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Abstract – In the evolving world of wireless communication, sixth generation (6G) networks represent a significant leap 

forward. Beyond its high-speed and reliable communication, 6G integrates Artificial Intelligence (AI), making networks 

intelligent entities. This elevates the infrastructure of smart cities and other ecosystems. A critical factor in 6G's success is real-

time traffic analysis. As 6G aims to interconnect billions of devices, it faces unprecedented traffic patterns. Practical traffic 

analysis ensures optimal performance, resource distribution, and energy efficiency. It also supports the network in handling 

vital sectors like healthcare and transportation by anticipating congestion and prioritizing crucial data. However, traditional 

traffic analysis techniques designed for earlier generations cannot accommodate 6G's demands. With 6G's integration of diverse 

technologies, understanding traffic becomes more challenging. Recent advancements have incorporated deep learning 

architectures, notably Convolutional Neural Networks (CNNs), for traffic analysis. While these models show potential, 

adapting them to 6G's specifics remains challenging. This research presents a unique parallel CNN architecture for 6G traffic 

prediction. It converts network data into an image using the Matrix Format Method (MFM), making it suitable for CNN 

processing. This innovation addresses the limitations of traditional methods and meets 6G's requirements. Compared to other 

models, our parallel CNN architecture highlights enhanced performance, promising increased traffic prediction accuracy. It 

also paves the way for improved resource allocation, energy management, and quality of service in 6G environments. 

 

Keywords – 6G, Machine Learning, Wireless Communication, CNN, Network Traffic Analysis, Accuracy. 

 

I. INTRODUCTION 

In the rapidly transforming domain of wireless communication, the emergence of the sixth generation (6G) networks promises 

to be more than just a technological advancement; it heralds a seismic shift in our digital interactions. Beyond the allure of 

terabit-level speeds and Ultra-Reliable Low-Latency Communication (URLLC), 6G is embedding Artificial Intelligence (AI) 

at its very heart, ushering in a new era where networks are not mere pathways for data but intelligent entities. This combination 
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seeks to elevate individual digital experiences and the foundational architecture of our smart cities, industries, and broader 

ecosystems [1]. Yet, as these networks grow in complexity and reach, their proficiency hinges on a vital ability: real-time traffic 

analysis. Such capability is imperative for 6G's effectiveness, ensuring it meets its lofty promises and delivers unparalleled user 

experiences amidst the intricacies of evolving data traffic [2]. 

      Traffic analysis in the context of the groundbreaking 6G environment is paramount. As we transition into an era dominated 

by 6G networks, the vastness, complexity, and dynamism of the data traffic generated are unlike anything we've previously 

encountered. 6G promises to interconnect billions of devices, from smart appliances and autonomous vehicles to high-definition 

virtual reality systems. This exponential increase in connected devices translates to a labyrinth of data paths with unique traffic 

patterns [3]. Analyzing this traffic effectively is the linchpin to ensuring optimal network performance, resource allocation, and 

energy efficiency.  

      Furthermore, with 6G's emphasis on URLLC and its applications in critical sectors like healthcare, transportation, and 

public safety, accurate traffic analysis becomes paramount. It facilitates swift and precise decision-making, enabling the 

network to anticipate congestion points, mitigate potential disruptions, and prioritize data packets for mission-critical operations 

[4]. The prowess of 6G's transformative capabilities hinges on robust traffic analysis frameworks, underscoring its significance 

in shaping our connected future. 

      Traditional traffic analysis methodologies, built predominantly for 4G and even 5G networks, are no longer equipped to 

handle the sheer volume, diversity, and dynamism of 6G traffic. As 6G introduces more device types, more simultaneous 

connections, and greater data flow per device, there is an intrinsic need for a more sophisticated, accurate, and faster traffic 

analysis technique [5]. Understanding traffic patterns in real-time enables better network resource allocation, optimizes energy 

usage, and ensures end users' highest Quality of Service (QoS).  

      Furthermore, with the envisaged integration of diverse technologies such as Augmented Reality (AR), virtual reality (VR), 

holographic telepresence, and the Internet of Everything (IoE) in 6G environments, the traffic matrix becomes significantly 

more complex. 

