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Abstract – This study develops a new technique for optimising Energy Consumption (EC) and occupant satisfaction in business 

centres using Building Energy Management Systems (BEMS) that implement Deep Reinforcement Learning (DRL). Energy 

Management Models (EMM) are growing increasingly advanced and vital for intelligent power systems due to the growing 

demand for energy efficiency and the adoption of Renewable Energy Sources (RES), which are subject to variability. Flawed 

energy Consumption (EC) and problems are typical effects of traditional BEMS due to their unpredictability and failure to 

adapt to new environments. In this intended investigation, a DRL framework is demonstrated that may evolve its decision-

making in real-time to control energy savings, electricity, and HVAC through input from the environment in which it operates. 
A pair of significant metrics, namely the cost of energy and room temperature stability, are employed to assess the effectiveness 

of the model compared to that provided by conventional rule-driven and predictive control systems. As investigated with 

different baseline models, the experimental findings proved that the DRL approach significantly reduced the cost of electricity 

while maintaining stable levels of comfort. 

 

Keywords – Smart Grid, Deep Learning, Deep Reinforcement Learning, Renewable Energy, Energy Cost, Energy Storage 

Management. 

I. INTRODUCTION 

The introduction of advanced technology has made it achievable to develop "Smart Grids (SG)," which have the benefit of 

implementing electronics that are digital into traditional electric power systems. The introduction of this system was motivated 

by rising demands for a more predictable and trustworthy distribution of power, as well as by the objectives to boost the value 
of Energy Consumption (EC) by increasing the use of energy generated by Renewable Energy Sources (RES) [1]. The 

processing of data collected in real time by SG in order ensure demand-side management and indeterminate power fluctuations 

is done in order to set up a SG that is simultaneously flexible and dynamic. By setting up the implementation of freely accessible 
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energy and controlling the random output of energy generated by RES, this builds a basis for the development of sustainable 

energy methods [2]. 

     With the aid of Energy Management Systems (EMS) as part of SG, sustainable distribution and consumption of power are 

controlled. A segment of EMS, Building Energy Management Systems (BEMS), determines if the EC of a building is in line 

with the grid's infrastructure and the demands of the people who live there [3]. The primary methods by which BEMS enable 
the SG to perform with greater effectiveness is by regulating HVAC and electricity, two particularly energy-intensive building 

systems. The BEMS has been developed to enhance the well-being of occupants, fulfil the demands of sustainability, and 

reduce maintenance expenses and impact on the environment by regulating these systems [4]. 

     This method uses the BEMS interface between SG owners and power optimization/Demand Response (DS) programs [5]. 

An array of EMS systems is available, from schedule-based rule-based systems to data-driven predictive models that predict 

the demand for energy in the future [6]. Whereas these models can provide an outline for EMS, they failed when it involves (i) 

integrated with fluctuating RE inputs, (ii) adapting energy distribution to specific owners' dynamic needs, and (iii) real-time 

adaptability.  

     Moreover, they are incapable of adapting on a personal basis to shifting energy conditions, which implies they cannot adapt. 

The key objectives of these technologies should be to maintain consumer safety while optimising EC—more intelligent, 

adaptive systems with autonomy for learning need to be developed to deal with these challenges. Deep Reinforcement Learning 

(DRL) networks have a tendency for success at this particular task. 
     The current investigation introduces a framework that combines the DRL and BEMS in an attempt to boost the business 

premise's livability and EC. The DRL approach accepts people's values, temperatures, and present-day EC as data and employs 

them to generate real-time decisions regarding controlling HVAC environments, lighting available, and Energy Storage 

Systems (ESS). The proposed model was experimented with in a five-floor commercial building of 10000 sq. ft. The data was 

collected for a duration of 90 days, and using two baseline models, (a) Traditional Rule-Based System (TRS) and (b) Predictive 

Control System (PCS), the proposed DRL model was compared. The simulations have shown that the proposed model has 

performed better than the other baseline models.  

