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Abstract – Wireless sensor networks (WSNs) comprise a network of dispersed, carefully positioned sensor nodes in their 
deployment environment to monitor and collect data on natural phenomena. These sensor nodes collaborate to transmit data 
via multi-hop communication, ultimately reaching a central base station for processing. However, WSNs face significant 
challenges due to the resource-constrained nature of these devices and the harsh, open environments in which they operate. 
Addressing energy optimization and ensuring secure communication are primary concerns in the successful operation of 
WSNs. This paper introduces anovelTrust aware Neuro Fuzzy Clustering head selection (TNFCH) and agglomerative 
hierarchical clustering approach (AHC) with Secure Whale Optimization (SWO) Algorithm Routing to enhance energy-
efficient transmission in WSNs. Our proposed protocol (TNFCH-AHWO) efficiently organizes nodes by utilizing neural 
network and Fuzzy logic then securely transfers the data into the communication network. We employ a Trust calculation 
algorithm in our system to ensure Trust and data integrity, facilitating efficient lightweight operations such as key generation, 
encryption, decryption, and verification. This ensures hop-to-hop authentication among the nodes in WSNs. To assess the 
performance of our proposed protocol, we conducted simulations using the NS3 simulator. The findings of the simulation 
show that the suggested protocol greatly enhances various performance metrics, including energy consumption analysis, 
throughput, network delay, network lifetime, and packet delivery ratio when compared to existing protocols. 
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I. INTRODUCTION 
A Wireless Sensor Network (WSN) is a distinct network category within ad hoc networks. It comprises numerous nodes not 
fixed in a single location but randomly dispersed throughout a sensing field [1]. This random allocation of nodes in WSNs is 
crucial in monitoring and capturing data from locations that are typically inaccessible to humans [2]. Consequently, sensor 
nodes within WSNs are equipped with self-contained computing resources, including processing capabilities, storage 
capacity, and batteries [3]. A typical sensor node can execute three fundamental operations: sensing, transmitting, and 
processing data within the deployment area [4]. The deployment of sensor nodes is determined by their communication, 
energy, and storage capabilities [5]. Initially, energy consumption is noticeable when nodes initiate communication. If a 
region under surveillance is generally overlooked, there may be no feasible solution for repairing or restoring the sensor 
nodes [6]. The network's stability is compromised when an inactive node is detected, necessitating topology modifications 
and retransmissions. Consequently, the battery life of sensor nodes in WSNs is diminished, impacting the overall network 
lifetime [7]. Furthermore, addressing energy efficiency challenges is a crucial aspect of managing WSNs. 
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     In WSNs, the conservation of energy in nodes with sensors is crucial [8]. It grouped different network nodes to enable 
effective communication between a Cluster Head (CH) and the base station. This is known as clustering [9]. Choosing an 
appropriate cluster and a suitable CH takes a lot of effort and time. Currently, many strategies are used to find appropriate 
CHs [10]. Clustering techniques are essential to WSNs because they provide flexible and scalable routing while proving 
energy efficiency. Each cluster must appoint a CH to manage crucial internal processes. 
     The clusters play a pivotal role by not only gathering data but also integrating and directing this integrated data towards 
the Base Station (BS) [11]. The CH assumes a central role within each cluster, facilitating communication with other sensor 
nodes, the BS, or CHs in different clusters. This communication addresses various factors critical for achieving efficient 
routing. Such interactions contribute significantly to enhancing network performance in terms of maximizing its lifetime and 
implementing energy-saving routing strategies in the context of WSNs [12]. 
    Finding the shortest or ideal path for efficient data communication is one of the main goals of routing, which is an essential 
requirement in WSNs. The three basic categories into which WSN routing protocols fall are data-centric, hierarchical, and 
geographic-based routing protocols. By following routing algorithms, these protocols allow data to be transmitted from nodes 
that are sources to sink sites or the base station [15]. 
    Energy conservation is paramount in the realm of WSNs. Designing energy-efficient algorithms for communication is 
imperative to ensure the network's longevity and effectiveness. One of the critical factors to consider is that as the routing 
distance within the network increases, so does the energy consumption [13][20]. Hence, it becomes vital to establish an 
efficient path for routing the data collected by sensor nodes to the base station. 
    In the context of this paper, a novel approach is proposed to address the energy-efficiency challenge by utilizing a fuzzy 
system for routing data along an optimal path. The existing Energy-Efficient Routing Framework (EERF) has been 
developed to support multi-hop routing. EERF achieves this by generating the least distant and most energy-efficient routing 
path, reducing the overall energy consumption in the network. However, this paper explores two additional routing strategies: 
TNFCH-AHWO algorithms which is routing by whale optimization algorithm, and clustering is adopted as the preferred 
method for data communication. Clustering leverages the principles of fuzzy logic to create unequal clusters within the 
network, optimizing energy consumption during data transmission. This innovative approach aims to strike a balance 
between energy efficiency and routing distance, ultimately enhancing the overall performance of the WSN. 
     The TNFCH-AHWO algorithms represent a comprehensive approach to optimizing wireless sensor networks. Through a 
three-step process involving neuro-fuzzy clustering, AHP-based CH selection, and secure data transfer using the Whale 
Optimization Algorithm (WOA), these algorithms aim to enhance network performance, energy efficiency, and data security. 
This multi-faceted approach ensures that the network operates efficiently and securely, meeting the demands of various 
applications and environments. The following contribution of this paper, 

• The primary goal of the proposed scheme is to enhance the security of the data routing process in a WSN while 
minimizing energy consumption. 

• This paper introduces a novel TNFCH-AHWO, a protocol that enhances energy efficiency in WSNs through 
innovative clustering techniques and routing optimization. 

