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Abstract - Cancer is the leading cause of death globally, affecting various organs in the human body. Early diagnosis of 
gastric cancer is essential for improving survival rates. However, traditional diagnosis methods are time-consuming, require 
multiple tests, and rely on specialist availability. This motivates the development of automated techniques for diagnosing 
gastric cancer using image analysis. While existing computerized techniques have been proposed, challenges remain. These 
include difficulty distinguishing healthy from cancerous regions in images and extracting irrelevant features during 
analysis. This research addresses these challenges by proposing a novel deep learning-based method for gastric cancer 
classification. The method utilizes deep feature extraction, dimensionality reduction, and classification techniques applied 
to a gastric cancer image dataset. This approach achieves high accuracy (99.32%), sensitivity (99.13%), and specificity 
(99.64%) in classifying gastric cancer. 

 
Keywords - Gastric cancer, Feature extraction, Inception, Classification, Support vector machine. 

 
 

I. INTRODUCTION 
 

Gastric cancer, a widespread cancer that develops in the stomach's epithelial cells, holds the unfortunate distinction of 
being the fourth most common cancer globally and the second leading cause of cancer-related deaths[1]. More than 1 
million gastric cancer diagnoses resulted in over 768,000 deaths worldwide in 2020, solidifying its position as the fifth 
most lethal cancer globally[2]. Even with surgery, chemotherapy, and radiation, the chances of surviving advanced stomach 
cancer for five years remain below 30%[3]. Over 95% of gastric cancers are adenocarcinomas, classified by their location 
in the stomach and the type of cells involved. Interestingly, the incidence of this specific cancer type shows significant 
geographic variation, with higher rates observed in Asia, Africa, South America, and Eastern Europe[4]. While endoscopy 
and surgery are currently the main tools for diagnosing stomach cancer, some patients, particularly those in rural settings, 
may avoid them due to concerns about discomfort and affordability [5]. In essence, feature selection streamlines the disease 
prediction process for AI. It ensures the AI has the most relevant information, leading to faster, more accurate diagnoses 
and a deeper understanding of the disease itself [6]. Unveiling diseases from mountains of patient data can overwhelm AI. 
Autoencoders are the answer – acting like data ninjas, they shrink this information, highlighting key features like a 
detective. This magic lies in a special neural network that compresses data into a "latent space," like a zip file containing 
only crucial details for disease prediction. By focusing on these essentials, autoencoders empower AI for faster, more 
accurate diagnoses, paving the way for a deeper understanding of diseases [7][8]. Machine learning is revolutionizing 
disease diagnosis. Researchers are developing new methods to analyze data and identify the most important factors for 
predicting, detecting, and predicting the course of diseases [9] [10]. The field of medical imaging is experiencing a surge 
in the use of artificial intelligence (AI), with research suggesting AI models can significantly improve diagnostic accuracy. 
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These models achieve results on par with, or even exceeding, those of clinical experts in certain circumstances[11]. 
Modified logistic regression model [12] and OLGV3 Net Classifier [13] can be used in Cancer disease classification. This 
advancement allows for the application of AI algorithms to multi-dimensional data, including clinical and follow-up 
information, conventional images (endoscopy, histopathology, and CT scans), and molecular biomarkers. This approach 
has the potential to improve risk surveillance for gastric cancer in patients with established risk factors[14]. Machine 
learning allows computers to learn from data and experience, enabling them to automatically adapt and improve their 
performance on a given task. Deep learning (DL) is a special kind of machine learning that uses layers like building blocks 
to uncover more and more meaningful details from raw data, step by step[15]. A CNN model was developed to enhance 
the ability to efficiently differentiate between early gastric cancer and noncancerous lesions, achieving outstanding 
diagnostic accuracy[16][17]. The two networks leveraged transfer learning. A pre-trained VGG-16 network, trained on the 
vast ImageNet image classification dataset, provided the foundation for these models. This approach effectively initialized 
and optimized the weights within the new networks[18]. The system relies on an SVM algorithm to categorize the images 
as either normal or containing cancer[19]. The following research gaps are identified in the existing work and well 
addressed in this research paper.  1.Limited Generalization refers to a model's inability to perform well on new, unseen 
data because it was trained on a dataset that lacks sufficient diversity and variability. This means the model may work 
effectively on the training data but fails to accurately predict outcomes on different datasets, reducing its practical 
applicability in real-world scenarios. 2.Mitigating Overfitting involves applying strategies to ensure that a machine 
learning model does not perform exceptionally well only on training data but also generalizes well to new, unseen data. 3. 
The "Complexity and Computational Efficiency Problem" arises from the effectiveness of autoencoders in 
dimensionality reduction, as they introduce significant computational complexity and overhead. This research gap indicates 
the need for more efficient dimensionality reduction techniques that can maintain essential information without 
compromising the computational efficiency, enabling faster and more scalable processing of gastric cancer images. 