     The paper is structured as follows: Section 2 presents the literature study, Section 3 presents the methodology, Section 4 

presents the experiment analysis, and Section 5 concludes the work. 

 

II. LITERATURE REVIEW 
In [7] have presented a review article that analyzed 121 research works. The review analyzed the works in the current field and 

future scope related to intelligent control systems in smart buildings. The review paper listed key factors, such as comfort 

parameters, control systems, and occupant behaviour, as influential factors for constructing efficient EMS. [8] proposed an 

Artificial Intelligence Technique for Monitoring Systems in Smart Buildings (AIMS-SB) to achieve Energy Consumption (EC), 

production, and recycling using different factors. They developed an efficient prediction and monitoring system to manage RE 

production in smart cities. 

     The [9] came up with a Smart Building Energy Management System (SBEMS) that utilized factors like thermal and 

electrical power loops, RE sources, battery storage systems, and heat sharing and storage facilities. They developed a genetic 

algorithm-optimized learning model to analyse the effectiveness of charging scheduling of a bidirectional power network. 

Another effective model for energy scheduling in smart buildings was proposed by [10]. They utilized the Deep Reinforcement 

Learning (DRL) approach to classify the device demand and predict EC and demand for effective scheduling. They 

demonstrated their model using cloud infrastructure to reduce delay and cost in smart city energy distribution. [11-14] had 
developed a DRL-based Energy Management Model (EMM) for intelligent buildings. Their work focused on optimizing energy 

consumption using the DRL. They modelled distributed energy generation systems by establishing Q-learning-based EMM. 

      In [15-18] proposed a HVAC scheduling method for energy savings in buildings. They employed RL to collect, analyze, 

and infer EC data from a hotel testbed. Their attempt to design a purpose-oriented energy-saving methodology based on RL 

helped manage the HVAC systems efficiently. An online optimization of the BEMS system was proposed by [19-20]. They 

designed a DRL-based BEMS with Deep Q-learning and evaluated the model using the Pecan Street Inc. database. Their model 

had shown efficient EMM using energy scheduling strategies and consumer feedback.  

 

III.  METHODOLOGY 

Description of the Building and Systems 

In this study, the choice of building is a commercial office building located in Budapest, Hungary. The building has a covering 
area of 10,000 square meters over five floors. The building was built using energy-efficient materials such as low-emissivity 

(low-E) glass and high R-value insulation [21-24]. The occupancy rate in the building varies, with a typical daily peak of 800 

occupants during standard office hours (9 AM to 5 PM) and decreasing to less than 100 occupants during off-hours and 

weekends. Fig 1 shows the first-floor structure of the chosen building. 
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Fig 1. Floor Plan of the First Floor of The Selected Building 

 

HVAC System: The HVAC system features a Variable Air Volume (VAV) setup with 20 high-efficiency air handling units 

(AHUs), each with a heat recovery system capable of achieving up to 75% thermal efficiency. The system is segmented 

into 50 zones to manage temperature and airflow control effectively. Temperature set points are adjusted between 20°C 

and 24°C based on occupancy rate and external temperature conditions. The system’s economizer cycle is activated 
whenever the external temperatures are between 15°C and 20°C at such a temperature zone, and the cooling EC is reduced 

by utilizing outdoor air for cooling. 

 

Electrical System:  The power system includes dual feeders, automatic transfer switches for critical loads, and real-time 

control and monitoring EMS. The system included an Advanced Metering Infrastructure (AMI) with precision of ±1%. A 

50 kW photovoltaic (PV) array is integrated into the building's electrical system through a grid-tie inverter that covers 

approximately 5% of its total electrical demand. 

