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Abstract – Currently, this work lays the groundwork for sophisticated control methods and decision support systems in 

hybrid microgrid operations by providing insightful information about integrating artificial intelligence for improved 

microgrid control. In this work, a neural network (NN) method is proposed for power flow analysis in an IEEE 12-bus-

based Hybrid AC/DC Microgrid. The study optimizes power dispatch, minimizes expenses, and minimizes losses in both 

AC and DC components. Simulation is carried out using MATLAB software and the results are presented and analysed. 

The accuracy of the NN’s predictions of active power flows is demonstrated by training it on historical data and 
validating it on real-time observations. Regression plots comparing anticipated and real values demonstrate the 

effectiveness of NN-based analysis in reaching the ideal power distribution.  

 

Keywords – Optimal Power Flow, Cost Analysis, Hybrid AC/DC Microgrid, IEEE 12 Bus System, Neural Network 

Controller. 

I. INTRODUCTION 

Now-a-days,Hybrid AC/DC microgrids—which combine energy storage and renewable generation—are becoming more 

and more popular for local decentralised power systems [1][2]. For these linked AC and DC networks to operate in a 

secure and cost-effective manner, effective coordination and dispatch are required [3][4]. However, typical approaches 

have obstacles in optimising due to diverse dynamics and variability from renewable resources [5][6]. In such intricate 

microgrids, optimal power flow (OPF) is essential for figuring out effective setpoints to reduce expenses [7][8]. 

Conventional deterministic OPF formulations are insufficient to handle uncertainty because of the occasional fluctuations 
[9][10]. Although research on using artificial neural networks (ANN) for optimal power flow  (OPF) in hybrid AC/DC 

systems is limited, ANNs are a promising advanced control technology [11][12]. 

     By suggesting an ANN-based controller to solve the OPF problem in a hybrid microgrid test case, the main goal of this 

work is to close this gap. The foundation of the platform is the modification of the extensively studied IEEE 12 bus system 

to include a DC component linked via an interlinking AC/DC converter [13][14]. The ANN design produces the best 

scheduled dispatches by processing load and renewables forecasts. A range of OPF goals and constraints on equity and 

inequality are developed, taking practical limitations, costs, and losses into account [15–17]. The capacity of the integrated 

ANN control scheme to produce high-quality, cost-effective solutions in the face of variable is evaluated compared. Thus, 

this study offers a fresh use of clever methods to improve hybrid microgrid control and optimisation in the future. 

Additionally, it creates an adaptable simulation setup for testing new technologies using benchmark instances [18][19]. 

 However, deterministic steady state conditions, forecast accuracy, and centralised control capabilities are all predicated 
on limiting assumptions in traditional OPF formulations. In an attempt to improve OPF methods, distributed multi-agent 

systems and the incorporation of uncertainty information have been investigated. Nonetheless, the majority of methods 

concentrate mostly on AC systems, with little research done on DC and hybrid AC/DC microgrids, which can offer more 

operational flexibility. To enable stochastic optimisation, recent publications have examined intelligent optimisation 

techniques such as artificial neural networks (ANN). However, there is room for major increase in the scarce 

implementation of hybrid AC/DC grids. This paper describes the problem statement, test system specifics, ANN control 

design, results analysis, conclusions and future study directions. 

 

II.  LITERATURE REVIEW 

The early research has focused on hybrid microgrid control schemes. A multi-agent reinforcement learning framework 

for optimal steady-state control was presented by Nateghi et al. [15], demonstrating the promise of AI-based control in 
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hybrid microgrid environments. Similar to this, Shen et al. [16] highlighted the significance of stability in the control 

strategy by proposing a hybrid AC/DC microgrid control method with a voltage feedback loop and a coordinated 

controller based on a differential algebra equation. Differential evolution and coordinated control have been investigated 

as efficient ways to maximise the performance of hybrid AC/DC microgrids. Li et al. [17] provided evidence of the 

effectiveness of evolutionary algorithms in attaining optimisation through the application of coordinated control with 
differential evolution and self-adaptive policies. In the meantime, Khooban et al.[18] introduced cutting-edge techniques 

for reaching peak performance in their novel approach to load frequency regulation in shipboard microgrids. 