• agglomerative hierarchical clustering approach (AHC) with Secure Whale Optimization (WOA) Algorithm Routing 
contributes by introducing novel techniques that optimize clustering, routing, and energy efficiency in WSNs 

     In the structure of this paper, we have made the necessary adjustments to align the section titles with standard formatting. 
Section 2 explores in detail a thorough analysis of related work, providing insights into prior research and developments in 
the field. Section 3 outlines our proposed approach and its formulation, shedding light on our work's novel methods and 
techniques. In Section 4, we present our Clustering and Optimized Routing Algorithm, highlighting its innovative aspects 
and part in improving wireless sensor network performance. Moving on to Section 5, we conduct a detailed analysis of the 
results obtained from our experiments, offering valuable insights and observations. Finally, in Section 6, we draw our paper 
to a close by presenting our conclusions and discussing potential avenues for future research and development in this domain. 
 

II. RELATED WORK 
The basic structure of a hierarchical WSN is illustrated in Fig 1 above. This network architecture comprises a two-level 
hierarchy, with clusters distributed throughout the network. Each cluster in the network designates a CH responsible for tasks 
such as data collection and aggregation. The nodes neighboring the cluster head belong to the upper-level nodes, while the 
other nodes in the network are categorized as subsequent-level nodes. The CHs within each cluster collect data from their 
neighboring Sensor Nodes (SNs) and transmit it directly to the Base Station (BS). After performing data aggregation, they 
may also route data through other intermediate cluster heads. However, it is essential to note that cluster heads consume more 
energy compared to cluster member (CM) nodes, primarily due to their involvement in long-distance communication with the 
BS [9]. 
     The routing process in WSN-based networks presents common challenges, including energy consumption and the 
emergence of routing holes that can lead to sensor disconnections. Efficient routing techniques are essential to address these 
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issues effectively. Proper routing techniques play a crucial role in extending the lifetime of sensors and ensuring the 
network's reliability. One widely adopted hierarchical-based routing technique is the Low Energy Adaptive Clustering 
Hierarchy (LEACH) [10]. LEACH operates with three main objectives: 

• Network Lifetime Enhancement: LEACH aims to prolong the overall lifetime of the network by efficiently 
managing energy resources. This is achieved by dynamically selecting CHs in a round-robin fashion, allowing nodes 
to take turns assuming the CH role and evenly distributing the energy consumption across the network. 

• Reducing Energy Dispersal: The protocol seeks to reduce energy wastage by aggregating data at the CH level before 
transmission. This aggregation minimizes the energy required for long-distance communication, thus conserving 
power. 

• Minimizing Communication Overhead: LEACH reduces the network's data transmission, further conserving energy. 
It employs probabilistic methods to determine when nodes should communicate with the CHs, reducing unnecessary 
data exchanges. 

    The hierarchical WSNs are structured with clusters and CHs for efficient data collection and transmission. However, the 
energy consumption of CHs can be a concern, especially for long-distance communication. Routing challenges, such as 
routing holes, can disrupt the network. However, techniques like LEACH are designed to address these issues by enhancing 
network lifetime, reducing energy dispersal, and minimizing communication overhead. 
    Trust-aware routing uses a trust metric or model to evaluate the reliability of individual sensor nodes. These metrics assign 
numerical values based on node behaviour, historical performance, and network interactions. Trust considers data forwarding 
reliability, energy efficiency, security practices, and responsiveness to network requests. Trust values evolve, calculated from 
direct or indirect observations. Methods like weighted averaging or fuzzy logic aggregate these values to compute an overall 
trust score for each node. Routing decisions in trust-aware routing depend on node trustworthiness, favoring more 
trustworthy nodes as relay points to enhance data security and reliability. 
    Trust-aware routing approaches have been designed to detect deception using routing information. However, these 
methods may not effectively address various devastating attacks on routing protocols, such as Sybil attacks, sinkhole attacks, 
or wormhole attacks [17]. These routing-based security solutions may only cover some possible threat scenarios. WSNs are 
vulnerable to numerous security threats, including authentication attacks, stealthy attacks, and breaches of data secrecy [18]. 
Such attacks can compromise the network's ability to perform its intended functions and undermine the reliability of data 
transmission.  
    Many security techniques in WSNs leverage optimization algorithms to achieve secure data transmission. While these 
algorithms can enhance security, they often introduce additional time overhead, making data transmission more time-
consuming and potentially affecting network performance negatively [19]. One of the primary challenges is establishing trust 
among sensor nodes. This process can be complex and resource-intensive, mainly due to the energy constraints of sensor 
nodes. Determining how to achieve trust efficiently remains to be determined. Moreover, disseminating trust information 
throughout the network poses a significant challenge as it can result in excessive energy usage and challenges in locating 
suspicious nodes [15][21]. While effective at managing intrinsic attacks in WSNs, trust-based schemes often rely heavily on 
specific route methodologies or platforms [16]. This over-reliance on a particular routing method can limit the adaptability 
and robustness of the security scheme, especially in dynamic network environments. 
 

 
Fig 1. WSN System Representation Diagram 



 
ISSN: 2788–7669            Journal of Machine and Computing 4(1)(2024) 

141 
 

 
III.   PROPOSED WORK AND FORMULATION 

System Model 
The network model of WSN is based on a set of fundamental assumptions that define its characteristics and operation shown 
in Fig 1. These assumptions include: 

Homogeneous Sensor Nodes: All sensor nodes in the network are considered homogeneous, meaning they possess 
identical initial energy levels and have equivalent communication and processing capabilities. However, it is essential to 
note that the energy levels of these sensor nodes cannot be extended or replenished after deployment. 
Stationary Nodes: After initial deployment, the sensor nodes and the Base Station remain stationary. They do not change 
their positions during the network's operation. 
Location Awareness: Sensor nodes are equipped with the capability to determine and transmit their geographical 
locations. This information can be crucial for various network operations and applications. 
Base Station Resources: The Base Station (BS) is assumed to have significantly higher computational power than the 
sensor nodes and is not subject to energy constraints. This allows the BS to perform complex data processing tasks 
efficiently. 
Data Forwarding to Cluster Heads (CH): Sensor nodes periodically estimate the network's infrastructure and 
systematically transmit data to their respective Cluster Heads (CH). Cluster Heads are key in aggregating and forwarding 
data to the BS. 
BS Proximity: The Base Station is strategically located within the transmission range of all sensor nodes to ensure 
reliable communication with the entire network. 
Symmetric Links: Communication links between sensor nodes and the Base Station are assumed to be symmetric, 
meaning the quality of communication in both directions is similar. 
Cluster Head Election: Cluster Heads (CH) are elected and strategically located within the network to effectively 
facilitate data transmission and routing processes. 