 

Lighting System: The building's lighting system includes LED fixtures with an average luminous efficacy of 100 lumens 

per watt. The system is designed to maintain average illuminance levels of 500 lux in workspaces, with the capability to 

adjust between 300 lux to 700 lux based on task requirements and natural daylight availability. Occupancy sensors in all 

significant spaces and daylight sensors near windows ensure optimal lighting conditions and minimize energy waste. The 
lighting control system is integrated with the BMS, allowing scene setting in meeting rooms and dynamic adjustments in 

response to occupancy patterns and daylight levels. 

 

Problem Definition 

The problem of optimizing BEMS with DRL is to dynamically control the building's energy systems, primarily HVAC and 

lighting, to minimize energy consumption and cost while maintaining or improving occupant comfort levels. This optimization 

must respect operational limits and indoor environmental quality standards. The challenge lies in the building's dynamic and 

complex nature, influenced by external (e.g., weather, time of day) and internal (e.g., occupancy, activities) conditions. 

     The objective function is designed to minimize the net EC of the building, accounting for energy efficiency, RE utilization, 

and occupant comfort. This can be expressed as EQU (1).  

 

min𝑓(𝐱) = 𝛼 ⋅ 𝐸total − 𝛽 ⋅ 𝐸PV + 𝛾 ⋅ Δ𝐶                               (1) 

 

     where, 𝑓(𝐱) is the objective function, 𝐸total  represents the total EC of the building, 𝐸PV denotes the energy generated from 

photovoltaic sources, Δ𝐶 is a metric indicating deviation from optimal comfort levels, 𝛼, 𝛽, 𝛾 are weighting factors that reflect 

the relative importance of each term in the objective function, 𝐱 symbolizes the set of controllable variables, such as HVAC 

settings, lighting intensity, and the operation of electrical devices. 

 

Subject to Constraints: 

Thermal Comfort Constraints: The system must maintain indoor thermal conditions within acceptable ranges, EQU 
(2) and EQU (3). 

𝑇min ≤ 𝑇indoor ≤ 𝑇max      (2) 

 

𝐻min ≤ 𝐻indoor ≤ 𝐻max      (3) 
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Energy Supply Constraints: The energy demand must not exceed the total supply from the grid and RE sources at any 

given time, EQU (4). 

𝐸demand (𝑡) ≤ 𝐸grid (𝑡) + 𝐸PV(𝑡)                              (4) 

 

Operational Limits: Operational parameters for HVAC, lighting, and other systems must stay within predefined safety 

and efficiency ranges, EQU (5). 

𝑥min,𝑖 ≤ 𝑥𝑖 ≤ 𝑥max,𝑖      (5) 

Building Energy Storage Model 

The ESS is characterized by its storage capacity 𝐶ESS, measured in kilowatt-hours (kWh), which determines the total amount 

of energy that can be stored. The system's charge and discharge efficiencies, 𝜂charge  and 𝜂discharge, , respectively, influence the 

net amount of usable energy from the storage system. These efficiencies account for energy losses during conversion processes, 

such as inverting electrical energy from DC to AC. 

    The ESS is integrated into the BEMS to dynamically charge (store energy) during periods of low energy demand or high 

renewable production and discharge (release energy) during peak demand periods or when RE production is low. The decision 

to charge or discharge is governed by the DRL algorithm, which considers the building's current and predicted energy needs, 

the status of the grid, and the availability of RE. 

     The State-of-Charge (SOC) of the ESS at any time 𝑡, 𝑆𝑂𝐶(𝑡), is determined by the previous state of charge, the energy input 

(charging), and the energy output (discharging), adjusted for efficiencies, EQU (6). 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) + 𝜂charge ⋅ 𝐸in (𝑡) −
1

𝜂discharge 
⋅ 𝐸out (𝑡)   (6) 

       

     where, 𝐸in (𝑡) is the Energy charged into the ESS at time 𝑡(kWh), 𝐸out (𝑡) is the Energy discharged from the ESS at time 

𝑡(kWh). 
      The ESS serves as a buffer to maximize the use of RE (e.g., from the building's PV array) and minimize dependence on the 

grid, especially during peak tariff periods. It allows storing excess RE generated during peak production hours and its use 

during peak demand or low production periods. 

