The res ttChsorias dimensions Dy X Dy X N, which captures the spatial

features and combjaes thereby forming new features that would effectively represent

channel-wise corte

1x 1 Convolution \

Convolution Output Convolution Final Output
kxk xM Dy XDy xM 1x1 xN Dg X Dg XN /

Figure 1: Depth-wise separable convolution.

3.3 Proposed DC-BIiLSTM Model



The proposed DC-BiLSTM model integrates depthwise separable convolutional blocks
with a BiILSTM network. The model inputs the features into a standard convolutional block

configured with 16 filters of size 3x3 to identify the spatial features from the input data. Next, batch

normalization is applied to stabilize the learning process and improve the model's efficidfic
followed by the Rectified Linear Unit (ReLU) activation function for normalization and
pooling for feature dimension reduction. Then, two depthwise convolutional blocks are p Oone
after the other, each with 32, 3x3 filters. After spatial FE, the model employs a BiLS a % ,
32 units to analyze the temporal relationships inherent in the sequential data. Th I@ayer is
followed by a dropout layer with a 0.5 dropout rate before feeding to a & ec

n C) layer

with 75 units. Finally, the model employs a SoftMax layer for th he ar@hitecture of the
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e 2: DC-BiLSTM architecture
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Algorithm 2: DC-BILS
Inputs:
o X: inpu, features extracted from the MCF process.

els for the training data.

predicted labels for the input data.

1 Initialization:
¢ Initialize the weights and biases for all layers in the Depthwise CNN+BiLSTM network.

e Preprocess X as needed (e.g., normalization, reshaping).

2 Standard Convolutional Block:



e Conduct 2D convolution on X with 16 filters of size 3 X 3.

e Apply batch normalization to the convolution output.

e Use the ReLU activation function.

e Employ max pooling with a 2 X 2 kernel to reduce spatial dimensions.
3 DCBlock 1:

e Perform DC using 323 X 3 filters.

e Apply 1 X 1 convolution to the output of the DC.

e Execute batch normalization followed by ReL.U activation.
4 Depthwise Convolutional Block 2:

e Apply DC 1 X 1 convolution as in Block 1.

e Follow with batch normalization and ReLU activation.
5 BIiLSTM Layer: l

e Input the output from the last depthwise block iLSTM layer with 32 units.

e Allow the BiLSTM layer to proces ora ation.

6 Dropout Layer: Apply a dropou with@rate of 0.5 to prevent overfitting.
7 FC Layer:

e Pass the BILSTM output into a fully'€@nnected layer with 75 units.
e Apply ReLU activatio

8 SoftMax Output Layég

e Apply the Sof stion to derive the probability distribution over fault classes.

e Compute th&lo een Y and ¥ we are using cross-entropy loss.

. theWeights by backpropagation using the Adam optimization algorithm.
9 Trz& : Iterate steps 2 to 9 for a predetermined number of epochs or until
co e
10 “Bault gnosis (Inference Phase):
Feed X into the trained model.
e Perform a forward pass through the model to obtain the predicted labels ¥.

End Procedure
3.5 Fault Diagnosis Using Proposed MCF FE and Depthwise CNN + BiLSTM (DC-BiLSTM)



The FDM begins with data preprocessing that includes filtering, normalization, and

segmentation, which is followed by FE using MCF. These features are tahn labeled before the input
into the Neural Network (NN). The DC-BiLSTM model then takes the labelled data for processing

and effectively FD. The entire process is described in the following algorithm 3 steps:
Algorithm 3: FD Using DC-BILSTM

Step 1: Data Collection and Preprocessing:

Collect Monitoring Data: Gather sensor data from manufacturing that in

@ &ions from the

e Normalization: Scale the sensor readings to a standarv
e Segmentation: Divide the continuous stream ¢ @ oL data into fixed-size segments.

of fault conditions.
Preprocessing Steps:

e Filtering: Apply FCF techniques to remove noise and

sensor data.

Step 2: FE with MCF:

S r data to isolate features that are most

Feature Preparation: Organize the FEWmto a structured format for input into the Deep

Learning (DL) model.

