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Abstract – Even though Convolutional Neural Networks (CNNs) have greatly improved face-related algorithms, it is 

still difficult to keep both accuracy and efficiency in real-world applications. The most cutting-edge approaches use 

deeper networks to improve performance, but the increased computing complexity and number of parameters make them 

impractical for usage in mobile applications. To tackle these issues, this article presents a model for object detection that 

combines Deeplabv3+ with Swin transformer, which incorporates GLTB and Swin-Conv-Dspp (SCD). To start with, in 

order to lessen the impact of the hole phenomena and the loss of fine-grained data, we employ the SCD component, 

which is capable of efficiently extracting feature information from objects at various sizes. Secondly, in order to properly 
address the issue of challenging object recognition due to occlusion, the study builds a GLTB with a spatial pyramid 

pooling shuffle module. This module allows for the extraction of important detail information from the few noticeable 

pixels of the blocked objects. Crocodile search algorithm (CSA) enhances classification accuracy by properly selecting 

the model's fine-tuning. On a benchmark dataset known as WFLW, the study experimentally validates the suggested 

model. Compared to other light models, the experimental findings show that it delivers higher performance with 

significantly fewer parameters and reduced computing complexity. 

 

Keywords – Convolutional Neural Networks, Crocodile Search Algorithm, Global local Transformer Block, Face 

Tracking, Spatial Pyramid, Pooling Shuffle Module.  

 

I. INTRODUCTION 
The expansion of the Internet of Things (IoT) is a major representation of the information era. One fundamental 

component of the IoT is video monitoring systems, which have numerous practical applications in areas like intelligent 

anti-theft systems, intelligent access control systems, and intelligent systems for monitoring the care of the elderly [1]. In 

particular, intelligent algorithms are first deployed to each edge end (e.g., security cameras) to process the incoming data 

in real time; subsequently, the back-end (server) receives the processed recognition or analysis results and stores them or 

even triggers an alarm [2]. By repurposing the transmission data to include analytical results rather than the original data, 

we can achieve real-time needs while simultaneously reducing data transmission and increasing security [3]. Intelligent 

algorithms used under this system must meet stringent requirements, such as increased recognition accuracy, faster 

processing speed, and fewer parameters (due to the restricted memory of the edge device). Given this real-world need, 

this study will center on studies that investigate video face-recognition techniques that can be used in Internet of Things 

(IoT) monitoring systems [4]. 
       Facial recognition has already found numerous practical applications in our daily lives, such as in sign-in systems 

and fugitive tracking systems. Videos and image sets provide more information about the items in them than a single 
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image can, such as different positions, lighting, and expressions [5]. Therefore, the picture set classification task—a 

method for studying the classification problem—must be prioritized [6]. By comparing the probing set to the gallery 

movies, image set classification (also known as set-based video recognition) can determine which labels to give the probe 
set [7]. By eliminating the need to identify each frame of a video independently, set-based video recognition tasks are 

able to immediately compute labels for entire films, significantly increasing computation speed compared to single 

image-based identification tasks [8]. The two main methodologies for set-based video face recognition are video 

representation and precise distance measurement, since each video contains a large variety of appearance variations [9]. 

      Also, a face detector is usually needed beforehand by most of the current algorithms that estimate head poses and 

align the face. For that reason, they will not be able to achieve the theoretical speed. To further expedite head posture 

estimation and face alignment in video-based processing, face tracking eliminates the need for face identification in 

every frame [10]. The idea of items or identities was the starting point for connecting different gadgets. It is possible to 

remotely control and monitor these devices from a computer via the Internet [11]. Internet and Things are the two most 

influential terms in the Internet of Things (IoT). The Internet is a vast network that connects devices and servers. With 

the help of the Internet, a wide variety of devices are able to communicate with one another and share data [12]. A 

plethora of transformer versions used to computer vision have recently emerged, with vision transformer (VIT) appearing 
as a particularly outstanding example. But even with these VIT variations, the computational cost is still somewhat 

significant [13]. There is an excessive amount of parameters, and there is insufficient integration of local and global 

context data. Rough edge segmentation and significant segmentation holes caused by shadow occlusion are problems that 

this does not help solve [14–15]. 

