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Abstract – The deployment of Machine Learning (ML) for improving Water Treatment Plants (WTPs) predictive maintenance 

is investigated in the present article. Proactively detecting and fixing functional difficulties which might cause catastrophic 

effects has historically been an endeavour for reactive or schedule-based maintenance methods. Anomaly Detection (AD) in 

WTP predictive maintenance frameworks is the primary goal of this investigation, which recommends a novel approach based 
on autoencoder (AE)-based ML models. For the objective of examining high-dimensional time-series sensor data collected 

from a WTP over a long time, Sparse Autoencoders (SAEs) are implemented. The data collected involves an array of 

operational measurements that, evaluated together, describe the plant's overall performance. With the support of the AE, this 

work aims to develop a practical framework for WTP operation predictive maintenance. Anomalies are all system findings 

from testing that might result in flaws or malfunctions. The research article analyses January and July 2023 WTP data from 

Jiangsu Province China. The AE paradigm had been evaluated using F1-scores, recall, accuracy, and precision. SAE has 

substantially improved AD functionality.  

Keywords – Water Treatment Plants, Machine Learning, Anomaly Detection, Sparse Autoencoders, Precision, Recall,                     

F1-score. 

I.  INTRODUCTION 

The formation of pure water to drink whose contaminants are free of toxins hinges on Water Treatment Plants (WTPs), which 

are additionally tasked with ensuring health care to the people, protecting environmental sustainability and promoting business 
development [1]. With regard to the important role that these frameworks serve for human society, it is vital that their 

maintenance be kept in good repair on a more regular schedule. Nevertheless, predefined methods, which are a crucial part of 

standard maintenance methods, regularly fail to accurately represent the real-time performance of the system. This may result 

in to irrelevant maintenance or faults that hadn't been planned [2]. WTP routine maintenance has to cope with dynamic 

operational factors, multimodal sensor data, and the requirement to rapidly identify small anomalies that could suggest future 

issues [3]. Conventional techniques can be difficult to forecast this kind of failure due to the intricate layout in data collected 
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during operation [4]. Anomaly Detection (AD) is capable of recognising exceptional anomalies that signify major problems 

[5]. This paper investigates the application of AE-based systems, primarily the Sparse Autoencoder (SAE), to set up AD in the 

WTP employing operational measurement metrics. Such structures attempt to reclaim regular operations and detect any out-
of-the-ordinary anomalies that might suggest an interruption. The adaptability of AE concepts and the multidimensional and 

temporal features of sensor data are employed as proof of a Machine Learning (ML) technique for increasing WTP predictive 

maintenance speed and precision.  

     The proposed work has been used to explore the implementation of ML models for predictive maintenance in Water 

Treatment Plants (WTPs), which proactively detect anomalies and predict potential system failures. Three ML models, 

Autoencoders (AE), Variational Autoencoders (VAE), and Sparse Autoencoders (SAE), are all being trained on time-series 

sensor data to learn standard operational patterns and try to identify the deviations that are key in indicating possible 

malfunctions. The study used historical data from a WTP in Jiangsu, China, spanning January to July 2023. Performance 

metrics such as accuracy, precision, recall, and F1-score have been used to evaluate the models; out of all the models from the 

results, the SAE model has shown the best results, which is attributed to its sparsity constraint enforcing focus on crucial 

features.  
    The paper is organized as follows: Section II presents the literature review, Section III presents the background of the study, 

Section IV presents the methodology, Section V presents the experiment analysis, and Section VI concludes the work. 

 

II.  LITERATURE REVIEW 

In [6-8] have investigated the use of AEs in the domain of three DoF delta robots for employing in convolutional layers for the 

purpose of Feature Extraction (FE) and used a sigmoid function for the work of AD that has highlighted the utility of AEs in 

the process of maintenance in prediction and fault localization without reliance on R2F data. Their approach also includes the 

method for calculating the remaining useful life (RUL), possibly using Gaussian processes based on the Health Indicator (HI) 

values to demonstrate the multifaceted applications of AEs in maintenance strategies. 