     The use of neural network-based techniques has grown in popularity for hybrid microgrid energy management 

systems. Gupta et al. [19-20] demonstrated the ability of machine learning to optimise energy distribution in microgrid 

configurations by implementing an artificial neural network (ANN)-based energy management system. By utilising 

neural networks to provide an adaptive method for dynamic control, Soltani et al.[21] demonstrated how flexible these 

systems are under different circumstances. Pedrasa and Spooner[22] surveyed the field of microgrid control techniques 

and offered a thorough synopsis of current approaches for managing microgrid generation and storage when the island is 

in operation. By presenting a microgrid energy management system based on the rolling horizon technique and 

highlighting the significance of anticipatory control for improved performance, Palma-Behnke et al.[23] advanced this 

understanding. Research on energy management and optimal power flow in microgrids has yielded important findings. 

Jiang et al. [24] discussed energy management in stand-alone and grid-connected modes and provided strategic insights 
on the best possible power flow. A stochastic-predictive energy management system for isolated microgrids was 

proposed by Olivares et al. [25-27] in order to handle the uncertainties related to renewable energy sources. 

     Optimization modeling and power system applications have also been explored. Soroudi [28] provided a 

comprehensive guide to power system optimization modeling using GAMS, offering insights into modeling techniques 

applicable to hybrid microgrid configurations. Shah and Mithulananthan [29] conducted a review of optimal power flow 

literature, emphasizing the application of traditional and evolutionary methods in solving nonlinear power system 

problems.In the realm of microgrid integration and energy storage, Basu et al. [30] presented a review of microgrid 

concepts, underlining the importance of proper integration of diverse energy sources for enhanced performance. 

Additionally, Levron et al. [31-34] explored optimal power flow in microgrids with energy storage, shedding light on the 

intricate balance required for efficient operation. 

     In summary, the literature review highlights the diverse approaches and methodologies employed in the quest for 
optimal power flow in hybrid AC/DC microgrids with neural network control. The integration of control strategies, 

optimization techniques, and advanced technologies such as neural networks reflect a multidisciplinary effort to address 

the complexities inherent in modern hybrid microgrid systems [35-37]. 

 

III. MATHEMATICAL MODELLING  

The mathematical models presented for optimal power flow in the IEEE 12-bus system and a hybrid AC/DC microgrid 

play a pivotal role in shaping the landscape of power system planning and operation.  

 

 
Fig 1. Representation of Optimal Power Flow 
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Fig 1 Show in Representation of Optimal Power Flow. These models, driven by a set of intricate equations, find 

extensive applications in enhancing operational efficiency, minimizing costs, and ensuring the seamless integration of 

renewable energy sources. 

 

IEEE 12 Bus System 
The IEEE 12-bus system is commonly used for power flow analysis, which involves determining the steady-state 

operating conditions of a power system. Now, The admittance matrix relates bus voltages and currents in the system. The 

elements Yijrepresent the admittance between buses i and j. The diagonal elements Yiirepresent the total admittance 

connected to bus i. 

Let Vi = voltage magnitude at bus i 

𝜃i = voltage phase angle at bus i 

Pi = Active Power at bus i 

Qi = Reactive Power at bus i 

 

       For each bus i, the bus admittance equations can be written as: 

 

𝐼𝑖 = 𝑌𝑖𝑖𝑉𝑖 +  ∑ 𝑌𝑖𝑗(𝑉𝑗 < 𝜃𝑗 − 𝑉𝑖 <12
𝑗=1 𝜃𝑖)                                      (1) 

 

Where, Ii – Complex Current Injected at bus i 

Yii – Total admittance at bus i 

Yij – Admittance at bus i and bus j 

 
     The optimal power flow equations, driven by nodal power balances, enable system operators to determine the optimal 

generator dispatch and power injections at each bus. This ensures the efficient utilization of available resources. The active 

power Pi and reactive power Qi at each bus are related to the bus voltages and currents are: 

 

𝑃𝑖 = ∑ 𝑉𝑖𝑉𝑗 (𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗𝑆𝑖𝑛(𝜃𝑖 − 𝜃𝑗))12
𝑗=1                              (2) 

 

𝑄𝑖 = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗))12
𝑗=1                              (3) 

 

        Where, 𝐺𝑖𝑗  and 𝐵𝑖𝑗 are the real and imaginary parts of admittance 𝑌𝑖𝑗 . 

