

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

472

An Enhanced Hybrid Deep Learning Model to
Enhance Network Intrusion Detection Capabilities

for Cybersecurity

 1Abhijit Das, 2Shobha N, 3Natesh M, 4Gyanendra Tiwary and 5Karthik V
 1,5Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher

Education, Manipal, India.
2Department of Computer Science and Design, Dayananda Sagar College of Engineering, Bengaluru, India.
3Department of Computer Science and Engineering, Vidyavardhaka College of Engineering, Mysuru, India.

4School of Computer Science and Engineering, RV University, Bengaluru, India.
1abhijit.das@manipal.edu, 2shobha-csd@dayanandasagar.edu, 3natesh.m@vvce.ac.in, 4gyanendrat@rvu.edu.in,

5v.karthik@manipal.edu

Correspondence should be addressed to Karthik V : v.karthik@manipal.edu

Article Info
Journal of Machine and Computing (http://anapub.co.ke/journals/jmc/jmc.html)

Doi: https://doi.org/10.53759/7669/jmc202404045

Received 10 April 2023; Revised from 12 October 2023; Accepted 12 March 2024.

Available online 05 April 2024.

©2024 The Authors. Published by AnaPub Publications.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract – Recently, we have noticed tremendous growth in the field of Information Technology. This increased growth

has proliferated the use of new technologies and continued advancement of networking systems. These systems are widely

adopted for real-time online and offline tasks. Due to this growth in information technology, maintaining security has

gained huge attention as these systems are vulnerable to various attacks. In this context, an Intrusion Detection System
(IDS) plays an important role in ensuring security by detecting and preventing suspicious activities within the network.

However, as technology is overgrowing, malicious activities are also increasing. Moreover, legacy IDS methods cannot

handle new threats, such as traditional signature-based methods requiring a predefined rule set to detect malicious activity.

Also, several new methods have been proposed earlier to address security-related issues; however, the performance of

these methods is limited due to poor attack detection accuracy and increased false positive rates. In this work, we propose

and compare different deep-learning (DL) models that can be used to construct IDSs to provide network security. Details

on convolutional neural networks (CNNs), Multilayer Perceptron (MLP), and long short-term memories (LSTMs) are

introduced. A discussion of the outcomes achieved follows an assessment of the proposed DL model known as the FOA-

CNN-LSTM technique. Comparisons are made between the suggested models and other machine-learning methods. This

work presents a deep-learning approach based on hybrid CNN-LSTM with Fruit fly Optimization Algorithm (FOA) by

ensemble techniques to distinguish between normal and abnormal behaviors.

Keywords – Intrusion Detection System, Cyberattacks, Fruit fly Optimization Algorithm, LSTM, CNN, DNN, RNN.

I. INTRODUCTION

Due to its ability to understand existing data, DL-based system is currently a popular topic in AI. As academics in other

domains have discovered encouraging outcomes from deep learning, they have begun to focus on cybersecurity. When we
looked back just a few years ago, the idea of deep learning was still around, but it wasn't widely deployed because of the

enormous volume of data, computing power, and other resources it required. It is possible to divide the learning algorithms

into supervised, unsupervised, and semi-supervised categories. All three types of learning can use deep learning, a

specialized branch of machine learning based on a more comprehensive neural network.

 On the other hand, there needed to be more computing power to make deep learning model training feasible. Furthermore,

vanishing gradient issues plagued earlier deep-learning methods. The lengthy training period required by deep learning

techniques is a drawback of the process. However, DL methods necessitate a large quantity of training data for optimal

performance. The advent of considerably speedier technology and the introduction of GPUs as processing units has brought

deep learning to practical applications. All the major IT firms currently use deep learning technology in their products and

services.

 Recently more focus has been placed on Intrusion Detection Systems (IDSs) to protect critical data within a network

infrastructure. In most cases, hackers can find a way into a protected network by exploiting vulnerabilities or using intelligent

mailto:abhijit.das@manipal.edu
mailto:shobha-csd@dayanandasagar.edu
mailto:natesh.m@vvce.ac.in
mailto:gyanendrat@rvu.edu.in
mailto:v.karthik@manipal.edu
mailto:v.karthik@manipal.edu

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

473

attacks. Predicting attacks from normal packets is difficult, time-consuming, and technically demanding in such a setting.

Accordingly, numerous algorithms' learning and training capabilities have been investigated. Existing Intrusion Detection

systems, however, needed help to learn the complex feature automatically to achieve the required performance levels. As a

result, a novel Intrusion Detection strategy is proposed here that combines the Deep Learning approach with the FOA

strategies. FOA is a population-based strategy used to improve the effectiveness of the neurons in the hidden layers of Deep

Learning methods. In addition, this work presented a CNN, MLP, LSTM, CNN-LSTM, and FOA-CNN-LSTM model for

detecting cyberattacks and compared their performance. All of the deep learning models use the most recent CICIDS2018

datasets. In this work, we also evaluated the DL model against some of the most popular machine learning algorithms utilized
in cyber security.

II. WORK IN THIS AREA

The term "deep learning (DL)" refers to a specific type of machine learning in which a multi-layered neural network (NN)

is used to solve problems. These NN "learn" from extensive datasets to mimic human brain activity, albeit they are still far

from brain supremacy. A single-layer NN can still produce approximations, but more complex networks with hidden layers

can improve accuracy. Many independent deep networks are used to construct a deep learning model. The high efficiency

of deep learning on vast volumes of security data is its main benefit over shallow ML. Research into deep learning-based

IDS has seen rapid growth from 2015 until the present. DL methods can automatically learn characteristic representations

from the original data, eliminating the requirement for time-consuming feature engineering. As a result, DL methods require

less information processing to achieve the same degree of performance. DL methods outperform more conventional

ML models when confronted with big datasets. Some of the most widely used DL approaches in cyberattacks are

autoencoders, LSTM, CNN, GAN, DBN, DNN, and RNN, among the most effective learning methods.

 When the information is complicated and includes a significant level of dimensionality, deep learning (DL), a subfield of

machine learning (ML), performs exceptionally well in generalizing to new examples [1]. Furthermore, deep learning allows

for the efficient training of nonlinear systems on massive datasets. A model that can generalize to assaults that aren't reflected

in the available labelled data is crucial in the field of NIDS, where massive amounts of data must be processed. The ideal

system would be able to generalise and perform well in a novel, unseen network contexts. However, even if it couldn't, it
might still be employed in a machine learning process as a transfer learning phase when fed data from another network.

