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Abstract – The paper developed an approach for fault diagnosis in Hydro-Electrical Power Systems (HEPS). Using a 

Renewable Energy System (RES), HEPS has performed a significant part in contributing to addressing the evolving energy 

demands of the present. Several electro-mechanical elements that collectively comprise the Hydro-Electric (HE) system are 

susceptible to corrosion from routine usage and unplanned occurrences. Administration and servicing systems that are 

successful in implementing and achieving these goals are those that regularly track and predict failures. Detect models applied 

in the past included those that were primarily reactive or reliant on human involvement to identify and analyse abnormalities. 
The significant multiple variables intricacies that impact successful fault detection are disregarded by these frameworks. The 

research presented here proposes a Convolutional Deep Belief Network (CDBN) driven Deep Learning (DL) model for 

successful fault and failure detection in such power systems that address these problems. Applying sample data collected from 

two Chinese power plants, the proposed framework has been assessed compared to other practical DL algorithms. Different 

metrics have been employed to determine the effectiveness of the simulations, namely Accuracy, Precision, Recall, and F1-

score. These outcomes indicated that the CDBN is capable of predicting unexpected failures. Graphic representations 

demonstrating control used to measure turbine blade load, vibration level, and generator heat for assessing the replicas. 

 

Keywords – Hydro-Electrical Power Systems, Convolutional Deep Belief Network, Renewable Energy System, Smart Grid, 

Deep Learning, Accuracy, Precision, Recall, and F1-score. 

 
I. INTRODUCTION 

In the industry of Hydro-Electric Power Systems (HEPS), it has become of the highest priority to maintain an operational 

system that is both cost-effective and reliable. Understanding the essential function that these systems perform in facilitating 

the production of Renewable Energy (RE), it is significant to recognise that they tend to be highly susceptible to unsafe 

mechanical and environmental factors, which may contribute to the malfunction of equipment [1]. In addition to the reality that 

these types of malfunctions have brought about a major disruption in the distribution of electrical energy, they additionally 

resulted in significant expenses for repairing and restoration.  
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    The traditional Fault Diagnosis Methods (FDM) that have been employed by HEPS, consisting of physical testing and basic 

threshold-based tracking systems, are the main emphasis and core of the current study [2]. A great deal of these frameworks 

are responsive instead of proactive because they frequently find these anomalies after a malfunction occurred previously. When 
they have to deal with the test, they tend to be reactive. The threat of major harm and operational downtime is now more 

significant due to an interruption in monitoring operations. It has become challenging to predict and mitigate the effects of 

possible failures in HEPS, and the wide range of failure modes—which encompasses both hard and soft failures—only renders 

problems better [3]. 

    Current existing solutions that were employed for the purpose of fault diagnosis in the domain of HEPS have already included 

various Machine Learning (ML) and data analysis techniques. However, these methods all come with certain limitations; such 

learning models probably may not fully capture the complex and dynamic interactions within the system or else such models 

may involve extensive manual feature engineering [4]. Deep Learning (DL) models that are employed for these problems are 

used to offer a more advanced solution, which process by automatically learning features from data. Even such models, when 

applied in HEPS, are faced with particular challenges that include the need for large datasets, computational resources, and 

expertise in model tuning [5]. This research is trying to deal with those problems by designing and assessing a Convolutional 
Deep Belief Network (CDBN)-Based Expert System. The purpose of this study aims to tackle those problems. This method 

has invented a technique that utilises the benefits of Convolutional Neural Networks (CNN) and Deep Belief Networks (DBN) 

in order to enhance fault detection and classification. This strategy is capable of helping to address a few of the draw backs of 

traditional approaches by presenting a FMD that is more precise, effective, and proactive in HEPS. 