      An article-wide framework for video tracking in IoT networks is suggested in an effort to address the aforementioned 

issues. The network architecture of Deeplabv3+ and the Swin transformer are combined in the hybrid model. Using 

spatial pyramid pooling, Deeplabv3+ builds on CNN. To extract features from high-resolution data, the architecture 

employs a Swin transformer as both an encoder and a decoder. Lastly, the encoder makes use of Swin-Conv-Dspp (SCD) 

to record information about features across scales and mitigate the detrimental impacts of light-induced high levels of 

interclass similarity and intraclass disagreement. To further investigate the spatial correlation between global and local 

features, enhance target edge transformer block (GLTB) module is incorporated prior to each visual upsampling. This 
module also captures local and global feature information. In order torecover the classification accuracy, CSA fine-tunes 

the proposed model.  

     Here is how the remainder of the paper is structured: In Section 2, the relevant literature is reviewed; in Section 3, the 

approach that was suggested is examined; in Section 4, the results are analyzed; and in Section 5, the conclusion is 

obtainable. 

 

II. RELATED WORKS 

For the purpose of detecting face spoofing, Reddy et al. [16] has provided a variety of ANN architectures, the majority of 

which heavily employ convolutional layers. We "train" a deep neural network with a large amount of labeled data, and 

then "teach" it to use that network specifically for an application-specific domain that has few training instances. A 

proper sequence for this would be "training" followed by "teaching." With this, we can reach our objective. The next step 
is to combine data from both domains to form training sets that will be used for the network distillation. When there is a 

dearth of training data for a certain application area in the Internet of Things (IoT), we "train" a deep neural network with 

a large amount of labeled data and then "teach" it the specifics of that field. If we do this, we can "train" it. The most 

common technical word to describe this process is "teaching" a deep neural network. There is room for comparison 

between the two fields. To begin, we must collect data that is particular to spoofing in order to train a discriminative deep 

neural network on a domain that is application-specific. Multiple experiments have demonstrated that the suggested 

method works best when coupled with anti-spoofing parameters. 

     An intelligent mobile surveillance robot using a combination of DL models and conventional algorithms has been 

shown by Medjdoubi et al., [17], and it is based on the ESP32-CAM microcontroller. While a convolutional neural 

network (CNN) and two preexisting DL models, ResNet and VGG, are used for feature extraction, the Haar-Cascade 

(HC) technique is used for face detection. Naive Bayes (NB) and K-nearest neighbors (KNN) are two separate algorithms 

that make the categorization. By obtaining accuracy rates of 92.00% on the LFW database, 94.00% on the AR database, 
and 96.00% on the ORL database, respectively, validation studies show that a composite model combining HC, VGG, 

and KNN is preferable. On top of that, it has a remarkable recognition accuracy rate of 99.00% on a proprietary database, 

and it responds in real-time, even sending out email alerts. The benefits of this ET monitoring system are low power 

consumption, mobility, ease of use from afar, and reasonable cost. 

     In their groundbreaking face recognition system, Ali et al. [18] combine VGGFace for feature extraction, Support 

Vector Machine (SVM) for efficient classification, and Multi-task Cascaded Convolutional Neural Networks (MTCNN) 

for accurate face identification. When it comes to monitoring attendance, the technology really shines in real-time 

tracking many faces in one picture. It is worth mentioning that the "VGGFace" model stands out from the rest, displaying 

outstanding accuracy and attaining a fantastic F-score of 95% when combined with SVM. The model's success in 

detecting face identities is attributed to its strong training on huge datasets, as this highlights. The research highlights the 
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effectiveness of the VGGFace model, particularly when used in conjunction with different classifiers; for example, SVM 

produces very high accuracy rates. 

      In order to make Human-Computer Interaction (HCI) more natural, as proposed by Biswas et al. [19], robots need to 
be able to comprehend their surroundings, with an emphasis on this facet of human behavior in particular. This chapter 

presents a model for Facial Expression Recognition using a CNN. The seven main human emotions—happy, sad, angry, 

neutral, surprised, disgusted, and afraid—were used to train the CNN model. Assigning each picture to one of seven 

distinct facial expression groups is the goal of this chapter. The FER2013 dataset, made available by Kaggle, was used to 

train, test, and verify this model. It operates in series, with the final perceptron layer adjusting the weights and exponent 

values with each iteration. In addition, a new method for removing backgrounds was used so that we wouldn't have to 

deal with any of the many issues that may arise from the camera's placement. 