Step 3: Data Cleaning and Lapbeli

Data Cleaning: Exami e feature set for any inconsistencies or null values. Remove

these instances t the integrity of the training process.
ach data segment with appropriate fault labels.
odel Architecture and Training:
rchitecture: Construct the DC-BiLSTM model starting with:
A standard convolutional block for initial spatial feature extraction.
° o consecutive depthwise separable convolutional blocks.
e A BiLSTM layer to capture and analyze temporal dependencies within the sequences
of spatial features.

o A fully connected layer and a SoftMax output layer for final fault classification.

Model Training:



e Split the labelled feature set into training and validation subsets.

e Train the model on the training set, optimizing the network's weights and biases to
minimize a predefined loss function through several epochs. Employ the Adam
optimization algorithm for efficient learning.

e After each epoch, validate the model's performance on the validation subset to monit
accuracy and prevent overfitting.

Step 5: Evaluation and Deployment for Real-Time Diagnosis:
e Evaluate Model Performance: Test the trained model on a separate set to
assess its accuracy, precision, recall, and ability to FD.

e Real-Time FD: Deploy the trained model within the maf g robot's operational

environment. Implement a real-time data collection, preprocessifig, and FE system, feeding

this data into the model for instantaneous FD and decision’cin o

End of Algorithm

targeted the robot’s 3™ and 5" axes. The 3™ &

4. Experimental Setup

In the experimental setup, data was from,a manufacturing robot using a FDM. A

non-functioning actuator replaced a functid e to simulate fault conditions. Data collection
provided 23,456 data points during normal

operation and 21,234 in fault condi . The 5" axis yielded 188,532 data points with faults and

46,789 data points during no . The collection rate was 20 Hz. After collection, FE
was conducted on this data to prépare for FD analysis. The dataset was split into training sets and
@ proposed model was compared against CNN, RNN, LSTM, and

Accuracy, i1) Precision, iii) Recall, and iv) F1. The proposed model

testing with a (70:30) ra
FFNN modelsg
was trainedjusi e follawing parameters as shown in Table 1:

Table 1: Training parameters

Parameter Value
Learning Rate 0.001
Batch Size 64
Number of Epochs 100
Dropout Rate 0.5
Optimizer Adam
Loss Function Cross-Entropy

Normalization Technique Batch Normalization




Activation Function ReLLU

In evaluating the performance of various NN models for FD in manufacturing robots, the
DC-BiLSTM model distinctly outperforms its counterparts across all key metrics: accuracy,
precision, recall, and F1 score (Figure 3 (a)-(d)). The DC-BiLSTM achieves an accuracy of 0.9#14
demonstrating its capability in correctly classifying normal and faulty conditions that
significantly higher than LSTM (0.9371), CNN (0.9128), RNN (0.9060), and FFNN (0.9¢
the Precision metric, the DC-BiLSTM model had again shown a leading score of 0.9 %

higher when compared to the LSTM's precision of 0.9551, CNN's 0.9379, R
FFNN's 0.8757, this had shown that the DC-BiLSTM model is accurate in fault id
the same time with minimal error.

1.00- Model Accuracy Compariso

0.95¢ 0.9371 l

Accuracy
o
(o0}
u

0.80}
0.75}
0.70 FFNN DC-BiLSTM
(Proposed)
Model
(a)



Model Precision Comparison
0.9731

0.9551

Precision

RNN

Model

(b)

Model Recall Com /

1.00¢
0.9586

FFNN DC-BILSTM
(Proposed)




1.00- Model F1 Score Comparison

0.9603

0.95¢
0.9239

0.90¢1

0.85¢

F1 Score

0.80¢

0.75}

0.70 RNN

Model

(d)
Figure 3: a) Accuracy, b) Precision, c¢) Re a@core comparison
In terms of recall, the DC-BiLSTM mede WS ighest at 0.9586, which again