    The design, implementation, and assessment of a Convolutional Deep Belief Network-based Expert System (CDBN-ES) for 

the objective of Automated Fault Diagnosis (AFD) in HEPS is the main goal of the project. A model that facilitates the 

utilisation of CDBN-ES to recognise and classify faults in hydroelectric power stations was developed as the outcome of the 

findings from this study. For the intention of learning the model, input was collected from two generators, GR04 and GR17, 

which had been chosen from hydroelectric power plants situated in China. The present work develops a Fault Detection Model 

(FDM) that detects two primary failure modes: hard failures, triggered by severe operational stresses or mechanical motion 

obstacles, and soft failures, which create progressively throughout uninterrupted operation according to normal or relatively 

demanding conditions. The recommended FDM examines data collected by sensors on vibration, heat, and pressure parameters 
to precisely imitate the generator's performance and anticipate possible malfunctions, allowing the switch from reactive to 

proactive maintenance scheduling. To assess the effectiveness of these models, we utilized performance metrics such as 

Accuracy, Precision, Recall, and F1-score. The performance of the FDM model was presented through control for stress on 

turbine blades, vibration frequency, and generator temperature, which demonstrated the models' ability to highlight deviations 

that are indicative of potential issues. The comparative analysis indicated the CDBN model's superior performance for fault 

detection, thereby emerging as the most effective approach for predictive maintenance strategies in HEPS. 

    The work is presented as follows: Section 2 presents the literature review, Section 3 presents the methodology, Section 4 

presents the experiment analysis, and Section 5 presents the conclusion. 

 

II. LITERATURE REVIEW 

In [6-8] introduced three deep learning models that have been based on Deep Recurrent Neural Networks (DRNN) for Fault 
Region Identification, Fault Type Classification, and Fault Location Prediction; their models utilised methods like Phasor 

Measurement Units data for processing the input features. By the process of employing a Sequential Deep Learning (SDL) 

method through the application of Long Short-Term Memory (LSTM), they showed that their models have excelled in 

modelling spatiotemporal sequences by which they had shown better detection and classification performance in a Two-Area 

Four-Machine Power System under various fault conditions.  

    The [9-10] had attempted to propose a hybrid Quantum Computing (QC)-based deep learning framework that was designed 

to merge the Feature Extraction (FE) capability of the conditional restricted Boltzmann machine with that of the efficient 

classification ability functions through deep networks. This approach has been designed with a focus on addressing the 

computational challenges and has experimented with demonstrating the high efficiency and improved fault diagnosis 

performance together with quick response times on a simulated environment with 30-bus HEPS in which their model had 

outperformed other traditional ANN and decision tree methods. 
    Authors [11-12] had been involved in the presentation of a FDM that is employed for switching power supply failure 

detection. Their method was dubbed DTDBN. Their work involved the isolation and analysis of grid voltage data in order to 

diagnose the filter capacitor faults. Their method achieved high recognition rates for capacitor states, thereby showcasing the 

method's effectiveness for classification and early alert of power capacitor faults.  

    In [13-14] have introduced a Fault Classification Method (FCM) that uses Deep Belief Networks (DBN) for distribution 

networks. The fault current and voltage samples all undergo the preprocessing steps, after which the data are used to train the 

DBN. This method employing the automatic FE and efficient fault type classification model has demonstrated high accuracy 

and better adaptability under various network conditions.  
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     The [15-16] have employed the DL model for the purpose of power system FDM through an improved DBN model that has 

used a 30-dimensional feature set to map the relationship between grid faults to that of the system features, which are further 

refined by an extreme ML. Their method has displayed enhanced FE capabilities that have shown better diagnostic accuracy 
when compared to that of standard AI methods in various failure scenarios. 

 

III.   METHODOLOGY 

Monitoring Infrastructure 

The monitoring infrastructure that had been designed for the proposed CDBN-ES in HEPS is built with the objective of 

managing the diversity in factors like generator configurations, construction, operating conditions, and orientations, which can 

be done only through precise instrumentation and data management [17]. This system has particularly incorporated shaft 

vibration monitoring that is aligned with ISO Standard 13373-74, which involves the strategic placement of non-contacting 

proximity probes that are essential to measure shaft relative vibration and bearing housing vibration at guide bearings. The 

infrastructure also employs sensors that are needed to gauge the air gap between the rotor and stator, which can better offer 

insights about the air gap dimensions, circularity, and concentricity in compliance with CEATI International standards. This 
setup is further complemented with vibration and dynamic pressure sensors to monitor the forces acting on the runner, including 

the static and the dynamic pressures. This is done using advanced tools like Bently Nevada’s 350300 Dynamic Pressure sensor. 