      A new method for extracting and detecting human facial features was developed by Ponnurathinam et al. [20]. It 

involves the use of Stacked Auto Encoder (SAE), Artificial Feeding Bird (AFB), and Region Based Fully Convolutional 

Network (RFCN). The rescaling approach is used to normalize the dataset initially. Afterwards, the optimization 

approach employed to extract face features, and the R-FCN algorithm is employed for detection and classification.   Both 

testing and training are conducted using the WIDER Face dataset. In comparison to the state-of-the-art algorithms, the 
suggested SAE-AFB-RFCN framework achieves better performance in experiments, as shown by the F1-score, recall, 

precision, and accuracy metrics. 

III. PROPOSED MODEL 

Heatmap of Input Dataset 

In contrast to previous research, the suggested model's heatmap is immediately constructed using the anticipated 

landmarks using a formula. This allows for a substantial reduction in both the parameters and the computing complexity. 

The equation is also expressed as: 

 

𝐻(𝑥, 𝑦) =
1

√1+𝑚𝑖𝑛
(𝑥𝑖

′ ,𝑦𝑖
′ )∈𝑆1

‖(𝑥,𝑦)−(𝑥𝑖
′ ,𝑦𝑖

′)‖
                                                                   (1) 

 

    where 𝐻(𝑥, 𝑦) is the intensity of point (x,y). (𝑥𝑖
′ , 𝑦𝑖

′)denotes the location of S1's i-th landmark. By setting H(x,y) to 0.5 

if the value is less than 0.5, we may prevent the CNN from ignoring features that are far from face landmarks. Then, as 

seen below, the heatmap is combined with the characteristics by element-wise multiplication.: 

 

𝐹𝑂 = 𝐹1⨂𝐻                                                                                  (2) 

 

    The output features are denoted by F_O, whereas the heatmap and features learnt by the backbone network are 
represented by H and FI, respectively. The output features incorporate both the geometry information of face landmarks 

and the appearance information of the input photos by merging the heatmap with the intermediate features. In addition, 

the heatmap may be used as a guide for the proposed model to better face tracking by reducing background interference. 

 

Face Tracking using Deep Learning-Based Object Detection Method 

The output features are denoted by F_O, whereas the heatmap and features learned by the backbone network are 

represented by H and FI, respectively. The output features incorporate both the geometry information and the appearance 

data of the input photos by merging the heatmap with the intermediate features.The paper presents the Swin transformer 

and describes the planned SCG-TransNet in detail in this part. Afterwards, SCG-TransNet's two crucial modules—SCD 

and GLTB with SPPS—incorporate face landmarks. In addition, the heatmap can be used as a guide for the proposed 

model to better face tracking by reducing background interference. 

 

Overview 

Our SCG-TransNet adheres to the paradigm and is a combination of Deeplabv3+ and Swin transformer. In the first stage 

of the encoder, we use the Swin transformer as the backbone network for feature extraction. In the last stage of the 

encoder, we add the SCD module. To improve features and address the issue of important pixel information loss due to 

direct high-multiple upsampling, the decoder uses FPN to fuse features of different resolutions generated by Stages 2 and 

Stages 3. Then, after SCD, the feature map is stacked on the channel, and the continuity of pixel information is 

effectively enhanced [21]. Further, to improve feature extraction, a module (NAM) attention mechanism is incorporated 

prior to SCD and the concatenation of shallow and deep features. This mechanism redistributes the weights of maps. 

Lastly, prior to each visual upsampling, a GLTB module is included. 

