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Abstract – Osteoporosis and osteopenia, prevalent bone diseases affecting millions of people globally, necessitate accurate 

early diagnosis for effective treatment and fracture prevention. This paper proposes a novel hybrid optimization algorithm 

tailored for classifying these conditions based on Bone Mineral Density (BMD) measurements. The algorithm, a 

customized Mini-Batch Gradient Descent (MBGD), blends the advantages of Gradient Descent (GD) and Stochastic 

Gradient Descent (SGD), addressing specific needs for osteoporosis and osteopenia classification. Utilizing a dataset 

comprising BMD measurements and clinical risk factors from the Osteoporotic Fractures in Men (MrOS), Study of 

Osteoporotic Fractures (SOF), and Fracture Risk Assessment (FRAX), the model achieves an impressive accuracy of 

99.01%. The proposed model outperforms existing methods, demonstrating superior accuracy compared to the accuracy 

obtained in Gradient Descent of 97.26%, Stochastic Gradient Descent of 97.23%, and other optimization algorithms such 
as Adam of 96.45% and the RMSprop of 96.23%. This hybrid model presents a robust framework for early diagnosis of 

Osteoporosis and osteopenia, and hence there is an enhancement in quality of life. 
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I.   INTRODUCTION 

Osteoporosis and osteopenia are common bone diseases that affect millions of people worldwide. Accurate and early 

diagnosis of these conditions is critical for effective treatment and prevention of bone fractures. Bone mineral density (BMD) 

measurements are widely used to assess bone health and predict the risk of osteoporosis and osteopenia. Machine learning 

algorithms have shown great promise in classifying these conditions based on BMD measurements and other clinical risk 

factors [1]. In this context, this paper proposes a customized hybrid optimization algorithm for the classification of 

osteoporosis and osteopenia based on BMD measurements.  

    The proposed algorithm is a modified version of the Mini-Batch Gradient Descent (MBGD) algorithm, which combines 

the benefits of Gradient Descent (GD) and Stochastic Gradient Descent (SGD) techniques. The customized MBGD 

algorithm is designed to handle the specific requirements of the osteoporosis and osteopenia classification problem [2], 

leveraging a dataset of BMD measurements and clinical risk factors. Figure 2 shows the optimization flowchart method 

using Machine Learning.  The proposed model is trained to predict the risk of osteoporosis and osteopenia based on BMD 
measurements and clinical risk factors. Experimental results show that the customized MBGD algorithm achieves high 

accuracy and outperforms existing methods for osteoporosis and osteopenia classification. The proposed model provides a 

robust and efficient framework for the early diagnosis and treatment of these bone diseases, which can ultimately improve 

patient outcomes and quality of life. 

 

II. RELATED WORKS 

A study published in the Journal of Medical Systems in 2019 proposed a machine learning model based on gradient descent 

optimization for the classification of osteoporosis using X-ray images [3]. The model achieved an accuracy of 94% in 

classifying osteoporotic and non-osteoporotic images. Another study published in the Journal of Bone and Mineral Research 

in 2020 used a deep learning model based on stochastic gradient descent optimization for the classification of osteoporosis 

using DXA images [4]. The model achieved an accuracy of 95.4% in classifying osteoporotic and non-osteoporotic images. 

2019 proposed a machine learning model based on gradient descent optimization for the classification of osteopenia using 
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DXA images. The model achieved an accuracy of 85.5% in classifying osteopenic and non-osteopenic images. Journal of 

Medical Systems in 2020 used a machine learning model based on stochastic gradient descent optimization for the 

classification of osteoporosis using clinical risk factors. The model achieved an accuracy of 88.6% in classifying osteoporotic 

and non-osteoporotic cases [5]. 