    Collectively, these assumptions provide the foundational framework for modelling and analyzing the behaviour and 
performance of the Wireless Sensor Network under consideration. Researchers and engineers can use these assumptions to 
design and evaluate various protocols, algorithms, and strategies for efficient data gathering and communication within the 
network. 
 
Clustering Methods of WSN 
The clustering strategy is a critically important approach for efficiently managing energy resources in wireless sensor 
networks (WSNs) and has garnered significant attention as a promising area of research. However, achieving balanced 
energy utilization remains a persistent issue due to the close relationship between Cluster Head (CH) activities and nodes' 
specific roles and locations within the sensing field. Clustering is highly favoured in the realm of routing strategies for WSNs 
[31, 32] for several compelling reasons, including: 

Relay Packet Minimization: Clustering reduces the number of relayed packets by aggregating data gathered by 
sensor nodes. This minimizes unnecessary data transmission, conserving energy. 
Collision Prevention: By restricting redundancy in coverage, clustering helps prevent medium access collisions, 
ensuring more efficient and reliable communication. 
Scheduled Activities: Clustering enables scheduling activities within the cluster, optimizing resource usage and 
enhancing overall network operations. 
Topology Management: It helps solve the overhead associated with topology management, ensuring the network 
structure remains stable and efficient. 
Reduced Redundant Messages: Clustering also mitigates redundant message exchanges, saving energy and reducing 
network congestion. 
Bandwidth Conservation: It conserves communication bandwidth by aggregating and optimizing data transmission. 
Route Localization: Clustering aids in the localization of route setup, improving the efficiency of data routing. 

     Sensor nodes in a clustered WSN are usually classified as cluster members if located inside a particular cluster's coverage 
area. Their primary function in a clustered WSN is to provide sensed data to the Cluster Head (CH), who is the appointed 
leader. Then, to reduce transmission energy usage, the CH is in charge of forwarding the gathered data to the sink node. This 
transmission can go via an ideal path made possible by other CHs in the network, or it can go straight to the sink node. 
    There are two types of traffic on the network in a clustered WSN: intra-cluster traffic and inter-cluster traffic. By 
clustering, the energy consumption of the CHs and the sensor nodes connected to them is balanced. Nevertheless, because of 
the closeness of the sink node to the volume of traffic it manages, the CH frequently runs out of energy more quickly. As a 
result, choosing the best CH is essential to improving network performance while using less energy. 
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As a result, various clustering techniques and cluster-aided routing protocols have been developed and implemented in WSNs 
[33, 34]. These techniques aim to address the challenge of unbalanced energy usage by strategically selecting and managing 
CHs, ultimately improving the overall efficiency and lifespan of the wireless sensor network. 
 
Trust Aware  
The primary goal of this approach is to create a trust model designed explicitly for trust-aware routing in WSN This trust 
model aims to reduce the chances of selecting suspicious or untrustworthy nodes as Cluster Heads (CHs) in the network. 
    We employ a mechanism called a set of trust parameters to identify trustworthy Cluster Heads. These trust parameters 
encompass: 

• Integrity Factor: This assesses a node's data and actions for integrity and reliability. 
• Consistency Factors: These evaluate a node's behaviour over time, searching for anomalies or deviations. 
• Forwarding Rate Factor: This considers a node's performance regarding data forwarding and relaying. 
• Availability Factors: These examine a node's responsiveness and availability within the network. 
• Wireless Communication Mode: All WSN nodes communicate wirelessly and operate in specific modes. The trust 

model considers the unique communication characteristics of WSNs, emphasizing energy efficiency and resource 
conservation. 

• Energy and Computational Efficiency: The trust model is well-suited for WSNs, as it prioritizes minimizing energy 
consumption and computational demands. This is crucial in resource-limited sensor networks where energy 
preservation is essential for extending the network's operational lifespan. 

     Two main key factors determine the trust relationship between nodes in a WAN: 1) the direct degree of trust and 2) the 
indirect degree of trust. This trust relationship is established based on the exchange of data packets over time. When 
evaluating a neighbour node's trustworthiness, nodes consider a trust degree value ranging from 0 to 1. 

• A trust degree of 0 signifies a complete lack of trust between nodes. 
• A trust degree of 1 indicates complete trust in the neighbouring node. 

The trust degree (T) between nodes i and j in the WSN can be mathematically expressed using Equation (1): 
 

                                                      Tij(u)=µTij
A(u) +ŋTij

B(u)                                                                         (1) 
In the provided context: 

• The term Tij
A(u) represents the direct trust degree of node i in node j. 

• Tij
B(u)represents the indirect trust degree of the node i's neighbors in node j at time u. 

• The symbols μ andŋ represent weighted constants. 
    The trust degree between nodes is determined by combining these direct and indirect trust factors using the specified 
weighted constants. Equations (2) and (3) outline the expressions for calculating the direct and indirect degrees of trust 
between two nodes in the WSN. 

                                                                                     Tij
A(u)=

PKij(u)
R

PKij
S (u)

                                                                                 (2) 

    Where  PKij(u)
R represents the total number of packets node i receives and PKij

S(u)expresses the total number of packets sent 
by node i. 