 

Swin Transformer Based Encoder and Decoder 
Primary components of the encoder include the SCD and the Swin transformer backbone network. To obtain hierarchical 

feature maps, one uses Swin Transformer, and to get multiscale contextual information, one uses SCD. Swin transformer 

blocks, FPN, and GLTB make up the bulk of the decoder. Fusing feature maps of varying depths is done using the FPN. 
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When working with feature maps, the GLTB is useful for capturing both the global and local semantic information. It is 

possible to describe this procedure as 

 

𝑒𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑠𝑤𝑖𝑚−𝑇𝑟𝑎𝑛𝑠(𝐼𝑚𝑎𝑔𝑒)                                                          (3) 

 

𝑑𝑖 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑠𝑤𝑖𝑚−𝑇𝑟𝑎𝑛𝑠(𝑒𝑖)                                                              (4) 

 

      Backbone networks for Swin transformers revolve on the Swin transformer block. Conventional VIT on the arena has 

quadratic computational complexity. Liu et al. developed the Swin transformer to lessen the computational burden. The 

transformer's multi-head self-attention (MSA) module is swapped out with a shift-window-based one between each set of 

self-attention layers. An improved method for context information is to progressively combine the window-based multi-

head self-attention (W-MSA) block with a shifted window-based multi-head self-attention (SW-MSA) block. 

     The transformer block is connected in series with a W-MSA and a SW-MSA module under this shifted window 
partitioning arrangement. A W-MSA block is the first Swin transformer block. A residual link is established to acquire x 

Ƃ^l from the input feature x^(l-1) after it goes through the LayerNorm and W-MSA layers. Subsequently, x Ƃl. is 

obtained by re-establishing a residual link after passing through the LayerNorm and multi-layer perceptron (MLP) layers. 

In comparison to the W-MSA layer, the SW-MSA block's window size offset is half that, and otherwise, the two 

structures are structurally identical. It is possible to describe this procedure as 

 

𝑥𝑙 = 𝑊𝑀𝑆𝐴(𝐿𝑁(𝑥𝑙−1)) + 𝑥𝑙−1                                                                (5) 

 

𝑥𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑥𝑙)) + 𝑥𝑙                                                                   (6) 

 

𝑥𝑙+1 = 𝑆𝑊𝑀𝑆𝐴(𝐿𝑁(𝑥𝑙)) + 𝑥𝑙                                                                  (7) 

 

𝑥𝑙+1 = 𝑀𝐿𝑃(𝐿𝑁(𝑥𝑙+1))+ 𝑥𝑙+1                                                               (8) 

 

     An advantage of the Swin transformer over a CNN-based backbone network is its sequence-to-sequence paradigm, 

which facilitates the integration of multimodal input. It overcomes the shortcomings of conventional CNN-based models 

with its attention-based long-range modeling capacity. Since the Swin transformer is free of inductive biases, it 

accurately captures spatial dependencies in images that span large distances. Second, the Swin transformer has a reduced 

computing complexity and faster recognition and reasoning speeds as compared to other backbone networks that use 

transformers. 

 

Swin-Conv-Dspp 

It is not possible to capture scales using atrous convolution since it readily results in the loss of continuous space-time 

information. As a solution, ASPP in Deeplabv3+ employs a series of parallel atrous convolutional layers that use varying 
sampling rates to gather data from objects of varying sizes. In addition, expanding the receptive field during feature 

extraction network building is an effective strategy for minimizing data loss. Light intensity and incidence angle are two 

examples of the many sources of noise that can be found in RS photographs. The challenge of semantic segmentation of 

RS city sceneries now lies in how to mitigate these noises to an acceptable level. Feature point extraction is a sparse 

sampling technique that uses atrous convolution to extract information across pixels. This is not helpful for noise 

suppression since it will cause pixel information loss, which in turn causes long-distance convolution results to be 

uncorrelated. As a result, holes will emerge, and it will become more difficult to distinguish objects with excessively 

high levels of interclass similarity or intraclass variances caused by changes in light incoming angle and intensity. 

      Since atrous convolution information loses important details, the study combined CNN and Swin transformer 

characteristics to create a dual- layer. This layer uses Swin transformer's strong global context information extraction 

aptitude to compensate, and it strengthens the ability to extract global context feature information to help ASPP capture 

the long-range dependence of semantic information, which is difficult for ASPP to do on its own. In general, atrous 
convolution excels at extracting features' high-frequency information because it is basically a superposition of several 

high-pass filters, which continuously improves high-frequency information. The transformer is frequently more effective 

in extracting low-frequency information of features because, like a lowpass filter [22], it continuously enhances the 

underlying semantic information of the picture. We can successfully suppress the negative impacts of various sounds in 

RS pictures by combining the two benefits, which are to lower the disparities within classes and enhance the frequency of 

info across classes. The hole phenomenon is reduced, and the difficulty in distinguishing between classes as a result of 

high levels of interclass similarity or severe intraclass differences is improved. 