Table 1: Survey of Attacks and Detection Approach Applied by Researchers

Year Vulnerability type Detection Method Features Dataset Accuracy Ref

2020 Web Traffic
Random forest Algorithm,

Gradient boosting Machine
Generalizability

CSIC-2010v2 and CICIDS-

2017, NSL-KDD,UNSW-
NB15

94.46% [4]

2020 Host or Network Attacks
Hybrid of Decision Tree And

KNN
Network Security NSLKDD, KDD-Cup99 99.33% [5]

2019

Ping of death, denial of

Service,Host Attack

Expectation Maximization

(EM),S VM,Naïve bayes
Bayes,KNN,HNB

Improves the

stength of

contemporary

method

NSI-KDD,KDD-Cup99,

ADFA-LA and AFDA- WD
78% [6]

2019
U2R and R2L Attacks

FAIS,FCAAIS

Scope of detecting

novel
attacks

NSL-KDD

88%
[7]

2018

Denial of

Service,Distribut
ed Dos

ANN,K-Means,SVM

Categorizing

network attacks
based on source

KDD-99,NSL-KDD

97.25%
[8]

2020

Packet-Level Attack

LSTM,OHE

Packet-level
feature extractio

improves real-

time speed

ISCX2012,USTC-
TFC2016,CICIDS2017

99.74%
[9]

2019

User to root

attack,Remote to local
attack,DoS,Prob

e

LSTM with,LR,NB,KNN,SV

M

Enhanced

Performance

KDDCup99,NSL-

KDD,UNSW NB- 15,WSN-
DS,CICIDS2017,ADFA-

LD,ADFA-WD

93.50%

[10]

2021

Network Traffic

Ensamble Approach with

C4.5, Random

Forest,(Forest PA)

High Accuracy and
Efficiency

NSL-KDD,AWID,CIC-
IDS2017

99.52%

[11]

2018

Denial of

Service,Distribut
ed Dos

NB,Decisiontable and

Stochastic
gradient descent

High Accuracy

NSL-KDD

99.93%
[12]

2018 network Traffic
SVM,Random Forest

Algorithm

Performance

Improvement
NSL-KDD 99.33% [12]

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

474

 Table 1 shows survey of Attacks and detection approach applied by researchers. Although deep learning has been more

well-known in recent years, it has been present for quite some time, with its origins going back to the 1940s [2]. Motivated

by the computational methods of the human brain, a few of the earliest deep learning techniques gave rise to the terms

"artificial neural network" (ANN) and "computational node," respectively. Although the neuroscientific viewpoint is still

regarded as a significant motivation for deep learning, it is no longer used as the major basis for the subject. This is because

complete knowledge of the brain's internal workings and techniques remains elusive. In the realm of "computational

neuroscience," this is a topic that is constantly being studied and expanded upon. While brain-inspired models like the

perceptron and neuron have affected deep learning's structure and direction throughout the years, they are by no way a hard
and fast rule. Instead, the multi-level composition is a foundation of current deep learning . The rebirth of deep learning in

the 2000s can be partially attributed to the explosion in processing capacity and data availability. Deep learning algorithms

perform exceptionally well when a vast amount of information is available. As of 2016 [3], a decent general principle for

supervised deep learning algorithms is to have at least 5,000 labelled samples per class. They will also outperform humans

when trained with a dataset containing at least 10 million labelled samples. Moreover, some human analysts are experts in

their fields and can offer constant input to a training system. One can use deep learning algorithms that are well adapted to

this massive data set to uncover malicious behaviour hidden among the noise of a corporate network's traffic and system

logs.

III. PROPOSED METHODOLOGY

The suggested method uses a neural network to analyze a CSE-CIC-IDS2018 dataset made up of modern attack vectors.

This work created a method for identifying anomalous network traffic using deep learning techniques based on a hybrid

CNN and LSTM model with FOA [13][14]. Notably, the timestamp values of each network flow are included, making the

dataset better realistic. Many studies have used machine learning to justify their findings, yet this data has been mostly

ignored. However, in the case of cyberattacks, a correlation of traffic flows as per their timing is crucial for detecting

irregular activity. Because of its effectiveness in solving sequence issues, pattern recognition, audio recognition, text

generation, text analysis, visual description generation, and character recognition, the CNN-LSTM-based deep learning

techniques was chosen for this work.
 In this work, we employed a CNN-LSTM-based FOA optimization technique to learn attack patterns and evaluate its

performance in detecting malicious behavior. The FOA algorithm found the best smell by optimizing the model's hidden

neurons and hidden representation via deterministic mapping with new values. By contrasting the ensemble CNN-LSTM

model's performance in this way, we were able to assess the significance of features retrieved from the network to identify

the attack behavior.

Datasets

In light of the ever-increasing sophistication of cyberattacks, it is crucial to train a model using the most recent realistic

data available to construct an effective IDS. CSE-CIC-IDS2018 is a publicly available dataset [15] and it was chosen for

this study. During the tests, six distinct types of attacks like brute-force, bott, Infiltration, web and DDoS were

implemented. This dataset's 83% percentage of benign traffic is one of its realistic specialties. It is essential to make use of

the assumed normality of most of the traffic in a real-world configuration to train the IDS. It will improve the system's

capability to differentiate benign and malicious traffic, reducing the number of FP and improving accuracy. Hence reducing

the number of FP while improving accuracy. More or less, every intrusion originated out of a machine (or machines)

outside the defended system. Five distinct subnets were set up to represent the corporation's various departments and server

rooms, just as they would be in a real network. All fourteen attack types are represented in this dataset's network traffic

distribution. This dataset also contains gathered raw network traffic statistics organized daily into 10 CSV files. Information
like time, no. of pkts, no. of bytes, and pkt length are sent in the fwd. and reverse paths, which significantly aids in detecting

cyberattacks.