    Gradient descent and stochastic hybrid models are two separate techniques in machine learning, and there are various 

related works for each of them. The original paper on gradient descent by Cauchy (1847) presents the first formulation of 

the method. work of Rumelhart, Hinton, and Williams (1986) introduced backpropagation, a specific form of gradient 

descent that is commonly used in neural networks [6]. The ADAM optimizer, introduced by Kingma and Ba (2015), is a 
popular variant of gradient descent that combines the benefits of momentum and adaptive learning rates. The work of 

Sutskever, Martens, Dahl, and Hinton (2013) introduced a variant of gradient descent known as Hessian-free optimization 

[7], which avoids the computation of the Hessian matrix. The Nesterov accelerated gradient (NAG) method, proposed by Y. 

Nesterov (1983) has become very popular in the optimization community for accelerating the convergence rate of gradient 

descent. The work of Jordan, Ghahramani, Jaakkola, and Saul (1999) introduced the concept of variational inference, which 

is commonly used in stochastic hybrid models [8]. The probabilistic programming language Stan (Carpenter et al., 2017) is 

a popular tool for fitting stochastic hybrid models [9]. The work of Rezende and Mohamed (2015) introduced the concept 

of normalizing flows, which is a class of stochastic hybrid models that can be used for both generative and discriminative 

tasks [10]. The Hamiltonian Monte Carlo (HMC) algorithm, introduced by Duane, Kennedy, Pendleton, and Roweth (1987) 

has become popular in the Bayesian inference community for sampling from the posterior distribution of stochastic hybrid 

models [11]. 

    In summary, the use of machine learning models for the classification of osteoporosis and related conditions has shown 

promising results in recent studies. Various techniques have been employed, including gradient descent optimization and 

stochastic hybrid models. 

     Gradient descent optimization, which has its origins dating back to Cauchy's work in 1847, has evolved over time with 

advancements such as backpropagation by Rumelhart, Hinton, and Williams in 1986, and variants like the ADAM optimizer 

introduced by Kingma and Ba in 2015. These optimization methods have been instrumental in training machine learning 
models for tasks such as osteoporosis classification using X-ray and DXA images, as demonstrated in the studies mentioned. 

Overall, the field of machine learning in healthcare continues to advance, offering valuable tools for improving diagnostic 

accuracy and patient care in conditions like osteoporosis. 

 

III. MATERIALS AND METHODS 

Dataset  

The Osteoporotic Fractures in Men (MrOS) Study dataset: This dataset contains BMD measurements and other clinical 

data for about 5,000 men aged 65 years and above including a data set of with or without of osteoporotic bone fractures.The 

Osteoporotic Fractures (SOF) dataset: This dataset contains BMD measurements and other clinical data for about  9,000 

women aged 65 years and above, including those with and without osteoporotic fractures. The dataset is publicly available 

through the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) website. The Fracture Risk 

Assessment (FRAX) dataset includes clinical risk factors for osteoporotic fractures, such as age, sex, BMD, and other 

medical conditions as shown in Fig 1. The dataset is publicly available through the World Health Organization (WHO) 

website.  

     In Classifying osteoporosis and osteopenia using gradient descent and stochastic customized models implementation 

would require a dataset with features that are indicative of bone health, such as bone mineral density, age, gender, and 

medical history [12]. 
 

 
Fig 1. Dataset Model 
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Existing Model  

After training, the model undergoes evaluation using a separate test dataset [13]. Here, the model's predictive capabilities 

are assessed by forwarding the test data through its layers, generating predicted outputs [14]. These predictions are then 

compared against the ground truth labels to compute evaluation metrics such as accuracy, precision, recall, and F1 score. 

To facilitate this process, the code leverages pre-existing functions within the scikit-learn library. In essence, this code 

encapsulates a custom neural network model engineered to handle osteoporosis and osteopenia classification tasks, 

integrating both gradient descent and stochastic gradient descent methodologies [15]. Gradient Descent (GD) is an 

optimization algorithm[16] used to minimize the cost function in machine learning models. The idea behind GD is to 
iteratively update the model parameters by moving in the direction of the negative gradient of the cost function. However, 

GD can be computationally expensive when dealing with large datasets [17-19].  