    The model optimizes the timing and quantity of energy to be stored or released, taking into account: 

 Predicted RE generation based on weather forecasts and historical data. 

 Predicted building energy demand based on occupancy patterns, scheduled activities, and historical consumption data. 

 Grid energy prices and demand-response signals to minimize energy costs and participate in grid stabilization efforts. 

 

Objective Function Modification 

The introduction of the ESS into the BEMS necessitates a modification of the original objective function to include terms 

representing the cost or benefit of using the ESS, EQU (7) 
 

min𝑓′(𝐱, 𝑆𝑂𝐶) = 𝑓(𝐱) + 𝛿 ⋅ 𝐶grid-ESS     (7) 

      where, 𝑓′(𝐱, 𝑆𝑂𝐶) is the modified objective function, including the ESS, 𝛿 represents the cost (or negative benefit) 

associated with charging from or discharging to the grid, 𝐶grid-ESS  is the cost associated with grid interactions facilitated by the 

ESS. 

 

HVAC Model  

The HVAC system is critical for maintaining indoor comfort while minimizing EC. This model focuses on optimizing the 

HVAC operations through a balance of temperature control and energy efficiency. The HVAC system's operation is optimized 

by adjusting the temperature set points ( 𝑇set  ) and air flow rates ( 𝑄air  ) based on occupancy levels ( 𝑁occ  ) and external weather 

conditions ( 𝑇ext , 𝐻ext  ). The objective is to maintain indoor thermal comfort (𝑇indoor , 𝐻indoor  ) within acceptable standards while 

reducing EC. 

      The energy consumption ( 𝐸HVAC  ) of the HVAC system can be modelled as a function of the airflow rate and the difference 

between the set point temperature and the external temperature, adjusted by the system's efficiency ( 𝜂HVAC ), EQU (8). 

 

𝐸HVAC = 𝜂HVAC ⋅ 𝑄air ⋅ (𝑇set − 𝑇ext )          (8) 

where,  

 𝐸HVAC = EC of the HVAC system (kWh). 

 𝜂HVAC = Efficiency of the HVAC system. 

 𝑄air = Air flow rate (cubic meters per second, m3/s ). 
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 𝑇set = Temperature set point ( ∘C). 

 𝑇ext = External temperature ( ∘C). 

 

The objective function for the HVAC model within the DRL framework can be defined as minimizing the EC subject to 

maintaining indoor environmental conditions within predefined comfort ranges, EQU (9). 

min𝐸HVAC(𝐱) , subject to: 
𝑇min ≤ 𝑇indoor ≤ 𝑇max

𝐻min ≤ 𝐻indoor ≤ 𝐻max

𝐶𝑂2min ≤ 𝐶𝑂2indoor ≤ 𝐶𝑂2max

    (9) 

      where 𝑇indoor , 𝐻indoor , and 𝐶𝑂2indoor  are the indoor temperature, humidity, and CO2 concentration, respectively. 

𝑇min , 𝑇max, 𝐻min, and 𝐻max are the minimum and maximum acceptable limits for temperature and humidity, and 𝐶𝑂2min and 

𝐶𝑂2max define the acceptable indoor air quality levels. 

 

Cost Model 

The Cost Model aims to quantify the financial implications of operating the BEMS, primarily focusing on the HVAC and 

Energy Storage System (ESS) under an optimal EMM. This model calculates the total energy cost, considering varying 

electricity tariffs, operational costs, and potential savings from energy-efficient practices. 

     The cost of electricity is a significant factor in the total operational cost and varies according to the time of day, demand, 

and utility provider policies. Let 𝐶elec (𝑡) denote the electricity cost at time 𝑡, which can be defined as EQU (10). 