Experimental setup

The Anaconda Individual Edition Python distribution platform and Python, TensorFlow, Keras, and Scikit-learn were used

to experiment. The CNN-LSTM model was developed and trained with Tensorflow and Keras. The hardware used in the

experiments included a CPU (IntelR CoreTM i7), RAM (32 GB), a graphics processing unit (NVIDIA GeForce GTX), and

an OS (Windows 11). In order to train on a graphics processing unit, Nvidia Cuda and CuDNN were installed and set up.

Preprocessing

This work employs a multi-class classification strategy to anticipate safe traffic against 14 distinct attack types, with the

goal of outperforming conventional intrusion detection systems. Fig 1 depicts the data preprocessing method designed for

the experiment. Data Initiation, Data Preparation, and Split and Normalize were the three primary Phases of Preprocessing.

To do this, we employ the procedure depicted in Fig 1. There are a total of ten daily CSV files in the dataset, and they have

all been consolidated into a single file. Most prior efforts in this area dealt with particular forms of assault that were

documented in isolated CSV files. However, since CNN-LSTM is the chosen method for DL, historical input is also

included during the training process. To accurately categorize normal flow and recognize the abnormal activity, it gathers

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

475

as many examples as possible, as they understand the natural behavior of the flow. In addition, attacks like DDoS, brute

force, bot, and infiltration depend on prior traffic. As a result, we use the entire preprocessed dataset to train the model.

The duplicate rows were eliminated when the dataset was merged into a single CSV file. Next, the data is reorganized

based on the "Timestamp" field. As was previously mentioned, the LSTM model relies heavily on previous data. Each

epoch's batches were fed into the model, and the process was repeated. Timely network traffic analysis allowed more

accurate detection of the attacker's tactics. The columns "Src IP", "Src Port", and "DstIP" were removed so that predictions

may be made without reference to the original socket. We are keeping "Dst Port" since it helps us spot certain kinds of

assaults, such as brute-force FTP and SSH attempts, web attacks, application-layer DoS attempts, and more.

Fig 1. Data Pre-Processing

 Further to the preceding, it was found that a few columns contributed little to the overall classification. The

bandwidth_push_flag and bandwidth_urgent_flag columns are consistently found to have the same value (0). Furthermore,

the flow_identifier produced a distinct value, and is not useful as a feature for attack detection because it is not shared

throughout flows. Previously, the dataset was rearranged using the "Timestamp" feature. However, this column is also

removed before training as the model does not need to distinguish between attack and benign traffic based on their timing.

After eliminating the unnecessary attributes, the number of features has become 76 from 80. The splitting and Normalizing

Phase follows the Data Initialization Phase to ready the data for further processing. The Flow bytes per second and Flow

packets per second both have infinite values, which have been changed with NaN. The dataset was split into an independent

variable array (labelled "y") and a dependent variable array (labelled "X") in NumPy. In this case, we pick as a dependent

only the "Label" column describing the attacks. The resulting inverted 'X' coordinates are 15677150, 76, and those for 'y'

are 15677150. Then the mean value from the corresponding column was substituted for the NaN value of X using the

Simple Imputer function in sci-kit-learn. If we provide a Simple Imputer with a missing value strategy, it will use that to

fill in the missing values in the dataset. Mean, median, most common, and constant are all possible choices. For this task,

the model fell back on its default "mean" method. All independent variables were measured in numerical form. Categorical

and string forms of the dependent variables were used. However, since the ML model requires numbers, it is important to
transform all values into numbers before beginning the training phase. Accordingly, the Categorical Encoder converts the

"Label" column (y) into a numerical array. All good traffic is represented by "0.0" on the y-axis, whereas all bad traffic is

represented by "1.0" for binary classification purposes. OneHotEncoding is chosen as the method to use for multi-class

categorization. Categorical characteristics are converted into a numerical array for use with OneHotEncoder.

 In contrast to the other well-known method, LabelEncoder can store information as one hot numeric array of 0s and 1s.

Machine learning models, including CNN and LSTM, generally emphasize more extreme values during training. Since all

attack types are equally important for intrusion detection in multi-class classification, this circumstance takes on further

significance. To split and normalize the data, we employ sklearn.model_selection.train_test_split. 20% to test and 80% to

train have chosen. The result of the sub-dataset ratios is 64% to train, 20% to test, and 16% to validate. Tables 1 and 2

show the class distribution.

 After splitting, sub-datasets are normalized between (0,1). It is accomplished by employing the "MinMaxScaler"

function. It has been chosen since it does not alter the original data in any way, allowing us to keep the distribution's natural

structure. The formula for minmax scaler has given in equation 1.

𝑋𝑚𝑖𝑛𝑚𝑎𝑥 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (1)

Model Building

This section discusses the model-building approach followed to design an FOA-CNN-LSTM along with the MLP, CNN,

LSTM, and CNN-LSTM to identify malicious activity in a network. Some recent studies have investigated the viability of
MLP, CNN, and LSTM in the intrusion detection domain. Some instances where MLP has proven to achieve remarkable

outcomes are provided in [16][17]. The MLP's strengths include its ability to learn from imperfect data, fault tolerance,

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

476

simplicity (in construction and maintenance), computational speed, responsiveness to noise, and capability to learn and

generalize. We also make use of the Convolutional Neural Network DL model. CNN's ability to automatically identify

crucial elements, even without human intervention, is one of its main selling points. The use of CNN to identify DDoS

attacks has been documented in papers such as [18] and [19]. The sparsity of connections describes how CNN's output

values depend on a relatively small input value.

 When training, the network's overall size can be kept relatively small thanks to the sparsity of its connections. RNNs

are helpful since they are not constrained by the input length and can make better predictions by considering the temporal

context. Long short-term memory (LSTM) aims to optimize neural network weights via vanishing gradient descent to
prevent long-term reliance issues. Different values for the model's hyperparameters, like the learning rate, are tried out,

and the optimal ones are discussed here. Considering that our data can be divided into two categories—"normal" and

"attack"—the final layer of our models is highly dense and uses a sigmoid activation function. We have also developed

LSTM, a DL approach for capturing long-term dependencies. A basic MLP, CNN, and LSTM model still produces

excellent results. Still, it's worth noting that when LSTM models are paired with prior CNN models by using the FOA

optimization algorithm, the result increases even further.