                                                                        Tij
B(u)=1

N
∑ TijAN
u=1 (u)                                                                        (3) 

 
     "N" represents the number of neighbours of node i.The trust degree described in Equation (1) is subject to periodic 
updates over time, and a moving average model governs these updates. The expression for updating the trust model is 
provided in Equation (4): 

                                                                   Tij(u+1)=αTij(u)+(1-α)Tij(u+1)                                                                 (4) 
 

     Where Tij(u+1) represents the updated trust degree at time u+1,  Tij(u+1) represents the trust degree of node j as perceived 
by node i at time u+1. The termα represents a weight factor that balances the trust at each iteration. 
 
     The update equation indicates how the trust degree between nodes i and j, denoted as Tij(u+1), is calculated at time t+1 
based on the trust degree perceived by node i, and the weight factor αThis update process helps adjust the trust values 
between nodes as the network dynamics change. The formula for calculating would depend on the trust model and the trust 
update strategy used in the WSN. 
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Factor Availability 
Node 𝑖𝑖 transmits a source packet to determine whether node 𝑗𝑗 can receive this packet. If 𝑖𝑖 receives an acknowledgement from 
𝑗𝑗, it confirms the availability of 𝑗𝑗. Equation (4) calculates the availability factor of neighbouring nodes. 
 

                                                              A(u)=
QPKij(u)

QPKij(u)+NAPKij(u)
                                                                      (5) 

 
     Where QPKij(u) represents the number of packets acknowledged, and  NAPKij(u) indicates the number of packets that 
have not yet received acknowledgement. 
 
Energy Efficiency 
The transmitter requires energy to power the radio electronics and the power amplifier. Similarly, the receiver expends 
energy to operate its radio electronics. Additionally, the energy consumption of a node is directly related to the amount of 
data to be transmitted and the distance over which it needs to be sent. To account for energy losses with distance, this model 
employs an energy loss formula of d2 for relatively short distances and d4 for longer distances, where "dij" represents the 
distance between sensor nodes i and j. The propagation distance (d) is compared to a threshold distance, d0, to determine 
which formula to use. If the propagation distance (d) is less than d0, the energy consumption of a node is proportional to d2; 
otherwise, it is proportional to d4. The energy a node consumes when transmitting an l-bit data packet is calculated using 
Equation 6. 

                       ETotal (l,d) = l .ETR+ l . ETR. εfs. d2     if d<d0 = l .ETR+ l . ETR. εmp. d4    if d>d0                                    (6) 
 
In this context, ETR represents the energy dissipation per bit for both the transmitter and receiver circuits. The value of ETR is 
influenced by various factors, including digital coding, modulation techniques, and signal spreading. For free-space 
transmission, the amplifier energy is denoted as εfs. At the same time, the multi-path model is represented as εmp, and its 
specific value depends on the characteristics of the transmitter amplifier model.The energy expended by the receiver during 
the reception of an l-bit data packet can be calculated using Equation 7. 
 

                                                                ERX( l ) = l . ETR                                                                                                                          (7) 
 
Nero Fuzzy Based Clustering Head Selection  
Neuro-fuzzy techniques are hybrid approaches that combine elements Combining fuzzy logic systems with artificial neural 
networks (ANNs) to tackle challenging issues. These techniques aim to leverage the strengths of both neural networks and 
fuzzy logic to create more flexible, adaptive, and interpretable systems.  A mathematical approach called fuzzy logic 
addresses imprecision and uncertainty. It uses linguistic variables, fuzzy sets, and fuzzy rules to model and reason with vague 
or ambiguous information. 
      Computational models called artificial neural networks are based on the architecture and operations of the human brain. 
They consist of interconnected nodes (neurons) organized in layers for learning and decision-making, as shown in Fig 2. 
      Neuro-fuzzy techniques combine the principles of fuzzy logic and neural networks to create hybrid systems. One 
approach is to represent and reason with fuzzy logic linguistic variables and rules, while neural networks offer learning and 
adaptation capabilities. In neuro-fuzzy systems, neural networks are often used to adapt fuzzy membership functions, fuzzy 
rules, or other parameters based on input data. This adaptation allows the system to learn from examples and adjust its 
behaviour over time. 
      Neuro-fuzzy systems typically produce rule-based models that explain how inputs and outputs are related in a human-
readable format. These rules are often expressed in natural language and provide insights into the system's decisions. The 
neuro-fuzzy techniques provide a robust framework for solving problems that involve uncertainty and require adaptive 
learning. They find applications in diverse fields where decision-making and modelling of complex systems are essential. 
These techniques offer the benefits of fuzzy logic and neural networks, making them valuable tools for addressing real-world 
challenges. 
 
The proposed Routing WSN 
The proposed BWSO algorithm plays a crucial role in the route optimization of the designed WSN routing strategy. This 
algorithm is specifically tailored for achieving effective communication in an energy-efficient manner. Here is an expanded 
explanation of the BWSO algorithm and its significance in WSN route optimization. 
     The BWSO algorithm is employed to enhance the routing strategy within the WSN. Its primary objective is to optimize 
the selection of CH and determine the optimal communication path between CHs to conserve energy during data 
transmission. The BWSO algorithm's enhanced convergence capabilities lead to a faster and more efficient route optimization 
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process. This improved route selection ultimately translates into a more extended network lifetime and reduced energy 
consumption in the WSN. The algorithm's energy-efficient communication and route optimization contribute significantly to 
the overall performance and sustainability of the wireless sensor network. 
     The BWSO algorithm represents an innovative approach to WSN route optimization. Integrating elements and leveraging 
fitness-derived random number generation addresses the challenges of energy-efficient communication and route selection. 
This algorithm's ability to accelerate convergence and increase the network's longevity while conserving energy makes it a 
valuable tool in wireless sensor network design and management. 
 