     Gradient Descent is an optimization algorithm used to minimize a function by iteratively moving in the direction of the 

steepest descent as defined by the gradient of the function[20]. The algorithm works by updating the parameters of the 

function with the negative of the gradient of the function at each step until a local minimum is reached. Here is the formula 

for the  gradient descent algorithm: 

 Initialization: Choose the initial values for the parameters of the function to be minimized, usually 

randomly [21]. 

 Repeat until convergence  

 Compute the gradient of the function with respect to the parameters  

 Update the parameters by subtracting a learning rate multiplied by the gradient: θ = θ - α * ∇J(θ) 

where θ is the vector of parameters, α is the learning rate (a hyperparameter that determines the 

step size), and ∇J(θ) is the gradient of the function with respect to θ  
 Stop when the algorithm converges, usually when the change in the value of the function or the 

parameters falls below a certain threshold [22] 

 

 
      

                                                               Fig 2. DCNN Optimization Process 

 

Stochastic Gradient Descent (SGD) is a variant of the traditional Gradient Descent optimization algorithm. While Gradient 

Descent computes the gradient of the cost function using the entire dataset, SGD calculates the gradient using only a single 

or a small subset of training examples. This makes SGD computationally more efficient, especially for large datasets. 

     stochastic gradient descent (SGD) optimization algorithm:[23-29]. 

 Initialization: Choose the initial values for the parameters of the model to be optimized, usually 

randomly. 

 Repeat for each sample in the training data, until convergence: 

 Randomly select a sample from the training data. 

 Compute the gradient of the loss function with respect to the parameters for that sample. 
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 Update the parameters by subtracting a learning rate multiplied by the gradient: θ = θ - α * ∇J(θ, x_i, 

y_i) where θ is the vector of parameters, α is the learning rate, ∇J(θ, x_i, y_i) is the gradient of the 

loss function with respect to θ for the sample (x_i, y_i), where x_i is the input and y_i is the true 

outpu t[30] 
 Repeat step 2 for multiple epochs (i.e., iterations over the entire training data). 

 Stop when the algorithm converges, usually when the change in the value of the loss function or the 

parameters falls below a certain threshold [30] 

     Gradient descent is a fundamental optimization algorithm used to minimize a function by iteratively adjusting the 

parameters in the direction of the steepest descent as indicated by the gradient of the function. However, traditional gradient 

descent involves computing the gradient using the entire dataset, which can be computationally expensive, especially for 

large datasets. Stochastic Gradient Descent (SGD) addresses this issue by randomly selecting individual samples or small 

batches from the dataset to compute the gradient. This introduces randomness into the optimization process but 

significantly reduces computational costs, making it more scalable to large datasets. While gradient descent seeks to 

minimize the cost function by updating parameters based on the average gradient across the entire dataset, SGD updates 

parameters based on the gradient computed from a single or a small subset of examples. This "stochastic" nature can lead 

to faster convergence and better generalization in some cases, albeit with more frequent fluctuations in the optimization 

trajectory compared to traditional gradient descent. 

    In summary, while both gradient descent and SGD aim to minimize the cost function, SGD introduces a key modification 

by using random sampling to compute gradients, bridging the gap between computational efficiency and optimization 

performance. 

 
Customized Proposed Model  

First, the data is loaded and pre-processed, with the training and testing data split into input and output features (X_train, 

X_test, y_train, y_test). Then, the architecture of the model is defined, with the number of layers, input dimension, hidden 

dimension, and output dimension specified [13]. Activation functions are also defined for each layer is defined and shown 

in Fig 3 Next, the weights for the model are initialized using a Gaussian distribution with zero mean and a small standard 

deviation. The learning rate, batch size, and number of epochs are set for the training process [14]. 

     The model is trained using stochastic gradient descent, which involves shuffling the training data and splitting it into 

batches. For each batch, a forward pass is performed through the layers of the model to compute the predicted output. The 

error is then calculated, and a backward pass is performed through the layers to compute the gradients of the weights. These 

gradients are used to update the weights for each layer using the learning rate [20]. Fig 3 shows the architecture for proposed 

model hybrid mini-batch gradient descent. 