MLP Model

Multilayer Perceptron model used in this study is displayed in Fig 2. Transformation of MLP model’s shape is not require

before feeding it into the model as dataset used by MLP model is in the matrix format. The suggested model has an input

layer, followed by three dense layers. Each layer's output feeds into the next layer's input. In order to prevent the system

from overheating, a single dropout layer is added. After the dropout layer's output is processed, it is sent on to the fully

connected layer, which in turn feeds the dense layer's sigmoid function.

Fig 2. Multilayer Perceptron model

CNN Model

The design of the CNN model used is depicted in Fig 3. Convolutional, pooling, and dense layers are the three types of

primary layers found in any CCN model. Input data is typically in a 3D shape (batch, steps, channels), and 1d-CNN will

convert the dataset to a 3D shape as needed. The dataset includes 83 characteristics (with the last label), and we used the

transform function with the parameters (data.shape[0], data.shape[1], 1) as well as transmitted the data into the network

with an input shape of 82,1. We then activated the network with relu. An additional max pooling layer will only retain the

highest-scoring features and reject any others. There is a dense sigmoid activation function in the last layer.

Fig 3. CNN Model

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

477

LSTM Model

LSTMs are a variant of RNNs in which nodes in the same layer are interconnected to eliminate irrelevant information and

facilitate long-term memory storage. Fig 4 depicts the LSTM model's flowchart, which allows for a 3D dataset to be input

in the form of a batch, steps, and channels. First, an LSTM layer with 128 adam-activated kernels and then a dropout layer

with a dropout rate of 0.5 make up this model. A dense layer with a sigmoid function receives input from the dropout layer

to distinguish between normal and malicious behavior.

Fig 4. LSTM Model

CNN-LSTM Model

This model begins with a CNN layer using the relu activation function and continues with an LSTM layer using the adam

activation function. The proposed hybrid CNN-LSTM model has shown in Fig 5. The dataset is transformed into a three-

dimensional form (batch, steps, channels) for use with both CNN and LSTM. Because CNN produces output in a 3D space,

the data does not need to be reshaped before being fed into the LSTM model. Parameters are similar to convolutional neural

networks and Long Short Term Memory.

Fig 5. CNN-LSTM Model

FOA-CNN-LSTM Model

The details of the suggested architecture for attack detection with the CNN-LSTM model are shown in Fig 6. The primary

goal of this study was to tune the most sensitive hyperparameters of a CNN-LSTM network to automatically generate a

highly accurate CNN-LSTM model throughout the model-building process. Therefore, we carefully regulate these facets

of the model-building process, which significantly aids in improving the time series forecasting model's predictive

capability. In order to determine if a behavior is benign or malicious, this research proposes an ensemble mechanism that

combines the CNN-LSTM with FOA.

 The proposed methodology consists of two distinct but interconnected steps: data preprocessing and hyper-parameter

tuning with an optimized CNN-LSTM model. The first processing module, data preparation, includes the submodules of

data initialization, data preparation, splitting, and normalization, all of which were covered in the previous part. After that,

we move on to fine-tuning the CNN-LSTM model's hyper-parameters in the second processing module. In this part, we
will adjust the CNN-LSTM hyper parameter like batch size, the number of hidden neurons, the number of hidden layers,

and the number of epochs. This network is then validated by finding the best smell with optimized hidden neurons,

optimized weight, and hidden representation through deterministic mapping.

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

478

Fig 6. The proposed CNN-LSTM hybrid model with FOA Optimization Techniques

 The proposed CNN-LSTM hybrid model with FOA optimization techniques combines the strengths of both networks

by leveraging CNN for feature extraction and LSTM for prediction while taking advantage of FOA to improve model

performance further. The core component of the proposed method is a CNN-LSTM architecture. The convolutional layer,

pooling layer, and flattening are all parts of the CNN module. The m-layer configuration for the Conv2d convolutional

layer has been selected. CNN's feature extraction can be tailored to data from varying time periods by adjusting the size of

the convolution kernel. The convolution kernel is scaled to n X n to make the most of the information ready. The pooling

layer size is n X n, and the maximum number of layers is m. The research improves training effectiveness by inserting a

batch normalization layer before the pooling layer. After that, flatten is used to reduce the file size so that global features

can be extracted. The information is then fed into the LSTM module for forecasting purposes. Experiments have shown
that boosting the model's depth by adding more LSTM network nodes enhances the model's ability to predict. The number

of neurons in each layer of the LSTM is set by the proposed FOA optimization algorithm 1. Dropout is utilized in LSTM

to mitigate the possibility of overfitting.

 Moreover, finally, Dense will spit out the attack prediction value as a vector in the given format. Compared to the CNN-

LSTM method, the FOA-CNN+LSTM algorithm suggested here performs better. With regards to the CNN-LSTM method,

its usefulness, particularly in the realm of prediction, has been established by numerous articles. Because of its special

benefits for time series prediction, LSTM is used as input in the FOA-CNN+LSTM method. LSTM will prevent gradient

fading while predicting time series over lengthy periods of time. However, most studies rely on manual selection methods

like grid search to choose the best parameters for their CNN+LSTM models, which is both time-consuming and inefficient.

 Consequently, this study opts for the FOA approach for parameter selection because it is more time-efficient in terms of

finding the optimal smell with optimized hidden neurons, weight, and hidden representation via a deterministic mapping

with new values. Here, we use FOA to determine the optimal combination of convolution kernel size, number of neurons

per LSTM layer, and weight for optimization. After training the model a certain number of times or until some other

criterion is met, the best value can be used to forecast an attack.

 Pan presented the Fruit fly optimization algorithm (FOA) in 2012 [13] as a population-based approach to optimization.

The algorithm's development was inspired by the way FOA forage for food. In particular, it can detect the smell of the food

source from great distances. As a result, the FOA has lately been used to fine-tune the settings of a wide range of real-time
programs[18][19]. As part of this effort, we use Fruit fly to fine-tune the neurons in CNN-hidden LSTM layers. The CNN-

LSTM is taught to use several hidden layers to get the most useful information from raw input. During this training phase,

the FOA algorithm is used to fine-tune the CNN-LSTM's hidden neurons. Even further, the backpropagation neural network

is used to categorize the assaults. The number of iterations is 200, and the learning probabilities are 0.01 and 0.001. Weights

and thresholds of the CNN-LSTM model are initialized at the population location (x0, y0) of fruit flies. FOA runs for 1000

iterations, with a population size of 20. Individual searches can be set to travel in a predetermined direction over a

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

479

predetermined distance randomly. We use a fruit fly optimization approach to determine the best values for the weights

and the cutoffs. The CNN-LSTM model is then updated with the optimal value in order to perform repeated calculations.