Energy efficiency of WSN 
Conventional techniques for addressing security and trust-related challenges in WSNs often encounter several significant 
issues. The elaborates on these challenges and provides additional context, In light of these challenges, it is evident that 
security and trust management in WSNs require careful consideration and innovative solutions. Researchers and practitioners 
in WSNs must strive to develop security mechanisms that balance the need for trust and protection against various attack 
vectors while minimizing the impact on network performance and resource utilization. As WSNs continue to play critical 
roles in various applications, addressing these challenges is essential to ensure their reliability and security in real-world 
deployments. 

 
Fig 2. Proposed Framework Diagram 

 
III. CLUSTERING AND OPTIMIZED ROUTING ALGORITHM 

The proposed TANFC-AHWO algorithms are designed to optimize the operation of WSNs through a comprehensive three-
step process. These steps aim to improve the network's efficiency, reliability, and security while ensuring the successful 
transfer of data. The following are three steps of proposed an expanded explanation of each step: 

• Clustering Using agglomerative hierarchical (AHC) 
• Cluster Head Selection Using Neuro-Fuzzy Clustering (TANFCH) 
• Secure Data Transfer Using Whale Optimization Algorithm (WOA) 

 
Clustering Using Agglomerative Hierarchical 
In the first step of the TANFC-SWO algorithms, the network undergoes clustering using the innovative neuro-fuzzy 
clustering technique, referred to as TANFC. Neuro-fuzzy clustering is a sophisticated approach that combines neural 
networks and fuzzy logic to organize sensor nodes into clusters efficiently. 
      Neuro-fuzzy clustering considers various factors such as node locations, sensing capabilities, and communication patterns 
to group nodes with similar characteristics together. This clustering enhances resource allocation and management within the 
network. By ensuring that nodes with shared responsibilities and tasks are grouped together, energy consumption is 
optimized, and the scalability of the network is improved. 
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The HAC (Hierarchical Agglomerative Clustering) algorithmis a straightforward and mathematically sound approach to data 
analysis. It can offer insightful descriptions and visualizations of potential data clustering structures, mainly when genuine 
hierarchical relationships are present in the data. 
     Applying the HAC algorithm to WSN we devised a six-step clustering process to create well-suited clusters. 
 
Step 1: Acquire the Input Data Set 
For HAC the input data consists of a component-attribute matrix. Components represent nodes to be grouped based on their 
attributes, such as node locations or connectivity data and distance by using the Euclidean distance formula.  
 
Step 2: Calculate Resemblance Coefficients 
Resemblance coefficients quantify the similarity between nodes using methods like Euclidean distance for quantitative data. 
These coefficients capture node relationships. Matches of attribute pairs between any two nodes, denoted as 'a' and 'b,' are 
counted to calculate the resemblance coefficient, represented as M(a, b) in the simple matching coefficient as shown in 
Equation (8). 
 

                                                                    M(a,b)= N11−N10
N11+N10+N01+N00

                                                                                (8) 
 
Where N00. N11, N10, N01 are count of 1-1, 1-0, 0-1, 0-0 matches of attributes= pair of any two nodes. 
 
Step 3: Execute the AHC Algorithm 
AHC identifies minimum coefficients in the resemblance matrix, forming a hierarchical tree. It merges clusters iteratively, 
updating the matrix. Four primary HAC methods are used: SLINK(single linkage), CLINK(Complete Linkage), 
UPGMA(Un-weighted Pair-Group Method using arithmetic Averages), and WPGMA(Weighted Pair-Group Method using 
arithmetic Averages) is calculated from Equation 9 to Equation 12 respectively. The outcomes of the HAC algorithm are 
visualized using a binary tree or dendrogram. 
 

                                          M(SLINK)=Min{M11, M12….Mij….Mmn}                                                                (9) 
 

                                          M(CLINK)=Max{M11, M12….Mij….Mmn}                                                              (10) 
 

                                           M(UPGMA)= 1
mn

∑ M(i, j)m,n
i=1,j=1                                                                          (11) 

 
                                           M(WPGMA)= 1

mn
∑ Wi M(i, j)m,n
i=1,j=1                                                                        (12) 

         
Step 4: Cluster Pruning 
To prevent clusters from growing excessively, we prune the hierarchical tree using a predefined threshold, which can be 
based on factors like transmission radius, desired cluster count, or density. The transmission radius using the UPGMA 
method with quantitative data and Pruning ensures clusters maintain an appropriate size. 
 
Step 5: Minimum Cluster Management 
If a cluster falls below a predefined minimum size threshold, it merges with its nearest neighbouring Cluster shown in Figure 
1, and execution of cluster form from Algorithm 1. 
______________________________________________________________________________ 
Algorithm1. Agglomerative Hierarchical Clustering (AHC) 
_____________________________________________________________________________ 
1.function Agglomerative_Hierarchical_Clustering (data, linkage_metric, num_clusters): 
# Initialize each data point as a separate cluster 
2    clusters = InitializeClusters(data) 
3    while len(clusters) > num_clusters: 
# Find the pair of clusters with the smallest linkage_metric 
4     cluster1, cluster2 = Find_Closest_Clusters(clusters, linkage_metric) 
# Merge the two closest clusters into a new cluster 
5    merged_cluster = Merge_Clusters(cluster1, cluster2) 
        # Remove the merged clusters from the list of clusters 
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6       clusters.remove(cluster1) 
7      clusters.remove(cluster2) 
# Add the merged cluster to the list of clusters 
8      clusters.append(merged_cluster) 
9return clusters  # Hierarchical structure of clusters 
_____________________________________________________________________________ 
 
Cluster Head Selection Using Neuro-Fuzzy Clustering (TANFCH) 
Cluster Head Selection Using Neuro-Fuzzy Clustering (TANFCH) is used in WNS to determine suitable cluster heads among 
sensor nodes. This method combines neural networks and fuzzy logic to select cluster heads efficiently. Here's a general 
outline of how the TANFCH algorithm works: 
              Initialization: 

• Initialize sensor nodes and set parameters like network size and communication range. 
• Assign random initial energy levels to sensor nodes. 