The following Fig 1 shows common sensor measurements and the corresponding malfunctions that can be diagnosed using it. 

 

 
Fig 1. Typical Measurements and Some Corresponding Malfunctions 

 

     Data that are collected from the sensors are subjected to preprocessing that filters noise out of the data and normalizes the 

signals from these sensors to ensure the quality and reliability of data that are further fed into the learning model for analysis. 

The infrastructure includes manageable, scalable storage systems for the purpose of archiving processed data to facilitate 

efficient data retrieval for model training and validation. The monitoring infrastructure is integrated into a processing computer 
to handle the computational demands of analyzing data through the CDBN-RBM model. The expert system built using the 

learning model is of the purpose to that it handles the stored data in order to Anomaly Detection (AD) and try to diagnose 

faults. Also, it continuously refines its accuracy by learning from historical data [19-20]. An integrated alert system is also built 

into this infrastructure, and its purpose is to notify the plant operators if any potential issues are identified. It also categorizes 

the alerts by severity level to prompt the correct level of appropriate responses. 
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Fault Detection Model (FDM) 

Hydroelectric generators are all very much subjected to various environmental and mechanical stresses, including fluctuating 

water flow rates, mechanical wear and tear, temperature variations, and the accumulation of sediments or debris. All these 
conditions have necessitated the need for a robust system that is capable enough of distinguishing between two primary failure 

modes: 

Hard Failures:  These are failures that are characterized by sudden and catastrophic malfunctions, which are often 

triggered by acute stresses such as extreme load conditions or rapid mechanical obstructions. Hard failures are 

those failures that demand immediate attention to prevent extensive operational disruption and the occurrence of 

any possible damage to the generator system. The causes of hard failures can be broadly classified into two main 

types, each requiring a distinct predictive approach by the FDM: 

 

Extreme Load Model: To account for the nonlinear impact of extreme loads, this model uses a power-law 

relationship, recognizing that failure probability may increase disproportionately with load, EQU (1) 

  

𝑃extreme (𝑦 = 1 ∣ 𝑋, 𝐿) = 𝜎(𝑤𝑇𝑋 + 𝛼𝐿𝛽 + 𝑏)    (1) 

 

 𝐿 represents the load factor, with 𝐿 > 1 indicating extreme load conditions. 

 𝛼 and 𝛽 are parameters that capture the nonlinear relationship between load factors and the probability of failure, 

with 𝛽 typically greater than 1 to model the accelerated risk under extreme load. 

 𝜎 is the sigmoid function, ensuring the output probability remains between 0 and 1. 

 

Rapid Stress Model Given the dynamic nature of rapid stressors, a differential approach highlights the rate of change in 

operational conditions, EQU (2) 

 

𝑃rapid (𝑦 = 1 ∣ 𝑋, 𝑆) = 𝜎 (𝑤𝑇𝑋 + 𝛾
𝑑𝑆

𝑑𝑡
+ 𝑏)     (2) 

 

 𝑆 represents a stress indicator, 

 
𝑑𝑆

𝑑𝑡
 Quantifies the rate of change in stress. 

 𝛾 is a weight parameter for the rate of change in stress. 

 

Soft Failures: In contrast, soft failures are failures that develop gradually and most probably result from the process 

of continuous operations under normal or mildly stressful conditions. These failures manifest as a progressive decline 

in performance that, as a result, eventually culminates in a breakdown if it is not addressed promptly. The FDM 

approaches soft failures through the gradual aging model, and wear, and tear are due to operational stress. 