 
 

II. LITERATURE REVIEW 

This section provides a detailed overview of existing techniques for gastric cancer classification Afrash et al.[20] used six 
machine learning models, including SVM(RBF), XGBoost, SVM Linear, Random Forest, Multilayer Perceptron, and 
KNN, to predict the early risk of gastric cancer based on lifestyle factors. Among these models, the XGBoost model 
performed best, achieving an accuracy of 83.41%. Cheng-Mao Zhou et al.[21] applied six machine learning algorithms to 
predict total gastric cancer deaths after surgery: Logistic Regression (LR), Gradient Boosting Machine (GBM), Gradient 
Boosted Decision Trees (GBDT), Random Forest, Tree-based Regression (Tr), and Extreme Gradient Boosting Classifier 
(XGBC). The highest accuracy achieved by the LR algorithm is 75.9%. However, this study has several limitations. Firstly, 
it is a retrospective study of postoperative gastric cancer patients. Secondly, the model's drawback is its inability to predict 
outcomes for other malignant tumors. Finally, the prediction variations observed may not be applicable to gastric cancer 
patients with other malignant tumors. Talebi et al.[22] employed machine learning algorithms to predict metastasis in 
gastric cancer patients. Support Vector Machine (SVM) achieved an accuracy of 93%. Functional and enrichment analyses 
were conducted using Gene Ontology (GO) and the Kyoto Database of Genes. However, a limitation of this study is that 
the validation is not up to par. Yoon HJ et al.[23] introduced a Visual Geometry Group (VGG)-16 model for the 
classification of endoscopic images as early gastric cancer (EGC) and for predicting depth. The overall accuracy achieved 
was 73%. However, a limitation of the study is that it does not analyze the accuracy of EGC detection specifically. Huang 
B et al.[24] introduced the GastroMIL algorithm for diagnosing gastric cancer, which attained an accuracy of 92%. 
However, a limitation of this study is that the survival time of gastric cancer individuals from the TGCA cohort varied. 

 
 Sakai Y et al.[25] proposed a deep learning system using convolutional neural networks to automatically detect early 
gastric cancer in endoscopic images. This system leveraged transfer learning with a limited dataset containing two classes 
(cancerous and normal) and focused on detailed texture information of lesions. While achieving an accuracy of 87.6%, the 
approach faced limitations. Firstly, the system over-detected certain regions with very irregular surface textures, potentially 
leading to false positives. Secondly, it struggled with out-of-focus or deeper lesions, resulting in missed detections. Zheng 
X et al.[26] introduced a deep convolutional neural network, named EBVNet, designed to predict Epstein-Barr virus-
associated gastric cancer (EBVaGC) from histopathology images. EBVNet achieved an impressive average Area Under 
the Receiver Operating Curve (AUROC) of 96.9% during internal cross-validation. Notably, EBVaGC exhibits a strong 
response to immune checkpoint inhibitor treatments. 
Existing research identifies critical gaps in gastric cancer diagnosis, including validation, over-detection, and 
misclassification issues. Limited generalization to diverse patient populations, coupled with a lack of detailed feature 
analysis, hinders model refinement. Dataset constraints impact generalization, while mitigating overfitting is crucial for 
model robustness. Addressing complexity in dimensionality reduction techniques is essential for scalable processing. 
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III.     PROPOSED METHODOLOGY 
 