 

 
Fig 2. Single line diagram of IEEE 12 Bus System 

 

Fig 2 Show in Single line diagram of IEEE 12 Bus System. The objective function seeks to minimize overall 

generation costs by incorporating cost coefficient for active and reactive power injection at each bus is 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑉, 𝜃, 𝑃, 𝑄) = ∑ (𝐶𝑖
𝑃12

𝑖=1 . 𝑃𝑖
2 + 𝐶𝑖

𝑄 . 𝑄𝑖
2)                               (4) 

 

   Where, 𝐶𝑖
𝑃 and 𝐶𝑖

𝑄
 are the cost Coefficients of active and reactive power injections at bus i. 

    Constraints on voltage magnitudes, branch flow limits and generator limits ensure that the system operates within 

acceptable voltage profiles and adhere to physical and operational constraints. 

 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥                  (5) 

 

𝑃𝑖
2 + 𝑄𝑖

2 ≤ 𝑆𝑖 (max )
2            (6) 

 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥               (7) 

 

𝑄𝑚𝑖𝑛 ≤ 𝑄𝑖 ≤ 𝑄𝑚𝑎𝑥           (8) 

 

        Ensuring Stable voltage profiles, power balance and adherence to equipment limits. 
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The complex power injections at bus i are: 

𝑆𝑖 = 𝑃𝑖 + 𝑗𝑄𝑖          (9) 

 

𝑆𝑖 = 𝑉𝑖 ∑ 𝑉𝑗
12
𝑗=1 (𝑌𝑖𝑗

∗ . 𝑒𝑗𝜃𝑖𝑗              (10) 

 

   Where, 𝑌𝑖𝑗
∗ = 𝐺𝑖𝑗 − 𝑗𝐵𝑖𝑗 and 𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗        

     

Hybrid AC/DC Microgrid 

The hybrid AC/DC microgrid model extends the analysis to accommodate both AC and DC components, allowing for 

effective integration and management of renewable energy sources.the active power for AC and DC components are given 

below: 

𝑃𝑖
𝐴𝐶 = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗𝑆𝑖𝑛(𝜃𝑖 − 𝜃𝑗))12

𝑗=1                                   (11) 

 

𝑃𝑖
𝐷𝐶 = ∑ 𝑉𝑖𝑉𝑗 𝐺𝑖𝑗

12
𝑗=1                                         (12)  

 

The reactive power for AC and DC components are given below:  

𝑄𝑖
𝐴𝐶 = ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗))12

𝑗=1                                  (13) 

 

𝑄𝑖
𝐷𝐶 = ∑ 𝑉𝑖𝑉𝑗𝐵𝑖𝑗

12
𝑗=1      (14) 

 

 
Fig 3. Hybrid AC/DC Microgrid 

 

Fig 3 Show in Hybrid AC/DC microgrid. This model is essential for optimizing the operation of interconnected AC 

and DC systems, especially in scenarios where microgrids need to transition seamlessly from grid connected to islanded 

connected modes: 

 

The complex power of AC and DC components are: 

𝑆𝑖
𝐴𝐶 = 𝑃𝑖

𝐴𝐶 + 𝑗𝑄𝑖
𝐴𝐶                          (15) 

 

𝑆𝑖
𝐷𝐶 = 𝑃𝑖

𝐷𝐶 + 𝑗𝑄𝑖
𝐷𝐶                   (16) 

 

Therefore, It is efficient and secure operation during both modes. The models can be extended to incorporate ESS, 
allowing for the optimal utilization of batteries or other storage technologies in the microgrid. The power constraints of AC 

and DC components are: 

𝑃𝑖
𝐴𝐶 ≤ 𝑃𝑚𝑎𝑥

𝐴𝐶                  (17) 
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𝑃𝑖
𝐷𝐶 ≤ 𝑃𝑚𝑎𝑥

𝐷𝐶      (18) 

 
     So, therefore, It is effective management of energy storage for balancing supply and demand 

 

IV. PROPOSED METHODOLOGY 

ANN Architecture 

An artificial neural network model, both computationally and mathematically, simulates how the human brain works. To 

produce a single input value for the neurode, all of the weight-adjusted input values to a processing element are then 

combined using a vector to scalar function, such as summation, averaging, input maximum, or mode value. The 

computational module uses a transfer function to turn out its output (and subsequently the input signals for the next 

processing layer) after computing the input value. The input value of the neurode is altered by the transfer function. For 

this transformation, a sigmoid, hyperbolic tangent, or other nonlinear function is typically employed. The procedure is 

repeated across layers of processing units until the neural network generates a final output value, or vector of values. 