      Recent advancements in network traffic analysis have seen a convergence of deep learning architectures, specifically 

Convolutional Neural Networks (CNNs). [6] tackled encrypted application traffic classification, integrating attention 

mechanisms with spatiotemporal features. Similarly, [7] applied CNN combined with an Ant-Lion Optimizer (ALO) and Self-

Organizing Map (SOM), achieving remarkable results, especially with encrypted traffic. [8] brought CNNs into the Internet of 

Things (IoT) traffic domain, stressing the efficacy of combining CNN with Recurrent Neural Network (RNN). These 

approaches celebrate CNNs' hierarchical feature extraction capability, which is especially crucial for real-time traffic analysis 

in complex networks like 6G. While the results are promising, adapting these methods to the nuances of 6G traffic is an ongoing 

challenge, emphasizing the need for further tailored solutions. 

      In light of this, our research introduces a pioneering parallel CNN architecture specifically designed for the intricacies of 

6G traffic prediction. Recognizing the unique data characteristics of 6G, we employ a transformative step, converting raw 

network data into an image representation via the Matrix Format Method (MFM). This approach ensures that the data's intricate 

patterns and nuances are retained and made more accessible to CNN processing. Such an innovation bridges the gap between 

traditional traffic analysis methodologies and the demands of the 6G environment. When juxtaposed with other baseline 

learning models, our novel Parallel CNN architecture displayed superior performance, highlighting its potential as a robust tool 

for real-time traffic analysis in the emerging 6G landscape. This model promises heightened accuracy in traffic prediction and 

sets the stage for optimizing network resource distribution energy consumption and ensuring an unparalleled Quality of Service 

(QoS) amidst the multifaceted traffic scenarios introduced by 6G. 

      The paper is organized as follows: Section 2 presents the literature review, Section 3 presents the proposed methodology, 

Section 4 presents the experiment analysis, and Section 5 concludes the work. 

 

II. LITERATURE REVIEW 

Network Traffic Prediction (NTP), a significant aspect of Network Traffic Management Analysis (NTMA), primarily focuses 

on anticipating network load and behavior. The predominant techniques historically bifurcated into statistical-based and 

Machine Learning (ML)-based methods [9]. While statistical methods have their merits, the surge in ML applications, 

particularly Deep Learning (DL) models, shows a promising trajectory for traffic prediction in evolving network landscapes. 

      Several studies have proposed hybrid models to enhance prediction accuracy. For instance, [10] combined the Hidden 

Markov Model (HMM) with Long Short-Term Memory (LSTM) for wireless network traffic prediction, demonstrating its 

superiority over traditional models. Similarly, [11] introduced an enhanced deep reinforcement learning algorithm for network 

traffic analysis and prediction, emphasizing its efficacy against other methods like CNN in specific metrics. 

      Moreover, with the rising complexity of 6G and its affinity with the Industrial Internet of Things (IIoT), [12] presented a 

self-attention traffic matrix prediction model, emphasizing its effectiveness in long-term network traffic matrix prediction in 

IIoT scenarios. 
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     However, despite these advances, the literature indicates limited work, specifically on CNN-based traffic analysis for 6G 

networks. For example, while [13] explored the Diffusion Convolutional Recurrent Neural Network (DCRNN) for traffic load 

forecasting, direct applications of CNNs for 6G traffic remain underexplored. This gap underscores the need for dedicated 

research in this domain, motivating the focus of the current study. 

     The paper is organized as follows: Section 2 presents the literature review, Section 3 presents the proposed methodology, 

Section 4 presents the experiment analysis, and Section 5 concludes the work. 

 

III. PROPOSED MODEL 

Feature extraction by conversion of Traffic Data to Images 

 
Fig 1. Network Data to Image Conversion 

      

    In the context of 6G networks Fig 1, Feature Extraction (FE) from traffic data adopts heightened specificity due to the 

network's unique characteristics. Packet length becomes pivotal in reflecting high data rate transmissions, indicating bursts of 

information in ultra-dense network deployments. The packet type, now possibly including newer protocols tailored for 6G, is 

a marker for the myriad of communication types, from augmented reality data streams to enhanced mobile broadband. Source 

and destination IP addresses and ports no longer indicate communication endpoints; in a 6G landscape, they could signify 

communication between edge-computing nodes, IoT devices, and even autonomous vehicles [14-16]. The granularity of 

timestamps is more refined, capturing data transitions at microsecond levels, in line with 6G's promise of ultra-reliable low 

latency. Payload size in 6G scenarios might indicate heavy data packets associated with holographic communications or 

advanced AI computations [17]. 