III.i) Traditional Inception Model 

The traditional Inception model, also known as GoogLeNet, was introduced in the paper "Going Deeper with 
Convolutions" by Szegedy et al. It comprises several key architectural elements designed to achieve both depth and 
computational efficiency. The model begins with an input layer where images of varying sizes are fed into the network. 
Successive layers consist of convolutional operations with different filter sizes (e.g., 1x1, 3x3, 5x5) and strides, followed 
by Rectified Linear Unit (ReLU) activation functions. Inception modules, a central component of the architecture, 
incorporate parallel convolutional operations with various filter sizes, concatenating feature maps along the depth 
dimension. Max pooling layers interspersed between convolutional layers downsample feature maps and reduce spatial 
dimensions. Fully connected layers follow, culminating in a final layer with a softmax activation function for producing 
class probabilities. This traditional Inception model pioneered the development of deep convolutional neural networks for 
image classification tasks, emphasizing depth and computational efficiency through its innovative architectural design. 
 

III.ii) Proposed Methodology 

a) Dataset  

The first dataset is the gastric cancer dataset. It consists of 245,196 images. These images can be classified into two 
categories: normal and abnormal as shown in figure 1. There are 148,120 normal images and 97,076 abnormal images.  
The dataset is available in the source link https://gitee.com/neuhwm/GasHisSDB.git. 

 

Fig 1.Gastric Cancer Dataset : a) Sample Normal images b) Sample Abnormal images 

 

b) Preprocessing  

1.Resize all gastric images to a consistent size 
 
Standardizing the dimensions of gastric images is a critical step in preparing medical datasets for analysis. These images 
often vary in size and resolution, introducing inconsistencies that can hinder effective model learning. By resizing all 
images to a uniform dimension, this variability is mitigated, simplifying subsequent processing stages. This resizing process 
entails adjusting each image to a predetermined width and height, typically determined by computational constraints and 
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the architectural specifications of the chosen convolutional neural network (CNN). For instance, common dimensions for 
medical image datasets might include 224x224 or 256x256 pixels. Standardization ensures that all images share the same 
dimensions, facilitating seamless integration into the neural network model for both training and inference tasks. 
 
2.Normalize pixel values to a common scale 

In medical imaging, the intensity levels of pixel values can exhibit considerable variation, influenced by factors such as 
imaging apparatus and configurations. Standardizing these pixel values to a common scale is essential for enhancing model 
convergence and overall performance. This normalization process entails adjusting the pixel values of each image to 
conform to a predefined range, typically [0, 1] or [-1, 1]. For instance, a common approach involves dividing all pixel 
values by 255 to rescale them to the range [0, 1]. By normalizing pixel values, the intensity levels become consistent across 
all images, facilitating the neural network's ability to discern meaningful patterns and features. This uniformity aids in 
optimizing model training and enables more accurate predictions based on the standardized representation of image data. 
 

3.Perform data augmentation techniques to increase the diversity of the dataset (e.g., rotation, flipping, scaling) 

Data augmentation serves as a prevalent method to expand the size and diversity of the training dataset artificially, achieved 
by applying transformations to the original images. This strategy is instrumental in mitigating overfitting and bolstering 
the model's capacity to generalize to unseen data. Various augmentation techniques are employed, including rotation, which 
alters the image orientation by specific angles such as 90 degrees, flipping to create mirror images horizontally or vertically, 
aiding in learning invariant features. Scaling resizes images by a certain factor, simulating variations in size, while 
translation shifts images horizontally or vertically to mimic changes in position. Shearing introduces geometric distortions 
by applying a shearing transformation to the image. By systematically applying these augmentation techniques to the 
training dataset, diverse variations of the original images are generated, enriching the dataset's diversity and fortifying the 
trained model's robustness against unseen data. 

c)Improved Inception V3 model for Gastric Cancer Feature Extraction 

Figure 2 shows the architecture of the proposed Advancing Gastric Cancer Image Classification model. In the first stage, 
we employ a pre-trained Inception model, such as Inception-v3 or a variant specifically fine-tuned for gastric cancer image 
classification, to extract informative features from the gastric cancer images. These features capture high-level patterns and 
characteristics that are relevant for cancer detection and classification. This model leverages the Inception v3 architecture 
for feature extraction in gastric cancer classification. This model consists of various components: 