 

𝐶elec (𝑡) = 𝑃(𝑡) ⋅ 𝐸total (𝑡)      (10) 

 

      where, 𝑃(𝑡) represents the price per kWh of electricity at time 𝑡, 𝐸total (𝑡) is the total EC at time 𝑡, combining HVAC, 

lighting, and other systems; HVAC Operational Cost: The operational cost of the HVAC system, 𝐶HVAC . It depends on its EC 

and the current electricity tariff. It can be expressed as EQU (11). 

 

𝐶HVAC = ∑  𝑡 𝑃(𝑡) ⋅ 𝐸HVAC(𝑡)                 (11) 

 

      where, 𝐸HVAC (𝑡) is the EC by the HVAC system at time 𝑡. 

ESS Cost: The cost associated with the ESS, 𝐶ESS, includes charging costs during low-demand periods and savings from 

discharging during peak tariff periods. It is calculated as EQU (12). 

 

𝐶ESS = ∑  𝑡 [𝑃(𝑡) ⋅ 𝐸in (𝑡) − 𝑃(𝑡) ⋅ 𝐸out (𝑡)]                                (12) 

      where, 𝐸in (𝑡) and 𝐸out (𝑡) are the energy charged into and discharged from the ESS at time 𝑡, respectively. 

      The total cost, 𝐶total , encompasses the cumulative costs of electricity consumption, HVAC operation, and ESS operation, 

EQU (13). 

𝐶total = ∑  𝑡 [𝐶elec (𝑡) + 𝐶HVAC + 𝐶ESS]    (13) 

MDP Formulation 

Fig 2 presents the proposed BEMS model and, for the model, defines a MDP formally as a five-tuple 𝑀 = (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where 

𝑆 represents the set of all possible environmental states, and 𝐴 encompasses all possible actions. The transition probability 

function 𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1] captures the uncertainty in how states evolve based on actions undertaken by the agent. The 

reward function 𝑅: 𝑆 × 𝐴 → ℝ alongside a discount factor 𝛾 ∈ [0,1] completes this model. In this study, the 'agent' refers to 

the BEMS controller  observes the current state 𝑠𝑡 , executes an action 𝑎𝑡 , leading to the evolution of the environment to a new 

state 𝑠𝑡+1, and receives a reward 𝑅𝑡+1. In the following sections, this work will define the essential elements of the MDP 

framework, specifically focusing on the environmental states, actions, and reward function to formulate a comprehensive 

strategy for managing building energy efficiently. 

State: The state (𝑠𝑡) is represented as a set of variables such as indoor (𝑇indoor ) and outdoor temperatures (𝑇outdoor ), 

occupancy levels (𝑁occ ), energy storage levels (𝐸ESS ), and HVAC system status (𝑃HVAC ) at time 𝑡 that characterizes 

the current condition of the building and its immediate environment, EQU (14). 

𝑠𝑡 = [𝑇indoor , 𝑇outdoor , 𝑁occ , 𝐸ESS , 𝑃HVAC ]     (14) 
 

Action: The action ( 𝑎𝑡  ) at time 𝑡 represents the set of decisions applied to the building's systems to influence its 

energy performance, EQU (15), 

𝑎𝑡 = [𝐴HVAC, 𝐴light , 𝐴ESS]                (15) 
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      where 𝐴HVAC  controls the HVAC operation, 𝐴light  adjusts lighting, and 𝐴ESS  decides ESS behavior. These actions are 

chosen based on the current state to optimize the building's EC while maintaining comfort and efficiency. 

 

 
Fig  2. Proposed BEMS model 

 

Reward: The reward function 𝑟𝑡  at time 𝑡 aims to direct the DRL agent toward minimizing EC and associated costs while 

upholding a comfortable indoor temperature range, EQU (16). 

