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Abstract – The through-wall capability, device-free detection of radar-based human activity recognition are drawing a lot 

of interest from both academics and industry. The majority of radar-based systems do not yet combine signal analysis and 

feature extraction in the frequency domain and the time domain. Applications like smart homes, assisted living, and 

monitoring rely on human identification and activity recognition (HIAR). Radar has a number of advantages over other 

sensing modalities, such as the ability to shield users' privacy and conduct contactless sensing. The article introduces a new 

human tracking system that uses radar and a classifier called Dual Spatial Convolution Gated Recurrent Unit (DSC-GRU) 

to identify the subject and their behavior. The system follows the person and identifies the type of motion whenever it 

detects movement. One important feature is the integration of the GRU with the DSC unit, which allows the model to 

simultaneously capture the spatiotemporal dependence. Present prediction models just take into account spatial features 

that are immediately adjacent to each other, disregarding or just superimposing global spatial features when taking spatial 

correlation into account. A new dependency graph is created by calculating the correlation among nodes using the 

correlation coefficient; this graph represents the global spatial dependence, while the classic static graph represents the 

neighboring spatial dependence in the DSC unit. The DSC unit goes a step further by using a modified gated mechanism 

to quantify the various contributions of both local and global spatial correlation. While previous models performed worse, 

the suggested model outperformed them with an accuracy of 99.45 percent and a precision of 97.15 percent.  

 

Keywords – Human Identification, Gated Recurrent Unit, Radar Based Systems, Frequency Domain, Global Spatial 

Dependence.  

 

I. INTRODUCTION 

The many uses of human activity recognition in fields as diverse as healthcare, surveillance, and human-computer 

interaction have brought it considerable attention in recent years. Assisted living, smart homes, and monitoring are just a 

few of the many applications that have piqued the interest in human identification and activity recognition (HIAR) [1]. 

Wearable and contactless modalities are two broad categories into which many have been introduced. Constantly donning 

and carrying around wearable sensors like ankle monitors and bracelets makes them cumbersome, prone to loss or 

forgetfulness, and prone to false alarms [2]. Despite these drawbacks, contactless sensing systems have attracted a lot of 

attention from researchers. Cameras, microphones, and radar systems are the most prevalent types of contactless sensors 

[3]. When it comes to lighting and blind spots, cameras aren't perfect. Ambient noise interferences can be rather noticeable 

to microphones [4]. On top of that, when used in residential settings, they both violate people's right to privacy. Because 

of its ability to preserve privacy, be resistant to light and weather, and achieve high accuracy, radar-based HIAR could be 

a useful addition to existing technologies [5]. According to [6], the conventional signal processing method for radar-based 
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HIAR depends on creating micro-Doppler signatures, extracting features, and applying classifiers such as SVM decision 

trees, and K-nearest neighbours. 

     But most research only applies one classification at a time, and that's because they only look at human identification 

(ID) or activity recognition [7]. An intelligent system that can identify all potential scenarios and apply the right classifier 

from the three integrated classifiers would be useful for practical applications. This system should be able to simultaneously 

apply ID and HAR if the detected scenario involves a moving target [8]. This paper presents a new way to integrate ID and 

HAR into a single system. There are a number of reasons why radar HAR is an exceptionally promising area for the 

research of robustness as compared to other fields [9]. To start, the spectrogram is the motion signature that includes all 

the reflected images from the human body. While still maintaining an innate sense of naturalness, perturbations in human 

motion can display large variability [10]. Second, the signal processing methods used to generate radar spectra have a direct 

bearing on their quality. Corruption can be seen in the form of system noise that is introduced during signal processing 

[11]. Finally, almost all radar datasets are homogeneous. Radar HAR data is typically collected in lab settings with 

controlled conditions, which are known for having simpler settings [12]. The diversity within these datasets is minimal, 

even if the data was collected over a long period of time. Therefore, models that are trained on these datasets run the danger 

of being overfit to features, including patterns of background noise, that might not be representative [13]. With so many 

high-capacity deep learning models out there, this worry stands out. To further evaluate the trained model's generalizability, 

robustness should be considered as an additional metric [14]. 