     In particular, SCD possesses a convolution branch and a Swin transformer branch. To better extract semantic 

information from patches with varied distances and capture multiscale information, shiftable windows of different widths 

are employed. Generally speaking, bigger windows try to collect global contextual information, whilst smaller ones try to 
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catch local information. By increasing the convolution's receptive field, the convolution branch is able to extensively 

extract objects of varying sizes using rates. In order to retrieve feature information from a variety of scales, it is 

recommended to increase the receptive field while simultaneously decreasing the loss of information. By integrating 
convolution's powerful local feature extraction capabilities with the transformer's exceptional dependency capture 

abilities, SCD demonstrates remarkable anti-noise performance. This effectively resolves the issue of holes caused by 

classes being too similar. 

 

Global-Local Transformer Block 

There are primarily two parts to the planned GLTB: First, the branch dealing with the worldwide context; second, the 

branch dealing with the local context. 

      First, we employ typical 1 × 1 difficulty to enlarge the channel input 2-D feature in the global branch, which is 

chiefly caught by window based multihead autonomous attention. 𝑚𝑎𝑝 ∈ 𝑅B×C×H×W by a factor of 3. Next, the1-D 

arrangement∈  𝑅(3 × 𝐵 ×  𝐻/𝑊 ×  𝑊/𝑊 ×  ℎ/ℎ ×  (𝑤 ×  𝑤) ×  
𝐶

ℎ
 isrehabilitated into Q, K, and V vectors using the 

window divisionoperation. The channel dimension is 64, the window size is 8, and the attention head is 8. The amount of 
processing is significantly enhanced when using shiftable window-based self-attention, yet it may capture feature 

information across windows. For this reason, we provide the cross-shaped window's module to merge the feature maps 

produced by the horizontal and vertical average pooling layers, allowing for more efficient capture of the global context. 

      Information of neighboringgrouping features derived from the same point in the original feature graph using 

convolution kernels of varying sizes and expansion rates is referred to as a cell in the feature graph outputted by SPPS. 

At the same spot in the initial feature map, each cell stores data collected using a kernel size that varies. It is possible to 

collect multireceptive field map point and use this data to offer multilevel information acquired from the same place. 

Using SPPS, we can get better at generating unique features and extracting important characteristics from the few 

viewable pixels of obscured objects. When the feature map is restored by upsampling, it further improves the capacity to 

extract local info and refines both the feature info. Additionally, the module is easily transferable to different models and 

may be used plug-and-play. 

 
In addition, the report includes Algorithm 1 that thoroughly explains our suggested SCD-TransNet. 

 

Algorithm 1: Training Process of SCG-TransNet 

𝐼𝑛𝑝𝑢𝑡: 𝑉𝑎𝑖ℎ𝑖𝑛𝑔𝑒𝑛 𝑜𝑟 𝑃𝑜𝑡𝑠𝑑𝑎𝑚 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝐷; 
1: 𝑓𝑜𝑟 𝑒𝑝𝑜𝑐ℎ <  𝑒𝑝𝑜𝑐ℎ𝑠 𝑑𝑜 
2: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑏𝑦 (1) 𝑤𝑖𝑡ℎ 𝑆𝐶𝐷 𝑚𝑜𝑑𝑢𝑙𝑒; 
6: 𝑒𝑛𝑑 𝑓𝑜𝑟 
𝑂𝑢𝑡𝑝𝑢𝑡: 𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝑆𝐶𝐺 − 𝑇𝑟𝑎𝑛𝑠𝑁𝑒𝑡; 

 

Fine-tuning using Crocodile Search Algorithm (CSA) 

No amount of iteration will get the fine-tuned correct function value closer to the constraint; in fact, it will be unable to 
do so. The Hunt Attack phase suggests a mutation strategy based on explosions to deal with this. The distance between 

the value of the need-mutation-fine-tuning goal function and the collection of extreme values in the shock cusp mutation 

bifurcation point distribution is taken into account by this technique. This method may greatly enhance the precision of 

the precise function value used for fine-tuning. 