1. Base Inception V3 

       The initial part of the model remains unchanged. It consists of the pre-trained Inception v3 architecture with its 
convolutional layers. Freezing Early Layers is described as the early convolutional layers of Inception v3 are frozen. 
This preserves the valuable knowledge these layers learned from the pre-trained dataset (like ImageNet) on recognizing 
basic image features like edges, shapes, and textures. Freezing prevents the model from "forgetting" this foundational 
knowledge. 

2. Feature Extraction 

        The frozen Inception v3 layers act as a powerful feature extractor. As the image progresses through these layers, it 
gets transformed into a high-dimensional feature vector. This vector encapsulates the essential information about the image 
learned by the convolutional layers. The Inception architecture utilizes a series of inception modules that combine 
convolutional filters of different sizes (1x1, 3x3, 5x5) within a single layer. The convolution operation is defined as follows: 
Given an input image 𝐼𝐼 of size H × W and a filter/kernel 𝐾𝐾 of size F × F, the filter slides across the input image, computing 
the dot product of its elements with corresponding elements at each position as shown in equation (1). 

This can be represented mathematically as: 
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𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎(𝒊𝒊, 𝒋𝒋) = ��𝐼𝐼(𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛) ∗ 𝐾𝐾(𝑚𝑚,𝑛𝑛)                                                 (1)      
𝐹𝐹−1

𝑛𝑛=0

𝐹𝐹−1

𝑚𝑚=0

 

The stride S determines the step size of the filter movement during convolution. It controls the spatial dimensions of the 
output feature map. Mathematically, the stride is applied as shown in equation (2). 

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎(𝒊𝒊, 𝒋𝒋) = ��𝐼𝐼(𝑖𝑖 ∗ 𝑆𝑆 + 𝑚𝑚, 𝑗𝑗 ∗ 𝑆𝑆 + 𝑛𝑛) ∗ 𝐾𝐾(𝑚𝑚,𝑛𝑛)                                 (2)      
𝐹𝐹−1

𝑛𝑛=0

𝐹𝐹−1

𝑚𝑚=0

 

Padding is used to prevent shrinking of images during convolution, a technique called padding is used. Padding adds extra 
pixels, typically zeros, around the edges of the image before applying the convolution filter. This ensures the output 
maintains the same spatial dimensions as the original image. 

3.Inception Modules: 

The output of an inception module can be represented as the concatenation of feature maps obtained from different 
convolutional operations: Output=Concatenate (Conv1,Conv3,Conv5,Conv1𝑥𝑥1) 

4. New Fully Connected Layers: 

• The final fully connected layers of Inception v3 are replaced with new layers specifically designed for gastric 
cancer classification. 

o Dense Layer: A crucial layer is the Dense layer (also called a fully connected layer). This layer takes 
the feature vector extracted by the previous convolutional layers.  

 Number of Neurons: The number of neurons in the Dense layer corresponds to the number of 
gastric cancer classes you want to predict. For example, if classifying normal, benign, and 
malignant tissue, the Dense layer would have three neurons (one for each class). 

 Activation Function: A softmax activation function is typically used. It converts the output 
values of the Dense layer into probabilities of belonging to each class. 

5. Optional Layers (for Improved Performance): 

• While the Dense layer with softmax is essential, consider adding these optional layers depending on your dataset 
complexity:  

o Dropout Layer: To prevent the model from becoming overly reliant on specific features and improve 
its ability to handle new data, a technique called dropout is used during training. Dropout randomly 
"switches off" a certain portion of neurons, forcing the network to learn using different combinations of 
neurons each time. This helps the model generalize better to unseen data and reduces the risk of 
overfitting. 

o Additional Dense Layers: In some cases, using multiple hidden Dense layers with appropriate activation 
functions (e.g., ReLU) can improve the model's capacity to learn complex, non-linear relationships 
within the features extracted by Inception v3. However, this increases complexity and requires more 
training data to avoid overfitting. 