     Moreover, packet flags in 6G will potentially encompass evolved signaling information, reflecting the network's dynamic 

topology adjustments and rapid handovers. As we journey through the nascent stages of 6G, remaining vigilant and adaptive 

to include any new feature will be crucial [18]. This rigorous approach to feature extraction sets the stage for an accurate 

transformation of 6G traffic data into image-based representations, catering to advanced CNN analyses. 

 

Data Normalization in the Context of Traffic Data Conversion to Images 

Normalization is pivotal in data processing, especially when preparing data for Machine Learning (ML) or image-based 

representations. The primary objective of normalization is to adjust the dataset's features to a similar scale. In the context of 

converting traffic data to images, this procedure is of paramount importance. Consider the different scales of features extracted 

from traffic data: packet lengths might range from a few bytes to several kilobytes, while timestamps might be represented as 

large epoch numbers. Without normalization, when these diverse scales of features are used to construct an image, a feature 

with larger numeric values could disproportionately influence the resulting image, masking or overshadowing the patterns and 

variations of features with smaller numeric values. By normalizing the features, each attribute is adjusted to a consistent scale, 

often between 0 and 1 or -1 and 1. This ensures that each feature contributes equally to the image construction. The resulting 

image thus becomes a balanced representation of all the FE, allowing for more accurate and meaningful analyses using CNNs. 

Normalization is a preparatory step that mitigates potential biases in the image representation and ensures the image accurately 

reflects all the critical facets of the traffic data. 

 

Image Construction using the MFM 

The MFM is a foundational approach to converting normalized traffic data into image representations. This method hinges on 

organizing the data tabularly, much like a matrix or a 2D array. In this construct, each row typically symbolizes a single packet 

or a network event, while each column represents a specific feature extracted from the traffic data. Imagine a scenario where 

you have captured multiple packets over a particular duration. You've extracted and normalized features such as packet length, 

packet type, source and destination IPs, and timestamps for each packet. When employing the MMF, each of these packets will 
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be represented by a row, and its associated features will populate the columns of that row. As you accumulate rows (packets), 

the matrix grows vertically. 

      The visual outcome of this matrix, when represented as an image, resembles a grayscale image. Each cell in the matrix 

contains a normalized value between the chosen scale (often 0 to 1 or -1 to 1). The varying shades of gray in the resulting image 

denote different values within this scale. For instance, sequences of features, like time-series data of packet lengths, might 

manifest as gradients or patterns of grayscale shades, providing a visual narrative of how packet lengths vary over time. This 

matrix-turned-image then serves as a spatially coherent depiction of the traffic data. Each region or segment of the image 

corresponds to specific network events or patterns, making it a practical input for CNNs [19-20]. The CNNs can process this 

image to detect and learn spatial hierarchies and patterns, offering valuable insights into the underlying network behavior. 

 

CNN Training on Traffic Images 

Adapting CNNs to traffic images presents a novel way of studying and analyzing network traffic patterns. After converting 

traffic data into image representations using methods such as the MFM, the next step involves training a CNN on these 

generated images. CNNs, renowned for their prowess in image classification, FE, and pattern recognition, are ideally suited for 

this purpose. 

 

Data Augmentation 

One of the primary challenges in training ML models, including CNNs, is the potential risk of overfitting. Overfitting occurs 

when a model is too closely tailored to the training data, making it less effective in generalizing to new, unseen data. This is 

where data augmentation comes into play. 

• Data Augmentation refers to artificially enhancing or expanding your dataset using various techniques to create variations 

of the existing data. For traffic images, the following techniques can be employed: 

• Rotations: By slightly rotating the traffic images, you introduce minor variations to help the CNN learn more generalized 

features. This can be especially useful if specific traffic patterns or anomalies occur in various orientations. 

• Zooming: Zooming in or out of an image can alter the perspective of features. This can be instrumental in making the CNN 

robust against variations in the size or scale of discernible patterns in the traffic data. 

• Flipping: Flipping the traffic images horizontally or vertically can provide an alternative data view. This can be valuable, 

especially if specific network traffic patterns are direction-agnostic. 

• Cropping: Randomly cropping sections of the traffic image can help focus on specific parts of the data. Cropping can 

introduce local variations, enabling the CNN to recognize essential features even if they appear in different regions of future 

input images. 

Utilizing these augmentation techniques, one can significantly expand the diversity of the dataset. When a CNN is trained 

on such a diverse dataset, its generalization capability improves, reducing the risk of overfitting and potentially enhancing its 

accuracy and reliability when analyzing real-world, unseen traffic images in Fig 2. 