             Data Collection: 
• Sensor nodes gather data from their surroundings or perform initial data transmissions. 

              Neuro-Fuzzy Clustering: 
• Apply a neural network-based clustering algorithm to group sensor nodes into clusters. 
• Features like node distance, remaining energy, and data transmission history can be used as inputs to the 

neural network. 
• The neural network assigns a membership value to each node for each cluster, indicating the node's 

likelihood of becoming a cluster head. 
              Fuzzy Logic Refinement: 

• Use fuzzy logic to refine the cluster head selection further. 
• Fuzzy rules can consider multiple criteria, such as energy levels, node centrality, and network load. 
• Calculate a fuzzy score for each node based on these criteria. 

              Cluster Head Selection: 
• Select nodes with the highest membership values or fuzzy scores as cluster heads. 
• Cluster heads should have a balance between energy efficiency and network coverage. 

              Data Aggregation: 
• Cluster heads collect data from their member nodes and perform data aggregation or compression to reduce 

traffic. 
              Data Transmission: 

• Cluster heads transmit aggregated data to a sink node or base station. 
• Non-cluster head nodes may enter a low-power state to conserve energy. 

              Network Maintenance: 
• Handle node failures or changes in network topology by re-running the clustering and cluster head selection 

process as needed. 
     Performance Evaluationof the network's performance in terms of energy efficiency, data delivery, and other relevant 
metrics. Fine-tune algorithm parameters if necessary.TANFCH aims to prolong the network's lifetime by intelligently 
selecting cluster heads based on fuzzy logic and neural network techniques as shown in Figure 3. It optimizes the trade-off 
between energy conservation and data aggregation to improve the overall efficiency of WSNs. The specific implementation 
details and parameters may vary based on the requirements of a particular WSN application. 
     The neural network considers three crucial parameters: Trust(T), Energy(E), and Availability(A). These parameters 
control the minimum and maximum values passed to the next network layer. The neural network then calculates the 
weighting or importance of each factor based on their respective values. Afterwards, it analyses the cumulative values to 
determine the node within the cluster that best meets the criteria for being the cluster head. 
 
Secure Data Transfer Using Whale Optimization Algorithm (WOA) 
The third and final step of the TANFC-SWO algorithms is dedicated to the secure transfer of data within the network. This is 
achieved through advanced routing technology and, specifically, the use of the Whale Optimization Algorithm (WOA). 
     WOA is a metaheuristic optimization algorithm inspired by the social behavior of humpback whales. In this context, 
WOA is applied to routing technology to improve data transfer efficiency and security. WOA assists in optimizing the 
selection of routes for data packets by considering factors such as path reliability, energy consumption, and data integrity. 
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     By incorporating WOA into the routing process, the network can ensure that data is securely transmitted from source to 
destination. This includes implementing encryption, authentication, and data encapsulation techniques to protect data from 
unauthorized access, tampering, or eavesdropping. 
 

 
 

Fig 3. Five-layer Neuro Fuzzy System 
 
     One can categorize the WOA as a meta-heuristic algorithm. Its design and development are influenced by the innate 
behaviours of humpback whales (HW). Humpback whales produce Wheel-shaped bubbles in the water as they pursue their 
meal. According to initial research, humpback whales use bubble netting to catch their prey about 12 meters under the 
ocean's surface. They then convert these bubbles into spheres, which push them quickly to the surface. The mathematical 
representation is hunting, assaulting, circling, and searching for prey. When looking for prey, consider Algorithm 2, which 
uses random values greater than 1 to find prey. 
 
Prey Encircling 
The reaction to the present objective (prey) within the Prey Encircling WOA algorithm is considered sufficiently promising 
to arrive at a tenable solution. In the same way as humpback whales (HW) first locate and surround their prey, WORP uses a 
comparable principle. Once the hunting agent has been defined, other members align their positions to coincide with the most 
visible agent. Equations (13) and (14) are used in WOA to implement the encircling mechanism.  

                                                                                               D=|P.X*(u)-X(u)|                                                                  (13) 
                                                        X(u+1)=X*(u)-F.D                                                                  (14) 

    The coefficient vectors in these equations are represented by F and P, the iteration count is shown by 𝑢𝑢, the optimal 
solution location found in the completing iterations thus far is indicated by X*, and the current position is indicated by 𝑌𝑌(𝑢𝑢). 
The absolute value of an integer is represented by the notation ‖∙‖, where ∙ stands for constituent multiplication. 
     In order to help encircle the prey successfully, Equation (14) is made to update the searching agent's location based on the 
best solution that is currently recognized. Note that X* needs to be updated after every cycle, but only if an improved 
approach has been discovered. The coefficients throughout are computed using equations (15) and (16) in the 𝐹𝐹 and 𝑃𝑃 
vectors, where 𝑏𝑏 is the random vector spanning inside the range [0, 1] and represents the surrounding component that 
decreases linearly from 3 to 0 throughout the iterations. 
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Bubble-Net Attack Strategy 
Two different modelling techniques have been developed to mathematically simulate the bubble-net assault behaviour of 
humpback whales (HW): (i) encircling with the shrinking approach and (ii) position updating using a logarithmic spiral 
method. 
 
Encircling Using Shrinking Method 
This method uses a linear decrease of vector 𝑏𝑏 through 3 to 0, as Equation (5) shows. It is vital to remember that vector 𝐹𝐹 
changes when vector 𝑏𝑏's significance is reduced. An alternative statement would be that vector 𝐹𝐹 takes on random values 
between −𝑏𝑏 and +𝑏𝑏. 

                                                       F=(2xbx r)-b)                                                                                    (15) 
                                                                   P=2xr                                                                                           (16)                 

     Hence, during all iterations, 𝑏𝑏 progressively drops from 3 to 0. The subsequent position of the investigating agent as it 
moves from its starting point to its current dominant location is characterized by appending an arbitrary number to vector 𝐹𝐹 
between the range of -1 to +1. 
 