 The final output of this model is a high-dimensional feature vector for each image. This vector represents the key 
information about the image learned by the convolutional layers and the new fully connected layers.  For feature extraction 
in gastric cancer classification, an autoencoder for dimensionality reduction is used on the feature vector derived from the 
improved inception v3. If the feature vector extracted by the new fully connected layers in the Improved Inception v3 
model is very high-dimensional, an autoencoder can potentially compress it into a more manageable size for the SVM 
classifier. This can reduce training time and memory requirements. While Inception v3's features are informative, they can 
be very high-dimensional (thousands of features) using such high-dimensional data can lead to increased training time for 
the classifier (e.g., SVM) and increased susceptibility to overfitting, which means the model excels at recognizing training 
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examples but struggles with new data. Dimensionality reduction aims to compress the extracted features into a lower-
dimensional representation while retaining the essential information for classification. 

 

d) Autoencoders for Dimensionality Reduction: 

• Autoencoder is a special kind of neural network that excels at uncovering hidden patterns in data. They achieve 
this by learning to represent the data using a smaller set of variables. It consists of two main parts:  

o Encoder: Takes the high-dimensional input features (from Inception v3) and progressively reduces 
their dimensionality through hidden layers with decreasing numbers of neurons. 

o Decoder: Takes the compressed representation from the encoder (bottleneck layer) and attempts to 
reconstruct the original features through hidden layers with increasing numbers of neurons. 

• During training, the autoencoder learns to:  
o Encode the input features into a lower-dimensional latent space (bottleneck layer). This space captures 

the most important information for classification based on the autoencoder's learned representation. 
o Reconstruct the original features as accurately as possible using the decoder. This reconstruction loss 

serves as a training signal, forcing the autoencoder to learn an informative compressed representation. 

           Benefits of Autoencoder-based Dimensionality Reduction are described by the following Computational Cost is 
reduced by using the lower-dimensional features from the autoencoder's bottleneck layer can lead to faster training times 
for the classifier compared to using the high-dimensional features directly from Inception v3. Generalizability is improved 
by focusing on capturing essential features, autoencoders can potentially help mitigate overfitting, especially with large 
datasets. Potential for Better Feature Learning is described by Comparing techniques like PCA, autoencoders can learn 
non-linear relationships between features in the Inception v3 model's output, potentially leading to more informative 
representations for classification. 

 

Fig 2 .Architecture of the proposed Advancing Gastric Cancer Image Classification model  
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1. Freeze the early convolutional layers of Inception v3 

This retains the valuable knowledge these layers learned from the pre-trained dataset (like ImageNet). These layers are 
adept at capturing general image features like edges, shapes, and textures. Freezing them prevents the model from 
"forgetting" this knowledge and allows it to focus on learning new skills. Replacing the final fully connected layers with a 
Dense layer (with SoftMax activation) is essential for gastric cancer classification. The number of neurons in the Dense 
layer corresponds to the number of cancer classes we aim to identify. We might also consider adding other layers like 
dropout or additional Dense layers for improved performance, but this requires careful experimentation and evaluation. 

e)SVM Based Gastric Cancer Image Classification 

1. Feature Vectors 

After processing a gastric cancer image through the Improved Inception v3 model and the autoencoder, a lower-
dimensional feature vector representing the image's key characteristics relevant for classification is obtained. This feature 
vector can be visualized as a point in a multi-dimensional space, where each dimension corresponds to a specific feature 
extracted (e.g., intensity, texture, edge patterns).  

2. Support Vectors and Hyperplane 

In the world of high-dimensional feature spaces, SVM acts like a discerning classifier. It searches for the optimal flat 
separation surface, called a hyperplane, that best divides the data points belonging to different classes. Imagine this 
hyperplane as a flexible decision boundary that can adapt in higher dimensions beyond the familiar lines and planes of 
two- and three-dimensional spaces. To achieve the best separation, SVM identifies the most critical data points, the support 
vectors, acting like gatekeepers on either side of the hyperplane. The margin, the space between the hyperplane and these 
support vectors, is crucial. A wider margin translates to a clearer separation between the classes, making SVM a powerful 
tool for tasks like classifying healthy versus cancerous tissue in gastric cancer images. 