 

Shock Factor 

It is challenging to correctly detect shock and mutation fine-tuning data in the search stage of Reptile Search Algorithm 

(RSA) due to the linear contraction of the evolution factor. In response to this, RSA implemented the shock factor ϕ. To 

improve RSA's capacity to detect tuning data, the algorithm's iteration speed, or the number of iterations, is adjusted. As 

an additional metric, the weight is utilized to ascertain the search velocity. The search speed may be determined by 

taking into account the shock factor current value of the fine-tuning objective function when there is a rapid change trend 
in the fine-tuning data, which indicates the potential prey. 

 

𝜑 = (𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛)1−𝑒1−𝑡/𝑇
× 𝑡(𝑖𝑡𝑒𝑟), 𝑒𝑙𝑠𝑒 = (𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛)1−𝑒1−𝛿/𝑇

× 𝑡(𝑖𝑡𝑒𝑟), 𝐹�̂� > 𝐹𝑥               (9) 

 

    where 𝜑𝑚𝑎𝑥  and 𝜑𝑚𝑖𝑛  are the shockfactor, individually, δ is factor, 𝐹�̂� isthe optimal value of the current fine- 

tuningobjective function, 𝐹𝑥is the greatest possible value for fine-tuning in the prior generation, and t(iter) is the 

distribution of degrees of freedom for T with respect to the sum of iterations of RSA. To improve the analysis of the 

shock data, the shock factor is gradually decreased during the initial stage of iteration as the number of iterations 

increases. The shock data is swiftly identified in the subsequent iteration stage by rapidly reducing the shock factor. It is 

possible to get alternative decline effects to match mutation data by evaluating the abrupt change trend of fine-tuning 

parameters and using those values to determine the shock factor's weight. 
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𝑥𝑖,𝑗(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) − 𝜂𝑖,𝑗(𝑡)𝜑 × 𝛽 − 𝑅𝑖,𝑗(𝑡) × 𝑟, 𝑡 ≤
𝑇

4
                                 (10) 

 

𝑥𝑖,𝑗(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝑥(𝑟1,𝑗) × 𝐸𝑆(𝑡) × 𝜑,
𝑇

4
< 𝑡 <

𝑇

2
                                (11) 

 

     where 𝑥𝑖,𝑗(𝑡 + 1) is the function value of fine-tuning in the next iteration, 𝐵𝑒𝑠𝑡𝑗(𝑡)function of fine-tuning, 

𝜂𝑖,𝑗(𝑡)determines the precise value of the related fine-tuning function, Η controls the length of the search step for the 

objective function value, Ri,j(t) narrows the range of the precise value of the fine-tuning function, and ES(t) is objective 

function charge of the parameters used for fine-tuning. 

 

Explosion Mutation 

We suggest an explosive mutation technique to avoid RSA's local optimum and get a more precise objective function 

value of fine-tuning. The potential location of the 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑝𝑟𝑒𝑦), or the collection of target values associated with the 
development of fine-tuning—which might be one, continuous, or several times—is described as the cusp point. To 

determine the explosion mutation range when the current fine-tuning function value needs to be changed, we center the 

current function charge and use the distance between it and the global optimal fine-tuning objective function value as the 

radius. To create holes, which represent potential mutation positions in the objective function values of the fine-tuning 

parameters, we employ the extreme value probability delivery of the collection. An opening is described as a 

 

𝑆𝐹𝑟 = 𝑥𝑣 + {∑ 𝑃𝑘[𝐺(𝑡)]𝑘∞
𝑘=0 } × √𝐵𝑒𝑠𝑡(𝑡) + 𝑥𝑣

2                                                 (12) 