     The [9-10] have developed a Dynamic Predictive Maintenance Scheduling (DPMS) method that uses deep auto-encoders 

and deep forest for failure prognosis, which showcases the method's effectiveness in maintenance and decision-making based 

on the system degradation FE from raw sensor data. This method is effectively validated using NASA's aircraft engine datasets 
and has possibly outperformed several other state-of-the-art methods, which underscored the potential of Deep Learning (DL) 

in predictive maintenance for reducing costs and facilitating precise maintenance decisions. 

     In [11-12] have presented a parallel-stacked autoencoder model (PSAM) focusing on generating low-dimensional features, 

particularly from high-dimensional vehicle data targeted for fault prediction, particularly in powertrain components. The 

incorporation of embeddings over the categorical variables has further enhanced all performance of their Artificial Neural 

Network (ANN) models, which has led to signifying advancements in powertrain failure prediction and data size reduction. 

    The [13-14] have proposed an SAE-based predictive maintenance framework for the Air Production Unit (APU) system 

used in the Metro do Porto train. Their research was done to differentiate the predictive capabilities of analog and digital sensors 

in identifying failures equipped with digital sensors that show superior performance in detecting air leakage and other failures, 

which are indicating about the importance of sensor selection in the predictive maintenance models.  

     In [15-16] have explored a combined process of Recurrent Neural Network (RNN) together with the autoencoder approach 
for AD in power plant equipment with the objective of using the Mahalanobis Distance (MD) for anomaly condition 

determination. Their work has emphasized the effectiveness of GRU models over the LSTM in modelling normal behaviour, 

thereby offering a comprehensive framework for diagnostic and prognostic equipment management. 

 

III.   BACKGROUND 

Unsupervised Learning based Failure Detection (ULFD) 

ULFS models have all focused-on AD, malfunctions, and/or failures within systems without relying on labelled datasets. 

Unsupervised techniques aim to learn the standard operational patterns of a WTP system and use them to flag deviations as 

potential failures, which leverages the inherent data structure and distribution. The core principle of unsupervised failure 

detection is that the assumption over the standard operational data has significantly outnumbered anomalies or failures [17]. 

Modelling the expected behaviour of such a system could show significant deviation from this model that can be considered as 
an anomaly or a precursor to failure. Techniques such as clustering, density estimation, and neural networks are all employed 

to capture the underlying structure of the data and identify outliers. 

Time-series Data 

This data type comprises all sequences of values collected over a consistent period of time intervals and used for capturing the 

operational dynamics of systems, such as flow rates, pressure, and chemical concentrations. The essence of such time-series 

data often lies in its ability over the aspect to reflect temporal variations, trends, and patterns that are crucial for establishing 

normal operational baselines. The application of time-series data, particularly in unsupervised learning, has always involved 

the AD by analyzing deviations from these baselines. Unlike the supervised learning models [18], the unsupervised models, 
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including the AE, usually process time-series data without labelled examples indicating normal and abnormal states. They learn 

to identify patterns and anomalies through the data's inherent properties, focusing on temporal dependencies and fluctuating 

parameters. The challenge with time-series data is its complexity, which also includes high dimensionality and the presence of 
noise. Practical analysis has always been a requirement using sophisticated preprocessing, FE, and dimensionality reduction 

techniques. Unsupervised models are particularly adept at handling these complexities, learning from the data's structure to 

distinguish between normal variability and indicators of potential failures. 

 

Auto Encoder 

The AE is considered a type of ANN that is used for unsupervised learning and efficient data coding. The primary goal of an 

AE is to learn about a representation (encoding) for a set of data, which is typically applied to dimensionality reduction or 

feature learning. AE are particularly effective in AD tasks, which include predictive maintenance in WTP, all by learning to 

reconstruct the standard operational data and identifying deviations as anomalies. 