     In this paper, we present a robustness analysis outline for micro-Doppler spectrogram classification errands. The main 

aids of this work are as shadows: 

(1) One goal is to present a new HAR prediction model called DSC-GRU that takes into account the data's 

spatiotemporal dependence and produces more accurate predictions. 

(2) The optimal weights are optimally selected by African Buffalo Optimization Algorithm (ABOA) model that 

improves the classification accuracy.  

     Thirdly, the suggested model may simultaneously incorporate data correlations based on both time and space. To do 

this, the GRU design incorporates a Dual Spatial Convolution (DSC) module. While the GRU is still able to learn the 

intricate temporal dynamics of the input, the DSC makes it easier to incorporate spatial information into its state. 

     The rest of the paper is prearranged as follows: Section 2 presents the related works; Section 3 gives the brief 

explanation of projected model; Section 4 mentions the results and discussion besides lastly, the conclusion is given at 

Section 5.  

 

II. RELATED WORKS 

A method for assessing the resilience of radar micro-Doppler spectrogram categorization to corruption has been presented 

by Zhou et al., [15]. Common model designs are systematically examined after applying and classifying a collection of 

corruptions. Alternate training approaches, data augmentation, and cadence velocity diagram (CVD) transformation are 

also investigated. Both continuous aquatic HAR and indoor HAR are used to measure performance. Several findings are 

revealed by our investigation. First, because datasets are limited, relying alone on accuracy may not be sufficient to evaluate 

model performance. Any model that has been properly trained will be vulnerable to corruptions. Second, when it comes to 

accuracy and resilience, deeper CNN models are unrivalled yet, they do face the challenge of overfitting to background. 

Finally, while there is a small drop in accuracy, adversarial training makes systems more resistant to corruptions. Finally, 

a compromise between precision and resilience can be reached by merging data augmentation with adversarial training. 

Ultimately, our research adds to our growing body of knowledge on the intricate relationship among radar HAR tasks' 

model design, classification accuracy, and corruption robustness. 

     In their innovative system, Zhou et al. [16] simulate radar signals by converting verbal descriptions into motion data 

using generative models. This method greatly improves the dataset's realism and diversity, particularly for rare but 

important events like aberrant walking and falls. Textual descriptions enhance intraclass variety by capturing the semantic 

ambiguity and complexity of activities. Through the management of gait variance, adaptability to many viewpoints, and 

the modeling of background noise, our system increases the quality of simulations while scaling the data generation 

process. When real-world data samples are few, the simulated micro-Doppler dataset can help with enhance recognition. 

Our method makes great strides in activity identification even with small samples, greatly reducing the impact of data 

scarcity. 

     In order to enhance HAR, Guendel et al. [17] present a novel processing pipeline that takes use of multipath signals to 

extract useful information. A network of three radar sensors detects a moving human target engaging in continuous 

sequences of actions, and the pipeline separates and follows the LOS and multipath components of this target. In addition, 

the system has been tested with experimental data from six activities and fourteen volunteers. To do this, we compared 

classification metrics using neither the LOS components of the three radars in the network nor the usage of a single radar. 

Range-Doppler (RD) pictures obtained from the LOS and multipath components using the suggested technique may be 
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processed by a 12-layer convolutional neural classifier. Making use of a multiradar network's LOS and multipath 

components, we show that the leave-one-person-out (L1Po) test set may be significantly improved by around 11%. 

     Using data from the color domain, Dey et al. [18] provide a new method for fusing 2-dimensional representations of 

radar returns at the domain level. The convolutional mixer is an isotropic patch-based learning model that takes as input 

consolidated three-channel pictures formed by fusing together the individual color planes (R, G, B) of two-dimensional 

representations. An attentional feature level (intermediate) fusion-based convMixer model is fed the initial (domain) fused 

three-channel pictures. A publicly accessible dataset of radar signals of human activities is used to test the performance of 

the projected model. Thanks to its location-wise testing technique, which prevents data leaking, the suggested model 

achieves far better results than the state-of-the-art. 