 

Gradual Aging Model: To capture the effects of aging, we introduce an aging index 𝐴, which accumulates over time 

based on operational history and environmental conditions, EQU (3). 

 

𝑃aging (𝑦 = 1 ∣ 𝑋, 𝐴) =
1

1+𝑒−(𝑤
𝑇𝑋+𝑎𝐴+𝑏)

     (3) 

       

      Here, 𝑎 is a coefficient that quantifies the impact of aging on the likelihood of a soft failure, and 𝐴 is the aging index 

calculated from operational and environmental data.  

 

Wear and Tear due to Operational Stress: The cumulative operational stress experienced over time as 𝑆, which contributes to 

wear and tear. The amount of wear and tear accumulated can be modelled using the Gamma distribution, characterized by 

shape (𝛼) and scale (𝜃) parameters, EQU (4). 

𝑃(𝑆; 𝛼, 𝜃) =
1

Γ(𝛼)𝜃𝛼
𝑆𝛼−1𝑒−

𝑆

𝜃     (4) 

 𝑆 represents the cumulative operational stress. 

 𝛼 > 0 is the shape parameter. 

 𝜃 > 0 is the scale parameter. 

      In this context, 𝑃(𝑆; 𝛼, 𝜃) estimates the probability density function of the wear and tear accumulation due to operational 

stress 𝑆, allowing for the prediction of maintenance needs based on the observed stress patterns. 
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Leveraging the sensor data from the critical generator components, the designed FDM analyzes the measurements 

corresponding to the vibration, temperature, and load metrics. Using these measurements, the prediction model can simulate 

the generator's condition accurately and predict possible impending failures.  
 

 
Fig 2. DBN-RBM Architecture 

 

Deep Belief Network-Restricted Boltzmann Machine (DBN-RBM) 

DBNs are a class of DNNs that consist of multiple layers of stochastic, latent variables (Fig 2). The top two layers form an 

associative memory, and the lower layers form a belief network with directed, generative connections. The building blocks of 
DBN are RBM, which are undirected graphical models that learn to reconstruct the input data by finding the best possible 

representation in the latent space. 

     An RBM consists of visible units 𝑣 (representing input data) and hidden units ℎ (representing features or patterns learned 

from the data), with bidirectional, symmetric connections between them. There are no connections between units of the same 

layer, making the structure "restricted." The energy of a joint configuration (𝑣, ℎ) in the RBM is defined as: 

 

𝐸(𝑣, ℎ) = −∑  𝑖 𝑎𝑖𝑣𝑖 − ∑  𝑗 𝑏𝑗ℎ𝑗 − ∑  𝑖,𝑗 𝑣𝑖ℎ𝑗𝑤𝑖𝑗    (5) 

 

     where 𝑎𝑖 and 𝑏𝑗 are biases for visible unit 𝑖 and hidden unit 𝑗, respectively, and 𝑤𝑖𝑗 is the weight between visible unit 𝑖 and 

hidden unit 𝑗. The probability of a configuration is given by the Boltzmann distribution: 

 

𝑃(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ)     (6) 

 

      where 𝑍 is the partition function, a normalizing constant obtained by summing over all possible pairs of 𝑣 and ℎ. The 

updated rules for the weights and biases are derived from this approximation: 

 

Δ𝑤𝑖𝑗 = 𝜖 (⟨𝑣𝑖ℎ𝑗⟩data 
− ⟨𝑣𝑖ℎ𝑗⟩recon 

)     (7) 

 

Δ𝑎𝑖 = 𝜖(⟨𝑣𝑖⟩data − ⟨𝑣𝑖⟩recon )     (8) 

 

Δ𝑏𝑗 = 𝜖 (⟨ℎ𝑗⟩data 
− ⟨ℎ𝑗⟩recon 

)     (9) 

     where 𝜖 is the learning rate. A DBN is formed by stacking multiple RBMs, where the hidden layer of one RBM serves as 

the visible layer for the next.  