3. Maximizing the Margin 

SVM prioritizes creating a clear distinction between classes. It achieves this by finding a separation boundary, called a 
hyperplane, that maximizes the distance between itself and the closest data points from each class, known as support 
vectors. The wider this margin is, the better. Intuitively, a larger margin implies a clearer separation between the classes. 
This focus on the margin also makes SVM less susceptible to outliers or noisy data in the training set. By prioritizing the 
most critical data points (support vectors) for the classification boundary, SVM aims to generalize well even on unseen 
data.  

4. Kernel Trick (for Non-Linear Separable Data) 

The real world can be messy, and data representing things like cancerous and healthy tissue in gastric cancer images might 
not always be neatly separable in the initial feature space. This means a straight line (hyperplane) can't perfectly divide the 
good from the bad. To tackle this challenge, SVM uses a clever method called the kernel trick. This trick acts like a magic 
portal, projecting the data points into a higher-dimensional space where they become linearly separable. Different types of 
kernels, like linear kernels (for simpler data) or polynomial and radial basis function (RBF) kernels, can be used for this 
projection. The best choice of kernel depends on the specific way your data is scattered in its original space. 

5. Classification of gastric cancer images 

Once the SVM is trained on the battlefield of gastric cancer image features, it's ready to face new unseen enemies. The 
features extracted from a new image are projected into the same high-dimensional space using the same battle plan (kernel 
function) as during training. This essentially creates a map for the new data point. The trained SVM model then acts as a 
commander, strategically analyzing the position of the new data point relative to the hyperplane, the decision boundary. 
Depending on which side of the line the data point falls on, the SVM confidently assigns it to a class, like healthy or 
cancerous tissue, making a crucial prediction for improved diagnosis. 

f. Working principles of the proposed work 
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Working principles of the proposed Enhanced Gastric Cancer Image Classification model is explained in figure 3. The 
initial phase of the pipeline, data preprocessing, lays the groundwork for successful image analysis. Here, two crucial steps 
are undertaken: image resizing and pixel value normalization. Resizing ensures all images conform to a standard dimension 
compatible with the chosen neural network. This prevents issues like excessive padding or information loss during 
processing. The chosen size balances capturing sufficient detail with computational efficiency. Common sizes for medical 
image datasets, like 224x224 or 256x256 pixels, are selected based on the specific network and available resources. 
Normalization, the second step, addresses inconsistencies in pixel intensity caused by variations in imaging devices or 
settings. By scaling these values to a common range (e.g., 0-1 or -1, 1), the data becomes consistent, allowing the model 
to learn meaningful patterns from the images more effectively. The second phase, data augmentation, tackles the challenge 
of limited training data. Here, various techniques are employed to artificially create variations of the original images. This 
includes rotation, simulating different viewing angles; flipping, mirroring the image horizontally or vertically; scaling, 
zooming in or out for slight magnification changes; translation, shifting the image to account for potential misalignments; 
and shearing, introducing minor geometric distortions. Imagine applying these techniques to an image of gastric tissue. 
The result would be variations that resemble tissue from slightly different viewpoints, magnifications, or with minor 
positional changes. By effectively increasing the dataset size and diversity through these artificial variations, the model 
learns robust features. These features allow the model to generalize well to unseen data, ultimately leading to improved 
classification accuracy when encountering real-world gastric cancer images. 

 

 

Fig 3 . Working principles of the proposed Enhanced Gastric Cancer Image Classification model. 