     Using macro and micro-Doppler characteristics, Yang et al. [19] presented a lightweight multiscale neural network 

(TWR-FMSN) for indoor HAR. After defining the trajectories of both properties, the integrated models are used to label 

the trajectories at both scales for recognition in the proposed technique. In order to acquire macro-Doppler characteristics 

of human motion, we suggest a lightweight network that is efficient and relies on attention mechanisms. This network 

would use Lagrangian trajectory estimation. Furthermore, the micro-Doppler characteristics of human motion are got using 

a kernel-distance based micro-Doppler labeling approach. The last step in determining indoor HAR is to combine all of the 

retrieved micro- and macro-Doppler data. Experimental results confirm the efficacy of the suggested strategy; it may 

drastically cut inference time without sacrificing recognition accuracy, suggesting promising real-time deployment for 

practical applications. 

III.    PROPOSED SYSTEM 

Micro-Doppler Theory 

The well-known Doppler Effect occurs as an object approaches a radar sensor, altering the frequency of the reflected 

signals. The micro-Doppler effect is an extra modification of the primary Doppler the drive of tiny components of the 

subject. Specific traits, known as micro-Doppler signatures, can be produced by an object's or process's micro-Doppler 

effect. Considering that its many components might potentially travel in a variety of directions and at varying speeds 

relative to the radar. Subjects and human activities may be recognized using the target's micro-Doppler signals, which it 

delivers. The two-dimensional time-frequency space is the standard for displaying micro-Doppler characteristics. Due to 

factors including people's habits, where they stand, and the multipath effect, the spectrograms of various activities could 

differ from what was explained earlier. However, spectrograms of the same activity usually seem rather similar. 

 

Data Collection 

The data was collected using the radar kit. Included in the package is a TI DCA1000EVM capture card and a TI 

AWR1642EVM radar module. To configure the radar, start each scan, and save raw data files to the output location, you 

need the mmWave Studio program. The LUA Studio allows for the automation and execution of this operation in MATLAB 

[20]. There are three sets of data utilized in this study. The ID deep learning models are trained and validated using two 

datasets that are detailed in reference [21]. To train and verify the deep learning model utilized for HAR, the third dataset 

is utilized. Six different types of behavior make up this dataset. A total of nine human participants are utilized for each 

lesson. According to the summary in [20], a total of 1080 scans are obtained, with 20 scans acquired per participant every 

class.  

    The radar setup characteristics that were utilized for this project are detailed in [20], with a carrier frequency of 77 GHz. 

The vast bandwidth accessible in the 77 GHz range is one of its primary advantages. The bandwidth available at 77 GHz 

is far higher than that at 24 GHz, where the 200 MHz ISM band lies. In contrast to the two datasets, which make use of 

distinct sets of radar parameters, we establish a common set of parameters for all three classifiers in this study. The two ID 

parameters, and then used in the proposed system. This is because the radar data for each classifier is processed and sent 

to the deep network as RGB pictures. We use the same radar setup parameters to gather additional data for the purpose of 

validating the tracking algorithm. In this dataset, participants are given the option to either remain still, move freely among 

the six activity classifications, or do nothing at all. 

. 

Data Pre-Processing 

When using FMCW radar, the received signals are usually transformed into a three-dimensional data cube with fast-time, 

channels. Applying the Fast Fourier Transform (FFT) to each dimension of the data cube changes its axes from Range to 

Doppler to Angle in the initial processing stage. 

 

Classification Process: Overview 

In the DSC-GRU paradigm, a GRU is housed within a DSC. Our suggested model's structure is made up of three parts: the 

data batch size used to model once, the length of the historical data input, and the length of the prediction data output. In 

addition, sampling is the process of randomly picking B-matrix blocks dimension to feed into the model during a training 
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epoch, after partitioning the feature matrix into many H-length matrix blocks. The geographical and temporal properties of 

the data are extracted using the DSG-GRU model, which is based on the existing graph structure. With the DSC-GRU 

model, you can still use the GRU's dynamic time series feature extraction capabilities. In order to capture the spatial 

properties of the input utilized to acquire the spatial topological structure network. Lastly, a fully linked layer is used to 

retrieve the outcomes of the output predictions. 