 In order to ensure an objective evaluation of results, testing input is not utilized while training. When fed training sets,

the FOA-CNN-LSTM generates an error, which is then used by the optimizer, which employs a backpropagation technique,

to fine-tune the network's parameters. With more training cycles, GA-CNN-LSTM will produce more precise predictions.

After the FOA-CNN-LSTM has been trained, it is fed testing data, and its performance is judged based on how closely the

test results match the true outcomes. Algorithm 1 describes the proposed FOA-CNN-LSTM technique.

 Overfitting can occur when there needs to be more training data or when there is too much training. Overfitting can be
avoided by a variety of techniques, including regularization, data augmentation, Dropout, dropconnect, and early

termination. In this study, we employ a dropout methodology.

Algorithm 1. IDS using hybrid CNN-LSTM with FOA Optimization

Step 1: Start by loading the data, which has been separated into classes for training and testing.

Step 2: Set the starting conditions for the fly optimization process, including population size, number of iterations,

fruit fly position, random search directions, and starting search length.

Step 3: Train CNN-LSTM with random hidden values and compute the accuracy

Step 4: Compute the cityblock distance of the Fruitfly from the origin

𝐷𝑖 = ∑|𝑥𝑖 + 𝑦𝑖|

𝑛

𝑖=1

 (2)

Step 5: Find the smell concentration judgement value

𝑠𝑖 =
1

𝐷𝑖

 (3)

Step 6: Compute the smell concentration of the individual Fruitfly

𝑆𝑚𝑒𝑙𝑙𝑖 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑖) (4)

Step 7: Identify the position of the best smell concentration

[𝑏𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝐼𝑛𝑑𝑒𝑥] = 𝑚𝑎𝑥(𝑆𝑚𝑒𝑙𝑙𝑖) (5)
Step 8: Go to step 3 until convergence

Step 9: Train CNN-LSTM with optimized hidden neurons and find the hidden representation through a

deterministic mapping

𝐸𝑛𝑐𝑜𝑑𝑒1 = 𝜎𝑟 + (𝑊 ∗ 𝐼 + 𝑏) (6)

Step 10: The latent representation from step 8 is passed as an input to the successive CNN-LSTM

𝐸𝑛𝑐𝑜𝑑𝑒2 = 𝜎𝑟 + (𝑊 ∗ 𝐸𝑛𝑐𝑜𝑑𝑒1 + 𝑏) (7)
Step 11: Train Back Propagation Neural Network with the encoded features to classify the attacks

Step 12: The trained CNN-LSTM is updated with the optimal weights and thresholds.

Step 13: Evaluate the performance of the hybrid deep CNN-LSTM performance using the test sets and compute

the error.

Step 14: From the ensemble of model select the best CNN-LSTM model
 We have also tested and compared several well-known machine learning algorithms alongside the aforementioned deep

learning models. SVM is widely utilised in supervised classification and regression problems. In order to classify a data

point correctly in n dimensions, SVM looks for a decision limit. Support vector machines (SVMs) pick out the hyperplane's

extrema or support vectors. We have tested the Naive Bayes classifier based on the Bayes theorem and employed it in

supervised classification. Bayes classifier's speed and accuracy as a machine learning method for prediction is a significant

plus. It relies on the object likelihood to forecast the final result. Ensemble learning, upon which Random Forest is founded,

combines multiple classifiers to find a solution to a complex problem. Subsets of a dataset are used to increase the predicted

accuracy of the dataset by feeding it to several decision trees. Each decision tree's prediction is added together, and the

final result is forecast using the predictions with the most votes.

IV. EXPERIMENTAL ANALYSIS &RESULTS

Our proposed method is demonstrated here with experimental results employing FOA-based optimization tools and their

performance measured. Additionally, the improved outcomes acquired through CNN-LSTM network optimization have

been assessed. Therefore, employing FOA approaches, it has been demonstrated how to construct an optimised CNN-

LSTM network by gradually increasing the hyper-parametric values depending on the lowest prediction error at every

iterative level, starting with level-0 optimization and culminating through level-k optimization. This analysis is concluded

using CICDS 2018 datasets.

 Table 2 displays the results of a comparison between CNN-LSTM network hyper-parameter tuning at level 0 and level
k. Experiments were run to find the best possible settings for the n-LSTM model's hyper-parameters and network topology,

and the results are shown below. The results demonstrate the efficiency of an assembled optimization method for exploring

a CNN-LSTM network model.

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

480

Table 2. Optimized hyperparameter Using FOA from level 0 to level k.

Sl. There are n LSTM models in the initial

population, and they are all optimized at

hyperparameter level 0.

There are n LSTM models in the initial

population, and they are all optimized at

hyperparameter level k.

1
Hidden

Layer

Hidden

Neurons

Batch

size
Epochs

Error

rate

Hidden

Layer

Hidden

Neurons

Batch

size
Epochs

Error

rate

2 2 45 5 304 0.28 2 41 8 277 .273

3 8 70 21 244 0.40 5 53 17 247 .394

4 4 22 16 64 .39 3 31 14 157 .381

5 7 65 20 440 .42 2 20 10 182 .141

6 1 99 15 186 .37 .594 1 70 218 .366

7 4 85 4 212 .30 3 63 8 231 .285

8 2 40 12 250 .22 2 35 13 256 .218

9 7 97 7 266 .45 5 69 9 258 .441

10 1 77 8 441 .36 1 59 10 346 .345

… ….. …… …… ……. ……. ……. …….. ……. …… ……

n ….. …… …… ……. ……. ……. …….. ……. …… ……

 To begin, binary classification is tried out for this dataset, just like many other works have been done previously utilizing

machine learning algorithms on the same dataset. In order to make predictions between two possible outcomes, binary

classification is employed. The goal here is to determine whether the flow is malicious or benign. Model development and

preprocessing follow the same procedures as described in the introduction. After determining that 10 epochs provide the

best trade-off between training loss and accuracy, this binary training method employs this parameter setting. The accuracy

and loss of training over time are displayed in Fig 7 and Fig 8. In Table 3, we can see the outcomes of our performance

analysis.