The third phase dives into feature extraction, a crucial step in image analysis. Here, the pipeline utilizes an improved 
version of the Inception v3 model. This pre-trained model is a powerhouse, having already learned to recognize 
fundamental image features like edges, shapes, and textures from a massive dataset like ImageNet. These learned 
capabilities are directly applicable to the task of gastric cancer image classification. To leverage this pre-trained knowledge 
effectively, the early layers of Inception v3 are frozen. This preserves the valuable information about generic image features 
learned from the massive dataset. Meanwhile, newly added layers are tasked with analyzing the processed images. The 
Inception v3 model, with both frozen and new layers, transforms each gastric cancer image into a high-dimensional feature 
vector. This vector acts like a fingerprint, capturing the essential details and key characteristics relevant for classifying the 
image as healthy or cancerous tissue. The newly added layers then specifically analyze these feature vectors to identify 
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patterns that differentiate between the two classes. The fourth phase tackles the challenge of high-dimensional feature 
vectors generated by Inception v3. Here, an autoencoder comes into play. This powerful tool consists of two parts: an 
encoder and a decoder. The encoder takes the complex feature vectors from Inception v3 and progressively reduces their 
dimensionality by passing them through hidden layers. Imagine squeezing a complex ball of yarn into a tighter ball. This 
compressed version, called the bottleneck layer, retains the most critical information for classification while being much 
more efficient to handle in the next stage. The decoder's role is fascinating. It receives this compressed representation and 
attempts to reconstruct the original feature vectors. While the reconstruction might not be perfect, the process itself helps 
the autoencoder refine and solidify its understanding of the essential details captured within the feature vectors. This 
dimensionality reduction allows for faster and more manageable processing in the final classification stage, without 
sacrificing the crucial information needed to distinguish healthy from cancerous tissue. 

IV. RESULTS AND ANALYSIS 

This section presents the performance metrics used in this work and the results obtained from the proposed model, along 
with a comparative analysis. 

IV.i) Performance Metrics 

The assessment of classification algorithms' effectiveness relies on the accuracy parameter. However, when applied to 
evaluate a model trained on imbalanced data, achieving accuracy becomes challenging and may result in a performance 
matrix that is misleading, as depicted in equation (3). 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 =
𝐓𝐓𝐓𝐓 + 𝐓𝐓𝐓𝐓  

𝐓𝐓𝐓𝐓 + 𝐓𝐓𝐓𝐓 + 𝐅𝐅𝐅𝐅 + 𝐅𝐅𝐅𝐅
                                               (𝟑𝟑) 

Recall serves as a dedicated metric to gauge the efficiency of a classifier. Equation (4) illustrates recall, which is the 
measure of correct classifications achieved by the classification model. 

  𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 =
𝐓𝐓𝐓𝐓

𝐓𝐓𝐓𝐓 + 𝐅𝐅𝐅𝐅
                                                                         (𝟒𝟒) 

Precision, as indicated in Equation (5), is formulated by dividing the true positive instances by the sum of the true positive 
and false positive (FP) instances. 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 =
𝐓𝐓𝐓𝐓

𝐓𝐓𝐓𝐓 + 𝐅𝐅𝐅𝐅
                                                                  (𝟓𝟓) 

The Area under the Curve (AUC) summarizes the ROC curve, offering a unified assessment of a binary classification 
model's overall performance. It quantifies the likelihood that a positive sample selected at random will receive a higher 
classification score than a negative sample, based on the model's predictions. The formula for AUC can be calculated using 
numerical integration techniques or the trapezoidal rule. Using the trapezoidal rule, the formula for AUC is shown in 
equation (6). 
 

AUC =
∑[(i = 1) to (n − 1)] (TPR[i] + TPR[i + 1]) ∗ (FPR[i + 1] − FPR[i]) 

𝟐𝟐
     (𝟔𝟔) 

 
Where TPR[i] and FPR[i] represent the TPR and FPR values at the ith point on the ROC curve, and n is the total number 
of points on the curve. 

IV.ii) Results 

 Following feature extraction using the improved InceptionV3 model, the sample feature vector set is represented as 
shown in the figure 4 
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Fig 4.  Sample Feature Vector after Feature Extraction 

After feature extraction, an autoencoder is used to reduce the dimensionality of the features. The figure 5 illustrates the 
output of the encode feature vector. 