     Three points best capture the essence of the DSC-GRU: 1. A geographic correlation matrix: to discover the network's 

spatial correlation, build a matrix using the correlation coefficient as its basis. To improve the input network's prediction 

performance, a gated mechanism is utilized for spatial features fusion, which combines nearby characteristics with the 

input network's global features. (3) Time-related feature extraction: use a GRU network to record the input signal's temporal 

correlation 

 

Spatial Dependence Modelling 

The GCN classical, which developed from CNNs, has been successfully applied in several domains recently, including 

biochemistry, computer vision, and others, because to its exceptional capacity to manage diverse graph shapes [22]. 

 

Graph Data Definition 

By projecting the network's spatial topology space, the GCN model improves the accuracy of data spatial dependencies. 

But as our suggested model incorporates two separate geographic scales, we must first define th The GCN model converts 

the network's topology Euclidean space in order to better represent the spatial linkages in the data. However, as our 

suggested model incorporates two different spatial structure scales, the data for the spatial structure graph must be defined 

independently. The relationship between neighboring nodes is described by the adjacency matrix A_a∈R^(N×N), which is 

obtained by mapping the adjacency graph to Euclidean space. According to the adjacency matrix, the link between the 

edges in set E is specified by Equation (1), 

    Spatial structure graph data separately. Obtaining the adjacency matrix involves mapping the adjacency graph to 

Euclidean space. 𝐴𝑎 ∈ 𝑅𝑁×𝑁, describes the arrangement of neighbouring nodes in space. Connection relationships in the 

set of edges E are defined in Equation (1), as seen by the adjacency matrix. 

 

𝐴𝑎𝑖𝑗
= {

1(𝑒𝑖𝑗 ∈ 𝐸)

0(𝑒𝑖𝑗 ∉ 𝐸)
                                                                              (1) 

 

      where 𝐴𝑎𝑖𝑗
 = 1 characterizes node i node j and 𝐴𝑎𝑖𝑗

 = 0 vice versa. 

      In conventional graph convolution, the adjacency matrix Aa may often only aggregate the spatial structure inside the 

network's nearby nodes or n-hop nodes. Ignoring the overall network topology, these simplistic graphs presume that the 

statuses of nodes on the same signal segment strongly impact the target node's state. Some research computed the 

correlation among the two-time series using the KNN method to acquire the complete network's spatial feature, allowing 

for a thorough exploration of the network's topological structure. From the complete network, the KNN algorithm chooses 

the K nodes that are most relevant to the target node based on the relevance score computed using ABO. Among the most 

recent meta-heuristic algorithms is the African Buffalo Optimization (ABO), first suggested by [23]. During migration, the 

ABO might learn to imitate the herd's effective management and communication approach. As they make decisions, they 

act like voters, and their movement is dictated by the majority's choice. In order to navigate and take use of their 

environment, they make use of two sounds: maaa and waaa. The buffalos are kept here so they may make the most of the 

grass and the protection they now enjoy. However, while exploring new areas, the "waaa" sound is used since the pasture 

at the present site might not be enough. The buffalos use these noises to their advantage in their quest for productive feeding 

areas. Both (2) and (3) provide mathematical expressions for this. 

 

𝑚𝑘 + 1 =  𝑚𝑘 + 𝑙𝑝1 (𝑏𝑔𝑚𝑎𝑥 − 𝑤𝑘) + 𝑙𝑝2(𝑏𝑔𝑚𝑎𝑥. 𝑘 − 𝑤𝑘)                                           (2) 

 

     where 𝑚𝑘 denotes a “maaa” sound with a exact orientation to a buffalo 𝑘 (𝑘 = 1,2,3, … 𝑛) , the best buffalo within the 

herd is represented by 𝑏𝑔𝑚𝑎𝑥, while 𝑏𝑔𝑚𝑎𝑥.𝑘 denotes the best location which an individual buffalo 𝑘 finds, 𝑙𝑝1 and 𝑙𝑝2 

signify the limits of learning ∈ [0,1]. Through the use of (2), 𝑚𝑘+1 shows that the buffalo has moved from its present spot 

𝑚𝑘 to another spot that reflects its strong memory capacity in its migrating lifestyle. The actual adjustment of herd motion 

is achieved by the mathematical representation (3). 