 

 
Fig 2. Parallel CNN Architecture 
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Proposed Parallel CNN Architecture for Training on Converted Traffic Images 

In the progression of our research, once the traffic data undergoes conversion into image representations, the next critical phase 

encompasses the design and implementation of a CNN tailored for the unique nuances of 6G traffic patterns. Recognizing the 

multi-faceted nature of these traffic images, a parallel CNN architecture emerges as a logical choice [21-22]. The initial phase 

of the CNN begins with the Input Layer, tailored to accommodate the traffic image, designed for dimensions of 128x128 pixels.  

     Following this foundational layer, the architecture introduces an innovative Parallel Convolutional Branching. This 

parallelism comprises three distinct branches, each tailored to extract features at diverse levels of granularity: 

 

Branch A focuses on Fine-Grained FE 

This branch is essential for detecting minute variations and nuances in the traffic data, which can often be the first indicators 

of emerging traffic patterns or slight inconsistencies in the network. By recognizing these small-scale features, early 

interventions or optimizations can be made before they escalate. It starts with a convolutional layer (1A) that employs 3x3 

filters, generating 32 channels. The ReLU activation function provides the necessary non-linearity, and the subsequent max-

pooling layer (1A) with 2x2 pooling aids in spatial reduction. 

 

Branch B Delves into Medium-Level FE 

This intermediary branch bridges the gap between excellent details and overarching patterns. Identifying medium-scale 

structures or sequences in the data can recognize regular traffic patterns and be instrumental in understanding routine network 

behaviors and predicting future patterns based on historical and current data. This branch's convolutional layer (1B) leverages 

5x5 filters, culminating in 32 channels. It also adopts the ReLU activation function, followed by a max-pooling layer (1B) with 

2x2 pooling. 

 

Branch C zeroes in on Macro-Level FE 

Large-scale patterns and broad traffic behaviors fall under this branch's purview. It's crucial for understanding the overall health 

and performance of the network, and identifying large-scale trends aids in strategic decision-making, long-term optimizations, 

and comprehensive network assessments, ensuring that the network remains robust and efficient in the face of significant traffic 

volumes or large-scale events [23-25]. The convolutional layer (1C) utilizes 7x7 filters, resulting in 32 channels. Post this 

convolution, the ReLU activation function is employed, and a 2x2 max-pooling layer (1C) is integrated. 

      As these branches conclude their independent processing, the architecture merges their output feature maps in a 

Concatenation Layer, ensuring a composite feature representation from all extraction scales. After this, the network introduces 

a Convolutional Layer 2 that processes the concatenated map using 3x3 filters, expanding to 64 channels. The ReLU activation 

function is applied again, followed by a Max-Pooling Layer 2 with 2x2 pooling. The network then integrates Dense Layers to 

refine and interpret the extracted patterns. A flattening layer precedes the dense layers, transforming the 2D feature map into a 

1D vector. The first dense layer incorporates 512 neurons with ReLU activation. To prevent overfitting, a dropout layer with a 

rate of 0.5 is added. This is followed by another dense layer with 256 neurons activated by ReLU and a subsequent dropout 

layer for enhanced model robustness. Concluding the architecture is the Output Layer. Specifically structured for binary 

classification - "normal" versus "congested" traffic - it comprises a single neuron with the sigmoid activation function. A 

definitive threshold is set at 0.5. Values below 0.5 indicate "normal" traffic, while values equal to or exceeding 0.5 signify 

"congested" traffic. The proposed parallel CNN architecture is meticulously crafted to discern between normal and congested 

traffic in 6G network environments. By leveraging the multi-scale feature extraction, it holistically analyzes the intricate 

patterns embedded in the 6G traffic images. Recognizing congestion in such advanced networks is crucial, given the 

implications for quality of service, network reliability, and user experience. With its adeptness at making nuanced distinctions, 

this design serves as an instrumental tool in the proactive management of 6G networks, potentially guiding interventions to 

alleviate congestion and maintain optimal network performance. The following algorithm presents the steps involved in the 

proposed 6g network traffic data analysis. 