 

Fig 5.  Feature Vector after dimensionality reduction 

 

Fig 6. Advancing Gastric Cancer Image Classification model's training, valid accuracy on the GasHisSDB for Epochs 45 

  This figure 6 shows the training and validation accuracy of a machine learning model for classifying advanced gastric 
cancer images. The x-axis is labelled "Epochs,” and the y-axis is labelled accuracy." There are two lines on the graph, one 
for “Train Accuracy” and another for “Validation Accuracy”. The model’s training accuracy increases as the number of 
epochs increases. This suggests that the model is learning to classify the images correctly based on the training data. The 
validation accuracy also increases as the number of epochs increases. This suggests that the model is generalizing well and 
is not simply overfitting the training data. The model performed well on a test set; this would give a better indication of 
how well the model would perform on unseen data. Starting at 0.15, the training accuracy increases as the epoch increases. 
The highest training accuracy achieved is 0.9976. The validation accuracy also varies across epochs, with the lowest being 
0.052 and the highest being 0.9932. 
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Fig 7. Performance of the proposed Enhanced Gastric Cancer Image Classification model 

This figure 7 illustrates the performance of a model on a classification task. The model achieved a high sensitivity of 
0.9913, indicating it correctly classified 99.13% of actual positive cases. Similarly, the specificity of 0.9964 signifies that 
the model accurately classified 99.64% of actual negative cases. Examining errors, the model produced a low false positive 
rate of 0.0036, meaning only 0.36% of actual negative cases were incorrectly classified as positive. There was also a low 
false negative rate of 0.0087, indicating that the model misclassified just 0.87% of actual positive cases as negative. Overall, 
the model achieved a high accuracy of 0.9932, signifying it correctly classified 99.32% of all cases. 

 
IV.iii) Analysis 

 

Fig 8 . Confusion matrix of the proposed gastric cancer classification model. 
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This figure 8 illustrates the confusion matrix that evaluates a medical image classification model's performance in 
distinguishing between normal and abnormal images. Here, 'normal' signifies images free from disease, while 'abnormal' 
represents those containing the disease. True positives (TP), at 18,748, represent abnormal images correctly classified. 
False positives (FP), at 68, indicate normal images incorrectly classified as abnormal. Conversely, false negatives (FN), at 
266, represent abnormal images missed by the model and classified as normal. Finally, true negatives (TN), at 30,157, 
represent normal images correctly identified. 

 

Fig 9. Accuracy based comparison of the proposed gastric cancer classification model with the existing techniques. 

Figure 9 compares the performance of various classification algorithms on a gastric cancer classification task. The X-axis 
lists various classification algorithms including XGBoost model, Linear Regression (LR), Support Vector Machine (SVM), 
Visual Geometry Group (VGG)-16, GastroMIL algorithm, Convolutional Neural Network (CNN), Deep Convolutional 
Neural Network (DCNN), ANN prediction, Gradient Boosting, Novel Genomic classification, Decision Tree classification, 
Ensemble method, and the proposed Advanced Gastric cancer classification model.  The Y-axis represents the percentage 
accuracy achieved by each algorithm on the classification task. 100% represents perfect classification, while 0% indicates 
completely random assignment.The bars show that the proposed model, likely a Deep Convolutional Neural Network 
(DCNN) based on its location on the X-axis, achieves the highest accuracy (around 99.32%) compared to other algorithms. 
The performance of the remaining algorithms varies, with some exceeding 90% accuracy (e.g., XGBoost model at 97.90%) 
and others falling below 80% (e.g., Linear Regression at 75.90%). 

V. CONCLUSION AND FUTURE WORK 

This research presented a deep learning-based approach for gastric cancer classification using image analysis. The proposed 
method addressed limitations of existing techniques by employing deep feature extraction, dimensionality reduction, and 
classification strategies. This approach achieved high accuracy (99.32%), sensitivity (99.13%), and specificity (99.64%) 
in classifying gastric cancer. These results suggest that the proposed method has the potential to be a valuable tool for 
automated gastric cancer diagnosis, potentially improving efficiency and accessibility compared to traditional methods. 
Future work could explore the generalizability of this approach on larger and more diverse datasets, paving the way for its 
real-world implementation in clinical settings. And this work focuses on single-modality features. Multi-modality feature 
fusion could be investigated in future work to potentially improve performance. 
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