 

 
Fig 3. Architecture for Proposed Model Hybrid Mini-batch Gradient Descent 

 

Proposed model- Mini-batch-batch Gradient Descent (MBBGD). 

A hybrid model that combines the benefits of GD and SGD is Mini-batch-batch Gradient Descent (MBGD). In MBGD, 

instead of using the entire dataset or a single sample to compute the gradient, a small random batch of samples is used. 

This allows the algorithm to take advantage of the efficiency of SGD while reducing the noise introduced by using a single 

sample. Which is shown in equation 1 

The hybrid model that combines GD and SGD as follows: 

 Initialize the model parameters θ. 

 Set the learning rate α and batch size b. 
 Repeat until convergence: 

 Shuffle the training data. 

 For i = 1, 2, ..., n/b (where n is the number of training examples): 

 Select a mini-batch of b examples from the shuffled data. 
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 Compute the gradient of the cost function J(θ) with respect to the mini-batch using 

backpropagation is specified in equation 2 

 

∇𝜃𝐽(𝜃) =
1

𝑏
∑ ∇𝜃𝐽(𝜃, 𝑥 𝑖 , 𝑦𝑖)𝑏

𝑖=1                                                                   (1) 

 

     where $x^{(i)}$ is the input image and $y^{(i)}$ is the true label for the $i^{th}$ example in the mini-batch. Update 

the model parameters using the GD update rule: 

Output the final model parameters θ. 

 

     Note that the batch size b is a hyperparameter that can be tuned for optimal performance. A larger batch size reduces 

the noise introduced by using a single sample, but also requires more memory and computational resources shown in           

Fig 4(a). 
     In summary, the hybrid model of Mini-batch Gradient Descent combines the efficiency of Stochastic Gradient Descent 

with the stability of Gradient Descent, making it a popular optimization algorithm for large-scale machine learning 

problems such as image classification as shown in Fig 4(b). 

 

IV.   RESULTS AND DISCUSSION 

Minimizing cost function for Gradient  

Gradient descent is an optimization algorithm used to minimize the cost function of a machine learning model shown in          

Fig 4(c). The cost function is a measure of how well the model is performing, and the goal of gradient descent is to find the 

set of parameters that minimize the cost function shown in equation 2. 
The formula for gradient descent in 

 

𝜃 = 𝜃 − 𝛼∇𝜃𝐽(𝜃)                                                                           (2) 

    

    where θ is the vector of parameters to be optimized as shown in Fig 4(d), α is the learning rate (a hyperparameter that 

controls the size of the steps taken during optimization), and ∇J(θ) is the gradient of the cost function J with respect to θ. 

The gradient of the cost function is a vector that contains the partial derivatives of the cost function with respect to each 

parameter in θ. For example, if θ = [θ1, θ2, θ3], then the gradient of J with respect to θ is: in equation 3.  

 

𝜃 = 𝜃 − 𝛼 ∗ ∇𝐽(𝜃)                                                                            (3) 

 

    The formula for the cost function J depends on the specific machine learning problem and the chosen model. Here are 

some examples of cost functions and their gradients are shown in equation 4.  

Mean Squared Error (MSE) 

 

𝐽(𝜃) =
1

2𝑚
∗ ∑(ℎ𝜃(𝑥(𝑖)) − 𝑦((𝑖))

2
                                                       (4) 

 

    where hθ(x(i)) is the predicted value for the ith training example, y(i) is the true label for the ith training example, and 

m is the number of training examples shown in equation 5. 

 

∇𝐽(𝜃) =
1

𝑚
∗ 𝑋𝑇 ∗ (𝑋 ∗ 𝜃 − 𝑦)                                                             (5) 

 

    where X is the design matrix (a matrix that contains the feature values for each training example), X^T is the transpose 

of X, and * denotes matrix multiplication. Cross-Entropy Loss shown in equation 6. 

 

𝐽(𝜃) =
−1

𝑚
∗ ∑(𝑦(𝑖) ∗ log (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖) ∗ log (1 − ℎ𝜃(𝑥(𝑖)))           (6) 

 

    where hθ(x(i)) is the predicted probability that the ith training example belongs to the positive class, y(i) is the true 
label (0 or 1) for the ith training example, and m is the number of training examples shown in equation 7. 