0
(0°8684), and FFNN (0.9020). This result

surpasses the LSTM (0.8993), CNN (0.84
demonstrates that the DC-BiLSTM does not

S |

8 any instance in the prediction process compared
to other models. For the F1 score that balances precision and recall, the DC-BiLSTM model

leads the compared models with a §Cor 0.9603 against LSTM (0.9239), CNN (0.8452), RNN
(0.9048), and FFNN (0.8717),4#his sho t the DC-BiLSTM's model has a balanced and reliable

FD capability.
Model Accuracy Over Epochs
0.9
est

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Epoch



Figure 4: Accuracy vs Epochs

Model Loss Over Epochs

1.0

0.8

m0.6
S

0.4

0.2

1 2 3 4 5 6 7 6 0 1011 12 13 14 15 16 17 18 19 20 2 23 24 25
Epoch
Figure 5: Loss vs Ep
Figure 4 shows the graph that presents the mgdel's accuracy over 25 epochs,

—

comparing the accuracy scores of the proposg ing the training and testing phases. Figure

5 shows the graph comparing the mode ance 1h terms of Loss for both training and

testing datasets. In both the experiments compasing the models against the train set and test set,

the proposed model has a steady ression for accuracy and loss analysis with occasional
fluctuations. Compared to test el has a similar trend in the observer, with the model
performing at par with the trai set oss and a little less in accuracy.

5. Conclusion and Fut

This study 4

manufactug
Neural Ne ) with Bidirectional Long Short-Term Memory (BiLSTM) networks. It is
focused on esSthg the challenges inherently related to high-dimensional sensor data, which are

mear and non-Gaussian—the proposed work employed Monte Carlo Filtering

the purpose of initial Feature Extraction (FE). Using the FE, the work efficiently FD
ing the proposed DC-BiLSTM model. For the analysis, the work employed the model in
comparison with CNN, LSTM, RNN, and FFNN for performance against accuracy, precision,
recall, and F1 scores. For all the metrics, the proposed model showed a significant performance

compared to other models.



Future research will explore the possibility of further optimizing the model and its

application across different industrial settings.

References

1.

Fernandes, M., Corchado, J. M., & Marreiros, G. (2022). Machine learning technique
applied to mechanical fault diagnosis and fault prognosis in the context of real indusfti

manufacturing use-cases: a systematic literature review. Applied Intelligenc

14246-14280.
hybrid

Long, J., Mou, J., Zhang, L., Zhang, S., & Li, C. (2021). Attitude data-ba
i ial robets. Journal

learning architecture for intelligent fault diagnosis of multi-joi
of manufacturing systems, 61, 736-745.
Chen, T., Liu, X., Xia, B., Wang, W., & Lai, Y. (2020). Un ised anomaly detection
of industrial robots using sliding-window convolutional yia al autoencoder. /[EEE
Access, 8,47072-47081.

Deebak, B. D., & Al-Turjman, F. (2022). Digit@;twift assiSted: Fault diagnosis using deep
transfer learning for machining t ditien. International Journal of Intelligent
Systems, 37(12), 10289-10316.

Li, H., Hu, G., Li, J., & Zhou, M. (202 telligent fault diagnosis for large-scale rotating
ural networks and random forests. IEEE Transactions on
, 19(2), 1109-1119.

onvolutional LSTM Models for Prognosis of Bearing

machines using binarized de

19 Prognostics and System Health Management Conference

China, 2019, pp. 1-6, doi: 10.1109/PHM-

u, B. Liu and W. Bai, "Research of Intelligent Fault Diagnosis Based on
rning," 2021 International Conference on Computer Network, Electronic and
tion (ICCNEA), Xi'an, China, 2021, pp- 143-147, doi:
1109/ICCNEA53019.2021.00040.

A. Agarwal, A. Sinha and D. Das, "FauDigPro: A Machine Learning based Fault Diagnosis
and Prognosis System for Electrocardiogram Sensors," 2022 International Conference on
Maintenance and Intelligent Asset Management (ICMIAM), Anand, India, 2022, pp. 1-6,
doi: 10.1109/ICMIAMS56779.2022.10146898.



9.

10.

11.

12.

13.