      In the context of employing the DBN model in fault diagnosis, the DBN is trained to learn a hierarchical representation of 
the standard operational data of the power system. Once trained, the DBN is applied to AD or faults by evaluating how well 
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new data fits the learned model. Anomalies are detected when the reconstruction error exceeds a predetermined threshold, 

indicating that the model encounters patterns that significantly deviate from the norm, suggesting potential faults. 

 
Convolutional Deep Belief Network  (CDBN) Model 

The CDBN model adapts the CNN architecture, featuring weight sharing across its hidden and visible layers, which is 

effectively applied to each position within the data matrix. This model's architecture is illustrated as follows: 

      The CDBN architecture (Fig 3) comprises three principal layers: a visible input layer 𝑉, a hidden layer 𝐻, and a pooling 

layer 𝑃. The input layer 𝑉 is represented as a binary matrix of dimensions 𝑁𝑉 ×𝑁𝑉. Assuming the presence of 𝐾 convolutional 

kernels, each dimension 𝑁𝑊 ×𝑁𝑊, the hidden layer then generates 𝐾-dimensional feature maps of size 𝑁𝐻 ×𝑁𝐻 (where 𝑁𝐻 = 

𝑁𝑉 −𝑁𝑊 + 1 ). The hidden layer's output undergoes dimensionality reduction via the pooling layer to yield an output of size 

𝑁𝑃 ×𝑁𝑃. Each feature point 𝑃𝑘 within the pooling layer correlates to a specific 𝐶 × 𝐶 area 𝛼 in the hidden layer, with 𝐵𝛼 

denoting the set of indices corresponding to area 𝛼. 

 

Activation and Reconstruction 

The hidden layer's activation probability and the input layer's reconstruction probability are described by the following 

expressions: EQU (10 and EQU (11). 

 For hidden layer activation: 

𝑃(ℎ𝑖𝑗
𝑘 = 1 ∣ 𝑉, 𝜃) = 𝜎 ((�̃�𝑘 ∗ 𝑉)

𝑖𝑗
+ 𝑏𝑘)                             (10) 

 For input layer reconstruction: 

𝑃(𝑉𝑖𝑗
𝑘 = 1 ∣ ℎ, 𝜃) = 𝜎((∑  𝑘  𝑊

𝑘 ∗ ℎ𝑘)𝑖𝑗 + 𝑎)    (11) 

 

     Here, 𝜎(𝑥) =
1

1+𝑒−𝑥
 denotes the sigmoid activation function, �̃�𝑘 =𝑊(𝑁𝑊−𝑗+1)

𝑘 , and '*' represents the convolution operation. 

The parameters include 𝑎, the bias for the visible layer, and 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑛ℎ)
𝑇
, the bias vector for the hidden layer, with 

𝜃 = (𝑊, 𝑎, 𝑏) encapsulating the model's parameters. 

 
 

Fig 3. Convolutional Deep Belief Network  (CDBN) Model 
 

Pooling Layer Activation: The activation probability for each feature point in the pooling layer is derived from the maximum 

probability across the corresponding 𝐶 × 𝐶 region within the hidden layer. This conditional probability, based on maximum 

probability pooling, is defined as EQU (12). 

𝑃(ℎ𝑖𝑗
𝑘 = 1 ∣ 𝑉, 𝜃) =

𝑒
𝐼(ℎ𝑖𝑗

𝑘 )

1+∑  (𝑚,𝑛)  𝑒
𝐼(ℎ𝑚𝑛

𝑘 )
      (12) 

       where 𝐼(ℎ𝑖𝑗
𝑘 ) = (�̃�𝑘 ∗ 𝑉)

𝑖𝑗
+ 𝑏𝑘 signifies the net activation for the 𝑘-th channel in the hidden layer, facilitating the 

following pooling probability, EQU (13) 

𝑃(𝑝𝛼
𝑘 = 0 ∣ 𝑉, 𝜃) =

1

1+∑  (𝑖,𝑗)∈𝐵𝛼  𝑒
𝐼(ℎ𝑖𝑗

𝑘 )
    (13) 
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Algorithm for CDBN-Based Fault Detection System 

Phase 1: Training 

Input: Training dataset 𝑇 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛 , 𝑦𝑛)}, where 𝑥𝑖 is the 𝑖th sensor data instance, and 𝑦𝑖 is its label 

(normal, soft failure, hard failure). 