For an input time series, data represented as 𝑋𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑇}, where 𝑇 denotes the time steps and 𝑥𝑡 represents the data 

at time step 𝑡, an AE aims to learn a compressed representation of 𝑋𝑖. The architecture of an AE comprises two primary 

components: the encoder and the decoder. 

 Encoder: This component transforms the input time series data 𝑋𝑖 into a hidden, lower-dimensional representation 

𝐻𝑖 = {ℎ1, ℎ2, … , ℎ𝑛}, where 𝑛 < 𝑇 and ℎ denotes the features in the latent space. The encoder’s function, which is 

denoted as 𝑓, is to transform the input time series data 𝑋𝑖 into a hidden representation 𝐻𝑖. This transformation can be 

mathematically represented as Equ (1). 

                                                                             𝐻𝑖 = 𝑓(𝑋𝑖; Θ𝑓)                                                                       (1)                                  

 

     where Θ𝑓 represents the parameters (weights and biases) of the encoder network. The function 𝑓 typically involves a 

series of transformations, including linear mappings and nonlinear activations designed to compress the input data into a 

lower-dimensional latent space. 

 Decoder: Following the above-discussed encoding process, the following decoder function is built to reconstruct the 

original input 𝑋𝑖 from the compressed representation 𝐻𝑖. The reconstructed time series data are denoted as 𝑅𝑖 = 
{𝑟1 , 𝑟2, … , 𝑟𝑇 }, is obtained by applying a function 𝑔. The decoder function, which is denoted as 𝑔, is used in this process 

to reconstruct the original input time series data from the latent representation 𝐻𝑖. This reconstruction process is 

expressed as Equ (2). 

𝑅𝑖 = 𝑔(𝐻𝑖; Θ𝑔)                                                                          (2) 

   where Θ𝑔 represents the parameters of the decoder network. Similar to 𝑓 function, the above function 𝑔 too involves 

a series of transformations that map the compressed representation 𝐻𝑖 back to the original data space that is aiming to 

produce a reconstruction 𝑅𝑖 that closely mirrors the input 𝑋𝑖. 

Both the functions such as 𝑓 and 𝑔 are being learned during the training process, and the inside objective in the model 

is to minimize a loss function that quantifies the difference between the original time series data 𝑋𝑖 and its reconstruction 𝑅𝑖. 

By adjusting the parameters Θ𝑓 and Θ𝑔, the AE model learns to encode and decode the input data and identifies the essential 

patterns in the latent space, ensuring the minimization of reconstruction errors. The training of an autoencoder revolves around 

minimizing the difference between the original time series data 𝑋𝑖 and its reconstruction 𝑅𝑖. This discrepancy is quantified 

using a loss function, such as the Mean Squared Error (MSE), formulated as Equ (3). 

𝐿(𝑋𝑖 , 𝑅𝑖) =
1

𝑇
∑  𝑇

𝑡=1 (𝑥𝑡 − 𝑟𝑡)2     (3) 

where 𝑥𝑡 is the actual data point at time 𝑡 and 𝑟𝑡  is the corresponding reconstructed data point.  

 

Sparse Autoencoder (SAE) 

A SAE, as shown in Fig 1, is also a variant of the basic AE model that mainly introduces sparsity constraints over the activations 

of the hidden layers. This constraint has helped to encourage the model to learn more meaningful and representative data 

features by limiting the number of active neurons in the hidden layer at any given time. Sparsity in an AE is mainly achieved 

by adding a regularization term to the loss function; this step penalizes the model if the activations of the hidden units deviate 

from a predefined sparsity level, 𝜌. The sparsity level is a small value close to ‘0’, indicating the proportion of neurons that are 

expected to be active (i.e., have non-zero activations) on average.  
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Fig 1. AE model 

(i) Encoder: The encoder part of a SAE maps the input vector 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} to a hidden representation 𝐻. This mapping 

can be expressed by the function Equ (4) 

𝐻 = 𝜎(𝑊1 ⋅ 𝑋 + 𝑏1)     (4) 

      Here, 𝑊1  represents the weight matrix connecting the input layer to the hidden layer, 𝑏1 is the bias vector of the encoder, 

and ‘𝜎′ denotes a nonlinear activation function, such as the sigmoid function. The encoder's purpose is to compress the high-

dimensional input data 𝑋 into a lower-dimensional latent space representation 𝐻. 