 

𝑟𝑡 = −(𝛼 ⋅ 𝐸HVAC,𝑡 + 𝛽 ⋅ 𝐷ESS,𝑡 + 𝛾 ⋅ |Δ𝑇comfort,𝑡|)     (16) 

 

where, 𝐸HVAC,𝑡  quantifies the HVAC system's energy consumption, 𝐷ESS,𝑡 accounts for the ESS's depreciation, 

reflecting its usage and maintenance costs, |Δ𝑇comfort,𝑡| measures deviations from the ideal comfort temperature range. 

The factors 𝛼, 𝛽, and 𝛾 are weighting coefficients for HVAC efficiency, ESS preservation, and temperature comfort, 

respectively. 

 

Action Value Function: The Action Value Function, denoted as 𝑄(𝑠, 𝑎), is integral for calculating the expected return of 

choosing a specific action 𝑎 in state 𝑠, and after adhering to the best policy after that. It quantifies the expected cumulative 

rewards, facilitating the identification of actions that yield optimal EC and occupant comfort. The action value function for 

BEMS can be expressed as EQU (17). 

 

𝑄(𝑠, 𝑎) = 𝔼[∑  ∞
𝑘=0  𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]     (17) 

where, 𝑠𝑡  and 𝑎𝑡  represent the current state and action, respectively, 𝛾 is the discount factor, 𝑟𝑡+𝑘+1 stands for the 

reward received after 𝑘 + 1 steps. The objective is to iteratively update 𝑄(𝑠, 𝑎) values to mirror the real action values 

under an optimal policy 𝜋∗ that maximizes the building's operational efficiency, EQU (18) 
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𝜋∗(𝑠) = arg max
𝑎

 𝑄(𝑠, 𝑎)       (18) 

       Crucially, the iterative updating of 𝑄(𝑠, 𝑎) values based on actual experiences allows the DRL model to adapt to changing 

conditions and learn effective strategies for real-time EMM.  

 

Transition Probability 

Transition probabilities, denoted as 𝑃(𝑆𝑡+1 ∣ 𝑆𝑡 , 𝐴𝑡), represent the likelihood of the system transitioning from a current state 𝑆𝑡  

to a new state 𝑆𝑡+1 given an action 𝐴𝑡. Understanding and accurately modelling these probabilities is essential for predicting 

the system's behavior in response to various control actions, enabling the DRL agent to make informed decisions to optimise 

energy efficiency and occupant comfort. 
The transition probability function can be expressed as EQU (19). 

 

𝑃(𝑆𝑡+1 = 𝑠′ ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)                 (19) 

 

      where, 𝑠′ is the potential next state of the system, 𝑠 represents the current state, 𝑎 is the action taken in state 𝑠. 

 

Q-Learning Algorithm for the BEMS 

Q-learning is a model-free reinforcement learning technique that helps find the optimal action-selection policy for any finite 

Markov decision process. It works by learning an action-value function that ultimately provides the expected utility of taking 

a given action in a given state and following the optimal policy afterwards. 
Algorithm for Q-Learning for BEMS Optimization 

Inputs: 

 s : Set of states 

 A: Set of actions 

 𝛼 (alpha): Learning rate 

 𝛾 (gamma): Discount factor 

 휀 (epsilon): Exploration rate 

 𝑀𝐴𝑋𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠: Maximum number of episodes 

 𝑇𝑆𝑇𝐴𝑇𝐸𝑆: Set of terminal states 

Procedure: 

1 Initialize Q(s, a) for each state 𝑠 in 𝑆 and action 𝑎 in 𝐴 to zero. For terminal states in 𝑇𝑆𝑇𝐴𝑇𝐸𝑆, 𝑄(𝑠, 𝑎) = 0. 

2 For episode = 1 to 𝑀𝐴𝑋𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 Do: 

 Initialize state 𝑠 to an initial state of the BEMS. 

 While 𝑠 is not in 𝑇𝑆𝑇𝐴𝑇𝐸𝑆  Do: 

o Choose action 𝑎 from state 𝑠 using 휀-greedy policy: 

 With probability 휀, choose a random action from 𝐴. 