Parameters: Number of layers 𝐿, convolutional kernel sizes {𝐾1,𝐾2, … ,𝐾𝐿}, learning rate 𝜂, pooling window size 𝐶 =
2. 

1. 𝑇 = Normalize(𝑇) 
2. Initialize CDBN with 𝐿 layers, each with a specified kernel size 𝐾𝑖, random weights 𝑊𝑖, and biases 𝑏𝑖. 
3. FOR EACH layer 𝑙 from 1 to 𝐿 Do: 

3.1. Input_Layer = (𝑙 == 1) ? 𝑇 : Output of (𝑙 − 1)-th layer 

3.2. Apply Convolution with Sigmoid Activation:  

𝐶𝑜𝑛𝑣𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣𝑜𝑙𝑣𝑒(𝐼𝑛𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟,𝐾𝑖 , 𝑊𝑖)) 
3.3. Apply Max Pooling: 𝑃𝑜𝑜𝑙𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑣𝑂𝑢𝑡𝑝𝑢𝑡, 𝐶) 
3.4. Train RBM on pooled output (Contrastive Divergence):[𝑊𝑖 , 𝑏𝑖] = 𝑇𝑟𝑎𝑖𝑛𝑅𝐵𝑀(𝑃𝑜𝑜𝑙𝑂𝑢𝑡𝑝𝑢𝑡,𝑊𝑖 , 𝑏𝑖 , 𝜂) 

4. Fine-tune the entire network using backpropagation with learning rate 𝜂. 

5. Evaluate the model on a validation set and adjust parameters as needed. 

Phase 2: Fault Detection (Prediction) 

               Input: New sensor data instance 𝑁. 

Output: Fault diagnosis class (normal, soft, hard failure). 

1 𝑁 = Normalize(𝑁) 
2 FE = 𝑁 

3 For Each layer 𝑙 from 1 to 𝐿, do: 

3.1 Apply learned transformations:  

𝐶𝑜𝑛𝑣𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣𝑜𝑙𝑣𝑒(𝐹𝐸,𝐾𝑖 ,𝑊𝑖) ) 
3.2 𝑃𝑜𝑜𝑙𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑣𝑂𝑢𝑡𝑝𝑢𝑡, 𝐶) 
3.3. FE= 𝑃𝑜𝑜𝑙𝑂𝑢𝑡𝑝𝑢𝑡 

4 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐹𝐸))// Classify using softmax 

5 Return Diagnosis 

 

IV. EXPERIMENT ANALYSIS 

This section presents the details about applying the CDBN model on data from Huóshuĭ Small Hydropower, which includes 

88 hydropower plants with capacities from 0.1 to 14 MW. The experimental study used data sourced from two generators, 

GR04 and GR17, over a 12-month period from April 2022 to March 2023. The Data were recorded every 15 minutes and 

covered the operational parameters such as temperature, vibration, flow rates, and pressure. The energy output of these plants 
during the observed period is shown in Fig 4, and the count of the detected failures during this experiment period of time is 

outlined in Table 1 and depicted in Fig 5. 