 

    where 𝑟 =  1, 2,· · · , 𝐿, 𝐿 is the sum of generated holes, SFr, xv is the impartial function value of fine-tuning that needs 

to achieve mutation,∑ 𝑃𝑘[𝐺(𝑡)]𝑘∞
𝑘=0 where x(r1,j) is the value of the function for random fine-tuning, Best(t) is the value 

of the global optimal accuracy function, and is the extreme cusp catastrophic bifurcation point set of the tuning 

parameters.  The mutation impact is weak and the objective function value is inaccurate because to an inadequate number 

of CSA potholes. It is set at 50 because there are too many potholes to cause the calculation to increase. What follows is 
an enhanced crocodile algorithm hunting stage: 

 

𝑥𝑖,𝑗(𝑡 + 1) = [𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝑃𝑖,𝑗(𝑡) × 𝜑] + [𝐵𝑒𝑠𝑡 𝑗(𝑡) − 𝑥𝑖,𝑗(𝑡)] × 𝑆𝐹,
𝑇

2
< 𝑡 ≤

3𝑇

4
            (13) 

𝑥𝑖,𝑗(𝑡 + 1) = [𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝜂𝑖,𝑗(𝑡) × 𝜖 × 𝜑 − 𝑅𝑖,𝑗(𝑡) × 𝑟] + [𝐵𝑒𝑠𝑡𝑗(𝑡) − 𝑥𝑖,𝑗(𝑡)] × 𝑆𝐹,
3𝑇

4
< 𝑡 ≤ 𝑇      (14) 

𝜂𝑖,𝑗(𝑡) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝑃𝑖,𝑗                                                                  (15) 

𝑅𝑖,𝑗(𝑡) =
𝐵𝑒𝑠𝑡𝑗(𝑡)−𝑥(𝑟2,𝑗)

𝐵𝑒𝑠𝑡𝑗(𝑡)+𝜖
                                                                   (16) 

𝐸𝑆(𝑡) = 2 × 𝑟3 × (1 −
1

𝑇
)                                                                (17) 

𝑃𝑖,𝑗 = 𝑎 +
𝑥𝑖,𝑗−𝑀(𝑥𝑖)

𝐵𝑒𝑠𝑡𝑗(𝑡)×(𝑈𝐵(𝑗)−𝐿𝐵(𝑗))+𝜖
                                                        (18) 

𝑀(𝑥𝑖) =
1

𝑛
∑ 𝑥𝑖,𝑗

𝑛
𝑗=1                                                                    (19) 

 

    In this context, Pi,j represents the distance between the optimal and objective values of the fine-tuning function, M(xi) 

is the average of the accurate values of the parameters controlling the fine-tuning function, α controls values of the 

parameters, t is the current iteration sum, T is the extreme iteration sum, r2 is a random value between -1 and N, and r3 is 

a value between -1 and 1. 

 

CSA Optimization Steps 

In order to solve the worth of the warning purpose under numerous constraints, the CSA method constantly adjusts the 

independent variables using population information, hence approximating the warning function. As the suggested model 

is fine-tuned, the CSA maximizes the goal function. 

 Enter the parameters α and β, the beginning population, the extremesum of iterations, and the parameters for 

fine-tuning. 

 A fine-tuning goal function and constraint conditions are created. The CSA optimization algorithm's limit 

approximation is used to solve the fine-tuning objective function. 

Formula (20) is utilized to set the starting value of the goal function in the suggested model. 

 

.𝑥𝑖,𝑗 = 𝑟 × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑗 = 1,2, … 𝑛                                                           (20) 

      in which xi,j represents the potential objective function value in line i's column j, n stands for the objective function 

value's dimension, r is a random integer between 0 besides 1, and LB and UB denote the limits of the objective function 

value—respectively. 



 

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 4(2)(2024) 
 

314 

 

       The data driven by mutation trends is used to regulate the search speed by adjusting the shock factor's weight. The 

explosion mutation is guided by a set of potential target values generated by bifurcation point set. 

Find out if the value of the goal function satisfies the termination requirement. At the end of all the iterations, the optimal 
search outcome is the suggested model's accurate function value. 

 

IV.    EXPERIMENTS 

Datasets 

The WFLW [23] model has 98 landmarks and 10,000 faces, split evenly between training and testing. In addition, 

features such as big stance, expression, lighting, makeup, occlusion, and blur are annotated for each face. 