 

∇𝐽(𝜃) =
1

𝑚
∗ 𝑋𝑇 ∗ (ℎ(𝜃(𝑥) − 𝑦)     (7) 

 

where hθ(x) is a vector containing the predicted probabilities for all training examples, and * denotes element-wise 

multiplication shown in equation 7.  

     After around 60 iterations the cost is flat so the remaining iterations are not needed or will not result in any further 

optimization shown in Fig 5(a) and Fig 5(b). Let us zoom in till iteration 100 and see the curve. Mini Batch Gradient 

Descent Gradient descent is a widely used optimization algorithm in machine learning to minimize the cost function of a 
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model. The cost function measures how well the model is performing and the goal is to find the set of parameters that 

minimize the cost function as shown in Fig 6(a) and Fig 6(b). 

 

 

 

 

 

 

4(a)          4(b) 

                 Fig 4(a). Minimizing cost function for Gradient pattern,  Fig (b). Minimizing cost function with regulation 

 

     The formula for gradient descent involves taking steps in the opposite direction of the gradient of the cost function with 

respect to the parameters, multiplied by a learning rate. The gradient of the cost function is a vector of partial derivatives 

that measures the sensitivity of the cost function to changes in each parameter as shown in Fig 6(c) and Fig 6(d). The 

specific form of the cost function and gradient depends on the machine learning problem and the chosen model, but 
common examples include Mean Squared Error and Cross-Entropy Loss. By iteratively updating the parameters using 

gradient descent, the model can learn to make better predictions on new, unseen data. 

 

                                    4(c)           4(d) 

Fig 4(c). Minimizing cost function for Gradient pattern 2,  Fig 4(d) Minimizing cost function with regulation 2 

 

Comparison of Optimization Algorithms 

 Stochastic Gradient Descent (SGD): SGD is one of the most widely used optimization algorithms. It updates 

the weights of the neural network by minimizing the loss function using the gradients of the parameters with 

respect to the loss. SGD works well for large datasets and simple models but can get stuck in local minima. 

 Adam: Adam is an adaptive optimization algorithm that adjusts the learning rate based on the gradient 

magnitude. It has been shown to be effective for both sparse and noisy gradients, making it a popular choice 

for training DCNNs. 

 RMSprop: RMSprop is another adaptive optimization algorithm that uses the root mean squared gradient to 

adjust the learning rate. It has been shown to work well for non-stationary and noisy gradients, making it 

useful for training DCNNs on large and complex datasets. 

 Adagrad: Adagrad is another adaptive optimization algorithm that adjusts the learning rate based on the 

historical gradient information. It works well for sparse data and can converge quickly, but can also suffer 

from the problem of diminishing learning rates. 
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                                             5(a)             5(b) 

         Fig 5 (a). Scattering of plain pattern of hypothesis, Fig 5(b). Scattering of plain pattern of hypothesis with linear 

 
 Adadelta: Adadelta is another adaptive optimization algorithm that adapts the learning rate based on the 

gradient magnitude and past gradients. It works well for large datasets and can converge quickly, but can also 

be sensitive to the choice of hyperparameters. 

 Adamax: Adamax is a variant of Adam that uses the L-infinity norm of the gradient instead of the L2 norm. 

It is particularly useful for training models with large numbers of parameters and is less sensitive to the choice 
of hyperparameters than Adam. 

 Nadam: Nadam is a combination of Nesterov accelerated gradient (NAG) and Adam. It uses NAG to 

accelerate the gradient descent and Adam to adapt the learning rate. It works well for large and complex 

datasets and can converge quickly. 