 

(ii) Sparsity Constraint: The sparsity constraint is imposed on the activations of the neurons in the hidden layers. For each 

neuron 𝑖 in the hidden layer, the average activation over a batch of inputs is considered and denoted as �̂�𝑖. The sparsity penalty 

enforces that �̂�𝑖 remains close to a pre-set sparsity target ′𝜌′, which is typically a small value close to ‘0’. The Kullback-Leibler 

(KL) divergence is employed to measure the difference between the actual activation level �̂�𝑖 and the desired level ′𝜌′, 
contributing the following term to the loss function. 

 Sparsity_Penalty = 𝛽 ∑  𝑚
𝑖=1 [𝜌log (

𝜌

�̂�𝑖
) + (1 − 𝜌)log (

1−𝜌

1−�̂�𝑖
)]  (5) 

     In this Equ (5), 𝛽 is a coefficient that balances the sparsity penalty against the reconstruction loss, and 𝑚 denotes the total 

number of neurons in the hidden layer. 

 

(iii) Decoder: The decoder segment aims to reconstruct the input data from the compressed representation 𝐻, and this 

reconstruction can be represented by the function Equ (6) 

𝑋′ = 𝜎(𝑊2
𝑇 ⋅ 𝐻 + 𝑏2)                (6) 

 

      Here, 𝑋′ is the reconstructed input, 𝑊2
𝑇 denotes the transposition of the weight matrix connecting the hidden layer to the 

output layer, 𝑏2 is the bias vector for the decoder, and ′𝜎′ represents the same nonlinear activation function used in the encoder. 

The decoder's objective is to generate a reconstruction 𝑋′ that closely approximates the original input vector 𝑋. 

 

(iv) Loss Function: The overall loss function of a SAE is the sum of the reconstruction loss and the sparsity penalty. The 

reconstruction loss for each input vector 𝑋 compared to its reconstruction 𝑋′ is typically calculated using the Mean Squared 

Error (MSE), given by Equ (7). 

Reconstruction Loss =
1

𝑛
∑𝑖=1

𝑛  (𝑥𝑖 − 𝑥𝑖
′)2                      (7) 

 
      Combining the reconstruction loss with the sparsity penalty, the loss function the SAE seeks to minimize is Equ (8). 

 

Loss = Reconstruction_Loss + Sparsity_Penalty                  (8) 

 

    This loss function ensures that the SAE not only learns to reconstruct the input data accurately but also adheres to the sparsity 

constraint, promoting the activation of a minimal number of neurons in the hidden layer. This approach encourages the AE to 

learn more robust and meaningful features in the data, facilitating applications such as feature extraction, dimensionality 

reduction, and anomaly detection. 
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IV.  METHODOLOGY 

Water Treatment Plant (WTP) Overview 

The WTP chosen for this study is located in Jiangsu, China, and incorporates a series of processes employed to treat industrial 
and municipal wastewater. As depicted in Fig. 2, the treatment process has to start with the collection of industrial wastewater 

and city wastewater and then transitioning it through mechanical and biological treatment stages, culminating in the disinfection 

and final filtration before the treated water is discharged. Within this WTP, there are several critical areas where failures could 

occur, impacting the efficiency and safety of the water treatment process: 

 Pumping Stations: Vital for initiating the wastewater treatment process by moving water to subsequent stages. A 

mechanical failure here could cause significant process delays or stoppages. 

 Primary and Secondary Clarifiers are instrumental in separating sediments and facilitating biological treatment. 

Failures in clarifiers can lead to a domino effect, overloading other processes. 

 Aeration Tanks: A core component for biological treatment, where a breakdown can result in the inadequate 

breakdown of organic matter. 