Fig. 7 Training Accuracy (Accu) for a Two-Class

Problem

Fig. 8 Training Loss for a Two-Class Problem

Table 3. Performance Evaluation on Two-Class Classification

Metric Outcomes

Accu 0.9932

Recall 09933

Precision 0.985

F1-Score 0.985

G Mean 0.961

Balanced Accu 0.949

 Fig 9 shows the confusion matrix. The TN ratio is highest compared to the other metrics since benign traffic is the most

common type in the dataset. Considering the high FP rates of conventional signature-based IDS, a ratio of 0.40% is highly

encouraging. The current FPR of 0.4% is extremely low and cannot be used as a benchmark. Fig 10 displays the results of

the classification analysis. To get an overall average, a macro-average method first calculates the statistic for each group

separately before averaging them. Here the weighted-average F1 score is determined by calculating the mean of all per-

class F1 scores while considering each class's support.

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

481

Fig 9. Confusion Matrix - Two-Class Classification Fig 10. Two-Class Classification Results

 FOA-CNN-LSTM model achieves greater accuracy than comparable experiments. For instance, the maximum accuracy

reported for binary classification using LSTM on the same dataset CSE-CIC-IDS2018 with a variety of settings is 97.31%

(Ferrag et al., 2020) [20]. Fig 11 shows the ROC Curve and AUC values for normal and malacious traffic, indicating that
a ratio of FPR to TPR is greater than threshold limit (FPR=TPR). For a competent classifier, this is a natural outcome.

Fig 12 displays the PR curve and AUC values for benign and attack traffic, demonstrating that both curves lie above the

cut-off point. The same is true for the intended outcome of a better classification model.

Fig 11. ROC- AUC Curve for Two-Class classifier

Fig 12. Precision-Recall Curve on Two-Class Classification

 The goal of using multiple attack class classification with FOA-CNN-LSTM to make the forecast based on attack classes

is explained by continuously increasing the hyper-parameter values based on the lowest prediction error at each iterative

level, beginning with level-0 optimization and continuing all the way through level-k optimization, FOA executes multi-

class training to develop an optimized CNN-LSTM network.

 Table 4 summarizes the results of the study. Overall, the F1 Score, recall, precision, and accuracy are all close to what

one would get with a simple yes/no classification. G-Mean and balanced accuracy for class imbalance is deterministic

measures much smaller than binary classification. Some minority classes having no Recall value is the primary cause of a

null G-Mean. Equally disappointing to those used to binary classification is the fact that the accuracy for balanced

categorization is lower as it prioritizes FNs over conventional accuracy. When there are multiple classes to sort, we also

compare the FN values for each class to the average FN value.

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

482

 This outcome can be attributed to subsets of the population with low recall values. Fig 13 provides the confusion matrix

for each one-vs-the-rest category. The most valuable performance indicator is highlighted in dark blue in Fig 13. Because

the Benign class makes up the bulk of the sample, the True Negative parameter of the malicious traffic outweigh those of

the other classes. In Table 4, we can see the outcomes of our performance analysis for Multiple Class classifier.

Table 4. Performance Results of Multiple Class classifier

Metrics Outcomes

Accu 0.9931

Recall 0.9930

Precision 0.985

F1-Score 0.985

G-Mean 0.000

Balanced Accu 0.599

 The model cannot learn brute-force attacks, and sql injection threats because their corresponding TP values are 0. These

assaults have the distinction of being the least frequent in the sample. The model detects the assaults like brute-force attacks

as DDoS or normal. Further, the high False Negative value of Infiltration lowers both recall and accuracy.

 Fig 14 displays the outcomes of the classification study. For classification issues involving many classes, the average

micro method averages the four possible outcomes (TP, TN, FN, and FP) for each label before arriving at the final

classification. When applied to unbalanced data, it produces false results. The overall performance of this model can be

more accurately judged by looking at its mean macro value. When figuring out results, it considers an unweighted average

of all labels. Fig 15 displays the ROC-AUC curves for each classification. All classes are displayed over the threshold

despite having low precision and recall values. Since TPR and FPR tend to favor the majority class, this condition is

misleading for imbalanced multi-class categorization since it emphasizes both Precision and Recall values, the Precision-

Recall curve depicted in Fig 16 for each class yields more realistic results.

Fig 13. Confusion Matrix - Multi-class Classification

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

483

Fig 14. Multiple Attack Class Classifier Report

Fig 15. ROC-AUC for Multiclass Classifier

Fig 16. Precision-Recall for Multiclass Classifier

 This study uses CNN, LSTM, CNN-LSTM, MLP, Random Forest (RF), SVM, and Naïve Bayes (NB) as comparative

experiments. The results of CNN, LSTM, CNN-LSTM, MLP, Random Forest (RF), SVM, and Naïve Bayes will be

compared with the experimental results of FOA-CNN-LSTM. In Table 5, we can see Comparative analysis of FOA-CNN-

LSTM with other models.

Table I. Comparative analysis of FOA-CNN-LSTM Model With Other Model

Model Accuracy Precision Recall F1 Score

CNN 96.15 98.22 91.2 94.14

MLP 87.25 89.32 87.32 88.12

LSTM 97.11 98.39 90.1 94.1

CNN-LSTM 97.89 98.1 98.2 98.14

SVM 96.4 98.15 98.25 98.24

Naïve bayes 96.29 93.23 93.12 91.98

RF 95.14 91.18 91.31 91.5

FOA-CNN-LSTM Binary Classification 99.01 99.33 98.5 98.5

FOA-CNN-LSTM Multiclass Classification 99.02 99.3 98.5 98.5

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

484

Fig 17. Comparative analysis of Proposed FOA-CNN-LSTM with other techniques.