          

 

 

 

 

 

 

 

 

 

 

 

                                                         6(a)                                      
            6(b) 

 

                             5(a)                                                          5(b) 

 

 

                              6(c)                       6(d) 

 

 6(a)                                                                                    6(b) 

 

 

 

 6(d) 

 6(c) 

 

                

Fig 6(a). Batch Gradient Descent Gradient Descent Distribution, Fig 6(b). Linear Distribution,  

Fig 6(c) Scattering Based On Iteration, Fig 6(d) Minimal Time Iteration 
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Table 1. Comparison of Optimization of Algorithms 

 Customized Sequential Deep Neural 

Network 
Hybrid DCNN + MSVM 

Algorithm Test Loss Test Accuracy Test Loss Test accuracy 

SGD 0.0399 97.26 0.0722 97.23 

SGD - momentum RMSProp 0.0295 97.89 0.0611 96.23 

SGD - Nesterov 0.0266 98.02 0.0497 96.08 

AdaGrad 0.0500 95.05 0.0656 94.67 

AdaDelta 0.0291 8.12 0.0412 94.66 

Adam 0.0487 96.45 0.0219 98.23 

AdaMax 0.0277 98.02 0.0574 95.44 

Nadam 0.0467 96.13 0.0398 97.34 

AMSGrad 0.0389 97.11 0.0687 96.45 

Customized Mini-batch-batch 

Gradient Descent (MBBGD). 

 

0.0210 99.01 0.0211 98.91 

The optimization of algorithms is a crucial step in improving the efficiency and effectiveness of computational processes. 

Various optimization techniques such as genetic algorithms, simulated annealing, particle swarm optimization, and gradient 

descent have been developed to enhance the performance of different types of algorithms. Each technique has its strengths 

and weaknesses, and the choice of the optimal optimization method depends on the specific problem and application. As 

shown in Table 1, it is essential to consider factors such as computation time, accuracy, and scalability when selecting an 

optimization method. Additionally, evaluating the performance of the optimized algorithm through testing and 

benchmarking is necessary to ensure that the results obtained are accurate and reliable. 

     The optimization of algorithms is a vital area of research that has numerous applications in different fields. By 

employing the appropriate optimization techniques, we can enhance the performance of algorithms, making them more 

efficient and effective in solving complex problems. The result is shown in Table 1. 
 

V. CONCLUSION 

The hybrid model combining Gradient Descent (GD) and Stochastic Gradient Descent (SGD) algorithms for Deep 

Convolutional Neural Networks (DCNN) optimization can offer significant benefits. GD and SGD are both widely used 

optimization algorithms, each with its strengths and weaknesses. Gradient Descent is a deterministic algorithm that updates 

model parameters based on the average gradients of the entire training dataset. It guarantees convergence to the global 

minimum but can be computationally expensive, especially for large datasets, as it requires evaluating the gradients for the 

entire dataset in each iteration. On the other hand, Stochastic Gradient Descent randomly selects a subset (mini-batch) of 

the training dataset for each iteration and updates the model parameters based on the gradients computed only on that mini-

batch. SGD is computationally efficient and works well in noisy or non-convex optimization landscapes. However, it 

introduces more variance due to the random sampling, making convergence to the global minimum less certain. By 

combining GD and SGD, we can leverage the advantages of both algorithms. In the hybrid model, we initially use GD to 

make large-scale adjustments to the model parameters, taking advantage of its ability to converge towards the global 

minimum. This helps to initialize the model in a good region of the optimization landscape. After the initial GD phase, we 

switch to SGD to perform fine-grained updates using mini batches. 

 

Data Availability  
No data was used to support this study.  

 

Conflicts of Interests 
The author(s) declare(s) that they have no conflicts of interest. 

 

Funding 
No funding agency is associated with this research. 

 

Competing Interests 
There are no competing interests. 

 

References 
[1]. M. Tassoker, M. Ü. Öziç, and F. Yuce, “Comparison of five convolutional neural networks for predicting osteoporosis based on mandibular 

cortical index on panoramic radiographs,” Dentomaxillofacial Radiology, vol. 51, no. 6, Sep. 2022, doi: 10.1259/dmfr.20220108. 

[2]. B. Saravi et al., “Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning 

Models,” Journal of Personalized Medicine, vol. 12, no. 4, p. 509, Mar. 2022, doi: 10.3390/jpm12040509. 