 Chlorination and Disinfection Chambers: Essential for ensuring that the water is free of harmful microorganisms 
before discharge. Inaccurate dosing or system failures could pose public health risks. 

 Sludge Digesters and Methane Storage: These areas manage the by-products of the water treatment process. 

Malfunctions can disrupt waste stabilization and methane harvesting, which is critical for both treatment efficacy 

and energy efficiency. 

 Sludge Dewatering and Disposal: Proper functioning is crucial for environmental compliance. Issues in this stage 

can lead to improperly handling sludge, causing environmental hazards. 

 Grease Traps and Sand/Grit Chambers: They prevent the accumulation of solids that can clog the system. 

Blockages or mechanical wear could reduce overall plant efficiency. 

  

 
Fig 2. WTP Process Flow 

 

Data Collection Using Sensors to Detect Anomaly 

The data were collected for the chosen WTP during the period from January 2023 to July 2023, and the time series data were 

sourced from an array of sensors installed in the WTP. The following list in Table 1 describes the sensors deployed and the 

data collected through those sensors.  



 

ISSN: 2788–7669                                                                                                Journal of Machine and Computing 4(2)(2024)  
 

284 

 

Table 1. Sensor Type Description 

Sensor Type Description Data Measured 

Flow Meters (Digital) Digital sensors for water flow rate with data logging. Volume (m³/h) 

Pressure Sensors (Analog) 
Detect the pressure of water in different parts of the 

system. 
Pressure (hPa, psi) 

pH Sensors (Digital) 
Digital readout of water's pH level, integrated into 

control systems. 
pH level 

Turbidity Sensors (Digital) 
Digital sensors with real-time data on water clarity to a 

central system. 
NTU (Nephelometric Turbidity 

Units) 

Temperature Sensors (Digital) 
Digital sensors with network connections for system 

integration. 
Temperature (°C, °F) 

Level Sensors (Digital - 

Ultrasonic/Radar Type) 

Digital sensors use ultrasonic or radar signals to measure 
water levels. 

Level (meters, cm) 

    The sensors have logged signals at a 1 Hz frequency that transmit data to the server every five minutes via TCP/IP protocol. 

A total of 2,92,073 data samples were recorded during the period between January 2023 to July 2023. 

 

 

Feature Engineering 
The raw data that have undergone preprocessing to ensure quality and consistency have included cleaning, removing outliers, 

and correcting errors. Normalization was used to scale the data to fit it within a specific range using Min-Max scaling. Given 

the enormous volume of data, it was segmented based on distinct operational phases of the WTP, such as filtration cycles, 

chemical dosing periods, and sedimentation times. 

 Operational Cycle Identification: The WTP's important functional cycles have been mapped out, the most significant 

high-activity times were captured, and emergency or reduced-activity times were monitored.  

 Segmentation and Binning: Additional data was segmented into "bins" of equal size within these functional phases. 

For the purpose of identifying correlations that could suggest malfunctions or equipment decline, this method allows 

an in-depth evaluation of the system's activity during specific operative stages. 

 Feature Extraction: At every phase, the WTP's functioning condition has been defined by identifying and analysing 

empirical features, such as the mean and variance of sensor data within each bin. These features are advantageous due 

to their ability to disclose data regarding the treatment method's performance and good health, which can be employed 
to determine when service is required. 

 Vector Formation: Input variables for the SAE framework have been created using data from all the integrated 

features. The framework has employed these patterns, which are often comprehensive reviews of the plant's data for 

operation, to demonstrate to the SAE how to function correctly and identify when AD requires service. 

 The method resulted in the selection of 16 features for the SAE design. The features that have been selected are 

outlined in Table 2: 
Table 2: Features Selected. 

Feature No. Feature Description Data Source Relevance to WTP Operation 

1 Mean Flow Rate Flow Meter 
Indicates the average water flow through the 

plant. 