D. Tang, F. Ding, B. Deng, P. Zhang, Q. Wang and H. Lv, "An Intelligent Fault Diagnosis
Method for Street Lamps," 2021 International Conference on Internet, Education and
Information Technology (IEIT), Suzhou, China, 2021, pp. 300-303, doi:
10.1109/IEIT53597.2021.00073.

A. Almounajjed, A. K. Sahoo, M. K. Kumar and M. D. Alsebai, "Investigation Techni

for Rolling Bearing Fault Diagnosis Using Machine Learning Algorithms,"

International Conference on Intelligent Computing and Control Systeras

Madurai, India, 2021, pp. 1290-1294, doi: 10.1109/ICICCS51141.2021,94 @
i ee-P
gorl

V. Singh, A. Yadav and S. Gupta, "Open Switch Fault Diagnogsissof Battery-

@ ' 2023 st
telligent Systems (CCPIS),

C

Fed Capacitor Clamped Inverter using Machine-Lea
International Conference on Circuits, Power and In
Bhubaneswar, India, 2023, pp. 1-6, doi: 10.1109/CCPIS59146€.2028.10291256.

H. Liang, Y. Liu, C. Liu, W. Liu and W. Li, " iagnosis with Spacecraft High-
Dimensional Data Based on Machine Lea 02V CAA Symposium on Fault
Detection, Supervision, and Safety 1 rocesses (SAFEPROCESS), Chengdu,
China, 2021, pp. 1-6, doi: 10.110 OCESS52771.2021.9693733.

Q. He et al., "Application and Compar Analysis of Traditional Machine Learning and
Deep Learning in Transmisgi®n Line Fault Classification," 2022 IEEE 5th Advanced

Information Manageme unlicates, Electronic and Automation Control Conference
(IMCEC), Chong , hina, 2022, pp- 1715-1719, doi:
10.1109/IMCE 022910020121.

15.

16.

'Simulation of Hierarchical Fault Diagnosis Model for Aircraft Electromechanical

tems Based on Machine Learning Algorithms," 2023 International Conference on
Power, Electrical Engineering, Electronics and Control (PEEEC), Athens, Greece, 2023,
pp. 525-530, doi: 10.1109/PEEEC60561.2023.00108.
B. Yang, Y. Lei, F. Jia, and S. Xing, "A Transfer Learning Method for Intelligent Fault

Diagnosis from Laboratory Machines to Real-Case Machines," 2018 International



Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Xi'an, China, 2018,
pp. 35-40, doi: 10.1109/SDPC.2018.8664814.

17.Y. Chen, A. Zhu, and Q. Zhao, "Rolling Bearing Fault Diagnosis Based On Flock
Optimization Support Vector Machine," 2023 IEEE 7th Information Technologyfan
Mechatronics Engineering Conference (ITOEC), Chongqing, China, 2023, pp. 1700-1
doi: 10.1109/ITOEC57671.2023.10292080.

18. Z. Lai, Y. Dong, H. Ren, and R. Lu, "A Multi-stage Optimized Fault Diagngsi
Imbalanced Fault Data in Manufacturing Process," 2022 IEEE 11th Data
and Learning Systems Conference (DDCLS), Chengdu, Chi 0 p. 2005215, doi:
10.1109/DDCLS55054.2022.9858502.

19. L. R. Chandran, K. Ilango, M. G. Nair, A. A. Kumar, A. A. K and A. R. M, "Multilabel

External Fault Classification of Induction Motor using Macliine Wearning Models," 2022
o Instrumentation and Control

, pp. 559-564, doi:

Third International Conference on Intelligent Coff
Technologies  (ICICICT), Kannur, Iddia
10.1109/ICICICT54557.2022.99178%
20. Z. Liu et al., "Intelligent Fault Did

)t Nuclear grade Electric Equipment Based on
Quantum Genetic Support Vector Machine," 2023 IEEE 12th Data-Driven Control and
Learning Systems Confere DDCLS), Xiangtan, China, 2023, pp. 1715-1719, doi:
10.1109/DDCLS58216. 36.

N
)
?\



	JMC202404053_preproof
	JMC202404053-sudha