 With probability 1 − 𝜖, choose 𝑎 = argmax𝑎′  𝑄(𝑠, 𝑎′). 

o Take action 𝑎, observe the next state 𝑠′ and reward 𝑟. 

o Update the Q-value for the state-action pair (𝑠, 𝑎) using EQU (20). 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ⋅ (𝑟 + 𝛾 ⋅ max
𝑎′

 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))    (20) 

o Update state 𝑠 to 𝑠′. 

 End While 

3 End For 

4 Derive optimal policy 𝜋∗ from Q-values: 

 For each state 𝑠 in 𝑆 do, EQU (21). 

𝜋∗(𝑠) = argmax𝑎 𝑄(𝑠, 𝑎)      (21) 

5 Return 𝑄, 𝜋∗ 

 

IV.  PERFORMANCE EVALUATION 

In this study, simulations incorporate datasets reflecting actual conditions for solar energy production, constant energy 

demands, exterior temperature variations, and fluctuating electricity tariffs, all derived from the expansive Energy Information 

Administration (EIA) database. Given the emphasis on the cooling functionality of Building HVAC systems due to the extreme 
heat observed during summer, the test dataset spans from April to July 2023 for both the training and testing of the proposed 

model. More precisely, data from April to June are utilized for the neural network models' training phase, while July data is 

reserved for evaluating the model's effectiveness. To accurately represent the indoor environment's thermal dynamics within 
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proposed BEMS optimization simulations, this work implements a simplified model for indoor temperature changes, structured 

as follows: EQU (22). 

𝑇indoor (𝑡 + 1) = 𝑇indoor (𝑡) + Δ𝑡 ⋅ (
𝑃HVAC (𝑡)−𝑄loss (𝑡)+𝑄gain (𝑡)

𝐶air 
)    (22) 

where: 

 𝑇indoor (𝑡) is the indoor temperature at time 𝑡, 

 Δ𝑡 is the time step between 𝑡 and 𝑡 + 1, 

 𝑃HVAC (𝑡) represents the power input from the HVAC system, 

 𝑄loss (𝑡) accounts for the heat loss, 

 𝑄gain (𝑡) includes heat gains from solar radiation, 

 𝐶air  is the specific heat capacity of air. 

  

The simulation is configured with the system parameters as listed in Table 1. 

 

Table 1: Parameters and Settings for the Model  

Parameter Value 

Learning Rate (𝜶) 0.1 

Discount Factor (𝜸) 0.9 

Exploration Rate (𝝐) 1 to 0.01 

𝚫𝒕 1hour 

Maximum 𝑷HVAC (𝒕) 10 kW 

Average 𝑸𝐥𝐨𝐬𝐬(𝒕) 2 kW 

Average 𝑸gain (𝒕) 3 kW 

𝑪air  1.005 kJ/kg ⋅ K 

 

The proposed model is compared against the following two baseline models: 

 Baseline 1: Traditional Rule-Based System (TRS) 

TRS utilizes static, predefined rules for controlling HVAC, lighting, and Energy Storage Systems (ESS). It operates on 

fixed schedules or setpoints, lacking responsiveness to real-time changes in environmental conditions or occupancy patterns.  

 Baseline 2: Predictive Control System (PCS)  

PCS employs forecast data to make anticipatory adjustments in energy system controls. It aims to optimize operations 
based on expected weather conditions and occupancy but does not adapt in real time to unforeseen changes. 