2 Variance in Flow Rate Flow Meter Highlights fluctuations in water flow. 

3 Mean Pressure Level Pressure Sensor Reflects average system pressure. 

4 Pressure Variance Pressure Sensor Identifies pressure instability. 

5 Average pH Level pH Sensor Measures the mean acidity or alkalinity of water. 

6 pH Level Variability pH Sensor Detects fluctuations in pH levels. 

7 Mean Turbidity Turbidity Sensor Indicates the clarity of water. 

8 Turbidity Variance Turbidity Sensor Highlights changes in water clarity. 

9 Average Temperature Temperature Sensor Reflects the mean water temperature. 

10 Temperature Fluctuations Temperature Sensor Identifies temperature instability. 

11 Mean Water Level Level Sensor Indicates average water level in tanks/reservoirs. 

12 Water Level Variability Level Sensor Detects changes in water levels. 

13 Filtration Cycle Duration Flow Meter, Pressure Sensor 
Captures the time taken for a complete filtration 

cycle. 

14 Backwash Cycle Duration Flow Meter, Level Sensor 
Measures the duration of the backwash process 

infiltration. 

15 Chemical Dosing Duration pH Sensor, Turbidity Sensor Indicates the length of chemical treatment phases. 

16 
Sedimentation Process 

Duration 
Turbidity Sensor, Level Sensor 

Reflects the time sedimentation takes to clear 
particulates from water. 
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SAE for Predictive Maintenance of WTP 

The predictive maintenance framework for WTP, as shown in the algorithm, employed an SAE to process time series sensor 

data for the early detection of potential equipment or process failures. The process begins with collecting sensor data, which 

are represented as a time series 𝑇 mainly recorded from various operational points within the WTP. This data then undergoes 

preprocessing, which includes normalization using min-max scaling to ensure uniformity. Additionally, feature engineering is 

applied to the normalized data 𝑇norm , which in turn creates a set of enriched features 𝐹 that have encapsulated domain-specific 

insights and operational nuances. These features, combined with the normalized data, form a comprehensive dataset 𝑃 that is 

ready for model training. The SAE model is configured with a defined number of hidden layers and neurons alongside a sparsity 

regularization parameter 𝜆. The model is trained over the source dataset 𝑃 using the Adam optimizer, fine-tuning the network 

to minimize reconstruction error while adhering to the sparsity requirement. 

      Once trained, the SAE model is then deployed for AD upon a new time series sensor data 𝑇new . The model attempts to 

reconstruct this received data, and by calculating the reconstruction error for each data point against its original, it AD based 

on a predefined threshold. Anomalies flag potential issues within the WTP's operational processes, triggering an alert. The 

following algorithm presents the functioning of the SAE algorithm for WTP maintenance. 

 

Algorithm for SAE for predictive maintenance of WTP 

Input: Time series sensor data 𝑇 from WTP 

Output: Anomaly alerts and recommendations for maintenance 

Data Preprocessing 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝐷𝑎𝑡𝑎( 𝑇 ): 
 For each time series data point 𝑡𝑖 ∈ 𝑇, normalize 𝑡𝑖 using min-max scaling. 

 Return the normalized time series data 𝑇𝑛𝑜𝑟𝑚. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 (𝑇norm ) ∶ 
 Create additional features 𝐹 based on domain knowledge from 𝑇𝑛𝑜𝑟𝑚. 

 Combine 𝑇𝑛𝑜𝑟𝑚 and 𝐹 into preprocessed data 𝑃. 

 Return 𝑃. 

Sparse Autoencoder Model 

𝐷𝑒𝑓𝑖𝑛𝑒 𝑀𝑜𝑑𝑒𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 
 𝐿 : Number of hidden layers. 

 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 [ ]: Array defining the number of neurons per layer. 

 𝜆 : Sparsity regularization parameter. 

𝑇𝑟𝑎𝑖𝑛𝑆𝐴𝐸 (𝑃) ∶ 
 Initialize an empty SAE model. 

 Configure model with 𝐿 hidden layers and 𝜆 for sparsity. 