 Fig 17 compares the overall accuracy achieved on the testing dataset by deep learning (DL) techniques trained with the

SVM, NB, and RF machine learning methods. Model specifications are tabulated in Table 1. For comparison, we get an

accuracy of 96.15 percent with the CNN model, 87.25 percent with the MLP, 97.11 percent with the LSTM, 97.89% with

the CNN-LSTM, 99.32 % with FOA-CNN-LSTM (Binary Classification) and 99.31 % with FOA-CNN-LSTM (Multi-

class Classification). The figure demonstrates that the FOA-CNN-LSTN model achieved the highest level of accuracy

while the MLP layer achieved the lowest. Fig 18 shows different machine learning model comparisons like SVM (Support

Vector Machine), which has an accuracy of 96.4%, NB at 96.29%, and RF at 95.14%.

Fig 18. Accuracy Evaluation of Suggested Deep and Machine Learning Techniques.

 Precision results from DL and ML approaches are compared in Fig 19. The parameters were set the same way as when

an accuracy value was obtained. Precision is 98.22% for the CNN model, 89.32% for the MLP model, 98.39% for the

LSTM model, 98.1% for the CNN-LSTM, 99.33% for the FOA-CNN-LSTM (Binary Classification) and 99.3% for the

FOA-CNN-LSTM (Multi class classification). It is noteworthy that the hybrid model with ensemble and FOA optimization

technique is approximately 1.09% more precise than LSMT alone. The diagram demonstrates that SVM achieves 98.15%

accuracy, NB achieves 93.23% accuracy, and the random forest achieves 91.18% accuracy. The accuracy achieved by the

multi-layer perceptron model is inferior to that achieved by machine learning methods, whereas the accuracy achieved by

other models is superior. FOA-CNN-LSTM model has higher accuracy than SVM by about 1.15%.

Fig 19. Precision Evaluation of Suggested Deep and Machine Learning Techniques.

 Fig 20 summarizes the comparison of recall matrices with CNN is 91.2%, MLP it is 87.32%, LSTM it is 90.1%, and

CNN-LSTM it is 98.2%, 98.5% for the FOA-CNN-LSTM (Binary Classification) and 98.5% for the FOA-CNN-LSTM

(Multi class classification). FOA-CNN-LSTM has better accuracy and recall than competing models. Fig 20 shows that

CNN MLP LSTM
CNN-
LSTM

SVM
Naïve
bayes

RF

FAO-
CNN-
LSTM
Binar…

FAO-
CNN-
LSTM
Multi…

Accuracy 96.15 87.25 97.11 97.89 96.4 96.29 95.14 99.32 99.31

80
85
90
95

100
105

Accuracy

CNN MLP LSTM
CNN-
LSTM

SVM
Naïve
bayes

RF

FAO-
CNN-
LSTM
Binary…

FAO-
CNN-
LSTM
Multic…

Precision 98.22 89.32 98.39 98.1 98.15 93.23 91.18 99.33 99.3

80
85
90
95

100
105

Precision

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

485

MLP performance remains the worst of all the graphs. From the results, it is safe to say that the FOA-CNN-LSTM

model outperforms competing deep learning models and machine learning algorithms in identifying malicious behavior.

Fig 20. Precision Evaluation of Suggested Deep and Machine Learning Techniques.

 Fig 21 summarises the comparison of F1 Scores with CNN is 94.14%, MLP it is 88.12%, LSTM it is 94.1%, and CNN-

LSTM it is 98.14%, 98.5% for the FOA-CNN-LSTM (Binary Classification) and 98.5% for the FOA-CNN-LSTM (Multi

class classification). When compared to other models, MLP's F1-score of 88.12 percent is once again the lowest. To

conclude, the FOA-CNN-LSTM model can acquire a high F1- score of 98.5%, demonstrating exceptionally low FN and

FP rates compared to other DL and ML models. The F1-Scores for SVM, NB, and RF, three machine learning models, are

98.24%, 91.98%, and 91.5%. This could explain why Support Vector Machine has been widely utilized as a classification

in various uses before the DL methods began to operate in practice.

Fig 21. F1-Scores Evaluation of Suggested Deep and Machine Learning Techniques.

V. CONCLUSION

The suggested model used network traffic data to assess the performance of the DL strategy for intrusion detection in this

study. The CSE-CIC-IDS2018 dataset, which includes examples applicable to real-world problems, was used to construct a

deep-learning solution. Network flow analysis against deep packet inspection for intrusion detection has been used to test

the suggested model. The outcomes were quite encouraging, demonstrating that certain attack traffic may be spotted via

network flow analysis. Due to its lower resource requirements and ability to account for SSH traffic, the proposed model is

particularly well-suited for application in practical settings, as shown by raw traffic analysis. Most internet data is now

encrypted. Therefore, doing a deep packet inspection requires in-line analysis. Because of this, network flow analysis

becomes more useful in these situations. The model took several routes, each of which made use of unique DL and ML

methods. After feature engineering, several deep learning models were developed by picking the most appropriate hyper

parameter.

 In comparison to the other DL and ML techniques, the hybrid FOA-CNN-LSTM model with an ensemble approach

achieves the highest accuracy (99.33%) and F1-Score (98.50%). The suggested deep learning-based approach FOA-CNN-

LSTM uses an optimized CNN-LSTM network, which is built by raising the hyper-parametric values at each iteration from

level 0 to level k in order to achieve the lowest prediction error. The suggested FOA algorithm 1 automatically adjusts the
CNN-LSTM hyperparameters, such as batch size, the hidden layer neurons, the hidden layers, and the epoch. The network

is proven accurate when the best possible smell is located using deterministic mapping on top of optimized hidden neurons,

optimal weight, and hidden representation. It is determined that the "Attention Mechanism," a more cutting-edge and

worthwhile solution, can be used in future work to enhance the solution's performance, in addition to class imbalance

solutions.

CNN MLP LSTM
CNN-
LSTM

SVM
Naïve
bayes

RF

FAO-
CNN-
LSTM
Binar…

FAO-
CNN-
LSTM
Mult…

Recall 91.2 87.32 90.1 98.2 98.25 93.12 91.31 98.5 98.5

80
85
90
95

100

Recall

CNN MLP LSTM
CNN-
LSTM

SVM
Naïve
bayes

RF

FAO-
CNN-
LSTM
Bina…

FAO-
CNN-
LSTM
Mul…

F1 Score 94.14 88.12 94.1 98.14 98.24 91.98 91.5 98.5 98.5

80

85

90

95

100

F1 Score

ISSN: 2788–7669 Journal of Machine and Computing 4(2)(2024)

486

Data Availability
No data was used to support this study.