 
Fig 3. Convergence Analysis 

 

Analyzing the convergence of the proposed DRL model for the BEMS, Fig 3 indicates a convergence towards an optimal 

policy over the training episodes. Initially, there's a rapid improvement in rewards, typical of early learning, where significant 

gains are made as the model identifies better strategies. As training progresses, the average reward trendline shows a gradual 

plateauing, interspersed with diminishing fluctuations, signifying that the model's explorations yield less dramatic 

improvements and are settling into a stable policy. The smoothness of the average reward line towards the end of the training 
episodes suggests that the DRL model has largely converged, finding an equilibrium where the actions chosen consistently lead 

to higher rewards, which, in the context of BEMS, would correlate with optimized EC and maintained comfort levels. This 
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plateauing trend is a hallmark of convergence in reinforcement learning, indicating that further training is unlikely to result in 

substantial performance gains, affirming the model's readiness for deployment in a real-world BEMS scenario. 

 

 
   (a)      (b) 

Fig 4 (a). Mean total Energy cost, Fig (b). Mean temperature deviation 

      Fig 4 compares the performance of a DRL model with two baseline models in terms of mean total energy cost (Fig 4 (a)) 

and mean temperature deviation (Fig 4 (b)). For the mean total energy cost, the DRL model is the most cost-effective, averaging 

$120.92, which is significantly lower than Baseline 1 and Baseline 2, which are $259.79 and $201.33, respectively. This 
suggests that the DRL model is the most efficient in managing energy consumption, thereby reducing costs. When looking at 

mean temperature deviation, which is a measure of comfort, the DRL model again outperforms the baselines with a minimal 

deviation of 0.38 °C. Baseline 1 has a higher deviation of 2.44 °C, and Baseline 2 is the least effective, with the most significant 

deviation of 3.47 °C from the desired temperature setpoint. 

 

 
Fig 5. Time vs Temperature 

 

       Fig 5 presents the Temperature variation against time for the three compared models over a 24-hour period, where the 

DRL model adeptly maintains indoor temperature within the comfort zone, set between 20 °C and 25 °C, demonstrating its 
effectiveness in adapting to the actual outdoor temperature fluctuations. The DRL model consistently keeps the indoor 

temperature close to the optimal 22.5 °C mark, outperforming Baseline 1, which shows moderate temperature control with 

occasional peaks just touching the 25 °C upper limit, indicating slight deviations from ideal comfort. Baseline 2 exhibits the 

least effective control, with temperatures swinging beyond the upper and lower comfort thresholds, suggesting potential 

discomfort for occupants. This analysis underscores the DRL model's advanced capability for ensuring occupant comfort by 

dynamically responding to external temperature changes, as opposed to the more static nature of the baseline models. 

        The Fig 6 shows the HVAC measurement for 24 Hrs. timeframe for the DRL model was compared against measurements 

from two baseline control systems over a 24-hour period of the day. Throughout the daylight hours and night, the DRL system's 
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EC boosted to 8 kW, rendering it probably the most practical EC. Baseline 1's energy levels were approximately 8.5 kW, which 

was slightly more than Baseline 2. However, with peaks hitting 9 kW, Baseline 2 demonstrated the maximum EC. 

 

 
Fig 6. Time vs HVAC 

 

V. CONCLUSION AND FUTURE WORK 

The objective of the current study is to analyse the practicality and feasibility of the Deep Reinforcement Learning (DRL) 
framework within the framework of Building Energy Management Systems (BEMS). A 10,000-square-meter business premises 

in Hungary was utilised as a location for the research investigation. Energy consumption (EC) and sustaining a suitable 

temperature are two key variables the computer model considers when computing the BEMS tuning variables. Researchers 

tested the proposed approach to two standard baseline models: the Predictive Control System (PCS) and the Traditional Rule-

Based System (TRS). Minimising energy costs and maintaining the temperature inside within the targeted level of comfort 

were two areas where the recommended design was performed. Improved and more balanced energy efficiency and comfort 

for consumers are the outcomes of higher efficiency made feasible by efficient investigation of real-time data and dynamic 

study. This is how the proposed framework addresses today's issues facing BEMS in an adaptable approach.  

      Implementing Renewable Energy Sources (RES) and increasing the number of building types will be the key objectives of 

future work. 
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