𝑤𝑘 + 1 =  (𝑤𝑘 + 𝑚𝑘) /ℷ                                                                            (3) 

      where 𝑤𝑘+1 represents the migration to a new location, 𝑤𝑘 stands for the values of the current exploration, which 

emits the "waaa" sound, and 𝑚𝑘 is the value of existing exploitation. ℷ is a parameter that specifies the unit of time for the 



 

ISSN: 2788–7669                                                                                                Journal of Machine and Computing 4(2)(2024) 

 

445 

 

intermission movement, and it is typically set to 1. The procedure below describes the ABO algorithm by 𝑘th buffalos 

randomly within the solution space. By modifying the buffalo's motion during the iterations, the final optimal outcome is 

achieved. During each iteration, the fitness values of each buffalo are acquired. The best global value is assigned to 𝑏𝑏𝑚𝑎𝑥, 

while the best local value is assigned to 𝑏𝑏𝑚𝑎𝑥. 𝑘. The buffaloes themselves keep track of where they are, and they move 

about following the optimal buffaloes in their immediate vicinity as determined by (2) and (3). This update allows the 

buffalos to move towards the optimal solution. The KNN algorithm may mistakenly identify nodes as highly linked even 

while they are not. A lot of data that isn't useful will be learned by the model from these nodes. 

     Improving the accuracy and flexibility of geographical information aggregation, the correlation coefficient 𝑅2 is nodes. 

The 𝑅2 is derived as follows: 

𝑆𝑆𝑇 = ∑ (𝑋𝑖
𝑘 − 𝑋̅𝑖)

2𝐿
𝑘=0                                                                                   (4) 

𝑆𝑆𝑅 = ∑ (𝑋𝑗
𝑘 − 𝑋𝑖̅)

2𝐿
𝑘=0                                                                                   (5) 

𝑆𝑆𝐸 = ∑ (𝑋𝑖
𝑘 − 𝑋𝑗

𝑘)
2𝐿

𝑘=0                                                                                 (6) 

𝑅𝑖𝑗
2 = 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
=

𝑆𝑆𝑅

𝑆𝑆𝑇
                                                                                    (7) 

 

     for Total, SSR for Sum of Squares Regression, and SSE for Sum of Squares Error., 𝑅𝑖𝑗
2  stands for the degree of 

association between node i and node j, with values closer to 1 indicating a stronger joining, and 𝑋𝑖
𝑘 and 𝑋̅𝑖 characterize the 

signal flow value and the average signal flow value k, individually. The relationship between the 𝑅2 Table 1 below displays 

the correlation coefficient and intensity of the correlation. 

 

Table 1. The Relationship Among The 𝑅2 Correlation Coefficient Besides Correlation Asset. 

Correlation Strength The Value Range of  𝑹𝟐 

Strong 0.6 ∼ 0.8 

Extreme 0.8 ∼ 1.0 

None 𝑅2 < 0.2 

Weak 0.2 ∼ 0.4 

Moderate 0.4 ∼ 0.6 

 

     The correlation of road network nodes is intended based on the 𝑅𝑖𝑗
2 . It is expected that if the correlation coefficient 

threshold, then nodes are measured to be powerfully correlated. On this basis, Ar is distinct as Equation (8), 

 

𝐴𝑟𝑗
= {

1(𝑅𝑗 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

0 (𝑅𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
                                                                               (8) 

 

where 𝐴𝑟𝑖𝑗
 = 1 means that the correlated and 𝐴𝑟𝑖𝑗

 = 0 vice versa. 

 

Graph Data Processing 

Undirected graphs based on networks are commonly utilized in prediction tasks. Here, the GCN network uses the adjacency 

matrix A and the weight matrix W to include the node and neighbor attributes. The following computations reveal the two-

layer architecture of the GCN network: 

𝐺𝐶𝑁(𝐴, 𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑅𝑒𝐿𝑈(𝐴𝑋𝑊(0))𝑊(1))                                                        (9) 

 

      where 𝑊(0) besides 𝑊(1) are the weight media of the first and GCN network, correspondingly. 

Adjacency matrix 𝐴̃ is clear to combine the node’s own info, 

 

𝐴̃ = 𝐴 + 𝜆𝐼𝑁                                                                                 (10) 

 

     where 𝐼𝑁The identity matrix has dimensions equal to those of the nodes, and when the weight factor, l, has the value 1, 

it means that this node's information is just as essential as its neighbors'. 