 

Algorithm: Traffic Data to Image & Parallel CNN Analysis for 6G Networks 

Input: Raw 6G traffic data 

Output: Traffic Prediction 

Steps: 

Traffic Data to Image Conversion: 

1.1 Feature Extraction: Extract relevant features like packet length, packet type, and timestamps from 6G traffic data. 

1.2 Data Normalization: Normalize the extracted features. 

1.3  Matrix Construction: Convert the normalized data into a matrix format where each row corresponds to a packet. 

1.4 Image Generation: Convert the matrix into a grayscale image representation. 
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CNN Training on Traffic Images 

2.1  Data Augmentation: Introduce variations like rotations and flipping to traffic images. 

2.2 Parallel CNN Training: 

2.2.1 Use three parallel branches for feature extraction at distinct levels (fine-grained, medium, and macro-

level). 

2.2.2 Merge outputs from all branches. 

2.2.3 Process through further convolutional, pooling, and dense layers. 

2.2.4 Output classification using a sigmoid activation function. 

Interpretation: Classify traffic as either standard or congested based on model output. 

 

IV.  EXPERIMENTAL ANALYSIS 

The data was sourced from a 6G testbed network. This testbed was set up to mimic a real-world 6G environment with IoT 

devices, edge-computing nodes, and autonomous vehicles. It also catered to traffic from augmented reality sessions and 

advanced AI computations, among other typical 6G traffic sources. The data collection spanned three months, from January 1, 

2023, to March 31, 2023. During this period, traffic was captured around the clock to ensure diversity in the dataset and include 

various network behaviors and patterns. After converting the raw traffic data into image-based representations using the Matrix 

Format Method: 

- Number of traffic images: 5000 

- Average image dimensions: 128x128 pixels (grayscale) 

- Total dataset size: Approximately 3.2 GB  

   Given the importance of data augmentation for enhancing model performance and generalization, several techniques were 

applied: 

- Rotations (3 variations per image) 

- Zooming (2 variations per image: one zoom-in, one zoom-out) 

- Flipping (2 variations per image: horizontal and vertical) 

- Cropping (2 random crops per image) 

This resulted in 9 augmented images per original image. Including the original images: 

- Total number of images post-augmentation: 50000  

- Total dataset size post-augmentation: Approximately 32 GB 

    The dataset was split into training and testing sets in an 80:20 ratio to ensure adequate data for model training while retaining 

a substantial amount for evaluation. 

- Training Data: 40000 images (approximately 25.6 GB) 

- Testing Data: 10000 images (approximately 6.4 GB) 

    The proposed CNN model is examined using a Dual Intel Xeon Platinum 8268 processor system and an NVIDIA A100 

Tensor Core GPU with 40 GB memory. Accompanying the processors is 512 GB DDR4 RAM and a 2 TB NVMe SSD. The 

system runs on Ubuntu 20.04 LTS, using the TensorFlow deep learning framework (version 2.5) for model operations. 

     In assessing the performance of our CNN model on traffic image data, we prioritize four vital metrics. Firstly, the Accuracy 

metric offers a direct snapshot of the model's overall correctness, revealing the proportion of instances correctly predicted 

relative to the entire dataset. Second, the F1-Score, a harmonic balance between precision and recall, is invaluable, especially 

when facing imbalanced class distributions, as it captures the model's proficiency in accurate classifications while minimizing 

false positives and negatives. The AUC-ROC stands as the third pivotal metric, serving as a testament to the model's 

discriminative prowess by gauging its capability to differentiate between positive and negative classes. Lastly, the Loss metric, 

typically represented by Cross-Entropy Loss, guides us through the model's learning trajectory. It indicates the disparity 

between the model's predictions and the actual values, shedding light on its progression and convergence during the training 

phase. Together, these four metrics provide a comprehensive yet succinct evaluation of the model's efficacy in the 6G traffic 

image analysis domain. In evaluating the effectiveness of our proposed parallel CNN model for predicting network traffic based 

on converted images, we've benchmarked its performance against several established models. These include the conventional 

Standard CNN Model, which provides a baseline with its typical image processing capabilities. For capturing temporal 

sequences, we considered both the Recurrent Neural Network (RNN) and its advanced counterpart, the Long Short-Term 

Memory (LSTM). Additionally, we've incorporated comparisons with the Gated Recurrent Units (GRU) for their efficiency in 

temporal pattern recognition. 
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Model Performance Comparison 