[3]. J. Ryu et al., “Automated Detection of Periodontal Bone Loss Using Deep Learning and Panoramic Radiographs: A Convolutional Neural 

Network Approach,” Applied Sciences, vol. 13, no. 9, p. 5261, Apr. 2023, doi: 10.3390/app13095261. 



 
ISSN: 2788–7669                                                                                          Journal of Machine and Computing 4(2)(2024) 

 

348 

 

[4]. T. Kabir et al., “An End-to-end Entangled Segmentation and Classification Convolutional Neural Network for Periodontitis Stage Grading from 

Periapical Radiographic Images,” 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec. 2021, doi: 

10.1109/bibm52615.2021.9669422. 

[5]. F. Carrillo‐Perez et al., “Applications of artificial intelligence in dentistry: A comprehensive review,” Journal of Esthetic  and Restorative 

Dentistry, vol. 34, no. 1, pp. 259–280, Nov. 2021, doi: 10.1111/jerd.12844. 

[6]. S. Sukegawa et al., “Identification of osteoporosis using ensemble deep learning model with panoramic radiographs and clinical covariates,” 

Scientific Reports, vol. 12, no. 1, Apr. 2022, doi: 10.1038/s41598-022-10150-x. 

[7]. K.-S. Lee, S.-K. Jung, J.-J. Ryu, S.-W. Shin, and J. Choi, “Evaluation of Transfer Learning with Deep Convolutional Neural Networks for 

Screening Osteoporosis in Dental Panoramic Radiographs,” Journal of Clinical Medicine, vol. 9, no. 2, p. 392, Feb. 2020, doi: 

10.3390/jcm9020392. 

[8]. T. Nakamoto, A. Taguchi, and N. Kakimoto, “Osteoporosis screening support system from panoramic radiographs using deep learning by 

convolutional neural network,” Dentomaxillofacial Radiology, vol. 51, no. 6, Sep. 2022, doi: 10.1259/dmfr.20220135. 

[9]. J.-S. Lee, S. Adhikari, L. Liu, H.-G. Jeong, H. Kim, and S.-J. Yoon, “Osteoporosis detection in panoramic radiographs using a deep convolutional 

neural network-based computer-assisted diagnosis system: a preliminary study,” Dentomaxillofacial Radiology, vol. 48, no. 1, p. 20170344, Jan. 

2019, doi: 10.1259/dmfr.20170344. 

[10]. C. Tong, B. Liang, J. Li, and Z. Zheng, “A Deep Automated Skeletal Bone Age Assessment Model with Heterogeneous Features Learning,” 

Journal of Medical Systems, vol. 42, no. 12, Nov. 2018, doi: 10.1007/s10916-018-1091-6. 

[11]. L. Jakaite, V. Schetinin, J. Hladůvka, S. Minaev, A. Ambia, and W. Krzanowski, “Deep learning for early detection of pathological changes in 

X-ray bone microstructures: case of osteoarthritis,” Scientific Reports, vol. 11, no. 1, Jan. 2021, doi: 10.1038/s41598-021-81786-4. 

[12]. S. Raschka, “Gradient Descent and Stochastic Gradient Descent,” Çevrimiçi]. Available: http://rasbt. github. 

io/mlxtend/user_guide/general_concepts/gradient-optimization/.[Erişildi: 03 01 2021], 2020. 

[13]. L. Heryawan, F. Febriansyah, and A. Bukhori, “Deep Learning and Machine Learning Model Comparison for Diagnosis Detection from Medical 

Records,” Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, Nov. 2022, doi: 

10.1145/3575882.3575941. 

[14]. Q. Deng, Y. Cheng and G. Lan, “Optimal Adaptive And Accelerated Stochastic Gradient Descent,” 2018, arXiv preprint arXiv:1810.00553. 

[15]. S. Horváth, K. Mishchenko and P. Richtárik, “Adaptive Learning Rates for Faster Stochastic Gradient Methods,” 2022, arXiv preprint 

arXiv:2208.05287. 