A symmetric normalized Laplacian matrix is used by the GCN perfect to normalize the rows and columns of the 

contiguousness matrix 𝐌. 

𝐴𝑠𝑦𝑠 = 𝐷−1/2𝐴̃𝐷−1/2                                                                         (11) 

      where the degree matrix 𝐷 ∈ 𝑅𝑁×𝑁 is matrix, 𝐷ii is the component on matrix, besides 𝑎ii represents the component of 

the i row besides j matrix A. 
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𝐷𝑖𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1                                                                                 (12) 

         To summarize, the following equation describes the GCN network.: 

𝐺𝐶𝑁(𝐴𝑠𝑦𝑠 , 𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑠𝑦𝑠𝑅𝑒𝐿𝑈(𝐴𝑠𝑦𝑠𝑋𝑊(0))𝑊(1))                                              (13) 

     The topological structural information merged by substituting the adjacent matrix Aa besides correlation matrix Ar 

matrix A in the conventional GCN network. 

 

Dual Spatial Convolution 

The procedure of incorporating the structural details of the nearby space and the world space, respectively. The significance 

of the neighboring and global data sets is presumed to be equal if they are just overlay. On the other hand, when it comes 

to making predictions, it's not feasible to artificially determine how important nearby and worldwide data is. Performing 

even a basic superposition will significantly lower the model's prediction accuracy. In order to improve the prediction 

accuracy, the gated mechanism learns the weight matrix and adjusts the significance of both local besides global info to 

the target node. 

    The estimated R2 correlation also goes over the threshold, which is a special instance. When global information is 

integrated, the data of those neighboring nodes will likewise be fused. At least partially, it solves the issue where the 

standard graph convolution model fails to take into account the fact that various neighbors have varied impacts on the 

target node. The operation for 𝐺a and 𝐺r is recorded as Equations (14)–(17): 

 

𝐺𝐶𝑁𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑎
𝑠𝑦𝑠

𝑅𝑒𝐿𝑈(𝐴𝑎
𝑠𝑦𝑠

𝑋𝑊𝑎
(0)

)𝑊𝑎
(1)

)                                                      (14) 

𝐺𝐶𝑁𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑟
𝑠𝑦𝑠

𝑅𝑒𝐿𝑈(𝐴𝑟
𝑠𝑦𝑠

𝑋𝑊𝑟
(0))𝑊𝑟

(1))                                                     (15) 

𝐹𝑢𝑠𝑖𝑜𝑛 = 𝜎(𝑊𝑜 . (𝐺𝐶𝑁𝑎 + 𝐺𝐶𝑁𝑟) + 𝑏𝑜)                                                        (16) 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐺𝐶𝑁𝑎 ∗ (1 − 𝐹𝑢𝑠𝑖𝑜𝑛) + 𝐺𝐶𝑁𝑟 ∗ 𝐹𝑢𝑠𝑖𝑜𝑛                                                   (17) 

 

     in which the parameter matrices W and b are located, Fusion takes into account both local and global spatial information, 

whereas Output is the DSC unit's output. To change the relative weight of the global data, fusion is employed. The greater 

the significance of the worldwide info, the closer it is to 1. Next, while making predictions, greater emphasis is placed on 

the spatial information of the entire road network, and vice versa, on the nearby region. In conclusion, the DSC to achieve 

a balance in the relative significance connection between the global space and the nearby universe. Because of this, the 

DSC is able to better capture the spatial dependency of data and extract the urban road network. 

 

Spatiotemporal Dependence Modeling 

We extracted the data's spatial dependency using the DSC in the preceding part. Still, getting features from time series is a 

major challenge in the prediction process. The RNN is the go-to tool for handling time series data, and it shows promise 

on a variety of models. Traditional RNNs are unable to extract the time-dependent characteristics from traffic flow data 

because of the flaws of gradient expansion and gradient disappearance. As alternatives to RNNs, the LSTM and GRU have 

been suggested. They address the issues mentioned above. The GRU and the LSTM both work on similar concepts. Similar 

to RNNs, both use a gating mechanism and cells to address the issue of reliance on time series over the long run. 