Table 1. Performance analysis for Accuracy, F1, AUC, and Cross Entropy 

Model Name Accuracy F1 Score AUC-ROC Cross Entropy 

Proposed Parallel CNN Model 94.7% 0.945 0.975 0.032 

Standard CNN Model 89.8% 0.892 0.940 0.045 

RNN 87.6% 0.875 0.923 0.051 

LSTM 90.3% 0.904 0.948 0.038 

GRU 88.9% 0.888 0.931 0.042 

 

     Upon examining Table 1, the Proposed Parallel CNN Model emerges as the standout performer across all metrics. It boasts 

the highest accuracy of 94.7%, suggesting an enhanced capability in classifying the converted traffic images over its 

counterparts. This superiority extends to the F1 Score, where the model's value of 0.945 underlines its balanced precision and 

recall. The AUC-ROC metric further accentuates the model's prowess, registering an impressive 0.975, indicating its superior 

ability to distinguish between positive and negative classes. The Proposed Parallel CNN's proficiency is also echoed in its 

minimal cross-entropy of 0.032, reflecting its aptitude in predicting accurate probabilities for the given classes. 
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(c) 

Fig 3. a)Accuracy Comparison, b) F1 and AUC comparison, and c) Cross entropy comparison 

 

      Contrasting this with the other models, the LSTM exhibits notable competitive flair, particularly regarding its cross entropy 

and F1 score. The standard CNN model, while lagging behind the proposed model, still posts commendable numbers, especially 

in accuracy and AUC-ROC. Meanwhile, RNN and GRU models display modest performance compared to the models 

mentioned earlier. Collectively, while each model presents its merits, the Proposed Parallel CNN Model consistently outshines 

the rest in this evaluation. Fig 3 (a)-(c) display the performance results. 

 

 
(a) 

 
(b) 

Fig 4. a) Training time comparison b) Testing time comparison 
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Model Performance Time Scaling (ms) Based on Dataset Percentage 

 

Table 2. Training and Testing time complexity analysis 
 25%  50%  75%  100%  

Model Name Training Testing Training Testing Training Testing Training Testing 

Proposed Parallel CNN 750 25 1600 50 2100 70 2400 80 

Standard CNN 800 28 1750 55 2300 78 2600 90 

RNN 950 32 2100 65 2800 92 3200 110 

LSTM 1150 38 2500 72 3300 102 3800 120 

GRU 1000 30 2200 60 2950 85 3400 100 

    Analyzing the performance time scaling of the models based on varying dataset sizes, as illustrated in Table 2, the Proposed 

Parallel CNN Model stands out with its impressive efficiency. Even at a complete dataset, it requires only 2400 ms for training 

and 80 ms for testing, making it the most time-efficient model among the lot. The Standard CNN Model follows closely, though 

at total capacity, it's slightly slower at 2600 ms for training and 90 ms for testing. RNNs scale moderately, taking 3200 ms to train 

and 110 ms to test at 100% dataset size. However, LSTMs are noticeably the most time-intensive, necessitating 3800 ms for 

training and 120 ms for testing on the full dataset. The GRU model finds a middle ground, consuming 3400 ms for training and 

100 ms for testing at the maximum dataset size. While all models scale with increasing data, the Proposed Parallel CNN Model 

consistently displays superior time efficiency. Fig 4 (a) and 4 (b) illustrate comparing all the models for training and testing time 

complexities.  

 

V. CONCLUSION AND FUTURE WORK 

The research addresses the challenges posed by the burgeoning complexity of 6G network traffic. A parallel Convolutional 

Neural Network (CNN) architecture was developed in response, explicitly targeting 6G traffic prediction. This model leverages 

the Matrix Format Method (MFM), transforming raw network data into an image representation. Such a transformation 

effectively encapsulates the detailed patterns of 6G traffic, making it more accessible for CNN processing. In comparative 

evaluations with existing methodologies, this CNN architecture highlighted superior capabilities in analyzing real-time traffic. 

Beyond predictive accuracy, the model illustrates potential advancements in optimizing network resource distribution, 

managing energy efficiently, and ensuring consistent service quality in dynamic 6G scenarios. These findings emphasize the 

model's suitability in addressing the nuanced demands of an ever-evolving 6G landscape. While the initial results are promising, 

there is an undeniable need for continuous evolution. As 6G networks expand and their intricacies multiply, refining and 

adapting the current architecture becomes crucial.  

     Future research will focus on enhancing the model's adaptability and ensuring its relevance as 6G continues to evolve, 

setting a direction for subsequent advancements in network traffic analysis. 
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