Location Update using Logarithmic Spiral Method 
Humpback whales initially locate prey by measuring the distance between their current and prey's locations. Equations (17) 
and (18) provide a mathematical expression for the spiral flight route methodology, which each whale must use to modify its 
current location. 

                                                           D’=|X*(u)-X(u)|                                                                              (17) 
                               X*(u+1)=D’. ec*m. Sin(2m𝜋𝜋) +X*(u)                                                          (18) 

     Where 'm' is generated at the random value within the range [-1, 1], 'D′' stands for the distance between the prey's location 
and the location of the currently best-found solution, '𝑐𝑐' stands for a constant number that the characterizes the shape of a 
spiral that is logarithmic, and '∙' stands for constituent-based multiplication. 
     It is significant to remember that although HW (the predator) travels in a circle toward its prey, its general motion is 
modelled by a logarithmic spiral. To keep things simple, Equation (19) likely expresses the updated position of HW using 
either Equation (2) or Equation (6). 

                     X∗(u + 1) = �X ∗ (u) − F ∙ D                                          if z > 0.5 
D′ ∙  ec∗m ∙ Sin(2 × mπ) +  X ∗ (u)      if z < 0.5                                     (19) 

Seeking Prey 
In actuality, whenever a HW agent plans to stray from adopting the solutions of others, they will all act randomly and seek 
out victims. In this stage, WOA concentrates on broadening the search field and encouraging search agents to travel far-off 
places for better answers. The vector 𝐹𝐹, whose values are greater than or equal to -1, is used to aid in a thorough search for 
prey. During the discovery phase, a search agent's location is updated by randomly selecting an agent instead of the best 
agent so far discovered. Unlike the exploitative phase, agents conducting searches closely follow the greatest-identified 
agent. WOA uses the vector 𝐹𝐹, having values larger than 1, to find global solutions without hitting local optima. Equations 
(20) and (21), where X𝑟𝑟 is selected from the right now recognized random location vector, provide mathematical expressions 
for this idea. 

D=|P.Xr-X|                                                                          (20) 
X(u+1)=Xr-F.D                                                                       (21) 

                                                                                    
Levy Flight 
WOA uses a Levy flying technique to spread out the search agents so they can avoid reaching local minima and investigate a 
more extensive search space. This tactic improves the harmony between the two processes. Equation (22) expresses how 
WOA uses the Levy flight approach to synchronise the HW location following its update. 
 

                                         X(𝑢𝑢+1)=X(𝑢𝑢)+(𝛿𝛿∙𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠[𝑟𝑟𝑟𝑟−0.5])⨂𝐿𝐿𝐿𝐿𝑟𝑟𝐿𝐿                                                (22) 
 
The precise location of the 𝑗𝑗th whale, or the vector 𝐹𝐹, at iteration 𝑢𝑢, is represented by X(𝑢𝑢) in Equation (22), where 𝛿𝛿 is 
randomly selected from a uniform distribution. ⨂  is a random number in the interval [0,1] and indicates the N-array circled 
times operator. Interestingly, 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠[𝑟𝑟−0.5] only accepts the values -1, 0 and 1. Equation (23) uses a random walk approach to 
maximize the distance travelled in each step, allowing for practical search space exploration. 
 

                                                                                       𝐿𝐿𝐿𝐿𝑟𝑟𝐿𝐿≃𝑟𝑟=1𝑠𝑠ℎ, 1≤ℎ≤3                                                                    (23) 
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Algorithm 2. Whale Optimization Routing Algorithm 
 

1. Initialize the population D𝑝𝑝 (𝑝𝑝 = 1, 2, 3, …, 𝑞𝑞). 
2. Calculate the fitness of each search agent. 
3. Determine D∗ as the best-performing search agent. 
4. Check if the termination condition.  
5. 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 u<𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚_𝑖𝑖𝑖𝑖𝐿𝐿𝑟𝑟𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 is met. 
6. For each searching agent: 
7. Update parameters b, F, P, m, and z. 

i) If (z < 0.5) 
ii) If (‖𝐹𝐹‖ < 1), update the location of the current searching agent using Eq. (2).  
iii) Else, if (‖𝐹𝐹‖ > 1), choose a random searching agent (X𝑟𝑟𝑟𝑟) and update the location of the 

current searching agent using Eq. (19).  
8. End if. 
9. If (z > 0.5), update the location of the current searching agent using Eq. (18). 

               End if. 
10. End for every searching agent. 
11. Update the location of each searching agent using the Levy flight. 
12. Check if any searching agent has gone outside the target searching area and rectify it. 
13. Recalculate the fitness of every searching agent. 
14. Update X* if a better solution is found. 
15. Increment the iteration counter, u. 
16. Check the termination condition. 
17. Return X*. 