      With fewer parameters and less computing power required, GRUs are easier to train and converge than LSTMs, and 

thus pose less of a danger of overfitting. Hence, this article models the spatiotemporal dependency using the GRU 

framework. By incorporating the DSC into the GRU framework, a suggested prediction model called the DSC-GRU may 

acquire data that is reliant on both time and space.  

     The forward propagation of the DSC-GRU perfect is expressed by Equations (18)–(21). 

 

𝑟𝑡 = 𝜎(𝑊𝑟 . [𝑋𝑟 , 𝐻𝑡−1] + 𝑏𝑟)                                                            (18) 

𝑢𝑡 = 𝜎(𝑊𝑢 . [𝑋𝑟 , 𝐻𝑡−1] + 𝑏𝑢)                                                            (19) 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . 𝐷𝑆𝐶([𝑋𝑡 , (𝑟𝑡 ∗ 𝐻𝑡−1)]) + 𝑏𝑐)                                              (20) 

𝐻𝑡 = 𝑢𝑡 ∗ 𝐻𝑡−1 + (1 − 𝑢𝑡) ∗ 𝑐𝑡                                                          (21) 

     

    where W, b is the training process's limit matrix for each state, s(·) is defined in the previous section, tanh(·) maps the 

input to the [−1, 1] intermission to avoid gradient explosion caused by the backpropagation process's large sum of 

parameters, and DSC(·) is the result from the DSC cell control. 

    As it processes the input Xt at time t and the GRU model maintains the GRU representation's capacity to capture the 

time series' long-term dependency. In this case, the temporal data from the past is mixed with the data from the present. 

The time series' inherent dynamic characteristics are preserved. In light of this, the DSC unit is connected to document the 
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space-dependent traffic statistics. The future instant gets the legitimate part of the spatiotemporal data received in the past 

through reset gates.  

     At instant t, the DSC-GRU model's input hidden layer state already includes spatial and temporal data from the moment 

before. The DSC takes as input the present instant and merges it with authentic spatiotemporal data from the past. One 

aspect is the merging of the spatial characteristics of the present input data. Conversely, geographical details in historical 

records are more important. So far, the DSC embedding has enhanced the GRU model by adding network spatial 

information to every state. In the same way that the GRU model transmits temporal information from one time step to 

another, it also transmits geographical information. The aforementioned step is iterated upon several times during forward 

propagation to bolster the DSC's learning of spatial characteristics and enhance the representation's capacity to extract 

spatial relationships. To review, the DSC-GRU model is able to uncover the data's latent spatial and temporal dependencies. 

Among other things, the DSC unit may be utilized to ascertain the overall network's topology and, from there, the data's 

spatial reliance. Another thing is that the GRU model takes into account the long-term temporal relationship in data in 

order to get the data's temporal dependency. The prediction work is now finished. 

 

IV.  RESULTS AND DISCUSSION 

The Intel Core i7-11800H CPU, NVIDIA GeForce the Deep MATLAB 2021b are utilized to execute this application. 

Training all three classifiers using the given capabilities takes a total of twenty-four minutes. We implemented a sensor 

network using two BumbleBee radars [24]. At 5.8 GHz, the Bumblebee radar—a low-power Pulse Doppler radar—runs 

its show. The range it can cover is up to ten meters. The price of a single BumbleBee radar is less than $100. It can run on 

1.5v alkaline capacity of 2400 mAh for approximately 8 days at full duty cycle, thanks to its 12 mAh consumption.                     

Table 2 displays the primary characteristics of the BumbleBee radar. It is common practice to use a TelosB mote with a 

BumbleBee radar. With its support for IEEE 802.15.4, the TelosB mote enables low-power wireless communication. It 

runs on TinyOS, an open-source OS that facilitates massive, autonomous sensor networks. 

      "Node 1" and "Node 2" are the two nodes that make up the sensor network, which also includes a single base station. 