Selection of ANN: The way they are designed allows them to capture complex relationships and patterns in data, 
making them valuable for a range of applications like pattern recognition, regression, and segmentation. Fig 4 Show in  

Fitting neuralnetwork. 

 

 
Fig 4. Fitting Neural Network 

 

Training the ANN model: The process of training an Artificial Neural Network (ANN) involves making adjustments 

to the weights and biases of the network to minimize the difference between the expected and target outputs. 

 

 
Fig 5. ANN Architecture 

Optimization Algorithm 
Usually, the target function is to minimise the overall cost of generating, including fuel expenses, while respecting limits 

such as voltage limits, power balance, and line flow restrictions. In comparison to other load flow methods, the Newton 

Raphson method offers a faster rate of convergence, making it the optimal choice for solving non-linear load flow 

equations. Fig 6 Show in Flow Chart for NN-OPF. 
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Steps to design an algorithm: 

Step 1: Initialization of System Data 

 Define the cost coefficients (c_ac and c_dc), base MVA, bus data (bus matrix), and branch data (branch 

matrix) respectively. 

 Admittance matrix (Ybus) construction: use the makeYbus function 
Step 2: Neural Network Training 

 Take the bus matrix and separate the real power demand (Pd) and reactive power demand (Qd). 

 Initial voltage magnitudes (V) should be set to 1. 

 Using Pd, Qd, and V as inputs, train a neural network (net) to predict voltage magnitudes (V). 

Step 3: Optimal Power Flow 

 Set voltage magnitudes (V) initially and continue iterating until convergence: 

 Compute power flow utilising current V, Ybus, net, cost coefficients, Pd, and Qd. 

 Adjust voltage magnitudes (V) in accordance with the power flow findings. 

Step 4: Results Processing 

 Use calcCost to determine the overall cost for both AC and DC power dispatch. 

 Use calcLosses to determine power losses according to AC power dispatch, voltage magnitudes, and Ybus. 

Step 5: Visualisations 
 For analysis, plot the AC power dispatch (Pac) and DC power dispatch (Pdc). 

Step 6: Validation and Testing 

 Evaluate the system architecture by utilising diverse situations or datasets. 

  Examine the neural network's resilience and the OPF solution's efficacy in varying circumstances. 

 

 
Fig 6. Flow Chart for NN-OPF 

 

V. SIMULATION RESULTS 

Power flow equations can be solved in a limited number of iterations thanks to the Newton Raphson technique, which 

has an iteration count that is independent of the number of buses taken into account. The collection of non-linear 
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equations is converted into a set of linear equations by the Newton-Raphson method, which effectively approaches the 

original solution. Practically speaking, the most reliable power flow algorithm is the Newton Raphson approach. The 

method's drawback, though, is that each iteration requires solving the entire set of linear equations in addition to 

recalculating the terms of the Jacobian matrix. 

A IEEE 12 bus system with 11 loads and 3 transformers has been chosen for analysis. A detailed description of the 
system is given below. 

 

Table 1. System Configuration 

System Details 

Buses  12 

Generators  1 

Loads  11 

Shunts   0 

Branches   12 

  

 The Bus data of the IEEE 14 bus system with Power generation and load details are given in Table 2. 

 

Table 2. Bus Data 

BUS DATA OF IEEE 12 BUS SYSTEM 

BUS 

NO 

VOLT ANGLE GENERATION LOAD 

PU DEG P(MW) Q(MVAR) P(MW) Q(MVAR) 

1 1.02 0.05 350 100 -16.53 - 

2 0.9944 -12.73 300 150 91.3 18.8 

3 0.9891 -10.32 200 100 47.9 -3.8 

4 0.9808 -8.776 150 90 7.6 1.7 

5 0.9702 -14.29 120 80 11.1 7.6 

6 0.9670 -13.37 100 50 - - 

7 0.9643 -13.38 100 0 - - 

8 0.9537 -14.91 100 0 29.8 16.7 

9 0.9505 -15.09 90 0 8.9 5.9 

10 0.9478 -15.07 80 0 6.2 1.7 

11 0.9469 -15.16 70 0 13.6 5.9 

12 0.9467 -16.03 60 0 14.8 4.9 

 

 Table 3. Load Data 

From 

bus 

To bus Resistance 

(pu) 