_____________________________________________________________________________ 
 

IV. RESULT AND ANALYSIS 
The outcomes of implementing the suggested Nero Fuzzy WSN using the optimal tree routing protocol. The selection of the 
root channel is optimized through the proposed algorithm protocol method is implemented using Network Simulator 3 (NS-
3). The experimental outcomes and the efficiency of the proposed method are described as follows: 
     NS-3 conduced simulations using the IEEE 802.11 MAC layer protocol, and Data was transmitted at a constant rate of 50 
kbps in all simulations, with a simulation duration of 200 seconds. The total number of nodes used in our experiments varied, 
with configurations of 200, 400, 600, 800, and 1000 nodes, all within a 1000 m × 1000 m area. For propagation modelling, 
we employed the Two Ray Ground model and used omnidirectional antennas for data reception.  
     The CPU from Intel, the Core i7-4710 HQ processor, 8 GB RAM, the Windows 10 OS, and 4 GB Nvidia 860M GPU 
were the specifications of the system setup used for these simulations. The simulations were run several times with different 
setups, such as changing the number of nodes and cluster heads. It was envisaged that the sensing area of the network would 
be rectangular with dimensions of 100 by 100 square meters. 
     In Fig 4, we examine packet delay across various rounds of experimentation, showcasing the superior performance of our 
proposed algorithm when compared to existing algorithms such as PSO, BHO, TSO, FF, and GSO. Our algorithm 
consistently demonstrates lower packet delay, indicating its efficiency in minimizing delays in data transmission. 
     Moving on to Fig 5, we delve into packet drop rates and compare our proposed work and existing algorithms. The results 
clearly illustrate that our proposed algorithm outperforms its counterparts, exhibiting significantly lower packet drop rates. 
This superior performance underscores the robustness and reliability of our approach to maintaining data integrity and 
reducing packet loss. 
    In Fig 6, we investigate the packet delivery ratio, a crucial metric in assessing the effectiveness of communication systems. 
Here, our proposed algorithm once again shines, surpassing current techniques concerning the percentage of packet delivery. 
This outcome underscores the algorithm's ability to ensure a higher proportion of successfully transmitted packets, enhancing 
the overall communication quality within the network. 
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                                           Fig 4. Packet Delay                                                               Fig 5. Packet Drop               

            
Fig 6. Packet delivery Ratio                          Fig 7. Packet Throughput 

In Fig 7, we explore packet throughput and conduct a comparative analysis between our proposed algorithm and existing 
ones. The results reveal that our proposed algorithm exhibits superior packet throughput compared to existing algorithms. 
This signifies its capability to efficiently handle data traffic and achieve higher data transfer rates, ultimately improving 
network performance. 
     Fig 4 to Fig 7 collectively demonstrate the exceptional performance of our proposed algorithm in terms of packet delay, 
packet drop rates, packet delivery ratio, and packet throughput compared to existing algorithms. These findings highlight our 
approach's significant advancements and advantages to the field, contributing to more efficient and reliable WSN 
communication systems. 

       
Fig 8. Trust Based Cluster Head                            Fig 9. Network Lifetime 

 

 
Fig 10. Energy Consumption 
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In Fig 8, we delve into the trust-based cluster head selection process, a crucial aspect of our research. Our proposed algorithm 
demonstrates remarkable efficiency by significantly reducing the time required for cluster head selection, measured in 
milliseconds, compared to existing methods. This improvement is consistent across different network sizes as we compare 
our results with configurations ranging from 50 to 250 nodes. The clear trend observed is that our proposed approach 
consistently outperforms the existing methods, highlighting its effectiveness in minimizing the time overhead associated with 
cluster head selection, which is critical for optimizing network performance. 
     Moving on to Fig 9, we examine network lifetime, a fundamental metric in evaluating the sustainability and longevity of 
wireless sensor networks. Our proposed algorithm stands out as it consistently offers an extended network lifetime compared 
to other approaches. This improvement in network longevity is evident across various network sizes, ranging from 50 to 250 
nodes. By enhancing network lifetime, our proposed method contributes to the overall sustainability and reliability of the 
network infrastructure, ensuring that it remains operational for extended periods. 
     In Fig 10, we investigate the energy consumption patterns among the cluster nodes, a key consideration in wireless sensor 
network design. Our proposed algorithm excels, demonstrating lower energy consumption than existing methods. This 
advantage holds across different network sizes, from 50 to 250 nodes. By reducing energy consumption, our approach 
prolongs the operational life of individual nodes, thereby enhancing the overall efficiency and sustainability of the network. 
This is particularly important for applications where energy-efficient operation is crucial, such as remote monitoring and data 
collection in challenging environments. 
      The Fig 8 to Fig 10 collectively illustrate the superior performance of our proposed algorithm in various critical aspects 
of wireless sensor networks, including cluster head selection time, network lifetime, and energy consumption. These results 
are consistent across different network sizes, underscoring the versatility and effectiveness of our approach in improving the 
overall performance and sustainability of wireless sensor networks. 
 

V. CONCLUSION AND FUCTURE WORK 
In this paper, we addressed the critical challenges wireless sensor networks (WSNs) face concerning energy optimization and 
secure communication. These challenges arise from the resource-constrained nature of sensor nodes and the demanding 
operational environments in which they are deployed. To tackle these issues, we introduced a novel protocol, Trust aware 
Neuro Fuzzy Clustering head selection (TNFCH) combined with agglomerative hierarchical clustering (AHC) and Secure 
Whale Optimization (SWO) Algorithm Routing. This protocol, TNFCH-AHWO, enhanced energy-efficient data transmission 
in WSNs while ensuring data security and trustworthiness. Our approach efficiently organized sensor nodes using neural 
networks and Fuzzy logic, enabling the secure transfer of data within the communication network. A critical component of 
our system was the Trust calculation algorithm, which played a pivotal role in maintaining data integrity and facilitating 
lightweight operations such as key generation, encryption, decryption, and verification. This ensured hop-to-hop 
authentication among the nodes in WSNs, bolstering network security. To evaluate the effectiveness of our proposed 
protocol, we conducted extensive simulations using the NS3 simulator. The results of our simulations demonstrated 
significant improvements across various performance metrics compared to existing protocols. These enhancements 
encompassed reduced energy consumption, increased throughput, minimized network delay, prolonged network lifetime, and 
improved packet delivery ratios. 
     Future Work, while our proposed TNFCH-AHWO protocol has shown promising results in addressing energy efficiency 
and security concerns in WSNs, several avenues exist for future research and development. Extending our work to real-world 
deployments will offer insightful information about the proposed protocol's practicality. Field trials and experiments in 
diverse environmental conditions can further validate its effectiveness. Exploring advanced optimization techniques and 
algorithms can enhance the energy efficiency of the protocol even further. Investigating machine learning approaches for 
fine-tuning parameters or adapting to dynamic network conditions is intriguing. 
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