 

Implementation Detail 

Samples annotated with face landmarks are used during the initial step of training in the study. Setting the learning rate to 

0.001 and reducing it by a factor of 0.03 per 4 epochs with a batch size of 128 is implemented. 𝐼𝑛𝑡𝑒𝑙(𝑅) 𝐶𝑜𝑟𝑒 (𝑇𝑀) 𝑖7 −
4510𝑈 𝐶𝑃𝑈 @ 2.00 𝐺𝐻𝑧 2.60 𝐺𝐻𝑧, 8.00 𝐺𝐵 𝑅𝐴𝑀, 𝑊𝑖𝑛𝑑𝑜𝑤𝑠 10 𝑂𝑆, 𝐺𝑜𝑜𝑔𝑙𝑒 𝐶𝑜𝑙𝑎𝑏 𝑆𝑒𝑡𝑡𝑖𝑛𝑔 − 𝑃𝑦𝑡ℎ𝑜𝑛 3, Google 

Compute Engine backend, 1.13 GB RAM, and 26.26 GB disc space make up the primary machine. 

 

Validation Analysis of Proposed Model  

In assess the efficacy of our suggested perfect, the research employed performance measures with F1-score, recall, 

accuracy, besides precision. The accuracy with which the model classifies data points is the key performance indicator 

for these measures. 

Table 1. Validation Analysis of Proposed Model on Different Ratios 

Train/Test Split Precision F1-Score Accuracy Recall 

80/20 98.92 96.52 99.98 94.24 

70/30 98.10 97.20 99.97 95.20 

60/40 98 97 99.96  95.10 

      In Table 1 characterise that the Validation Analysis of Proposed model on different ratios. In the analysis ratio of 

80/20 data split-up ratio, the accuracy as 99.98 and precision rate as 98.92 and then recall range of 94.24 and F1-score as 

96.52 correspondingly. Then the 70/30 data split-up ratio, the accuracy as 99.97 and precision rate as 98.10 and then 

recall range of 95.20 and F1-score as 97.20 correspondingly. Then the 60/40 data split-up ratio, the accuracy as 99.96 and 

precision rate as 98 and then recall range of 95.10 and F1-score as 97 correspondingly.   Fig 1 shows the visual picture of 
projected model and Fig 2 shows graphical description of various data splits on proposed model.   

 

 
Fig 1. Visual Picture of Projected Model 

 
Fig 2. Graphical Description of various data splits on Proposed Model 
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Table 2. Performance of Proposed model on Timing Analysis 

Train/Test Split Prediction Time (s) Training Time (s) 

80/20 0.74 4.96 

70/30 1.32 4.8 

60/40 1.44 3.71 

 

      In Table 2 signifies that the Presentation of Projected model on timing analysis. In the analysis of 80/20 data split-up 

ratio of Training Time as 4.96 and Prediction Time as 0.74 correspondingly. Then the 70/30 data split-up ratio of 

Training Time as 4.8 and Prediction Time as 1.32correspondingly. Then the 60/40 data split-up ratio of Training Time as 
3.71 and Prediction Time as 1.44correspondingly.  

 

V. CONCLUSION 

The research suggests a swin transformer network that is better by integrating Deeplabv3+ with Swin transformer. The 

Swin transformer is able to better depict long-range dependencies than models based on CNN backbone networks since it 

does not have inductive bias. Swin transformer produces hierarchical feature maps with less computing cost and fewer 

parameters than competing transformers. Combining the powerful global context information capture capabilities of the 

Swin transformer with the extraction ability of convolution, the proposed model captures multiscale feature information. 

This allows for the acquisition of successfully inhibits noise caused by light-induced shadow occlusion. The SPPS can 

also make the most of the occluded object's incomplete pixels to produce distinguishable representation information, 

which helps with false or missed detection due to the target's occlusion and significantly enhances the model's edge 

localization ability. A CSA model, which enhances classification accuracy, carries out the fine-tuning procedure. 
Experiment findings show that heatmap geometric information can assist networks in remaining resilient under harsh 

environments. Another way that heatmaps might help with face tracking accuracy is by providing attention cues. The 

attention and feature sharing mechanisms taught by semi-supervised learning will be the subject of future research. 
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