Reactance 

(pu) 

Line 

Charging 

Thermal 

Conductivity 

1 2 0.02 0.06 0.03 150 

1 4 0.05 0.20 0.04 150 

2 3 0.06 0.17 0.02 80 

3 4 0.01 0.04 0 0 

4 5 0.02 0.06 0.01 100 

4 6 0.06 0.18 0.02 100 

6 7 0.0 0.1 0.0 0 

6 8 0.0 0.1 0.0 0 

6 9 0.0 0.1 0.0 0 

9 10 0.01 0.03 0.1 50 

9 11 0.0 0.0 0.0 0 

9 12 0.0 0.0 0.0 0 

  

      Table 3 Show in Load Data. Regression analysis with supervised learning was chosen as the machine learning 

technique to train the neural network (NN) model on a substantial quantity of data for the power flow problem examined 

in this paper. The Data samples (power flow results) were gathered and AC power flow problems under various power 

system settings were solved using the MATLAB matpower module. The initial values of demand and voltage were 

adjusted to within ±10% of the baseline. There were at least 10,000 samples produced for every test power system. Three 

groups of the data were created: 10% for validation, 10% for testing, and 80% for training.  
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      There are three hidden layers in the suggested NN model, as seen in Fig 5. It was selected to be the backpropagation 

activation function. In order to reduce the vanishing gradient issue during a NN model's training phase, it permits a little, 

non-zero constant gradient to slip through. 

 
Fig 7. Optimal Power Dispatch for Actual and Predicted AC And DC Power 

 

    Using the modified OPF dispatch methods, the study's main objective was to create as closely as feasible the real 

system operations for a range of operating situations. In accordance with current operating rules, the ME dispatch method 

currently in use is based on an economical dispatch with some manual re-dispatching to remove thermal overloads. The 

OPF's recommended solutions were examined to make sure they adhered to established protocols.  

 

 
 

Fig 8. Plot Train State Output. 
 

     Under the identical operational conditions, a dispatch was produced using this approach. But in order to avoid making 

rash assumptions about how long the realized Mw savings would last, the advantages were not really translated into 

yearly dollar savings. Therefore, the study should demonstrate how to better define the system's operational boundaries 

using this OPF application. 
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      The starting voltage magnitude, the total of the active and reactive power injections for each bus, and other variables 

are inputs for the suggested neural network model. Each bus's steady-state voltage magnitude and each branch's active 

power flow will be the output data used for training. 

The min-max normalization technique is used to standardize the data before they are fed into the model to be trained. The 

lowest value for each data attribute is 0 and the largest value is 1. 
     The suggested NN model in Fig 7 and Fig 8 does a good job of reducing the MSE loss. After about 400 epochs, the 

training loss starts to rapidly decline and eventually reaches the plateau zone. Furthermore, the model performed a 

fantastic job of matching the output value to the anticipated 4 value. In Fig 8, the training error rate curve and the 

validation error rate curve were almost identical. 

 

 
 

Fig 9. Regression Plots 
 

Fig 9 Show in Regression Plots. The voltage magnitude at each bus is predicted by the suggested NN model for 

multiple systems with a high degree of accuracy; Table I illustrates the inaccuracy, which is approximately 0.5%. 

However, the NN model found it much easier to learn and anticipate the output values because almost all voltage 

magnitude values lie within the small range of 0.9 p.u. to 1.1 p.u. 

 

VI. CONCLUSION 

In this work, optimized power flow within a hybrid AC/DC microgrid is determined, showcasing the potential of neural 

networks in enhancing predictive capabilities. The findings contribute to the ongoing development of efficient and 

intelligent microgrid management systems. The optimized power distribution, cost reduction, and insights gained from 

the analysis underscore the significance of advanced control strategies in microgrid operations. Real power fluctuations 

and the voltage profile may point to areas that need improvement in terms of voltage and load requirements. Utilizing 
optimization techniques, loss optimization has been carried out, and the results show that a significant percentage of loss 

can be reduced with their assistance. 

     The suggested NN model illustrates possible benefits of machine learning in power systems. Because NN predictions 

are flexible, they can be incorporated into an optimization model to tackle the optimal power flow (OPF) problem for 

systems that have a number of renewable energy sources. The OPF calculation is made simpler and line flows can be 

directly calculated as part of the constraint using the NN model.  
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