 
Fig 4. Energy Output for the Studied Period 
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Fig 5. Detected Failures for the Studied Period 

 

Table 1. Detailed Description of FDM 

Generator ID Component Timestamp Observations 

GR04 Gearbox 2022-06-15 08:30 Excessive vibration detected 

GR04 Transformer 2022-08-22 14:00 Temperature anomaly detected 

GR04 Bearings 2022-10-09 11:45 Increased noise level observed 

GR04 Rotor 2022-12-19 13:20 Rotor misalignment identified 

GR17 Generator 2022-07-05 09:45 Irregular power output observed 

GR17 Bearings 2022-08-21 10:15 Bearing wear detected 

GR17 Stator 2022-10-30 12:00 Stator insulation failure 

GR17 Control System 2022-11-15 14:30 Control system malfunction 

GR17 Turbine 2023-01-10 09:00 Turbine blade erosion 

GR17 Sensor 2023-02-25 10:20 Sensor malfunction 

GR17 Cooling System 2023-03-05 08:15 Cooling system inefficiency 

GR17 Valve 2023-03-20 09:35 Valve leakage 

GR17 Electrical Wiring 2023-03-31 11:50 Electrical wiring corrosion 

      The sensor data that were collected from both generators during the experiment amounted to a total of 3,348,791 data 

samples with a missing rate of 0.24%. This dataset comprised 34 attributes that were fed into the FDM. The FDM derived at 

the following values as shown in Table 2. 

Table 2. Parameters and Values in the FDM 

Parameter Description l Value 

L Load Factor, indicating extreme load conditions >1 

α 
Parameter capturing the nonlinear relationship between load and failure probability 

for hard failures 
2.5 

β Parameter indicating the risk acceleration under extreme load for hard failures 1.5 

γ 
Weight parameter for the rate of change in stress, emphasizing rapid variations for 

rapid stress model 
0.075 

A 
Aging index, accumulating over time based on operational history and 

environmental conditions for gradual aging 
3500 

S Cumulative operational stress experienced, contributing to wear and tear Varies 

α (Gamma 

distribution) 

Shape parameter for the gradual aging model, related to the frequency of stress 
events 

9.0 

β (Gamma 

distribution) 

Scale parameter for the gradual aging model, related to the severity of each stress 

event 
2500 

δ The critical interval for stress accumulation in the rapid stress model 0.1 

τ Time until likely failure under specific stress conditions 4 hours 

λ Rate of stress events per unit time (Poisson process) for operational stress 
0.03 

events/hour 
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     After performing the configuration of the failure parameters, the FDM is executed iteratively 50 times to record ten failures 

precisely. This iteration has resulted in a dataset with 354,621 samples. 80% is used for training, and the remaining 20% is 

used for testing. The designed CDBN is trained using the following parameters as shown in Table 3. 
 

Table 3. CDBN Hyperparameters for FDM 

Hyperparameter Hypothetical Value 

Number of Layers 5 

Convolutional Kernel Size 3x3 

Pooling Size 2x2 

Feature Maps 128 

Learning Rate 0.01 

Momentum 0.9 

Weight Decay 0.0005 

RBM Learning Rate 0.005 

RBM Training Epochs 100 

Fine-tuning Epochs 50 

Batch Size 64 

Activation Function ReLU (for convolutional layers), Sigmoid (for RBM layers) 

 

Deviation Measurement 

The control chart used for deviation measurement employed the statistical measures that had defined control limits to analyse 

the expected range of deviations and find the discrepancies showing model prediction errors or shifts in system behaviour. The 

central line (CL) in a control chart represents the mean value of the measured deviations, calculated as 𝐶𝐿 =
1

𝑛
∑𝑖=1
𝑛  (𝑦𝑖 − �̂�𝑖), 

where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value by the FDM, and 𝑛 is the number of observations. Upper Control Limit 

(UCL) and Lower Control Limit (LCL) are set based on standard deviations from the mean, typically at ±3𝜎, where 𝜎 is the 

standard deviation of the deviations. The following Fig 6, Fig 7 and Fig 8 show the deviations measured for stress value, 

vibration frequency and temperature compared for both generators. 