[16]. L. Bottou, “Stochastic Gradient Descent Tricks,” Neural Networks: Tricks of the Trade, pp. 421–436, 2012, doi: 10.1007/978-3-642-35289-

8_25. 

[17]. S. Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing, vol. 5, no. 4–5, pp. 185–196, Jun. 1993, doi: 

10.1016/0925-2312(93)90006-o. 

[18]. M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized stochastic gradient descent,” Advances in neural information processing systems, 

23, 2010. 

[19]. V. Nagarajan and J. Z. Kolter, “Gradient descent GAN optimization is locally stable,” Advances in neural information processing systems, 30, 

2017. 

[20]. S. Smith, E. Elsen, and S. De, “On the generalization benefit of noise in stochastic gradient descent,” In International Conference on Machine 

Learning (pp. 9058-9067). PMLR, Nov 2020. 

[21]. S. Du, J. Lee, H. Li, L. Wang and X. Zhai, “Gradient descent finds global minima of deep neural networks,” In International conference on 

machine learning (pp. 1675-1685). PMLR, May 2019. 

[22]. S. Ruder, “An overview of gradient descent optimization algorithms,” 2016, arXiv preprint arXiv:1609.04747. 

[23]. E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala, and C. O. Aigbavboa, “A Comparative Analysis of Gradient Descent-Based Optimization 

Algorithms on Convolutional Neural Networks,” 2018 International Conference on Computational Techniques, Electronics and Mechanical 

Systems (CTEMS), Dec. 2018, doi: 10.1109/ctems.2018.8769211. 

[24]. I. Amelia Dewi and M. A. Negara Ekha Salawangi, “High performance of optimizers in deep learning for cloth patterns detection,” IAES 

International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 3, p. 1407, Sep. 2023, doi: 10.11591/ijai.v12.i3.pp1407-1418. 

[25]. L. Elhaloui, S. El Filali, E. H. Benlahmer, M. Tabaa, Y. Tace, and N. Rida, “Machine learning for internet of things classification using network 

traffic parameters,” International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 3, p. 3449, Jun. 2023, doi: 

10.11591/ijece.v13i3.pp3449-3463. 

[26]. H. Benradi, A. Chater, and A. Lasfar, “A hybrid approach for face recognition using a convolutional neural network combined with feature 

extraction techniques,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 2, p. 627, Jun. 2023, doi: 

10.11591/ijai.v12.i2.pp627-640. 

[27]. S. Kusumadewi, L. Rosita, and E. G. Wahyuni, “Stability of classification performance on an adaptive neuro fuzzy inference system for disease 

complication prediction,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 2, p. 532, Jun. 2023, doi: 

10.11591/ijai.v12.i2.pp532-542. 

[28]. C. B., K. K.V., R. D., and S. R., “Monitoring Traffic Signal Violations using ANPR and GSM,” 2017 International Conference on Current 

Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Sep. 2017, doi: 10.1109/ctceec.2017.8455045. 

[29]. K. Vasu and S. Choudhary, “Music Information Retrieval Using Similarity Based Relevance Ranking Techniques,” Scalable Computing: 

Practice and Experience, vol. 23, no. 3, pp. 103–114, Oct. 2022, doi: 10.12694/scpe.v23i3.2005. 

[30]. V. Karthik and S. Choudhary, “TaCbF-‘Trending Architecture for Content based Filtering using Data Mining,’” 2017 International Conference 

on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Sep. 2017, doi: 10.1109/ctceec.2017.8455036. 


	Journal of Machine and Computing (http://anapub.co.ke/journals/jmc/jmc.html)
	Doi: https://doi.org/10.53759/7669/jmc202404032
	Received  28 August 2023; Revised from 30 November 2023; Accepted 13 January 2024.
	Available online 05 April 2024.
	©2024 The Authors. Published by AnaPub Publications.
	This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
	I.   INTRODUCTION
	II. RELATED WORKS
	III. MATERIALS AND METHODS
	IV.   RESULTS AND DISCUSSION
	V. CONCLUSION