A BumbleBee radar and a TelsoB mote are contained in each node. A TelosB mote sends station via ZigBee from a 

BumbleBee laptop, which serves as the base station. After the sensor nodes gather radar signals, it analyzes and receives 

them. To avoid Line-of-Sight obstacles and get additional data about the things being studied, scan an indoor space from 

two separate angles. Remember that our radar sensor network may be expanded if needed. This network may easily 

accommodate more nodes that are wirelessly linked. 

Table 2. Bumblebee Radar Specifications 

Onboard antenna Antenna 

I & Q channels Coherent output 

2.6 cm/s to 2.6 m/s Responds to radial velocity 

60-degree conical coverage pattern Coverage pattern 

Up to 10m Detection range 

0.2m Range gate sharpness 

About 12 mA Total power draw 

 

Validation Analysis of Projected Model 

Table 3 shows the results of comparation the proposed model to current approaches using various metrics in an 

experimental setting.  

Table 3. Experimental analysis of Proposed Model 

Methods Accuracy Precision Recall F-score 

DBN 91.20 92.48 91.26 91.49 

CNN 91.40 91.69 91.82 91.20 

RNN 90.95 90.39 90.32 90.25 

LSTM 93.19 94.32 93.15 93.96 

BLSTM 90.82 90.82 90.92 90.46 

GRU 97.50 96.15 95.13 95.15 

DSC-ABOA-GRU 99.45 97.15 96.89 96.99 

      In Table 3 represent that the Experimental analysis of Proposed Model. In the analysis of DBN perfect reach the 

accuracy as 91.20 and precision as 92.48 and recall as 91.26 and F-score as 91.49 similarly. Then the CNN perfect reach 
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the accuracy as 91.40 and precision as 91.69 and recall as 91.82 and F-score as 91.20 similarly. Then the RNN perfect 

reach the accuracy as 90.95 and precision as 90.39 and recall as 90.32 and F-score as 90.25 similarly. Then the LSTM 

perfect reach the accuracy as 93.19 and precision as 94.32 and recall as 93.15 and F-score as 93.96 similarly. Then the 

BLSTM perfect reach the accuracy as 90.82 and precision as 90.82 and recall as 90.92 and F-score as 90.46 similarly. Then 

the GRU perfect reach the accuracy as 97.50 and precision as 96.15 and recall as 95.13 and F-score as 95.15 similarly. 

Then the DSC-ABOA-GRU perfect reach the accuracy as 99.45 and precision as 97.15 and recall as 96.89 and F-score as 

96.99 similarly.  Fig 1 shows the visual representation of proposed deep learning classifier and Fig 2 shows the graphical 

description of different models for HAR recognition.   

 
Fig 1. Visual Representation of Proposed Deep Learning Classifier. 

 

 
Fig 2. Graphical Description of different models for HAR Recognition. 

 

V. CONCLUSION 

This work presents a radar-based human tracking system that can determine the type of motion shown by a single individual 

in order to construct an autonomous stage that can use ID and HAR in practical scenarios. We use DSC-GRU classifiers 

to identify the person and their behavior based on the motion type that we notice. Two radar datasets are created to retrain 

and networks used in the proposed model's construction, which is based on deep transfer learning. One usage of the DSC 

unit is to describe the data's spatial dependency and capture the network space's topological structure. When training, DSC 

takes into account both the local and global properties of nodes throughout the space, using the correlation matrix, in 

contrast to conventional graph convolutional networks. The purpose of implementing the gated instrument is to regulate 

the value-relationship between local and global data. The effects of the network's geographic dependency are thoroughly 

examined. A GRU, on the other hand, can describe data's reliance on time and capture the features of dynamic vicissitudes 

in data flow. Each GRU state now has additional geographic data thanks to the DSC unit, which is integrated into the GRU 

network. As an alternative, the suggested classifier used a deep network that was trained and validated by a variety of 

people to categorize various behaviors. Sensitive storage facilities, where only authorized staff are permitted to do specific 

tasks (such as retrieving goods or moving carts), might be a potential use case for this idea. In addition, the radar-based 

system is designed to withstand light and weather conditions, making it ideal for use in challenging outdoor settings where 

vision-based systems may not be as effective. To take advantage of irregular motion scenarios besides increase the sum of 

identifiable objects per dimension, future research can include data fusion algorithms to integrate radar data for a more 

comprehensive picture of the target area. 
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