 

 
(a) GR04 
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(b) GR17 

Fig 6. Stress value assessment for (a) GR04 and (b) GR17 

 
(a) GR04 

 
(b) GR17 

Fig 7. Vibration Frequency assessment for (a) GR04 and (b) GR17 
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(a) GR04 

 
(b) GR17 

Fig 8. Temperature assessment for (a) GR04 and (b) GR17 

 

The trained CDBN model was compared against i) DBN, ii) CNN, iii) LSTM using the following metrics such as:  
Accuracy: Accuracy measures the overall correctness of the model across all classes. It is calculated as the ratio of correct 

predictions (TP and TN) to the total number of cases, EQU (14) 

 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                          (14) 

Where: 

 𝑇𝑃 = True Positives: The count of TP correctly predicted by the model. 

 𝑇𝑁 = True Negatives: The count of TN correctly predicted by the model. 

 𝐹𝑃 = False Positives: The count of TN incorrectly predicted as positives. 

 𝐹𝑁 = False Negatives: The count of TP incorrectly predicted as negatives. 

 

Precision (Positive Predictive Value): Precision assesses the model's ability to correctly predict positive (failure) instances 

among all instances predicted as positive. It's crucial when the cost of FP is high, EQU (15). 
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 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (15) 

 

Recall (Sensitivity or True Positive Rate (TPR)): Recall evaluates the model's capability to identify all TP cases. It is critical 

when the cost of missing a positive (failure) case is significant, EQU (16) 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (16) 

 

F1-Score: The F1-score provides a balance between Precision and Recall, useful when there's an uneven class distribution or 

when FP and FN have different implications, EQU (17). 
 

 F1-Score = 2 ×
 Precision × Recall 

 Precision + Recall 
      (17) 

 

 
Fig 9. Performance comparison for GR04 

 

 
Fig 10. Performance comparison for GR17 

 

The performance analysis of FDM in GR04 and GR17, as shown in Fig 9 and Fig 10, reveals distinct outcomes. For GR04, the 

DBN model shows lower performance with accuracy at 76.23%, precision at 73.89%, recall at 68.06%, and an F1-score of 

70.36%. The CNN model slightly improves accuracy to 79.46% but offers similar precision and a modest increase in recall and 

F1-score. The LSTM model marks a significant leap, especially in recall (72.02%) and F1-score (78.42%), indicating its better 

capability in identifying TP. The CNN-LSTM model tops the charts with the highest accuracy (93.74%), precision (92.66%), 
recall (89.17%), and F1-score (84.16%), showcasing its comprehensive feature learning. 

       For GR17, the DBN model replicates its performance from GR04, indicating similar limitations. The CNN model shows 

a slight decrement in accuracy to 79.31% but improves recall and F1-score, suggesting slightly better identification of TP 

compared to GR04. The LSTM model again significantly improves, particularly in recall (80.84%) and F1-score (81.08%), 

underscoring its effectiveness in sequential data analysis. The CNN-LSTM model remains the best performer with accuracy at 

92.59%, precision at 88.86%, recall at 87.74%, and F1 score at 85.6%, albeit with slightly different margins of improvement 

over LSTM compared to GR04. 
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V.    CONCLUSION AND FUTURE WORK 

A Convolutional Deep Belief Network-based Expert System (CDBN-ES) for autonomous fault diagnosis in Hydro-Electrical 

Power Systems (HEPS) has been created and implemented as the outcome of the findings from this study. By evaluating the 
outcomes of the Convolutional Deep Belief Network (CDBN) against that of different Deep Learning (DL) models like DBN, 

CNN, and LSTM, the researchers discovered that CDBN has done superior in detecting and classifying both hard and soft 

failures in hydro-electric generators. The data that was used for the assessment originated from the GR04 and GR17 generators. 

Key performance metrics, namely accuracy, precision, recall, and F1-score, were improved by the CDBN approach. 

Conventional FDM has its errors, as the researchers highlighted; for instance, numerous models depend on reactive methods, 

which may not be robust enough to deal with the complex dynamics of HEPS failures.  

     Boosting the framework's predictive accuracy will be the most important objective of future research. This will be feasible 

by additional model optimisation. Furthermore, it is going to examine possible factors in the environment and data sources that 

might possess significant consequences on how well the system performs.  
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