 Train model on 𝑃 with neurons defined in 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 [ ] using the Adam optimizer. 

 Ensure sparsity by incorporating 𝜆 in the loss function during training. 

 Return model. 
Anomaly Detection 

𝐴𝐷 (𝑚𝑜𝑑𝑒𝑙, 𝑇new ) ∶ 
 Normalize 𝑇new  using the same method as in Normalize_Data. 

 Reconstruct 𝑇new  using model. 

 Calculate the reconstruction error for each point in 𝑇new  against its reconstruction. 

 If error > threshold: 

 Flag the AD to the corresponding time series segment(s). 

 Return anomaly flags and identified segments. 

Predictive Maintenance 

𝐴𝑛𝑎𝑙𝑦𝑧𝑒𝐴𝑙𝑒𝑟𝑡𝑠(𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑓𝑙𝑎𝑔𝑠): 
 For each flagged anomaly, analyze the corresponding time series segment. 

 Identify potential equipment or process issues based on anomalies. 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑖𝑠𝑠𝑢𝑒_𝑡𝑦𝑝𝑒, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦): 
 Based on the analysis, schedule maintenance activities prioritizing by issue_type and severity. 

Main Function 

𝑀𝑎𝑖𝑛(): 
 𝑇 = Collect time series sensor data from WTP. 
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 𝑃 =  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 ( 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝐷𝑎𝑡𝑎 (𝑇)). 
 𝑚𝑜𝑑𝑒𝑙 =  𝑇𝑟𝑎𝑖𝑛𝑆𝐴𝐸(𝑃). 
 Continuously: 

 𝑇𝑛𝑒𝑤 = Collect new time series sensor data. 

 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑓𝑙𝑎𝑔𝑠 =  𝐴𝐷 (𝑚𝑜𝑑𝑒𝑙, 𝑇new ). 
 If anomalies are detected: 

 𝑖𝑠𝑠𝑢𝑒𝑠 =  𝐴𝑛𝑎𝑙𝑦𝑧𝑒𝐴𝑙𝑒𝑟𝑡𝑠 ( 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑓𝑙𝑎𝑔𝑠 ). 
 For each issue in issues: 

 Schedule maintenance based on issue. 

  

V.  Experiment Analysis 

The experiments were conducted using a computer that has the following specifications: an Intel Core i7 processor with a base 

clock speed of 3.6 GHz, 16 GB of DDR4 RAM, and a 512 GB SSD for storage—an NVIDIA GeForce GTX 1080 Ti. The 

algorithm was implemented in Python, an object-oriented, high-level programming language, Pandas for data manipulation, 

and TensorFlow for building and training neural networks. The data available from January to May 2023 is used to train the 

SAE network, which was then tested to predict the failures in June and July 2023. The SAE model was trained using the 
following hyperparameters, as shown in Table 3: 

Table 3. Hyperparameters 

Hyperparameter Value 

Number of Layers 3 

Neurons per Layer [64, 32, 64] 

Activation Function ReLU 

Regularization Parameter (λ) 0.01 

Learning Rate 0.001 

Batch Size 128 

Epochs 100 

The  model's effectiveness was assessed using the following metrics: 

 Accuracy: Measures the overall correctness of the model, defined as Equ (9) 

 Accuracy =
TP+TN

TP+TN+FP+FN
                                          (9) 

 

 Precision: The ratio of TP to all positive predictions, calculated as Equ (10) 

 Precision =
TP

TP+FP
     (10) 

 

 Recall (Sensitivity): The proportion of TP identified correctly, defined as Equ (11) 

 Recall =
TP

TP+FN
      (11) 

 

 F1-score: The harmonic mean of precision and recall, expressed as Equ (12) 

𝐹1 = 2 ×
 Precision × Recall 

 Precision + Recall 
                                         (12) 

 

 Mean Squared Error (MSE) for Reconstruction: Measures the reconstruction error, crucial for AD, defined as EQU 

(13) 

MSE =
1

𝑛
∑  𝑛

𝑖=1 (𝑥𝑖 − �̂�𝑖)
2                   (13) 

where 𝑛 is the number of samples, 𝑥𝑖 is the actual value and �̂�𝑖 is the reconstructed value by the model. 