Conflicts of Interests
The author(s) declare(s) that they have no conflicts of interest.

Funding
No funding agency is associated with this research.

Competing Interests
There are no competing interests.

References
[1] J. Armin, B. Thompson, D. Ariu, G. Giacinto, F. Roli, and P. Kijewski, “2020 Cybercrime Economic Costs: No Measure No Solution,” 2015

10th International Conference on Availability, Reliability and Security, Aug. 2015, doi: 10.1109/ares.2015.56.

[2] J. S. Nye, “Deterrence and Dissuasion in Cyberspace,” International Security, vol. 41, no. 3, pp. 44–71, Jan. 2017, doi: 10.1162/isec_a_00266.

[3] N. K. Raja, K. Babu, A. Senthamaraiselvan, and K. Arulanandam, “Routers Sequential Comparing Two Sample Packets for Dropping Worms,”

International Journal of Computer Network and Information Security, vol. 4, no. 9, pp. 38–46, Aug. 2012, doi: 10.5815/ijcnis.2012.09.05.

[4] B. A. Tama, L. Nkenyereye, S. M. R. Islam, and K.-S. Kwak, “An Enhanced Anomaly Detection in Web Traffic Using a Stack of Classifier

Ensemble,” IEEE Access, vol. 8, pp. 24120–24134, 2020, doi: 10.1109/access.2020.2969428.

[5] Umar, M. A., Zhanfang, C., & Liu, Y. , “A Hybrid Intrusion Detection with Decision Tree for Feature Selection”, arXiv preprint, 2020),

arXiv:2009.13067.

[6] A. Abdollahi and M. Fathi, “An Intrusion Detection System on Ping of Death Attacks in IoT Networks,” Wireless Personal Communications,

vol. 112, no. 4, pp. 2057–2070, Jan. 2020, doi: 10.1007/s11277-020-07139-y.

[7] P. Kumar, G. P. Gupta, and R. Tripathi, “Toward Design of an Intelligent Cyber Attack Detection System using Hybrid Feature Reduced

Approach for IoT Networks,” Arabian Journal for Science and Engineering, vol. 46, no. 4, pp. 3749–3778, Jan. 2021, doi: 10.1007/s13369-020-

05181-3.

[8] K. Adhikary, S. Bhushan, S. Kumar, and K. Dutta, “Evaluating the Performance of Various SVM Kernel Functions Based on Basic Features

Extracted from KDDCUP’99 Dataset by Random Forest Method for Detecting DDoS Attacks,” Wireless Personal Communications, vol. 123,

no. 4, pp. 3127–3145, Oct. 2021, doi: 10.1007/s11277-021-09280-8.

[9] M. Li, D. Han, X. Yin, H. Liu, and D. Li, “Design and Implementation of an Anomaly Network Traffic Detection Model Integrating Temporal

and Spatial Features,” Security and Communication Networks, vol. 2021, pp. 1–15, Aug. 2021, doi: 10.1155/2021/7045823.

[10] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent

Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525–41550, 2019, doi: 10.1109/access.2019.2895334.

[11] S. Einy, C. Oz, and Y. D. Navaei, “The Anomaly- and Signature-Based IDS for Network Security Using Hybrid Inference Systems,”

Mathematical Problems in Engineering, vol. 2021, pp. 1–10, Mar. 2021, doi: 10.1155/2021/6639714.

[12] K. Kim, M. E. Aminanto, and H. C. Tanuwidjaja, “Deep Feature Learning,” Network Intrusion Detection using Deep Learning, pp. 47–68, 2018,

doi: 10.1007/978-981-13-1444-5_6.

[13] W.-T. Pan, “A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example,” Knowledge-Based Systems, vol. 26,

pp. 69–74, Feb. 2012, doi: 10.1016/j.knosys.2011.07.001.

[14] A. Das and . P., “An Approach for Identifying Network Intrusion in an Automated Process Control Computer System,” International Journal of

Electrical and Electronics Research, vol. 10, no. 4, pp. 1219–1224, Dec. 2022, doi: 10.37391/ijeer.100472.

[15] S. Borah, R. Panigrahi, and A. Chakraborty, “An Enhanced Intrusion Detection System Based on Clustering,” Progress in Advanced Computing

and Intelligent Engineering, pp. 37–45, Dec. 2017, doi: 10.1007/978-981-10-6875-1_5.

[16] D. Baskaya and R. Samet, “DDoS Attacks Detection by Using Machine Learning Methods on Online Systems,” 2020 5th International Conference

on Computer Science and Engineering (UBMK), Sep. 2020, doi: 10.1109/ubmk50275.2020.9219476.

[17] M. Wang, Y. Lu, and J. Qin, “A dynamic MLP-based DDoS attack detection method using feature selection and feedback,” Computers &

Security, vol. 88, p. 101645, Jan. 2020, doi: 10.1016/j.cose.2019.101645.

[18] W. Guo and Z. Zhao, “A Novel Hybrid BND-FOA-LSSVM Model for Electricity Price Forecasting,” Information, vol. 8, no. 4, p. 120, Sep.

2017, doi: 10.3390/info8040120.

[19] H. Aiqin and W. Yong, “Pressure Model of Control Valve Based on LS-SVM with the Fruit Fly Algorithm,” Algorithms, vol. 7, no. 3, pp. 363–

375, Jul. 2014, doi: 10.3390/a7030363.

[20] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber security intrusion detection: Approaches, datasets, and

comparative study,” Journal of Information Security and Applications, vol. 50, p. 102419, Feb. 2020, doi: 10.1016/j.jisa.2019.102419.

	Journal of Machine and Computing (http://anapub.co.ke/journals/jmc/jmc.html)
	Doi: https://doi.org/10.53759/7669/jmc202404045
	Received 10 April 2023; Revised from 12 October 2023; Accepted 12 March 2024.
	Available online 05 April 2024.
	©2024 The Authors. Published by AnaPub Publications.
	This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
	I. INTRODUCTION
	II. WORK IN THIS AREA
	III. PROPOSED METHODOLOGY
	IV. EXPERIMENTAL ANALYSIS &RESULTS
	V. CONCLUSION