 

Fig 3 illustrates the accuracy of three different ML models—AE, VAE, and SAE—over 100 training epochs. The graph proved 

that the SAE model outperforms the other two models, which maintain. The AE and VAE models also exhibited similar 

performance at the beginning, but it is noted that as training progresses, the AE model falls behind, with VAE overtaking it 

slightly and maintaining a narrow lead. The SAEs have shown superior performance, which could be attributed to their ability 
to enforce sparsity in the hidden layer, which could have helped the model avoid irrelevant features and concentrate on the 

most essential features. The VAE model has shown slightly higher accuracy than AE, possibly due to its probabilistic approach 

to learning the data representation.  
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Fig 3. Accuracy Against Epochs 

 
Fig 4. Error Against Epoch Analysis 

 

As shown in Fig 4, the error rates have been compared for all the same three models, such as AE, VAE, and SAE, across 100 

epochs. The figure shows that the SAE model has the lowest error rate, which suggests it is the most effective model for 

accurately reconstructing the input data. The error rates for the AE and VAE are higher, with VAE showing a slight advantage 

over AE. 

     Considering that lower error rates typically correlate with better model performance, the SAE's consistently lower error rate 

indicates that it will likely provide the most reliable predictions in an operational setting. Its error rate also appears to stabilize 
quickly and remains low throughout the training process, which is indicative of robust learning and generalization capabilities. 

On the other hand, while the AE and VAE improve over time, their error rates suggest that they may not capture the complexities 

of the data as effectively as the SAE. This analysis would support the choice of SAE for deployment in a water treatment plant's 

predictive maintenance system, potentially leading to improved operational efficiency and reduced downtime. 

 
Fig 5. Performance Comparison Against Various Metrics 

The chart, as shown in Fig 5, visualizes the performance metrics of Precision, Recall, and F1-score for three different 

models: AE, VAE, and SAE.  
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Analyzing the results: 

 Precision: SAE has the highest precision at 0.9036, indicating that it has the highest proportion of TP results relative 

to the number of TP results it claims. AE and VAE have slightly lower precision scores of 0.8393 and 0.8423, 
respectively. 

 Recall: Again, SAE has the highest score, with 0.894, which shows it is the most capable of correctly identifying all 

relevant instances. AE has a slightly lower recall than SAE at 0.8194, while VAE has the lowest recall at 0.7845, 

which shows that it misses more relevant cases than the other two models. 

 F1-score: The F1-score is a balance between precision and recall. SAE's F1-score is the highest at 0.7812, indicating 

it has the best balance between precision and recall. AE and VAE have F1-scores of 0.692 and 0.6861, respectively; 

this means they do not balance the two as effectively as SAE. 

 

VI.   CONCLUSION AND FUTURE WORK 

Optimising the success rate of predictive maintenance in Water Treatment Plants (WTP) is the main goal of the present study, 

which addressed the implementation of Sparse Autoencoders (SAE) within the context of Machine Learning (ML). Study 
results demonstrated that SAEs are suitable for Anomaly Detection (AD), that analyses time-series sensor data for faults or 

anomalies. According to the F1-score, recall, accuracy, and precision, they tested autoencoder (AE) designs. The most reliable 

AD detection model is SAEs. Findings indicate SAE use in WTP maintenance procedures may enable driven by data, 

preventative repairs. The process lowers delay, breakdowns in equipment, and expenses related to operation while increasing 

integrity and productivity. This research has encouraged concerns about using ML for industrial servicing to develop smart, 

adaptable systems which satisfy current development of infrastructure requirements. The analysis demonstrates that ML can 

set up WTP solutions, enhancing driven-by-technology service techniques.  

     In future research, investigators plan to develop real-time ML models for evaluating these approaches across several water 

treatment applications. 
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